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Abstract. We construct a universal tangle invariant on a quantum algebra. We show that the
invariant maps tangle to commutants of the algebra; ever¥){tangle is mapped to a Casimir
operator of the algebra; the eigenvalue of the Casimir operator in an irreducible representation
of the algebra is a link polynomial for the closure of the tangle. This result is applied to
a discussion of the Alexander—Conway polynomial and quantum holonomy in Chern—-Simons
theory in three dimensions.

1. Introduction

Invariants for oriented tangles valued on finite dimensional representations of quasitriangular
Hopf algebras were constructed by Turaev (1990), Reshetikhin (1990) and Reshetikhin and
Turaev (1990). The construction was based on the relation between categories of oriented
tangles and categories of finite dimensional representations of an algebra (Yetter 1988, Freyd
and Yetter 1989). A universal invariant for links valued on a quantum group was constructed
by Lawrence (1989).

In this paper we construct a universal invariant for oriented tangles on a quasitriangular
Hopf algebra/ (Drinfel’d 1986, Jimbo 1985), which we call a quantum algebra. We further
show that the image of (the plane projection of) a tanglé/ds a commutant of{ to within
a permutation determined by the tangle. In particular, the image gflg-¢angle is a central
element of/ whose eigenvalue in an irreducible representatioty @ an invariant for the
closureof the tangle. Our construction is a non-trivial extension of the result of Lawrence
(1989) because a tangle lacks the crucial property possessed by a link—closure—that makes
either Alexander’s theorem (Alexander 1928) or Markov theorem (Markov 1935) useful. In
fact, our universal invariant for links differs from that of Lawrence.

The rest of the paper is presented as follows. In section 2 we first define notation and
review the main result of Lee (1992): eveny,if)-tangle diagram can be transformed to a
partially closed braid with: strands unclosed using only a special type of Reidemeister Il
moves. We then construct a universal tangle invariant as a fubc{d@] — Uy, where [I']
is a tangle isotopy antlly is an universal enveloping algebra with specific properties. In
section 3 we show that one can define a homomorphism between a quantum Agetita
Uy that maps a central elemente U/ to the identity inl{p. This requires certain refinements
on the construction given in section 2 depending on whether one’s objective is a universal
invariant for regular isotopic tangles, ambient isotopic tangles or ribbon graphs. In section 4
we show that, to within permutations, the universal tangle invariants are commutdts of
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that is, they commute with the subgét of &/ induced by the action of the coproduct on

U. This is a generalization of the coboundary conditi®n (/) = A’'(U)R by replacingR

by a universal tangle invariant ancl/) by U . In particular,V maps every (11)-tangle

to a central element itY. In section 5 we show that in an irreducible representatioty of

the eigenvalue of such a central element is a link polynomial for the closure of thg (1
tangle. This gives new meaning to a link polynomial as an object in a quantum algebra.
In section 6 we compare our universal link invariant with that given by Lawrence (1989).
In section 7 we give two simple applications of our results. In an appendix we list the
universal invariants for (11)-tangles with up to six crossings.

2. Seifert circles and a functor for tangles

2.1. Tangles, tangle diagrams and splices

Definition 2.1.1. An oriented (n,n)-tangld” is the disjoint union of: open oriented strands

and an arbitrary number of oriented closed strands embedded in a cylinder in a 3-manifold,
with all the n tails of the open strands held fixed on the ceiling of the cylinder and all the
n tips held fixed on the floor. Aink is a (0,0)-tangle.

Remark. One could replace the cylinder with a 3-ball, and identify the region on the surface
of the ball enclosing the tails (tips, resp.) as the ceiling (floor, resp.). An m)-tangle,

m # n, amounts to a different partition of the ends of the tangle. It is necessary to include
such tangles in the category theory approach (Turaev 1990, Reshetikhin 1990, Reshetikhin
et al 1990, Yetter 1988, Freyd and Yetter 1989), but not in our discussion. Henceforth
tangles will be understood to ki@, n) and oriented.

Definition 2.1.2. A tangle diagramis a regular plane projection of a tangle. A tangle
diagram is composed gqfositiveand negative crossingandedges In a positive (negative)
crossing the undercrossing strand is clockwise (counterclockwise) to the overcrossing strand.
An edgeis a section of strand between two consecutive crossings.

Example. The two basic crossings in a tangle are shown in figure 1.

XA 0K

Figure 1.

Definition 2.1.3. An ambient isotopy classimply isotopy class unless otherwise specified)

of tangle diagrams, denoted b¥]; is an equivalence class of tangles generated by the
Reidemeister moves I, Il and Il (figure 2) on tangle diagramgedular isotopyof tangles,
denoted by Tl is an equivalence class of tangles generated by the Reidemeister moves
Il and 1ll. By a functor for tanglesve mean a functor from the category whose morphisms
are isotopy classes of tangle diagrams.



Universal tangle invariant and commutants of quantum algebras 395

Remark. Reidemeister moves are defined for diagrams with non-oriented strands. For
oriented tangle diagrams it is necessary to speak of Reidemeister moves on diagrams with
oriented strands.

Definition 2.1.4. If the two strands in a Reidemeister move Il have the same (opposite,
resp.) orientation, denote the move lla (llb, resp.). The two types of Reidemeister move
II's are shown in figure 3.
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Figure 3.

Definition 2.1.5. Splicin@ crossing means cutting out the vertex of the crossing, placing
a4+ or — sign at the cut-out in accordance with the sign of the crossing, and reconnecting
the severed strands in such a way that: (i) the orientations of the strands are respected; and
(i) the reconnected strands do not cross.

Definition 2.1.6. A splice of a tangle diagrans obtained from a tangle diagram by splicing
all the crossings on the tangle.

Example. The splices of the two crossings in figurea)l@re shown in figure .

Remark. By definition there are no crossings in a splice. Hence lines in a sgticeot
correspond to strands in the tangle diagram it presents. On the other hand, it is clear that the
correspondence between the edges on a tangle diagram and those on its splice is one-to-one.
So is the correspondence between a tangle diagram and its splice. Often, arguments used
in the ensuing discussion do not depend critically on the signs at the crossing points in a
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Figure 5.

splice. In such cases, the signs in the splice will be generically replacstatg/(x’s). In
figure 4, @) is a tangle diagram,bj is its splice,c is the splice in which the signs are
replaced bw’s. The information contained in such a splice is precisely the same as that in
a 4-valent planar graph.

Definition 2.1.7. The circles in a splice are calle&gkifertcircles.
Example. There are three Seifert circles in the splice of figure)4éand 4¢)).

Definition 2.1.8. Thewrithe and theSeifert numbeare, respectively, the number of positive
signs minus the number of negative signs, and the number of Seifert circles, respectively,
in a splice.

Example The Reidemeister moves |, lla, llb and 1l on splices are shown in figuag-5(

(d), respectively. For the Reidemeister moves lla and llb, the two signs in the splice on
the left-hand side must be opposite. Note that the left-hand side splice in 1lb has a Seifert
circle while that in lla does not.

Remark. For the Reidemeister Ill move, in each of the two diagrams in figudg B(el

the three signs, from top to bottom, respectively, @y 8, ), and use the subscripts

L and R, respectively, to denote the left and right diagrams. Then the precise relation
is (o, B,y). = (v, B,a)r, in which, of the total of eight sets of signs, the two sets
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(o, B,y) = (+,—,+) and (—, +, —) are excluded. It is evident that in a splice neither
the writhe nor the Seifert number is an invariant of isotopy. Move | preserves neither the
writhe nor the Seifert number, whereas moves lla and Ill preserve both. Move llb preserves
writhe, but not necessarily the Seifert number.

Definition 2.1.9. The Reidemeister move llb iype 2 denoted by IIb2 type 1 denoted
by IIb1, resp.) if the two lines in the right-hand side diagram in figuie belong (do not
belong, respectively) to the same Seifert circle or to the same open line.

Remark If neither of the two lines belonged to a Seifert circle, then they would both
belong to separate open lines in the splice, and it would have been impossible to make a
Reidemeister Il move on them. Thus, move llb1l preserves the Seifert number (figdire 6(
and move IIb2 (figure &) changes the Seifert number B2, but preserves the number

of clockwise Seifert circles minus the number of counterclockwise Seifert circles.

Definition 2.1.10. Among all the edges involved in a Reidemeister [Ib1 move, there is one
and only one edge that belongs to a Seifert circle or to an open line both before and after
the move. We speak of this edge @®&serving its identityn the move.

Example. In figure 7, the identity of the edge marked with a cross is preserved.
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Figure 6.

Figure 7.
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2.2. Partially closed braids and wrong-way edges
Definition 2.2.1. A braid is a tangle diagram whose splice does not have any Seifert circles.

Definition 2.2.2. An (n, n)-braid-tangleis a partially closed braid obtained by closing
strands of an(n + m)-strand braid without disturbing any crossing in the braid.

Remark. Since the action of closing a strand in a braid must not generate any new crossing,
a braid-tangle is obtained by closing tha left-most strands clockwise and the right-

most strands counterclockwise,; + m, = m. Obviously,m + 1 possibly distinct braid-
tangles may be obtained.

Definition 2.2.3. Them edges that close am + m)-strand braid to obtain a¢x, n)-braid-
tangle arewrong-wayedges of the braid- tangle. If a component of a braid-tangle that is
closed contains no vertices, then the whole component is considered a wrong-way edge.

Proposition 1. Every (n, n)-tangle diagram can be isotopically transformed tonan)-
braid-tangle using only Reidemeister 1lb1 moves.

Corollary 1.0. Every (n, n)-tangle diagram is isotopic to am, n)-braid-tangle.

Corollary 1.1. Every tangle diagram can be isotopically transformed to a braid-tangle
such that the writhe number and the numbers of the clockwise and counterclockwise Seifert
circles are separately preserved.

Corollary 1.2. For every tangle diagram there exists at least one assignment of wrong-
way edges, one on each Seifert circle in the splice of the tangle diagram, and a braid-tangle
isotopic to the tangle diagram, such that

() the identities of the wrong-way edges are preserved in the transformation from the
tangle diagram to the braid-tangle; and

(ii) the set of wrong-way edges on the tangle diagram coincides with the set of wrong-
way edges on the braid-tangle.

Proof. Proofs are given in Lee (1992).

Remark. The corollaries are fairly straightforward consequences of proposition 1 and the
properties of the Reidemeister llb1 move.

Definition 2.2.4. Given a tangle diagrarfi, a specifiedtangle diagran¥* of T denotesT
equipped with a specific choice of wrong-way edges.

2.3. The algebrdfy
Definition 2.3.1. Uy is the tensor algebra of an algebfaoverC, equipped withz, i’ € A,

R=Y,a,®b € AA,R =), b ®a] € AA satisfying
hi' =hh =1 (2.1)
R(TR)=R(TR) =191 2.2)
R12R13R23 = Ra3R13R12 (2.3)

AhB = B'hA' = BWA=A'WB =1 (2.4)
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where A--- B is the shorthand for)_;a; ---b;; similarly for B'--- A", T(a @ b) =

b®a;Riz= R®L Ri3=AQ®1® B; R,3 = 1® R. The multiplicationm in Uy is

a morphismm: A - A, bya®b — m(a ® b) = ab,a,b € A. By (2.2) we define
RI=TR,R*=TR.

Definition 2.3.2. Consider A as a linear vector space. L& c A be spanned by
ab — ba,Va,b € A, Ay = A/T and the natural projectiofip: A — Ag. Then

Sp(ab) = Sp(ba) Va,b € A. (2.5)
In what follows we considefp as part of the structure éf,.

2.4. The functod for tangles

Let {T} denote the set of all tangles'] denote an isotopy class of tangles a]’;?fi) denote
an (, n)-tangle diagram withi closed strands.

Definition 2.4.1. Consider the splice of a specified tangle diagréin Call a wrong-way
edge on a counterclockwise Seifert circle Aredge(diagrammatically represented by

or, equivalently, byq), and one on a clockwise circle@edge(4 or 4). An edge that is
neither an A-edge nor a C-edge is Hredge(t or |). The property of an edge doest

depend on its relativdirectionin the tangle. We refer to all these edgesaasws Apply

these definitions also t@*.

Definition 2.4.2. Leta, B, ... be a set of arrows. The tensor produa® 8 is the disjoint
union of the two arrows. The multiplicatiomacting one® g adjoins the head af to the tail
of B: p(a®p) = pr2(@®p) = af. Also p13(@a®BRT) = aT®P, pa1(@RPRT) = Ta®}P.
Successive multiplications give an opstning of arrows(henceforth simply atring). The
notions of multiplying and tensoring arrows extend to strings.

Definition 2.4.3. Given a stringuias - - - o, let 7y be the clasgo,, o, - - - 5, (51, 52, - . .,
sx) € {all cyclic perm. of (1,2,...,k)}} and refer to it as @losed string of arrowsor
simply a closed string.

Remark. Thus a specified tangle diagrafit is a disjoint union of open and closed strings
composed of the arrows,, 4 and |, and pairs of tensored arrov< (overcrossing) and
/<, (undercrossing), equipped with the operations multiplication and tensor product.

Definition 2.4.4. Let h, ', R, R’ and Sp be the objects i/, defined in section 2.3. Let
«, B be stringsg be a closed string iff * and [I'*] be the set of all specified tangle diagrams.
Define the map/: [T*] — Uy by

V) =vi =1 Vip)=VH)=h V) =VH)=h" (26)

V() =R V() =R 2.7)
Ve ®B) =V ®V(B) (2.8)
Vp) =m(V () @ V(B) = V(@)V(B) (2.9)
V() = Sp(V(ry)) € Ao T, € T. (2.10)

Proposition 2. V is a functor for tangles; it is well defined as a mup{7T'}/isotopy —
Uo, [T,\"] = VIT,"] = V(T*) € Ann @ AS', VT € [T,"].
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Proof. The proofis givenin Lee (1992). There, it is shown that iff(j)and 7, are isotopic;
(i) 77 is a specified tangle diagram @} and (iii) 7" is a specified tangle diagram @},
thenV(T)) = V(T;)). O

Remark. ¥V maps each open string Ii* to a factor valued ind and each closed string in
T* to a factor valued indy. The cyclicity of Sp in (2.5) is needed for (2.10).

Example. The specified tangle diagraffi* in figure 8@), a counterclockwise writhe with
an overcrossing, may be expressed'ds= p12(p13(;< ® $)). From the rules given above,
V(T*) = ma(m13(R @ h)) = m12(Ah ® B) = AhB; see figure &F).

[~ "m/\" f

Figure 8.

2.5. Some properties of

2.5.1. Definition 2.5.1Define an equivalence relation on tangle diagrams by saying that
U ~ W if, and only if, V(U*) = V(W*) for all specified tangle diagranig* and W* whose
tangle diagrams ar& and W, respectively.

Example. The basic relations (2.2—4) of the algeldfa are shown diagrammatically in
figure 9@)—(c).

Remark. Equation (2.4) is the algebraic expression of the Reidemeister | move (figr)je 9(

Hence, unless the elemeritand s’ are equal to the identity, it is necessary to differentiate
wrong-way edges from other edges.

X b X
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AKX

Figure 9.
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2.5.2. Following are some derived Lee (1992) relations shown diagrammatically in
figures 10-12, respectively.

AA® B'B'=BB' @ AWVA=1Q1 BhB® AA' = AhA'@ BB=h®1 (2.11)
RAQMRI=RMOMR '=h@h, RWOWR1=RH QKR =N
(2.12)
[h@h,Rl=[h®@h, R1=[®Hh,Rl=[h®Hh,R]=0. (2.13)
\/: ~N AN /s
/ 4 \é >
~ Y — =
Figure 10.
£3~C3 (5~{%
SO PPN
Figure 11.
oo A
Figure 12.

Remark. Equation (2.11) is the algebraic expression of the Reidemeister llb move
(figure 10). A graphical derivation of the second relation in (2.12) is given in figure 13.

S Va -— | A
‘@\ <\ d/” \ “E
I___1 \ _ l

Figure 13.

2.5.3.I1f B is a braid ofn strands, then repeated application of (2.13) gives
[R®", V(B)] = [W"®", V(B)] = 0. (2.14)
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2.5.4. Definition 2.5.2For the set of A, n)-tangles{T ™}, let o:{T™} — S, be the
natural mapping of tangles to the permutation group. Weosays, sends{l, 2, ..., n} to
{is, iz, ..., ix} Wheno (@1 ® a2 ® - ®a,) =a;, ®a;, @ - a;,.

Let 7, and T, be two {1, n)-tangles and lef,;, be obtained by joining in order the tips
of T, to the tails ofT}, then

VITap) = VITalo (T VIT5)). (2.19)

255. Let T be an f,n)-tangle with! closed strands. There exists a brafd of

N =n + uL + uR strands, and a braid-tangig, obtained froms by closing the latter’s
w left-most strands clockwise andk right-most strands counterclockwise, such thHaf) (
may be reached by executing only Reidemeister IIb1 move§ orSupposer (B) sends
{1,2,...,N}to {i1, iz, ...,in}. Let B = V(B), H = h'®" ® 1®" ® h®*=, andmz,, be an
(uL + nr)-fold composition of multiplications:

m N
Mmirg) = <H(Omij,s)> o 1®"< H (omix,.,-)>. (2.16)
s=1

s=N—pur+1
This defines the action that closBsto yield 7. Because there ardeclosed strands ifT,
there must bé cycles among the set of pairs of subscrifitss} in (2.16). (For example,
a cycle involving three pairs is a s€ls1, 52}, {s2, s3}, {53, s1}), with 51, so ands3 different.)
We also havé < u + ur ando (Tp) € S, sendingj to o (B)(uL + j) — L = iy 4 — UL

2.5.6. Denote bySp® the action that sends thkeclosed strands to489’ according to
definition 2.4.3 and (2.10), and defidd {75z} = Sp® o myr,,. If [T] is the isotopy ofT},
then the mapy for [T] is explicitly given in terms ofCl{Tz}, o (B) and’H by

VI[T] = V(Tp) = CU{T}(Hp) = Cl{Ts}(Bo (B)(H)). (2.17)
The following are two simple examples. Suppdgeis obtained fromT' by closing the
latter’s right-most strand counterclockwise, an@l’) sends{l, 2, ..., n} to {i1, io, ..., i,}.
Then

VI[Tr] = Sp®* omy, , V[T]o(T)A® - @ 1Q h)) (2.18)

wherelg = 1(0) if the closing generates (does not generate) a new closed strafid in
Similarly, if T is obtained fromI" by closing its left-most strand clockwise, then

VITL] = Sp®" om; s (VIT]lo(T) (W ®1® -+ ® 1)). (2.1%)

2.5.7. There aren + 1 ways of closing all the strands ifi: closing them left-most
strands clockwise on the left, and the rest of the strands counterclockwise on the right,
m = 0,1,...,n. Refer to the links thus obtained I#,. Clearly all 7,,’s belong to the
same class,1[], the generic closure of . Define

Hp = h®" @ "™ ¢ Ann m=0,1...,n (2.19)
Then7, being isotopic to f] demands that the following equality holds:
VIT] = VIT,] = CUT}VI[T]o(T)(H,)) m=0,1,...,n. (2.20)

SinceT itself is the partial closure of a braid, it is sufficient to prove the equality when
is a braidB of n strands, namely,

VIB] = CHUBY(V(B)o (B)(Hy)  m=0,1,...,n. (2.21)
This relation is proved in Lee (1992).

Example. Figure 14 gives a graphical derivation of (2.21) for the case 3, m = 2.
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Figure 14.

3. Functor for tangles on a quantum algebra

3.0. Quasitriangular Hopf algebra

Definition 3.0.1. A quasitriangular Hopf algebra (Drinfel'd 1986) is a (not necessarily
commutative or cocommutative) Hopf algehtd, S, m, A, €} equipped with an invertible
elementR € A ® A satisfying:

m(id ® $)A(a) = m(S @ id)A(a) = e(a)l Va e A (3.18)
RI=GEQIdR=(>([dx S HR (3.1b)
(A'(@)R = RA(a) Va e A (3.10)
(A ®id)R = Ri3Ra23 (id® A)R = RisR12 (3.1d)
R12R13R23 = R23R13R12. (3.19)

The antipodeS: A — A is an antiautomorphism, and the multiplication A ® A — A,

the comultiplicationa: A - A ® A and the counik: . A — C are morphisms.A’ is the
opposite comultiplication. We denote the algebra, which we also call a quantum algebra,
by DA AQA AQARQA,....

Example. ¢4 may be adeformed Lie algebrgDrinfel’d 1986, Jimbo 1985, Reshetikhin
et al 1990) or analgebra of functions on a quantum formal gro(@ipaddeev 1988). An
explicit example of the former is a quantized universal enveloping alg&b(a) over
C[nl, ¢ = ¢" an indeterminate, wherg is a simple complex Lie algebra of ramkwith

simple rootse;,i = 1,...,r and Cartan matrid;; = 2(«;, oj)/{c;, a;), where(,) is an
invariant scalar product. Its generators in the Chevalley bdisX;", X, ;i = 1,...,r}
are constrained by
+ + g —q"
+ —
q9—4

mij -
3 <mf> (~1vg TP XEXTT = 0 li—jl=1 (3.20)
v=0 v qi
AH, =H ®1+1Q H; Ax;izxii@)qﬂi/z_'_qfﬂ,-/z@X?[

(3.%)

€(H) =€(X;) =0 (3.2)
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wherem;; = 1—A;j, g = ¢'“**, [a, b] = ab—ba, and(’,’l’)x =T A—x""+ /(1—x).
The action of the antipod# is determined by, A and (3.1):

S(H;) = —H; S(XF) = —q™ 2 xFq 2, (3.3)

Drinfel’d (1985, 1986) has shown that tii&-matrix may be expressed as an infinite formal
sum in A ® A, defined by givingC[#5] an n-adic topology.

Remark. Often the antipode oiX; is given a form equivalent to (3.3),
SXD) =—4"X7q™" (3.4)
wherep = 33 ,.a, Ha, anda is the set of positive roots of.

Definition 3.0.2. Henceforth, by/ we mean d{,(g) such as the one given in the example
above. Also denote the opposite multiplication/byand defineR’ = TR .

Lemma 3.0.1. The two elementsy = m((id® S)R) andvy = S(vp) = m/'((Id® SHR) are
invertible and satisfyya € A,

vgt =m((§? ®id)R) = m((id ® STAHR) voavyt = S %(a) (3.5)

vyt =m (2 RIdR) = m'((id ® SA)R) vpavy "= $%().  (3.6)
Lemma 3.0.2. 1 = vouj = vyup is a central element afi:

[a,A] =0 Va € A. (3.7)
Proofs. Proven in Drinfel’d (1989). For completeness we give a proof below.

Notation. Throughout the rest of the paper we wie= )", 4, ®b, = A® B, A = S(A),
A=SYA)sothatR™*=7TR = A® B = A® B. For the product of twdR's we write
RR =AA"® BB'. (i.e. A’ ® B’ stands forR, notR’.)

Fora € A write A(a) =) .y, ®z, =Y ® Z. From (3.5) and (3.%),

0=m(id® S) (R™1(a'(@)R — A(a)) = AZuoS(Y)B — YS(Z).

Left multiply by A’ and right multiply byE/ and noting that the second term on the last
expression is equal te(a)1 and thatA’A ® BB = (d® S)(RR™Y =1®1, we have

ZuvoS(Y) = YS(Z2)vo.

Lettinga = H; yields [uo, H;] = 0. Lettinga = X;" further yieldsupS(X;") = S~%(X) vy.

This impliesugS(a) = S~%(a)vo, Ya € A. Applying this last relation te: ((id® S)RIR) =
AuvgB = AS72(B)vg = 1 then identifiesA S~2(B) as the left-inverse ofi,. This proves the
second relation in (3.5). The proof of the rest of (3.5) and (3.6) is similar, which we omit.
Relation (3.7) then follows directly from the last parts of (3.5) and (3.6). |



Universal tangle invariant and commutants of quantum algebras 405

Lemma 3.0.3. vo, v, satisfy

m(R(o® 1) =m'(R(vg® 1) =1 mR (vu®D) =mR (vy®D) =1 (3.8)

Proof. We prove explicitly the first and third relations and omit the proof of others:
1=m(([d®S)YRR) = m((d®S)AA' ® BB') = AAB' B = m(R(vo®1))
m(R (vo ® 1)) = BupA = vgS3(B)A = vouy.

Remark. Recall thatR is unchanged under the action (¢ ® S).

Definition 3.0.3. Definev = A~Y2y,, v’ = A~Y2y).

Remark. Although there may not be an explicit expression fot/? (or A*/?) in terms of
H; and Xli its n-adic evaluation inC[#n] is well defined.
By definition and from (3.8)p andv’ satisfy

v =1 (3.9)
AuB = BU'A = 1712 BuA = Au'B = A2, (3.10)
Example. Relations (3.10) are illustrated in figure 15.

- J o\
oo o

Figure 15.

3.1. Universal invariants for tangles

Definition 3.1.1. Let V be the functor of section 2.4, with the the algebfaof section
2.3replaced by the quantum algelira and the setR, R’, h, h'} in Uy replaced by the set
(R, TR, v, v} in U.

Proposition 3. V[T]q valued oni{ is a universal invariant for regular tangle isotopy.

Proof. Comparing (3.9), (34), (3.1¢) and (3.10) with (2.1), (2.2), (2.3) and (2.4), we
can define a homomorphism betweghand the algebrd/, of section 2.3 that maps

(R, TR Y v,v™t, A} inU to {R,R',h, 1,1} in Up. Note that the central elemeitin

U is not the identity element. Since (2.4) gives the Reidemeister move | (figedg 9(

its replacement by (3.10) means thatdoes not observe the invariance of Reidemeister
move |. Hence the relations (2.11) and (2.12), which establishes the equivalence relation
of Reidemeister move Ilb on specified tangle diagrams and were proven in Lee (1992)
graphically forify using Reidemeister | moves, need to be re-derived without using such
moves. This is done as follows. For the first relation in (2.11),

AA @ BuviB=AA @ B'S?’(B)v = ({[d® SRR NHAovH=01ov . (3.11)
For the first relation in (2.12),
AvA' ® BuB' = vS2(A)A @ uS2A(B)B' = (W@ V)(RR™Y) = v ® v. (3.12)

The other relations are similarly derived. Proposition 3 is nhow obtained by replacing all
reference to (ambient) isotopy in proposition 2 by regular isotopy. |
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Remark. If two tanglesT and 7’ are related by Reidemeister | moves, the(r*) and
V(T'*) may differ by factors of.*/2,

Definition 3.1.2. Let w; be the total number of positive crossings minus the total number
of negative crossings on thith component in ai-component tangle diagraf. The writhe
number of the tangle is/(T) = Zﬁzl w; /2. Define the functod’, acting onT by

Va(T) = (®L_ A" HV(T™). (3.13)

Corollary 3.1. The functorV,:{T} — U by V4[T] = V4(T) is an invariant for ambient
isotopic tangles.

Proof. V(T*) gives a regular isotopy. The writhe number is preserved in Reidemeister Il
and Il moves. Every Reidemeister | move on ittle component induces &F%/? factor in
the functor and changes; by +1/2. Hence the facto(®,A"/4) in (3.13). |

3.2. Invariants for ribbon graphs

Definition 3.2.1. A ribbon graph(Reshetikhin and Turaev 1990) is a tangle diagram with

the strands replaced by ribbons that admitsts A ribbon graph without any twists is

a flat ribbon graph A full clockwise (counterclockwise) twist on a ribbon is equivalent

to a writhe on a flat ribbon with positive (negative) crossing. See figure 16. There is a
natural one-to-one correspondence between a flat ribbon graph and a tangle diagram. Given
a ribbon graphG, denote by7; the tangle diagram corresponding to the flat ribbon graph
obtained by ignoring all the twists i. By construction the natural isotopy for ribbon
graphs is regular isotopy.

Remark. A ribbon graph is sometimes referred to as a framed tangle diagram.

~

|

Figure 16.

Definition 3.2.2. An isotopy of ribbon graphs, denote b¢Teg is an equivalence class
of ribbon graphs generated by Reidemeister moves lla, Ilb and Il on flat sections of the
ribbon.

Definition 3.2.3. Let G be ani/-component ribbon graph with;” clockwise twists and
n; counterclockwise twists on thigh-component. Define a functdirg acting on ribbon
graphs by

Vra(G) = (®/_ A" D2y )(Ty). (3.14)

Corollary 3.2. The functorVre: {G} — U by Vrc[Gleg = Vra(G) is an invariant for
ribbon graphs.
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Proof. V preserves writhes ofi;. In particular, the replacement of (2.4) by (3.10) equates
a positive (negative) writhe, or a full clockwise (counterclockwise) twist, in a ribbon graph
to a factor ofa=%/2 (A1/2) in V. Hence the extra factor @&, —/2) for Vg in (3.14).0

Remark. Another terminology for a ribbon graph isfeamedtangle. It is clear that if the
central elemenik. were equal to the identity element, then there would be no distinction
between thel/ images of regular isotopic tangles, ambient isotopic tangles and ribbon
graphs.

3.3. Realization o¥’ on representations @f

Let V be an finite dimensional, irreducibld module and letr; € End(V). Then, from
Schur’s lemmayg; (1) is equal to an eigenvalue,, times the unit matrix. For ahcomponent
tangle, a natural realization af (or V4 or Vgrg) valued onAnl is (11 ® --- ® )V, in
which A on theith string is represented by; (1), the R-matrix at the crossing of thigh
and jth strings is represented .., = (m; ® 7;)R, and so on, andp is replacedby the
matrix trace inm;. If ¢ takes value orC (as opposed to being an indeterminate) then we
restrict it to values such that,, # 0.

A case of special simplicity and interest is to let all= . In this case, write:

Definition 3.3.1. A, = w(A), hy = 7(v), Ryi = (r @ )R, R,i' = (mn @ 7)TR~L, and
let Tr, be the matrix trace imx.

Then, by replacing{R, R, v, v=1, A, Sp} by (R,i, Ryi’, hx, h;t Ay, Try} in V
(Va, Vra, reps.), we ge¥Vr (Va,, Vre,, resp.).

4. Universal tangle invariants and commutant oft/

4.0. The main proposition

In this section we discuss commutantsief Sincel is a central element dff, we shall
make no distinction betweew, V4, andVgg; an invariant will be generically referred to as
V[T]. LetU be a quantum algebid, (¢g) of section 3.0 whose comultiplication and antipode
on the generator§; = /2, k-t = e 1/2 X X7, i =1,...} are, for convenience, given
again:

AXF =XF @k +k e X’

S(kFh = k7t S(XF) = —k: Xk (4.1)
LetU/x be the subset @f generated by acting onA4, V be the functor of section 3.1 valued
onU, o:T™ — S, be the natural mapping of tangle diagrams to the symmetry groups,
A A — A®+D pe the natural extension of: A — A ® A (see definition 4.2.2).
Forai,...,a, € A, define7, € S, by 7,(a1 R a, ® - - ®a,) = a, ® --- ® ax ® az, and
A =T, 10, Recall that ifT ™ has! closed strands, the?[T™] = « @« , where a
suppressed summation is understag, € Ann, o)’ € Azl, Ag = A/{(ab—ba)la, b € A}.

Proposition 4. For an @, n)-tangle diagran? with [ closed strands,
(0" @) @ 1¥HWVIT] = VITI(o (D) (2" H@) ®1%  Vae A (4.2)

Supposer" V() = 3 x1 @32 ® - @ Xpi = ®"_yx,, @ = @"_,1, ando (T) sends
(1,2,---,n) to (ki, k2, -+, ky). Thena""Y(a) = ®"_,x,, wherer’ = n —r + 1, and

(4.2) implies(®"_ x,1,) ® ay) = (&"_it,x,) @ al).



408 H C Lee

4.1. A tangle Casimir operator

We first give an example of what we shall caltangle Casimir operatoof I/. Let Tiefoi
be the (11)-tangle diagram shown in figure BEj(whose closure is the trefoil link.

(a) (b)

Figure 17.

Lemma 4.1.1. V[Tyeroi] valued inlf, (sl(2)) is a central element.

Proof. The rank ofsi/(2) is one, so the elemen#, X*, k no longer need subscripts. We
simply write X for X*. From (4.1),

S2(k*hy =kt S2(X) = k2Xk 2. (4.3)
Applying the rules given in section 2.4 on figure hy{ve get
T = V[Tyeoil]l = AB’A"UBA'B" = m((1® v)B) (4.4)

whereg = R(7R)R is the value of a two-strand braid shown in figureld)A¢hose partial
closure isTyefoi. The lemma is proven when it is shown that 4*'] = 0 and [, X] = 0.
From (3.k), B commutes witha (k') = k™ @ k*1. Fora € AA andx,y,z € A,
BA(x) = A(x)B andm((x ® yz2)a) = m((x ® 2)a(y ® 1)). Also k, v commute, because
vkvt = §72(k) = k. We first show {, k] = 0.

th=m((1®V)BA®K) =m((1@kk " )BA®K) =m((L® k™ v)BAK))
=m((1@k v)ak)p) =m((k ® k 'vk)p) = m((k ® v)B) = kt. (4.5)
We now show {, X] = 0.
X =m((1®kk0)BA® X)) =m((1Qkv)Bk ! ® X)). (4.69)

After adding and subtracting a term((1 ® Xkv)B(1® k)) = m((1 ® kv)B(X ® k)) from
the right-hand side, and using manipulations similar to those used in (4.3), one obtains

X =m(AQkv)a (X)B) — m((1® Xkv)B(1® k))
=m((X ® kvk™HB) + m((k ® kvX)B) — m((1 ® Xkv)B(1® k)). (4.60)
The first term on the right-hand side is just. The second term may be rewritten as
m((k @ kvXk~k)B) = m(L Q@ kvXk Hak)p) = m((1® KPvXk HB(LQ k) (4.6c)
which, with the aid of (3.5) and (4.3), cancels the last term iny.6
KuXk™t — Xkv = k25~ 2(X)vk™t — Xkv = 0. (4.72)
Therefore §, X] = 0. O
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Remark. (4.74), or [k?v, X] =0, and k~?v~1, X] = 0 written in the form
k207 1Xk — Xk vt =0 (4.1)

used in the context of counterclockwise and clockwise Seifert circles, respectively, are the
canonical relations needed to prove proposition 4. The following generalizes lemma 4.1.1
to any quantum algebra of section 3.0.

Lemma 4.1.2. V[Tyefoi] Valued on anyi/ is a central element.

Proof. For anyl{, (4.1) assures that (4yand (4.D), with k**, X substituted by, X=+;,
are true. 0

4.2. A graphical approach

In the rest of section 4, unless otherwise statedenotest; and X denoteseither Xf or
X7

Definition 4.2.0. Extend the graphical representation by arrows ¥§7'] valued oni/,
given in section 2.4, to a graphical representation for the edtiges follows. As before,
the graphical representation of(T*) € U is given by the graphical representation of
the specified tangle diagradi*, that is, the components 1, v, R, R’ in V(T*) are
respectively represented by the arrows-, 4, )<, /<. Furthermore, let the arrowl; 4
and § respectively represert, k! and X. Call an element i/ thus represented @angle
graph The relative direction of an arrow in a tangle graph carries no significance.

Definition 4.2.1. Define a graphical representationZ¢fising the same arrows given above,
except to represeny(7*) by the splice of7*. Specifically, use the symbo)-({, )-(,
respectively, to represef®, R’, respectively, and use the symt)+( to represenR* that
denoteseither R or R'. Call an element ifi/ thus represented splice graph

Remark. The set of tangle diagrams (splices, resp.) is a subset of tangle graphs (splice

KK
KX

Example. The coboundary relations’(X)R* = R*A(X) are expressed in terms of tangle

Figure 18.
graphs in figure 18 and splice graphs in figure 19. Observe that the two sets of splice graphs
in figure 19 are united as one in figure 20 when the symilislused to represerit*.
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DU
>< PRGBGSR

Figure 20.

Remark. Note that, in figure 20, the relations allow the arrows represeriting™' and

X to slidein union past the crossing (thstar in figure 20) along the lines on which they

live. This comes about because on a spliced crossing, the tensor spaces represented by the
two lines are transposed at the crossing. Generally, if a tansotd ® A can slide past

a crossing on a splice graph, the®R* = 7 ((7 R*)a) = R*7 «. A generalized version of

this observation is given as lemma 4.2.1.

Figure 21.

Example. Figure 216) and p) are graphical expressions of the relations ¢45).

Example. Figure 22 shows a proof afX = t X using splice graphs. Figure 19 is used to
obtain the second line of the figure, while figure 21 is used to obtain the last line.

Definition 4.2.2. Let A'Y = A. Define, forn > 2,
A" =(d®id--- @ A)A" Y = (i[d®" D @ A)alY (4.8)
A" = AU A e tdp cU. (4.9)

Remark. Recall thata'™ = 7in + 1) o A", We have

A pEL Al pEL _ p 180D (4.10)

A ="k @ X @ k¥ ax =3k @ x @k Y, (4.11)
v=0 v=0
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Figure 22.

Lemma 4.2.1. For any braid5 € B,,a € A,
(A" @))V(B) = V(B) (o (B) o A" Y(a)). (4.12)

Proof. The lemma is proved if (4.12) is proven far = k*' and X. The relation is
trivially true for a = k*, becausea (k*1) commute withR*. Fora = X, first consider
the case whei8 = bf in which only theith and(i + 1)st strands are braided once. Then
V() = R}.1- Noting thato (b) o A" = A whenb € B; is the standard braid generator,
we write

a(bii)oA/{n—l}(X) — Z k®V®X®k—1®(n7V)+k®(i—1)®A(X)®k_1®(nfi)

v£i—1,i

therefore A"~V (X)V(bF) = V() (o (b)) o A" Y(X)). Repeated application of this
relation gives (4.12). The compositienB) o A""*~1 ensures thal(B) acts on the correct
tensor spaces on the right-hand side of (4.12). O

Example. How A"~ (X) gets past the first crossing ¥(B) is shown on splice graphs
in figure 23. Getting past subsequent crossings is achieved by repeating the same process.
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Figure 23.

4.3. Proof of proposition 4

T is an {1, n)-tangle diagram with closed strands. We use the notation of sections 2.5.2
and 2.5.3, wheré is a braid of N = n + u + ur strands whose partial closure is a braid-
tangle diagranfy that is isotopic toT', 8 = V(B) € AnN andH = v~ 1" g 18" @ v®¥r,

We first derive two extensions of (2.17).

Lemma 4.3.1 Fora' = 1%t @ o ® 1R ¢ AnN, Ya € Ann:
V[Ts](« ® 1) = Cl{Tg}(HBo (B) () = CU{Ts}(Bo (B)@'H))  (4.13)
(@ ® 1¥)V[T5] = C{Ts}(a"HB) = CH{Ts}(@'Bo (B)(H)). (4.1%)
Lemma 4.3.2. For 8’ ¢ AN andy =y ® 1°" ® yr € A®Y, Yy € Anur, YR € Anug:
CUTp}(yBo (B)(B) = CU{Ts}Bo (B)(B'y)). (4.14)
Proof. The lemmas follow directly from the property 6fi{73}. We omit details. O

Remark. The right-hand sides of (4.13) and (4.14) are not supposed to represent any
topological object.

Proof of proposition 4. The proposition is proven when it is shown that (4.2) is satisfied
for a = k*' and X. The proof fora = k*! follows simply from lemma 4.2.1 and the fact
that k*! commute withv andv~!; we omit details.
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We now prove the case far = X. Let X! = A’8~1(X) and define the following
elementse A®Y, where(k*H)® =1if t = 0:

X/{nl = 1% ® X{n} ® 19HR Q= (k—l)®/~LL ® 187 ® K OHR
JAL N
Wi =k P @X @k HeN" We=) W We= Y. W
=1 t=N—pr+l
W, =W - k®N Wh=Wr- (kHEY,
Then,
XWIN = X" + WL + Wk (4.15)

and from lemma 4.2.1,

po(B)(XMQ) = XN o (B)(Q)
= QX" Bo(B)(Q) + W Bo (B)(k H®N Q) + WiBo (B)(k*N Q).
(4.16)
Observe thaQ, H and X' commute among themselves, and thatQ, W, and Wy all
have the form ofy in (4.14). Now use (4.13)—(4.16) to write
(X" @ 1¥HV[T5] — V[Ts] (o (Tp) (X)) ® 1%
= CU{Ts}(X""™ Bo (B)(H)) — CUTs}(HBo (B)(X'"))
= Cl{T}(Bo BYOVLQH — (kK H®N QHW, + WROQH — k®N QHWR))
®(uL—t)

ML
= CZ{TB}(ﬁo(B) ( Z(v’l)‘@(”l)®(Xk’lv’l—k’zu’le)®(k’2v’1)
=1

MR
® k™ H @ v + ) " HP @k @ (K*v)® P @ (Xkv — KXk
t=1

® U@(um)) _o (4.17)

The last equality follows from (4.7). Sinc®[T3] = V[T] and o(Tg) = o(T), the
proposition is proven. |

Example. The proof is reproduced in figure 24 on splice graphs for the paseu =
ur = 1.

4.4, Commutants @fa

Owing to the appearance of permutatiend’) and7, in proposition 4, the elemenig[T']

do not quite commute with/a. Noting thatV sends each closed strand7into .4y, which
commutes withi/p, in the following, without loss of generality, we consider only tangle
diagrams with no closed strands.



414

Figure 24.

Corollary 4.1. For T € T™ such thato (T) is the identity element ir§,, 7,V[T] lies in
the commutant of/ :

[T VI[T], s~ Y ()] = 0. (4.18)

Proof. This follows simply from proposition 4. Note that hef@ acts on) instead of
acting ona "1, O

Example. For the special case = 2, with T being a (2, 2)-tangle diagram with two
positive crossingsy[T] = 7 (R)R commutes witha (A).

Remark. Forn = 1, the corollary means that the set of ®[IT V] lives in the centre ofA.
Forn > 1, the set of allZ,V[T™] lives in Ann but not necessarily im""~Y(A) c Ann,
hence it does not form a centre of"~Y(A4). In particular, two differentV[T™]'s in
general do not commute.
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4.5. VY maps(1, 1)-tangles to the centre éf
Corollary 4.2. 'V maps one-componelil, 1)-tangles to the centre o4.

Proof. This follows trivially from proposition 4. O

Remark. In particular, the images of two one-componéhtl)-tangles commute. This can
also be seen in the following way. L&tand T’ be two such tangles and let= V[T] and
o' =V[T']. ThenT'T andTT' are two (1, 1)-tangles that are isotopicI’'T ~ TT'. By
definition V(T'T)*) = V(T"")V(T*) = o’a, andV((TT')*) = aa’. Therefore &', ] = 0.

One can naturally enlarge the centre to include the images, &)-tangles with closed
strands. Consider the s¢f'}; of all (1, 1)-tangles with/ — 1 closed strands. Then
Vi(Th - A® Az(I — 1) = A; C Anl. By construction4d, commutes with4. Hence, we
state without further proof:

Corollary 4.3. 'V maps the set of all (11)-tangles to the centre &f.

Remark. Valued onC [5] with ann-adic topology, these central elements in principle can
be expressed as polynomials of the quadratic Casimir operatéfs of
4.6. Commutants d@f A in a representation

Definition 4.6. For a representationr of A on a vector space/, define A" =
(@®") (A" A). For an(n,n)-tangleT, o(T) € S, has a natural action ol ®". Define
Vo (T) = 2®"(V[T]), Vu(T) = ((@®" )N (T, VITD)o (T).

Corollary 4.4. For everyT e T®™,

[Ve(T), A" = 0. (4.19)
Proof. This is a direct consequence of proposition 4. d

Remark. Thus, in a representationvf,,, maps tangles to (representations of) commutants
of Ua. Suppressing a summation, we writ§7T] = ®'_,u;; u; € A. Suppose the action
of o(T) is such that (T)(®"_,V:) = ®!_,V,,, where the subscripts label the order in the
tensor product. Then the matrix elements\af(T) and f/,,(T) are given by

Ve = [Ty Ve = [ [z, . (4.20)
i=1 i=1

Example. Corresponding to theR-matrix we have the familiar expressioﬁ;‘f =
n(A)or(B)?.

Example. Given a (3,3)-tangle 7 with V[T] = U ® V ® W and braiding action
c(MURVRW)=WeUQ®YV, we haveV,(T)" = x(W)in(V)ox(U)¢. Suppose
AP (@) =X ® Y ® Z. Then proposition 4 implieZU @ YVQ XW =UY VX @ WZ,
or, equivalently XW @ YV ® ZU = WZ ® VX ® UY. Taking matrix elements and using
the shorthand wher& stands forz (U), we have
Y XRYRDWEWRVRU)=> (WRVRUM(ZXRY)If
efg efg

=Y WeVeU)PXeYe )l

efg



416 H C Lee
or, in terms offi,,,

D (@O (A" @) (VL (TS =D W (T (@) (o " Y @)

efg efg

5. Tangle Casimir operators and link polynomials

Corollary 5. The eigenvalue of a tangle Casimir operator @f in an irreducible
representation is an invariant, or link polynomial, of the closure of the tangle.

Let V be an finite dimensional, irreducibld module,7 € End(V) andV, (or V)
be the invariant given in definition 3.3.1. Proposition 4 and corollaries 4.1, 4.2 and 4.3
apply toV,. Let T be a (1 1)-tangle. By Schur's lemma;,[T] is equal to the eigenvalue
Q[T] times the unit matrix omnr:

VU[T] = er[T]ln- (5-1)

That is, 0,[T] is the eigenvalue of tangle Casimir operaidiT] in the representation .

Remark. Relation (5.1) was first conjectured in Leeal (1988), Couturest al (1990) and
Lee (1990).

We now prove corollary 5 by considering separately the caseshJy # 0 and
otherwise.

Corollary 5.1. If Tr(h;) # 0, thenQ,[T] is a link invariant for [I'].

Proof. h, andh; ! are so defined ((3.5) and definitions 3.0.3 and 3.3.1) such thék Iy =
Tr, (h;Y). By definition V[T] = Try (Vo [T1hz) = Tr, (Ve [T1h;Y) = Q[T]Tr, (hy) is an
invariant for [7]. O

Remark. The usual link polynomial defined with a Markov trace is equivalem/{(i”].
The above shows that, when, Tk, ) = 0, the Markov trace maps all links trivially to zero.

Corollary 5.2. For non-trivial V;, 0,[T] is a link invariant for [I].

Remark. Non-triviality of V), will be defined below. If Ty (4,) = 0, thenV,[L] = O for
all [L]. In this case corollary 5.1 is not useful since it is no longer possible to prove that
0.[T] is a link invariant by invoking (5.1).
Denote the set of all indecomposable representatiordg by {A} and letr € {A} be
an irreducible representation. L&tbe a(2, 2)-tangle for whicho (T) = 1 € S, and write
M =V, (T). M has matrix elementd1} = (r, s| M|z, u) where|t) is a basis vector of
w, (t] is its dual and¢, u) = |t) ® |u). From corollary 4.1, M commutes witht @ 7(AA).
The tensor product representatisr® = can be decomposed into

TRT =AM DA D - =D, A, A, € {A} (5.3)
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and such a decomposition is unique up to a re-ordering\ of In eachA,, M acts as
7,(T)1,, wheret,(T) is its eigenvalue. Therefore,

M= N T(T A = (T, (5.3)

where(A! | form a basis ofA, and|A!) form a dual basis. Then,

My =Y ", sIAL T (T)(AL It u) (5.4)

a,i

where (Al |tu) is a Clebsch—Gordan coefficient. L&t (7g) be the (11)-tangle obtained
by partially closingT from the left (right). Then

0T =) Euta(T)  QxlTRl =) Erata(T) (5.5)

where the coefficient

Ea = Y _(rsIAL (rh M (AL, 5) (5:6)

i,r,u

depends on the quantum algebra and its representations but fotlkurthermore, because
of (5.1), it is independent of the unsummed indexSimilarly for &z,, for which 41 in
(5.6) is replaced by, .

Letn(A) be the number of indecomposable representations appearing in (5.3). Consider
T’s such thatT; ~ Tr. There is an infinite number of such's whoseT7, (~ Tr) are
mutually non-isotopic. Suppose andT’ are non-isotopic. We sd¥ is degenerate witlf’
with respect tor if t,(T) = 7,(T’) at least for oneA,. We define), as being non-trivial
if the number of non-degenerate non-isotopis is greater tham(A).

Lemma 5.1. For non-trivialV,, Q,[T.] = Q,[Tr] for any (2, 2)-tangleT .

Proof. For eachT such thatl; ~ Tg, (5.5) yields

> (e — Era)Ta(T) = 0. (5.7)

Since there are more thar{A) T’s for which the equation hold, and sin¢g , — &r,) IS
independent of", (5.7) implies thag, ,—&r, = O for alla’s. The equalityQ,[T.] = O»[TR]
then follows. O

Remark. Since the number of non-isotopiE’s is infinite andn(A) is a finite humber,
without the help of a hidden symmetry, it is difficult see how a non-trixialould generate

a trivial V. For instance, th&’;’s corresponding to the smallest irreducible representations
of the simplest quantum algebras, the fundamental, two-dimension representations of
U, (s1(2)) and of U, (s/(1]1)), respectively, are already non-trivial; thef?,’s give the
Jones polynomial (Jones 1985) and the Alexander—Conway polynomial (Alexander 1922,
Conway 1970) (see section 7.1), respectively.
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Proof of corollary 5.2. If T andT"’ are two (1 1)-tangles whose closures are isotopichd, [
then it is possible to go frori to 7" via a sequence of Reidemeister moves. This implies
that there exists a sequence(8f 2)-tanglesTy, T», ..., Ty, whose closures are all isotopic
to [L], and a corresponding sequence of pairs ofljitangles,{7.;, Tr;}, that are partial
closures ofT;, i = 1,..., N, such that{Ty;, Tr;} N {Ti41, Triz1} #9,i =1,..., N — 1,

T € {T.1, Tra} and T’ € {T.n, Try}. It follows from lemma 5.1 thatD.[T] = O,[T'].
Corollary 5.2 is thus proven. O

Remark. ThusQ.[T] maps an equivalent set larger than isotopy: @o/{7] = Q.[T"], it
is sufficient that I'] ~ [T’], and not necessary th@t~ 7'. See the appendix for examples.

6. Comparison with the universal link invariant of Lawrence

The universal link invariant of Lawrence (1989) is a Markov trace valued in the image of
Ao®I under the mapX, described below. In Lawrence’s construction, for the closure of a
braid in B € B,, one first writes

VB =x180x0Q: - ®x, xi €A (6.1)

where thex;’s are images of strings defined in section 2.4Blhasl closed strings, then
the sequencél, 2, ..., n) forms! cycles, and to theth cycle (a; .. .a;) one associates

ir = X*(k_l) (Xay ** " Xay)- (6.2)

The mapX,: A — A/I is the composition of{ (or Y) with a natural projection, where the
mapsX: A — A andY: A — A are defined through their inverses in (a) below, dnd
an equivalence relation defined by (b) and (c):

(@ X tx) =m'(x @ HR), Y 1 (x) = m(R™ (x ® 1));

(b) XD (xy) = XU (yx);

(©) XU (X 1(x) = XUV H(x)), x,y € A, j >0

In the above,m’ is the opposite multiplication and™ is X composedm times.
Lawrence’s universal invariant is given by

VBllaw=21® Q2. (6.3)
Under the equivalence |,
X(x) = BxA ~xAB = xv Y(x) = AxB ~ xBA = xv = x1 .

Thus Lawrence’s invariant is valued modulo factorsiof Conversely, if the equivalence
relation (c) were not imposed, then the invariant would be for regular, instead of ambient,
isotopy. For completion, we give the majs$ andY’, where

X =mRE®D) V@) =m (DR

X'(x) = AxB ~xBA = xv?! Y'(x) = BxA ~ x vt
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(a) (b) (c)
Figure 25.

For links, the actions ofX and X’ are interchangeable, see section 2.5.6. For tangle
invariants, bothX and X’ are needed.

The difference between Lawrence’s invariant and ours is illustrated in the following
example. Consider the brai in figure 25@) and its closurely) that is isotopic to two
disjoint unknots, ¢).

The braid has four strings whose valuesdnare, respectively,

X1 = A3B4B5; X = A1A2A5A6 X3 = B]_Bg X4 = BQA4A6.

The indices onB;, A, etc label the crossings. Upon closure the indices form two cycles:
(1,4, 3) and(2). Lawrence’s invariant is

VIBlLaw = X© (x2) ® X P (AA x1x4x3B'B) = X (x2) ® X (AB4Bsx4B1B) (6.4)

which is not readily reduced to give the invariant for two disjoint unknots. However, if one
uses the cyclic symmetry of, after the first action ofX, on the stringxxsx3 and write
XV (A’ A3BaBsxsB1B3B') = X (B4BsxsB1) = XM (x4B1B4Bs), one obtains

V[BlLaw = X© (x2) ® X© (Ax4B1B4BsB)

which is readily reduced to give the value of two disjoint unknots. In summary, the correct
way to implement the action of, for the link under discussion is to write

VIBlLaw = X©(x2) ® X @ (x3v xv xg) = X0 (1) @ XO(1). (6.5)

In comparison, our method is to take the ‘trace’ of each cycle after it has been inserted with
a factor ofu=! or v (which is equivalent for links) between each pair of adjacent strings.
This gives (for figure 261))

V[BlLee = Sp(x2v™Y) @ Sp(x3v ™ x1vxav) = Sp(v™H) @ Sp(v) (6.6)

where the last relation makes uses of the cyclic symmetr§poénd results from a series
of manoeuvres corresponding to Reidemeister moves.
The following remarks are in order:
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b g

Figure 26.

(a) Lawrence’s unknot is normalized 16 (1) whereas ours is normalized Bp(v) =
Sp(wh.

(b) The special role of wrong-way edges in a link is not recognized in Lawrence’s
construction. This is compensated by the fact that the equivalence class indudedidy
larger than the class given Byp. For instance, the two stringsxsxzv =2 andxzv~txjv1xy
are equivalent undek, but are not so unde§p. This implies that undei,, factors of
v~! can be insert anywhere in the cycle, not just between two strings. This is not allowed
in our construction, where each factor of(v=2, resp.) is associated with a wrong-way
edge on a counterclockwise (clockwise, resp.) Seifert circle.

(c) Whereas the evaluation of our invariant on a representatiod — End(V) is
straightforward—one just replacese A by 7 (x) andSp by Tr,. The same is not true for
Lawrence’s invariant. In particular, Jris not a representation of,; it does not have all
the symmetries required of the latter.
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Figure 26. (Continued)

7. Two applications

7.1. The Alexander—Conway polynomial

Corollary 5.2 gives a direct proof that the Alexander—Conway polynomial (Alexander 1922,

Conway 1970) is derived from aR-matrix having the form,

we= (o %)= (6 0) (6 2)e (6 9) (o 0)= (o 3)
(6 9)=(o o) v (3 0)o(a o))

st 0 0 O
0 O
1 0
0

—S

(7.1)

with correspondingr, = h;! = s((1,0), (0, 1)) and A, = s~1((1,0), (0, 1)). The R-
matrix can variously be derived from braid group representations€t ak1988, Couturest
al 1990, Lee 1990, Deguchi 1989) and from representations of the two-pardipeter (2))
atg? = —1 (Lee 1989) and of/,(s/(1]1)) (Kauffman and Saleur 1991, Lee 1989, Zheng

1992, Linkset al 1993). TheR,i, h, andh;* have the properties needed for the functor

V4 (and forV,). Now, because Th,) = 0, corollary 5.1 is not applicable angi[L] = 0
identically. That is, the Markov trace given I8¢, is identically zero. This has always

been a difficult point in attempts to relate the Alexander—Conway polynomial to a quantum

algebra and specifically to the matriR, (Lee et al 1988, Coutureet al 1990, Lee 1990,
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Kauffman and Saleur 1991, Zhang 1992, Limksal 1993). Now, with corollary 5.2V4[T]
defines a link invariant fof” through the eigenvalu@,[T]. The skein relation of this link
invariant isQ, [ <]+ (s —s 1) 0[] — @[ <] = 0, itis therefore the Alexander—Conway
polynomial.

Remark. Here we briefly described the relation betwéep and theungradedif, ,(g/(2))
atg? = —1. Relative tos1(2), g/(2) has an additional generator, call itthat commutes with
everything. We define a quantum algebra generated &/, X, X}, where{H, X, X~}
obey the rules o/, (s!/(2)) with the additional properties(/) = I®1+1®1, SUI) = -1,
€(I) = 0. It is significant that the action of the antipode biis non-trivial. The quantum
algebralf, (s/(2)) is recovered wheris/¢)? = 1, a case which we ignore. Focusing on
the case(s/q)? # 1, one finds that there is a finite representation only4f= €27/

m a positive integer. Furthermore, a (new) quantum algebra with the additional condition
(X*)™ = 0 can be constructed. The vector representation oftthaatrix of this quantum
algebra form = 2 is given by theR,i in (7.1). Indeed, if one uses the approach of
Faddeev (1988) to reconstruct a quantum formal group ffoyn, then one recovers either
Us (s1(1]1)) or U, s(g1(2))/((XF)? = 0) at g = —1, depending on whether one wants a
guantum superalgebra (Zheng 1992) or a quantum algebra.

7.2. Quantum holonomy and Chern—Simons theory in three dimensions

Witten (1989) showed that, when the coupling constant of the Chern—-Simons tlasayy (
in three dimensions has certain discrete values, the Wilson line associated with the]link [
evaluated in ther representation of the gauge groGpis an invariant for [.]. A Wilson

line is the character-valued counterpart of the group-valued quantum holonomy,

d(C,) = <P exp(i ?ﬁc A dx>> (7.2)

which is the expectation value of the path-ordered line integral of the connesdiion
along the closed contou, with initial point x € C, exponentiated. In three dimensions,
the contourC may have non-trivial topological properties. In particular, it may be a disjoint
union of contours with an opening at namely a (11)-tangle whose closure is the link
L. Denote this tangle by.,. Valued in ther representation o5, the Wilson line with
contourL is

Wr[L] = Try ((®(Ly))). (7.3)

where trace taking automatically eliminates the dependence on the initial p@iptL]

is essentially the link polynomiab,_ [L] of section 3.1 valued on the representation of
U, (g), whereg is the Lie algebra of the (Lie) grouf, andg, linearly related to the coupling
constant of the three-dimensiorT, is restricted to being a root of unity, ef@m /(k+h)),
where/ is the Coxeter number o andk is the level of the representation of the affine
algebra associated with (Witten 1989, Horne 1990).

Recently, it was shown that for any quantum gauge theory, the quantum holonomy
®(L,) is initial-point independent ands-invariant (Lee and Zhu 1991). Hence for
irreducible, 7 (®(L,)) must equal to anx-independent eigenvalug, (L) times1,. In
three dimensiond, , defines a (11)-tangle, becausk, andL, may not be isotopic it # y.
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Therefore, for the three-dimensionasT, P, (L) = P,[L] is a link invariant. That is, the

triplet {®[L,], P;[L], W;[L]} to three-dimensionatsTis what{V[L,], Q~[L], Va,[L]} of

section 3.3 and section 4.5 is to a quantum algebra. Thus, for example, for the gauge group
G = SL(2), P, (in the fundamental representation) is the Jones polynomial (Witten 1989)
and W, = (¢g~* + q)P,; for G = SL(M|N), M # N, P, is the HOMFLY polynomial

(Freyd et al 1985, Horne 1990) an®V, = (M — N)P,; for G = SL(M|M), P, is the
Alexander—Conway polynomial (Lee 1989, Lee and Zhu 1991)Wut= 0. That is, in
guantum field theory the Alexander—Conway polynomial cannot be obtained from a Wilson
line as in Witten’s original approach; it must be obtained as the eigenvalue of a quantum
holonomy.
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Appendix. Universal invariants for (1, 1)-tangles with up to six crossings

We list here the values of4[T] for (1, 1)-tangles with up to six crossings. The tangles,
shown in figure 26, are labelled by their closures using Rolfsen’s classification for links
(Rolfsen 1976). The wrong-way edges on each tangle are marked. The assignment of such
edges is not unique but the value of the invariant of course does not vary with different
assignments; see Lee (1992) for details. The indices label crossings in the tangles. The
notation is as follows. R = > A, ® B, = A ® B; Rl =S4 QB =AQB;

A= m(id®SR)(m (dRS)R); v =A1"Y2(m(d® S)R). Note that Rolfsen’s classification

is for non-oriented links and that there may be more than one non-isotopig-tdngles

that close to the same link. In figure 26 only one orientation and one tangle is selected for
each link, except for the links;652 and &, each for which two tangles are selected.

31 : A ¥2A1B,Azv " B1ABs.

41 : A1BA3uB1A4B3vA2B,.

5, : A"Y?A1ByA3B4Asv B1 Ay B3A4Bs.

5, : A%?A1BoA3B4AsuB1A2Bsu L A4uBs.

61, : A2A1ByA3B4AsvBgAyu 1 B1AgBsu t Aqu i Bs.
615 : A2A1BoA3Bau A0 B1AguBsAdu B3 AsBs.
62 : A°B1A2B3A4uBsA1BgA3BavAsBo Ag.
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63 : A1BA3BsAsv 1B A;BsAguBaAsBs.

4227 B1AsB3AL ® Sp(A A1 BauAzuTtAv).

52 : AY2B1A4BouA3BsAs ® Sp(A1BsAsuBg).

52,1 A1ByA3B4 ® Sp(AY?B1AsB3AquBsAuh).

62 : A">°B1A;B3A4BsAs ® Sp(A~3/?A1BsuAsvu BauAsuT Bov).
65 : A¥?A1ByA3B4AsBs ® Sp(L*2B1A2B3AguBsu 1 Aqu).

63, : B1A2B3Asu  B4A3uByAs ® Sp(A " A1 BsA4Bsv).

63, 1 A 1A1BgA4Bs ® Sp(B1A2B3Asu tByAzuBrAguh).

63 B1A2B3A4 ® Sp(A1BsAsBau™) ® Sp(A " A3B4uAgBs).

65 : A1BrA3B4 ® Sp(B1AgB3Asu™) ® Sp(A2BsA4uBs).

63 : A1ByB3A4 ® Sp(B1Bev tAsuAu™h) @ Sp(AAzu T BsAgBy).
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