VOLUME 68, NUMBER 10

PHYSICAL REVIEW LETTERS

9 MARCH 1992

Spontaneous Breaking of Topological Symmetry

Weidong Zhao"” and H. C. Lee™®

M Dpepartment of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A4 5B9
O Theoretical Physics Branch, Chalk River Laboratories, AECL Research, Chalk River, Ontario, Canada K0J 1J0
(Received 28 June 1991) '

The spontaneous breaking of topological symmetry induced by a vanishingly small symmetry breaking
term is investigated. It is shown that, in the presence of Gribov zero modes, topological theories without
smearing terms, which are inequivalent to theories with smearing terms, permit spontaneous symmetry
breaking. The relation with reducible configurations is briefly discussed.
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One of the motivations for developing topological field
theories [1] is the hope that these models can describe the
highly symmetrical phases of some realistic, less sym-
metric, field theories. The main obstacle to this approach
is the difficulty in finding a way to break topological sym-
metry [1]. Hitherto, the models that have been investi-
gated on this issue all contain gauge “smearing” terms
that smear the gauge-fixing & function (these models cor-
respond to the Feynman gauge in gauge theories), and no
spontaneous breaking of topological symmetries has yet
been found [2]. (An exception might be the symmetry
breaking attributed to an instanton in a noncompact base
manifold [3]; we will only consider compact manifolds in
which such instantons do not exist.) Meanwhile, on other
issues, models without smearing terms (corresponding to
the Landau gauge), owing to their simplicity, have been
extensively studied as substitutes to models with smearing
terms [2-6]. The presumed interchangeability of the two
classes of models is based on the argument that
the only difference between them—a gauge smearing
term which is BRST (Becchi-Rouet-Stora-Tyutin) exact
—does not affect any of the properties of the theories [1].

However, this is not unconditionally true. In fact, if
Gribov zero modes [7] occur, a model in the Landau
gauge may well not be connected to a model in the Feyn-
man gauge by a smooth gauge transformation [7,8]. To
see this [8], let F(X) be the gauge-fixing function in the
Landau gauge. Its presence in the action picks out a
configuration X that is a solution of F(X)=0. We now
try to transfer to the Feynman gauge by replacing the
F(X) =0 by F(X)=P, where P is arbitrary and depends
locally on the coordinates of the base space in which X
lives. If the path integration does not depend on P, the
Feynman gauge is arrived at by averaging over the gauge
function with weight exp(—aP?). However, such P in-
dependence is contingent upon the existence, for every
pair (P,8P), of an associated infinitesimal gauge trans-
formation v that will transform the solution to F(X) =P
to the solution to
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Obviously, v may not always exist if (6F/5X)(5X/6v)
has zero modes (Gribov zero modes). In that case, one

F(X)=P+ v=P+6P.
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can no longer go from the Landau gauge to the Feynman
gauge without changing physics. We are thus motivated
to investigate whether topological symmetry in models in
the Landau gauge could be spontaneously broken as a re-
sult of the presence of Gribov zero modes. It turns out
that it can, and the main purpose of this paper is to show
how this happens.

Generally, the criterion for the symmetry being spon-
taneously broken is that its generator Q acting on a glo-
bally well defined quantity G has a nonvanishing expecta-
tion value. In the present context, we adopt the usual ap-
proach of realizing a topological theory by a BRST pro-
cedure [9], so that Q is just the BRST operator. We
study the symmetry breaking mechanism by using the
method, well known in ferromagnetic theory, of adding a
symmetry breaking term ¢/, to the topological action and
examining the vacuum expectation value {Q(G)) when
the proportional constant € is small. Normally, an inves-
tigation of the Hilbert space including a direct analysis of
the vacua would show that lim.— o{Q(G))>=0 is a cri-
terion for the occurrence of spontaneous symmetry break-
ing. We assume this to be true for the present case. In
this paper, we first gain an understanding of how this
mechanism works in a zero-dimensional model. Then a
one-dimensional supersymmetric model [6] is studied in
detail. The relation of this mechanism with the existence
of reducible configurations is then briefly discussed.

Given Witten’s demonstration that any BRST-exact
term has zero expectation value [1], and that models with
and without smearing terms differ only by a BRST-exact
term, one might wonder how spontaneous symmetry
breaking could happen in the setting described above.
The point is that when there are Gribov zero modes,
(Q(G)) could be indeterminant for some G. Such an in-
determinant is the reflection of an indeterminant vacuum.
To remedy this indeterminant one needs to select a
specific vacuum; then spontaneous symmetry breaking
could be expected to occur. Consider a theory with such
an indeterminant. When the indeterminant is associated
with the gauge-fixing § function, it is customarily dealt
with by the insertion of a smearing term. This regulari-
zation process amounts to selecting a vacuum that
preserves Q exactness [1] and yields a theory with unbro-
ken topological symmetry [6]. Alternatively, and this is
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the route we shall explore in this paper, one can proceed gauge-fixing function; and the prime denotes derivative

by adding to the action a symmetry breaking term el with respect to X. Note the absence of the gauge smear-
whose effect will also be to pick out a specific vacuum, ing term in the action. Let I, be a BRST noninvariant
thereby defining a well-behaved theory with broken sym- action and € be a small parameter. The expectation value
metry. To ascertain that the broken symmetry is in- of Q(G) in the presence of el is

herent to the vacuum but not caused by the presence of
the added term, one must evaluate {Q(G)) in the limit
e— 0. If {Q(G)) vanishes with ¢ for all G, then the vac-
uum preserves topological symmetry. On the other hand,
if there exists some G such that lim¢_. o{Q(G))=0, then
topological symmetry is spontaneously broken by the vac-
uum. Here I, only serves the purpose of selecting a vac-
uum. Of course, there may be more than one such
vacuum.

To understand this idea more concretely, we first con-
sider a zero-dimensional model that will exhibit all the =
main features of the idea. Let X,B be commuting vari- L=B[—¥f®, @
ables (bosons) and ¥,® be anticommuting variables  where f is a (bounded) function of X. The opposite sign
(fermions). The gauge-fixed action is I =Q(¥F(X))  between the two terms on the right-hand side of (2)
=BF(X)+¥F'®; the BRST operator Q is defined by makes /1 BRST noninvariant. Owing to the conservation
0x)=—o, 0(®)=0, 0(¥) =B, 0(B) =0; F(X) is the | of ghost number we only need to consider G =VH(X),

where H is an arbitrary (bounded) function. Then

(QwHY) = [dX dBd¥ d®(BH +VH'D)expliB(F+ef) +i¥(F — ef )]

d[26f/(F'+ef)] 3)
dx '

(Q(GNe= [ dx dBd¥d® Q@ explitU+er)]. (1)

If € is set to zero from the outset, then, by direct expan-
sion, one could formally show that {Q(G))e would be zero
for any G. Nevertheless, we wish to examine the behav-
ior of (Q(G)), by taking e to zero after the expectation
value has been computed. We shall show that under cer-
tain conditions {Q(G))=lim. . o{Q(G))=(Q(G))o. Let

=de6(F+ ef) |2¢/ H'[(F'+ef )+ H

The & function in (3) comes from the integration over B l
after B in the first term of Q(¥H) has been replaced by a equal to zero in the expression 2ef"/(F'+¢f") in (3), be-

derivative with respect to F+¢f. Observe that the quan-  cause the argument in the & function has been shifted by
tity inside the large parentheses will vanish in the limit €f so that the function needs to be evaluated at the shift-
€— 0 provided F' does not vanish simultaneously with e. ed position.

On the other hand, the presence of the aforementioned & This can be done by expanding all quantities in powers

function dictates that the integrand takes value only at  of ¢ about X,.. Suppose the argument of the & function
points X that are solutions of F+¢f=0. Thus, so long  vanishes at X, +x,; then to O(¢)
as F' and F do not vanish simultaneously with e,

lim, . o{Q(¥H)).=0 and Witten's conclusion [1] that T F"(X)x2+ef(X.)=0, when f(X.)=0, (42)
there is no spontaneous breaking of symmetry stands.
However, if F and F' vanish simultaneously at some FF'(X)x.+ef (X.)=0, when f(X.)=0. (4b)

point, say, X, (this is the degenerate case referred to in

[61), then the integrand in (3) will in general not vanish Here one has to deal with these two cases separately be-

in the limit é— 0, and a nonzero integral may be expect- cause of their different small-x behaviors. One sees that

ed. Notice that in this case one may not directly put F' as long as F"(X.) and H(X,) do not vanish, the term
I proportional to H dominates the integrand in (3):

d | _2¢f | __ —y
6(F+ef)de F,+€f} g‘,a(x X, —x.)

X2ef (X ) F" (X F" (X ) x.+ef' (X )| T3H (X, )+ (less divergent terms) . )

Upon solving for X in (4a) and (4b) and substituting them into (5), one sees that in both cases (Q(¥H)) ~¢~? with
nonvanishing coefficient, so that it approaches infinity, rather than zero, in the limit e— 0. In other words, when F(X)
and F'(X) vanish simultaneously at X,, it is possible that some Q(¥H) have nonvanishing expectation value, so that the
criterion for spontaneous breaking of symmetry is met. There may be more than one such X.. Since H is an arbitrary
function, its values for different X,.’s are not correlated. Therefore one need not worry about the possible cancellation
among different (Q(¥H))’s.

The infinity of (Q(¥H)) suggests the need for a renormalization procedure. An alternative way to obtain a finite
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value may be formulated as follows. Note that the choice el has nontrivial dynamics. A simple case is supersym-
of (2) as the symmetry breaking term is not unique. One  metric quantum mechanics in one dimension, which we
may, for example, replace the action I; in (2) by a more  shall refer to as the one-dimensional model. In this mod-
general el [6], the BRST operator is defined by Q(X')=—&",

, &) =0, Q(¥;) =iB;+¥ Iy d* Q(B;)=—B;T/;d*
Il =Bfl(X,€)+‘I’fé(X,€)¢, ff(X,é)?ffz(X,E) y (6) 'Ql'((l/z))R(,)/\l,‘nyq)l’()D,‘ land thé acktion ISQ( ) J k

where the second condition, holding for sufficiently small L 3

¢, is necessary to the symmetry breaking requirement. It =—iQ [ﬁdt Liw;(X'+F)+aB;¥g"1

can be shown that if /| is of this form, then, with the ex- L . )

ception of pathological choices of f; and f5, (Q(¥H)) =§dt{[iBi(X'+FI)+‘1'i1)}'(F)¢j]

will be nonvanishing. For our purpose we choose them in 5

such a way that, specifying to (4b), fi(X.,€) =f5(X,¢) +a(BiB;g"+ 5_ RUy@*o'w;w))} (7

+ef3(X)+0(e?), and H(X.)=0, H'(X.)#=0 for
each zero X, of F. It follows directly that (Q(¥H))
=Y [2f5/(f1)?1H'|x,, which is finite. In this case, it
would be reasonable to assume that there should be a re-
normalization procedure that will yield the result given
by this choice of 1.

Another reason to choose I, as given above is the fol-
lowing. The existence of X, is exactly the condition for
the original partition function Zo=(1) to be ill defined.
The integrand of Zg is proportional to F'/|F'| evaluated
at the zeros of F. It becomes ill defined when F' also van-
ishes at at least one of these zeros, which renders the vac-
uum unspecified. The vacuum is specified after an I is
chosen. Since the Hilbert spaces for path-connected vac-
ua are isomorphic so that the vacuum energies must be
degenerate (otherwise one would be able to specify the
vacuum by choosing the one having the minimum ener-
gy), the partition function Z, unlike other physical ob-
servables, has the same value for different vacua. This
property imposes a very stringent restriction on the choice
of I. [t requires that, in the notation of (6), /; must be
such that f; and f, may differ only at the O(¢) level.
This condition coincides with the requirement for finite- - gy
ness described above. Note that with I, so chosen, the I § dtliBif = v, (D,f )T, ®)
limit e— 0 becomes a double scaling limit: ¢— 0 and  to the action, where f/(X) is a section of the bundle T
fi— f5. The significance of this double scaling limit is  and is not necessarily related to the section F'. Once
yet to be clarified. again the opposite signs for the two terms in (8) guaran-

The above discussion is meaningful only when the mod- | tee the explicit violation of BRST symmetry. Let G

| —§drv,H(X). Then

@wH)) = [ 10X1P dtliB i+, (D;H)®Nexp(— =), ©

where Di(F;t) =8i(d/dt)+X Ty +D;F', Dy is the
Riemannian covariant derivative, and the overdot means
derivative with respect to the parameter ¢ with domain
S'!. Note that I is what we call “without smearing” only
when a=0. The operator T discussed in the second para-
graph is here specified by Di, whose zero modes, if any,
are precisely the Gribov zero modes in this model. Con-
sider now the case a=0. We want to see under what
condition would {Q(G)) be nonvanishing for some G.

Since the action is analogous to the one in the zero-
dimensional model if we identify X*+F* here with F(X)
there, we expect the expression for {Q(G)), to be similar
to (3). In particular, one can see that the quantity F' in
(3), whose being zero at x. was crucial to a nonvanishing
(0(G)), would be replaced by the derivative of X*+ F¥,
which is exactly . In order to have a nonvanishing
(Q(G)), it is sufficient that D have zero modes at X,, the
zero of X*+F*. all of the higher modes of D are ir-
relevant.

As before we add a symmetry breaking term (the
choice is not unique),

where [DX] stands for the measure for all of X, B;,¥%; ®’. We are interested in (Q(WH))=lim._. o(Q(¥H)).. Using a
normal coordinate expansion [6], we derive

detD(— . ; ;
<Q(WH)>E=fDXI;Is(Xk(e))—I?J$(T€|){§ds1),-Hf(X(s))[A,-(s,s,e) —Ais,s, —€)]

+ﬁds ﬁds'ﬂ’"(X(s))A,’n Gs,s',e)Z(s"€) =2 (s', —e)] } , (10)

Zi(s,€) =Al(s,s,€) IX"Rin’ + D1 D (Fi+€f)]1(s) ,

where Af(z,1',¢) satisfies D} (F+ef3t)A/(t,t',€) =848(t —1'). The ultraviolet divergence here is not harmful because it
is related to the higher modes of D. The right-hand side of (10) vanishes when ¢ goes to zero, unless A}{¢,#',¢) has a
first-order pole in € (a careful investigation shows that A} at most has first-order poles). The latter can happen only
when D(0) has zero modes. The index theorem predicts there are in general no such zero modes in the one-dimensional
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model [6]. However, accidental zero modes may occur as
a result of a judicious choice of the parametric functions
F and f, namely,

ker[D(0)|x=x1=0, an

for some X, satisfying A(X.,e=0), where A4 is the
coefficient of the pole term of A]. As can be seen, this is
precisely what we expect, the condition for the existence
of Gribov zero modes.

We verify {Q(G))#0 when the condition (11) is met.
To show this, one only needs to evaluate the most diver-
gent term. We consider the case of vanishing f(X,) [this
corresponds to the case (4b) in the zero-dimensional
model] and assume that there is only one zero mode
on every X.(t). Then A lies completely in this one-
dimensional space of zero modes:

A,j=—uju,-[u"'un(13mf")]_l’ (12)

where u’ is the (only) zero mode. Assuming the second
leading term in the expansion of Al(z,#',€) to be nonde-
generate (this is analogous to assuming F"#0 in the
zero-dimensional case), we finally obtain

(Q¥H))e=¢ 2% 2u'u'u;(X* Ri’s + DiD;F/)

X [u"uy (Do f™1 "2 (H) . (13)

As expected, {Q(¥H)) is not zero. We mention in pass-
ing that one may apply the method described after (6) for
the zero-dimensional model to obtain a finite result.

Perhaps the most interesting question now is whether
the expectation values of (some of) the physical observ-
ables in a topological theory would, as a result of
{Q(G))#0, become g”/ dependent. To answer this ques-
tion, one could study the expectation value of the energy-
momentum tensor T;;=8(I+el;)/dg”. A straightfor-
ward calculation would show that (T;;) thus defined van-
ishes. (Note that in this case Tj; is no longer a Q-exact
form.) This, however, would not be the right way to ap-
proach the problem. Since one’s goal is to obtain the
variation of the vacuum expectation value, the correct ap-
proach would be to take the e— 0 limit before varying
g". In the present model, focusing on the topologically
nontrivial partition function, we have, for I,=Bf(X,¢)
+vg'(X,e)D,

8Z=6(limZ,.)
€0

=3 [ IimOZdet[ﬁ(F+ ef)]1|det[D(F+eg)l] _'] )

14)

In the é— 0 limit, all the higher modes cancel, while
the zero modes contribute a ratio of As/A4,, where Ay is
given by (12) and A, is the same with g replacing f. This
result can of course be made to be dependent on gj;.

The generalization to two-dimensional o models is
straightforward. Since in this case the topological index
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of T is in general not zero, one should consider {Q(G)) in
which G has the appropriate ghost number that allows it
to absorb the topological zero modes. The condition for
having nonvanishing {Q(G)) becomes that of the ex-
istence of accidental zero modes— zero modes which ap-
pear in pairs and are not subject to the index theorem.
Actually this statement is in general true for any topolog-
ical models. Thus the problem of whether spontaneous
symmetry breaking can happen becomes the problem of
finding such accidental zero modes.

It is important to notice that in the topological gauge
theory [1] there are zero modes that are associated with
the reducible connections, namely, connections that are
invariant under some gauge transformations. Since these
degrees of freedom cannot be removed by local gauge
fixing, they give rise to Gribov zero modes [10]. Our
analysis suggests that these reducible connections may
lead to topological symmetry breaking in the Landau
gauge. Another interesting case is the two-dimensional
topological gravity [5,11], where a reducible config-
uration is a metric that admits Killing vectors. Since in
this model the Landau gauge is a natural gauge, it seems
that our approach should be used to study it. In this case
a natural gauge-breaking term which may well be nonlo-
cal in the moduli space needs to be found.

In summary, we have shown how spontaneous symme-
try breaking can occur when Gribov zero modes are
present in zero- and one-dimensional topological models
without gauge smearing terms. Both models are bound to
have no propagating degrees of freedom because of the
low dimensionality. We expect such degrees of freedom
to exist in the broken phases of other higher-dimensional,
more realistic models. This needs to be confirmed.
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