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Abstract

Shannon information in the genomes of all com-
pletely sequenced prokaryotes and eukaryotes are
measured in word lengths of two to ten letters. It is
found that in a scale-dependent way, the Shannon
information in complete genomes are much greater
than that in matching random sequences - thou-
sands of times greater in the case of short words.
Furthermore, with the exception of the 14 chromo-
somes of Plasmodium falciparum, the Shannon in-
formation in all available complete genomes belong
to a universality class given by an extremely sim-
ple formula. The data are consistent with a model
for genome growth composed of two main ingredi-
ents: random segmental duplications that increase
the Shannon information in a scale-independent way,
and random point mutations that preferentially re-
duces the larger-scale Shannon information. The
inference drawn from the present study is that the
large-scale and coarse-grained growth of genomes
was selectively neutral and this suggests an inde-
pendent corroboration of Kimura’s neutral theory
of evolution.

1. Introduction

Shannon information [1] has been widely used in
many diverse fields related to information, includ-
ing the study of information in DNA sequences, in
particular in sequence alignment [2]. But it seems
not to have been applied to the field of comparative
genomics. This could be for a number of reasons.
The availability of a large number of completely se-
quenced genomes is a relatively recent phenomenon.
The high heterogeneity of complete genomes may
make comparison difficult. For instance, how is
the 0.58 million bases (Mb) genome of Mycoplasma
genitalium to be compared with the 3000 Mb genome
of Homo sapiens? Within a genome different sec-
tions such as coding and non-coding regions are
thought to have varying amounts of information.
What section should be used to represent the genome?
There is also the question of Shannon information

itself, which as a broadly defined concept may be
applied in many different ways and a definitive way
to use it for comparative genomics has not been es-
tablished.

In this paper we devise a method to measure
the Shannon information in a complete genome rel-
ative to that in a matching random sequence and
apply it to all extant prokaryotic and eukaryotic
complete genomes. The method is scale-dependent
and highly sensitive to the amount of repeats in
the sequence. The results are surprisingly unequiv-
ocal. We find that in spite of the wide diversity
of the genomes in length, base composition and in-
ternal structure, the Shannon information in com-
plete genomes (relative to random sequences) is
uniformly very large for shorter words, in a way so
regular that all the studied genomes except one -
that of the malaria causing protozoan Plasmodium
falciparum - can be put into a single universality
class defined by an exceedingly simple formula; the
fourteen chromosomes of Plasmodium belong to a
related but distinct small class. By inquiring into
how these results could have possibly come about
we arrive at a simple model for genome growth and
discuss its implications.

2. Mathematical background

2.1. Shannon entropy and information

Consider a set of occurrence frequencies for τ types
of events, F = {fi|

∑τ
i=1 = N} ≡ {fi|N}. Shan-

non’s uncertainty [1], or entropy, for the set is

H(F) = −
∑

i
(fi/N) log(fi/N) (1)

This quantity has maximum value Hmax=log τ when
all the occurrence frequencies are equal: fi=f̄=N/τ .
Shannon suggested the notion of information as a
measure of decrease in uncertainty and there are
many ways this notion may be applied. Here we
are interested in cases when most of the fi’s are
non-zero and for such cases we define a Shannon
information (called Divergence in [3]) in F as

R(F) ≡ Hmax − H(F) = log τ − H(F) (2)
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2.2. Relation to relative spectral width

From a set of occurrence frequencies F we can con-
struct a distribution S={nf |L} where nf is the
number of events with frequency f . The sum-rules∑

fnf=τ and
∑

ffnf=L are satisfied. If f is con-
sidered as light frequency - discrete in this case -
and nf as light intensity, i.e., number of photons,
then S can be considered analogously to a standard
optical spectrum. We henceforth call S a spectrum.
In terms of nf the Shannon entropy is

H(F) = H(S) = −
∑

f
(nff/N) log(f/N)

There is a close relation between our definition of
the Shannon information and the relative spectral
width of S when the latter is a unimodal distri-
bution. The relative spectral width σ of S is its
half-width ∆ (or standard deviation) divided by its
mean f̄ : σ≡∆/f̄ . The relation is

R(F) = R(S) =
σ2

2
+ O (

σ3
)

(unimodal) (3)

which is particularly useful when σ is small. We
give two explicit examples. A histogram approxi-
mation of a unimodal distribution is to have a frac-
tion x each of the events respectively have frequen-
cies f±=f̄±(2x)−1/2∆, and the rest (fraction 1-2x)
has mean frequency. Then

R =
σ2

2
− σ4

8
+ O(σ6) (histogram)

A Gaussian distribution with relative spectral width
σ yields

R =
σ2

2
+

σ4

4
+ O(σ6) (Gaussian)

In general, an order σ3 term will occur when the
distribution is not symmetric around the mean fre-
quency. Eq. (3) gives one a heuristic understanding
of the Shannon information in a spectrum: there
is no information when the spectrum is extremely
narrow, or when all types of events occur with the
same frequency. Conversely, so long as σ<1, the
broader the spectrum the higher the Shannon in-
formation. We remark that our definition of Shan-
non information is not intuitively useful for cases
when the occurrences concentrate in a few types of
events. Such situations do not arise in the systems
- complete genomes - we are here interested in.

2.3. k-spectrum from a DNA sequence

Consider now a single strand of DNA and view it as
a linear text written in the four bases, or chemical

letters, A, C, G, T. For a sequence of L nucleotides
(nt) we denote by Fk the set of occurrence frequen-
cies {fi|L}k, where fi is the occurrence frequency
of the ith k-letter word, or (overlapping) k-mer.
The frequencies are obtained by sliding a window
of width k across the genome, one letter at a time,
and recording the number of times each k-mer is
seen through the window [4, 5]. Given Fk we can
construct a k-spectrum, Sk={nf}k, where nf is the
number of k-mers occurring with frequency f . The
number of event types is now τ=4k, so Fk and Sk

satisfy the sum rules
∑

i 1=
∑

f nf=4k and
∑

i fi=∑
f fnf=L, and the mean frequency is f̄=4−kL.

To simplify language we will refer to Fk also as a
k-spectrum. To insure good statistics we do not
want k to be so large that f̄ is less than one. Since
the canonical size of microbial complete genomes is
2 Mb and 410 is just over 106, the maximum k we
consider in this study is 10.

2.4. Shannon information in random sequence

The k-spectrum Fk obtained from a random se-
quence Q with even base composition is a set of
frequencies of random events of equal likelihood.
If the mean frequency f̄ is a very large number,
which we assume to be the case, then Fk (more
properly, Sk) will be nearly a Poisson distribution
with half-width ∆ran= (bf̄)1/2, where b=1-τ−1 is a
binomial factor. Thus the relative spectral width
σran=(bτ/L)1/2 falls off as L−1/2 with increasing
L and, from Eq. (3), R(Fk) ≈ bτ/2L. That is,
the Shannon information in a random sequence di-
minishes as 1/L with increasing L. This is but
a simple manifestation of a well known effect in
statistics: the average of some measure of a ran-
dom system gains sharpness as the system gains
size, and achieves infinite sharpness in the large-
system limit.

2.5. n-replica and root-sequence

There is a simple way for Q to grow and escape
the large-system rule. Suppose we replicate Q n
times to generate a sequence Q′. We call Q′ an
n-replica of Q and Q a root-sequence of Q′. If n
is much less than L then to a high degree of ac-
curacy the set of occurrence frequencies for k-mers
in Q′ is F ′

ks={nfi|nL}k. Then f̄ and ∆ for the
k-spectrum of F ′

ks will both increase by a factor
of n, hence its relative spectral width will remain
unchanged. Thus, although Q′ is n times longer
than Q, the Shannon information in F ′

k for any k
will be the same as that in Fk, instead of being n
times smaller. Conversely, the Shannon informa-
tion in Q′ is n times greater than that in a random
sequence having the same length as Q′.
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2.6. Random mutation and homologous in-
sertion

We thus have the notion of replication as an un-
designed way for a sequence to gain length and
“gain” Shannon information. Here gaining means
not losing in absolute magnitude, as compared to
the change in a random sequence when it gains
length. Replication is a special case of a general
way of gaining length by insertions of homologous
segments. The latter is the last step in a common
mode of mutation known as replicative transposi-
tion, where a segment of the genome is first copied
and then inserted back into the genome at another
site. Whereas a random mutation would generally
decrease the Shannon information in a sequence,
replicative transposition is an exception.

3. A first look at genomes

3.1 Length and base composition of genomes

Genomes vary greatly in their “profiles” - lengths
and base compositions. An empirical fact is that
genomes are almost always compositionally self- com-
plementary, meaning that on a single strand the
numbers of A’s and T’s are approximately equal,
as are the numbers of C’s and G’s. Therefore, for
simplicity, we characterize the base composition of
a genome by a single number, p, the percentage con-
tent of (A+T). In the complete genomes or chromo-
somes of genomes studied in this work, the length
spans a range of about 0.2 to 300 million base pairs
and p spans a range of about 0.25.to 0.82 in com-
plete genomes. We say two sequences match if they
have the same profile.
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Figure 1: 6-spectra of the genome of P. aerophilum (black)
(p≈0.5) and its random match (gray). The frequencies have been
normalized to that of a 1 Mb sequence. For better viewing only the
large fluctuation in the actual spectra have been smoothed out by
forward and backward averaging, hence ordinates nf need not be
integers.

3.2. A view of genomic and random k-spectra

The black curve in Fig. 1 is the 6-spectrum of the
genome of the p≈0.5 hyperthermophile Pyrobacu-
lum aerophilum [6], with the occurrence frequencies
of the 6-mers normalized to correspond to a 1 Mb
sequence. The gray curve in Fig. 1 shows the 6-
spectrum of the random match of the genome, ob-
tained by thoroughly scrambling the genome of P.
aerophilum. A random match can of course also
be generated using a random number generator.
When this is done a totally different sequence would
obtain but it would have a 6-spectrum practically
identical to the gray curve in Fig. 1. (This is be-
cause a k-spectrum does not specify which k-mer
has a certain occurrence frequency; it only specifies
how many k-mers have frequency f .)

Table 1: Shannon entropy H and information R in units of
ln 2 in the k-spectra of the genome sequence of P. aerophilum and
its random match. Rex is the expected information in the random
match.

Random match P. aerophilum
k H/ ln 2 R/ ln 2 Rex/ ln 2 H/ ln 2 R/ ln 2

2 3.9999 5.90 E-6 5.77 E-6 3.973 2.66 E-2
3 5.9999 3.72 E-5 3.46 E-5 5.933 6.65 E-2
4 7.9999 1.72 E-4 1.62 E-4 7.881 1.18 E-1
5 9.9993 7.26 E-4 7.53 E-4 9.821 1.79 E-1
6 11.999 2.94 E-3 2.90 E-3 11.75 2.74 E-1
7 13.988 1.18 E-3 1.17 E-3 13.66 3.35 E-1
8 15.955 4.78 E-2 4.71 E-2 15.53 4.69 E-1
9 17.798 2.02 E-1 1.88 E-1 17.26 7.33 E-1
10 19.408 5.92 E-1 5.24 E-1 18.59 1.41 E-0

3.3. Shannon information in a p=0.5 genome

Given a k-spectrum Fk we have from Eqs. (1) and
(2) Hmax(Fk)=2k ln 2. The Shannon entropy and
information in the k-spectra, k=2 to 10, of the
genome of P. aerophilum and its random match are
given in Table 1. The column under the heading
Rex gives the expected Shannon information in the
k-spectrum of a random sequence:

Rex = b′k4
k/2L, b′k = 1 − 1/2k−1 (4)

Here b′k is used instead of the binomial factor b=1-
τ−1 given previously. This is a semi-empirical value
used to partly compensate for the fact that the ran-
dom sequence is not completely random because
(i) it is made to be approximately compositionally
self-complementary (as most genomes are) and (ii)
its percentage (A+T) content, or p, is fixed to be
0.5. Table 1 shows that Rex is in excellent agree-
ment with the actual Shannon information com-
puted from a p=0.5 random sequence.

We make several remarks concerning Table 1.
(i) For both sequences the Shannon entropy is in
every case very close to its maximum value, 2k ln 2.
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(ii) The Shannon information is very small, minus-
cule in the case of the smallest k’s, compared with
the Shannon entropy. That is, in most cases the
Shannon information as defined in Eq. (2) is a tiny
signal buried in a huge background. (iii) The ratio
of the genomic Shannon information to its random
match is very large for the small k’s and decreases
rapidly with increasing k. For instance, the ratio is
about 4600, 100 and 2, respectively, at k=2, 6 and
10. This, according to Eq. (3), implies that the
spectral widths of the genomic k-spectra are about
68, 10 (see Fig. 1) and 1.4 times their random coun-
terparts. We have tested this phenomenon on many
p≈0.5 genomes and in every case the remarks made
above apply substantially. We thus conclude that
in so far as such sequences are concerned, our defini-
tion of Shannon information seems to be well suited
for delineating genomes from random sequences.

3.4. Reduced Shannon Information

We have seen that the Shannon information in genome
and random sequences alike is a very small signal
compared to Shannon entropy, but the Shannon
information in a genome tends to be much larger
than that in its random match. A better sense of
the magnitude of the Shannon information in a se-
quence is obtained by measuring it relative to the
Shannon information in the random match. Let
Q be a genome sequence with p≈0.5, Fk be its k-
spectrum and F ′

k be the k-spectrum of the random
match of Q. From our discussion above we expect
its k-spectrum to be unimodal, similar to the black
curve in Fig. 1. We define a reduced Shannon in-
formation in Fk as the ratio of the Shannon infor-
mation in Fk to that expected in F ′

k:

M(0)
R (Fk) ≡ R(Fk)/Rex(F ′

k) = 2R(Fk)f̄/b′k (5)

Obviously, if Q is itself a random sequence, then
MR is expected to be unity in any of its k-spectra.
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Figure 2: 6-spectra of the genome of C. muridarum (black)
and its random match (gray). The frequencies have been normalized
to that of a 1 Mb sequence and, for better viewing the large fluctu-
ation in the actual spectra have been smoothed out by forward and
backward averaging.

3.5. Case when genome is compositionally
biased

The situation is slightly more complicated for genomes
with p deviating significantly from 0.5. Fig. 2 shows
the 6-spectra from the genome of Chlamydia mur-
idarum [7] (black) and its random match (gray).
Both have p≈0.6. Whereas the genomic spectrum
is still unimodal, the random spectrum is composed
of several sharp peaks. These are caused by the bi-
ased composition in the sequence. To see this, we
denote by m-set the subsets Fk,m of k-mers with m
(A+T)’s, m=1 to k. Owing to the biased compo-
sition, the mean occurrence frequencies of the sub-
sets Fk,m are spread out: f̄m(p)=f̄2kpm(1−p)k−m,
where f̄ is the overall mean. (Notice that f̄m(p)
approaches f̄ when p approaches 0.5.) The narrow-
ness - because they are Poisson distributions with
large means [8, 9] - of the corresponding subspec-
tra causes the k-spectrum of the random match to
appear as the superposition of k+1 separate sharp
peaks as shown in the gray spectrum in Fig. 2. Ap-
parently, for the genome the subspectra are suffi-
ciently broad and overlapping such that no indi-
vidual peak is discernible in its k-spectrum.

Table 2: Shannon information in the m-set of k-mers, Fk,m,
from the genome C. muridarum and its random match. Frequencies
are normalized to that of a 1 Mb sequence. Eq. (8) is a universal
formula given later in the text.

RCmur Rrandom

k, m f̄m measured Eq. (8) measured expected

2, 1 60,000 1.96 E-2 2.00 E-2 2.88 E-6 4.17 E-6
3, 2 18,000 4.36 E-2 2.93 E-2 2.22 E-5 2.08 E-5
4, 2 3,600 8.18 E-2 7.18 E-2 1.94 E-4 1.21 E-4
5, 3 1,080 1.10 E-1 0.92 E-1 5.19 E-4 4.34 E-4
6, 3 216 1.53 E-1 1.84 E-1 2.98 E-3 2.24 E-3
7, 4 64.8 1.95 E-1 2.42 E-1 9.98 E-3 7.65 E-3
8, 4 13.0 2.84 E-1 4.77 E-1 5.82 E-2 3.83 E-2
9, 5 3.89 4.53 E-1 6.17 E-1 1.82 E-1 1.28 E-1
9, 7 8.75 3.91 E-1 2.74 E-1 7.97 E-2 5.70 E-2
10, 6 0.97 0.93 E 0 0.80 E 0 6.66 E-1 5.15 E-1
10, 8 2.62 6.87 E-1 3.55 E-1 2.87 E-1 1.98 E-1

The overall width of the k-spectrum of a ran-
dom sequence is determined by the spread of the
subspectra which, when the widths of the individ-
ual subspectra are ignored, is approximately given
by

∆k(p) = f̄
(
2k

(
p2 + (1 − p)2

)k − 1
)1/2

For k=6 this gives 126 which is close to the width
of 132 of the 6-spectrum of C. muridarum (normal-
ized to 1 Mb). That is, the difference in Shannon
information in the genome and its random match
is no longer reflected in these widths. Rather, the
difference lies in the widths of the subspectra of
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Figure 3: Reduced Shannon information MR in the k-spectra, k=2 and 3 (gray diamonds) and 4 to 10 (black diamonds), of sequences in
three control sets whose compositions are explained in the text. (A) The random set (135 sequences); MRave=1.03±0.12. (B) The century
set (135 sequences); MRave=101±12. (C) The common-root set (262 sequences); (300/L)MRave=1.02±0.13. Also in (C) are the MR

(multiplied by a factor of 3) for k=2 from the genomes (135 prokaryote and 127 eukaryotes).

the m-sets. Table 2 gives the Shannon informa-
tion in the subspectra of the m-sets in C. muri-
darum and in its random match. The measured
Shannon informations (column 5) in the m-sets of
the random match are close to their expected val-
ues b′k/f̄m (column 6). The values of the Shannon
information in the genomic subspectra, in absolute
magnitudes and relative to their respective random
counterparts, are both similar to those seen in Ta-
ble 1. Therefore we generalize the definition for
MR given in Eq. (5) to be the weighted average
over the reduced Shannon information in the m-
sets:

MR(Fk) ≡
k∑

m=0

L−1
(
2k(k, m)f̄m

)
M(0)

R (Fk,m)

(6)
where M(0)

R (Fk,m) is as defined in Eq. (5), but with
Fk replaced by Fk,m and f̄ replaced by f̄m, and
(k, m) is a binomial satisfying

∑
m 2k(k, m)f̄m=L.

The Shannon information in an m-set is given by
Eq. (2) except that now τ=2k(k, m). In practice,
to circumvent large fluctuations in R(Fk,m) induced
by small unevenness in the A/T (or C/G) contents
- this can occur when f̄m is very large at k=2 and 3
- each frequency was divided by a factor (2k/pm(1−
p)k−m)

∏
s pms

s , where ms is the number of the sth

type of base in the k-mer and
∑

s ms=k.

3.6. Tests with control sequences

The reduced Shannon information (Eq. (6)) is de-
fined such that its expected value for the k-spectrum
of any random sequence is expected to be one, pro-
vided the length of the sequence is greater than 4k.
We test this with three sets of control sequences,
a “random” set, a “century” set and a “common-
root” set. Sequences in the control sets are matches

of sequences that form subsets - called targets -
of genomes (see below) composed of 135 prokary-
otic complete genomes (the prokaryotes) and 127
complete chromosome sequences of 10 eukaryotes
(the eukaryotes). The 127 sequences in the ran-
dom set are just random matches of the prokary-
otes. The 127 sequences in the century set also have
the prokaryotes as targets but are 100-replicas of
random root-sequences. The 262 sequences in the
common-root set have the combined prokaryotes
and eukaryotes as targets and are replicas of 300
b random root-sequences. That is, corresponding
to a complete genome sequence of length L, there
is an L/300-replica in the common-root set.

The diamond symbols in Fig. 3 give reduced
Shannon information versus sequence length from
the k-spectra, k=2 to 10, of sequences in the three
control sets. The figures in panels (A) and (B) have
1,215 data points each (135 sequences times nine
k values). Panel (C) has about 2300 data points
(262×9, excluding data for which genome length
is less than 4k). The MR averaged over all se-
quences and all k’s are as expected: 1.03±0.12 and
101±12 in panels (A) and (B), respectively. In (C),
MR is proportional to L as expected; the averaged
value for (300/L)MR is 1.02±0.13. (The ◦ sym-
bols in (C) are genome data; see below.) These re-
sults gives us confidence in the normalization used
in equations Eq. (5) and Eq. (6) for defining the
reduced Shannon information.

4. Information in whole genomes

4.1. Length and base composition of genomes

Complete genome sequences used in the present
study were downloaded from the genome FTP site
of the (USA) National Center for Biotechnology In-
formation. The 135 complete microbial genomes
(the prokaryotes) were downloaded on October 9,
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Figure 4: Reduced Shannon information, MR, from 135 complete microbial genomes and 127 eukaryotes. Each symbol is the MR value
of one k-spectrum from one complete sequence. Left panel, MR color-coded (gray scale) by organism; right panel, MR color-coded by k,
excluding data from 14 chromosomes of P. falciparum, where each “k-band” contains data from 248 complete sequences. Data have been
multiplied by factor of 210−k to delineate the k-bands for better viewing. Data for which 4k>L, when MR≈1 regardless of sequence content,
have been discarded. Straight lines in the plots are MR ∝ L lines.

2003 from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
and the 127 chromosome sequences of ten complete
eukaryotic (the eukaryotes) were downloaded on
July 15, 2003 from ftp://ftp.ncbi.nih.gov/genomes/.
The ten eukaryotes (number of chromosomes in brack-
ets) are A. thaliana (5), C. elegans (6), D. melanogaster
(6), E. cuniculi (11), H. sapiens (24), M. musculus
(21), P. falciparum (14), R. norvegicus (21; Chro-
mosome Y missing), S. cerevisiae (16) and S. pombe
(3). The prokaryotes are relatively homogeneous in
length - 0.4 to 7 Mb - but highly heterogeneous in p
- 26% to 0.75%. The reverse is the case for the eu-
karyotes where length ranges from 0.2 Mb (smaller
chromosomes of E. cuniculi) to 268 Mb (R. norvegi-
cus Chromosome I) and p ranges from 53% to 64%.
The exception is Plasmodium whose p is 81±1%
[11].

4.2. Shannon information in complete genomes

The reduced Shannon information in the k-spectra
of the 135 prokaryotes and 127 chromosomes of eu-
karyotes are color- (gray scale) and symbol-coded
by organism and shown in Fig. 4(A), where each
piece of datum gives the MR in one k-spectrum
of a sequence. The values of MR in the figure
have been multiplied by a factor of 210−k to parti-
tion data into different k groups for better viewing.
The prokaryotic data are all shown as gray squares.
Data for which sequence length is less than 4k are
deleted. For each organism the data form sepa-
rate k-dependent bands running diagonally across
the figure, where bands for smaller k’s give larger
values of MR. The data from human (24 chromo-
somes), mouse (21 chromosome) and rat (22 chro-
mosomes) practically overlap when differences in
sequence length is taken into account. Since rel-
ative to human chromosomal structure there are
large and numerous intra- and interchromosomal

segment exchanges in the mouse and rat chromo-
some [10], it is evident that Shannon information
as applied in the present analysis is insensitive to
whatever mutations that may have caused closely
related organisms to diverge, from large chromo-
somal segment exchanges to gene-modifying point
mutations. The data in Fig. 4(A) indicate the eu-
karyotes and the prokaryotes span a similar vertical
range, about 2000 when the multiplicative factor
of 210−k is removed. The only glaring exceptions
to this similarity are the 14 chromosomes of the
malaria causing parasite Plasmodium falciparum;
they span a noticeably smaller vertical range of
about 13. In Fig. 4(B) the data in (A) exclud-
ing those from Plasmodium are repeated and color-
coded by k to highlight the well defined k-bands.
Each band stretches over the full range of genome/
chromosome length spanning three orders of mag-
nitude. The two straight MR∝L lines, separated
by a factor of 3.5 on the ordinate, are shown to give
a sense of the linearity of a k-band and the vertical
spread of the data within a band.

4.3. Universality classes of genomes

The linear relation between MR and L implies that
the effective root-sequence length Lr(k), defined as
Lr(k) ≡L/MR, approximates a k-dependent but
genome-independent constant. In Fig. 5, the black
symbols are values for Lr(k) obtained by averaging
over subsets of genome data: � from prokaryotes,
� from eukaryotes (Plasmodium excluded) and �
from sequences formed by concatenating the non-
coding segments in prokaryote genomes. These re-
sults are well summarized by the simple formula
(Lr(k) in units of bases):

log Lr(k) = ak + B; 2 ≤ k ≤ 10 (7)

where a=0.410±0.030 and B=1.58±0.19.
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�, prokaryotes; �, non-coding regions in prokaryotes; � eukaryotes;• Plasmodium; The straight line gives the mean of the relation
Eq. (7). Gray symbols show results obtained from model sequences :
�, all model sequences except Plasmodium; ◦, model sequence for
Plasmodium.

We refer to Eq. (7) as a universality class, whose
mean is given by the straight line in Fig. 5. (Gray
symbols in Fig. 5 are results obtained from model
sequences, to be discussed later.) There is a num-
ber of ways to understand the universality of mean-
ing of Lr(k). One way is to see that, for given k,
the Shannon information in a genome is the same
as that in a random sequence of length Lr(k), irre-
spective of the true length of the genome. This is
to be compared with the Shannon information in a
random sequence, which decreases as the reciprocal
of its length. In other words, if a genome of length
L is x times Lr(k), then the Shannon information
in the genome is x times that in a random sequence
of length L. From Eq. (7) we have Lr(2), Lr(6) and
Lr(10) being approximately 250 b, 11 kb and 480
kb, respectively. Hence the Shannon information
in the 2-, 6- and 10-spectra of a genome approx-
imately 2 Mb long is about 8,000, 1,820 and 4.2
times that of a 2 Mb random sequence matching
the genome.

The universality class expressed by Eq. (7) in-
cludes all the genomes/chromosomes studied ex-
cept the fourteen chromosomes of Plasmodium, whose
Lr

′s are shown as •’s in Fig. 5 (A). This small
group forms a separate class given by the constants
a=0.146±0.012 and B=2.14±0.05.

4.4. A universal formula

From Eq. (7) we extract a formula for the Shannon
information in an m-set Fk,m of a genome sequence

of composition p in the main class:

R(Fk,m) ≈ 0.012(1−21−k)e0.44k(2kpm(1−p)k−m)−1

(8)
When p approaches 0.5 the formula collapses to

R(Fk) ≈ 0.012 (1 − 21−k) e0.44k (9)

This last formula gives not only the Shannon infor-
mation in a genome sequence with p≈0.5, it also
gives the weighted average (over the m-sets) of the
Shannon information in any genome sequence in
the main class. Note that Eq. (8) is independent
of L and Eq. (9) is independent of both L and p.
Eq. (8) was used to produce the numbers given in
column 4 of Table 2.

From the above and Eq. (3) we also obtain a
formula for the relative spectral width for Fk,m:
σ(Fk,m) ≈(2R(Fk,m))1/2 when the genome has p �=0.5,
and σ(Fk)≈(2R(Fk))1/2 for the whole k-spectrum
when p≈0.5. Note that σ(Fk) cannot be used as
an estimate for the relative spectral width of the
k-spectrum of a genome whose p deviates far from
0.5.

4.5. Coding and non-coding regions

About 85% of a prokaryote is comprised of coding
regions, whereas coding regions typically occupy
less than half of an eukaryotic chromosome. Gen-
erally, coding regions occupy a smaller the fraction
the higher life form of the organism; coding regions
make up less than 2% of the human genome. In
Fig. 5 the Lr(k) for sequences obtained by concate-
nating the non-coding segments in prokaryotes are
shown as �. Both these and the eukaryote data (�)
show a slight leveling-off beginning at k=9. Over-
all, from the data shown in Fig. 5 one may infer
that no essential difference in MR between coding
and non-coding regions obtains.

This is not to say that statistical sequence simi-
larity between coding and non-coding sections is so
great that no difference in Shannon information be-
tween them may be measured. Quite the contrary.
But there are several reasons why such a differ-
ence tend not show in MR for the whole genome.
First, most genes are protein genes and they are
coded in three-letter codons. This implies that the
greatest difference between a coding and a non-
coding segment will be detected when the sliding
window used to count word frequencies slides three
letters at a time. Our sliding window slides one let-
ter at a time. Second, differences between coding
and non-coding regions tend to cancel when viewed
over the whole genome. An example is the compo-
sitional self-complementarity on a single strand of
a genome, in spite of the fact that, as a rule, the
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contents of complementary bases in coding regions
are different. The reason that the difference can-
cels out over the entire strand is because coding
regions are more or less uniformly distributed on
both strands, such that on a single strand, there are
as many positively oriented genes as there are neg-
atively oriented genes. Consequently, on a single
strand the excess (if there is any) in A’s in genes in
one orientation will approximately be equal to the
excess in T’s in genes in the opposite orientation.

5. Interpretation of results

5.1. Duplications increases MR uniformly

The existence of universality classes in reduced Shan-
non information implies that the latter is a sig-
nature in complete genomes undiminished by the
enormous diversity in growth and evolution experi-
enced by individual genomes. Since it is easy to
show that most biologically plausible models for
genome growth and evolution do not generate any
class, even less so the observed universality classes,
the existence of the universality classes and their
precise form provide powerful constraints on mod-
els for genome growth and evolution. Our expe-
rience with robust signals in systems composed of
highly diverse members suggests a growth process
in which stochasticity plays a strong role.

The very large amount of reduced Shannon in-
formation in complete genomes, at least for the
shorter k-mers, is consistent with the hypothesis
that genomes contain very large amounts of dupli-
cations. The k=2 band of genomic data in Fig. 4(B)
is reproduced as ◦’s in Fig. 3(C). It is extremely
similar to the band of data (black and gray �’s)
obtained from the common-root set of sequences
composed of n-replicas made from replicating ran-
dom root-sequences 300 b long. The fact that 300 b
is close to the value of Lr(2)≈300 b of the main uni-
versality class hints at the possibility that genomes
are to a large extent n-replicas with a common root-
sequence length of about 300 b. However, the MR

from n-replicas lacks the clear k-dependence seen
in the genome data and this rules out the possibil-
ity that genomes are simple n-replicas. Some other
mechanism is needed to generate the observed k-
dependence in MR.

5.2. Point mutations decreases MR differen-
tially

An obvious candidate that may generate the ob-
served k-dependence are small mutations. For sim-
plicity, we consider the effect of random point re-
placements on a k-spectrum of an n-replica. Sup-
pose d is the average distance between two adjacent

mutation sites. When the total number of muta-
tions is very small, d>>10 (10 is the maximum k in
the present study), the effect of the mutations on
the k-spectrum will be negligible to give MR≈n.
Conversely, when the number of mutations is very
large, d<<1 and all traces of replication in the n-
replica will be obliterated reducing the n-replica to
a random sequence yielding MR≈1. In between,
when d is of the order of k, the mutation will af-
fect the k-spectra in such a way that the MR in a
k-spectrum of a larger k will suffer a higher degree
of reduction. Presumably, given an n-replica, there
may be an appropriate number of mutations whose
effect is to generate a k-dependence in MR similar
to that observed in Fig. 4.

6. Model for genome growth

6.1. A minimal model

Based on the above considerations we devised a
number of simple growth models having the two
main ingredients: a large number of random seg-
mental duplications to create large values for MR;
a suitable number of random point replacements
to generate the observed k-dependence in MR. In
addition, the model must have the flexibility allow-
ing the growing genomes to diverge at any stage
and the robustness to prevent the Shannon infor-
mation from depending on the diverging events.
Here we report the results obtained from a stochas-
tic replicative transposition (SRT) model in which
an initial random sequence of length L0 is grown
to full length via duplications of randomly selected
segments (in the sequence) of random lengths that
are then reinserted into the sequence at randomly
selected sites [9]. After full growth the sequence is
subjected to random point replacements at a rate
of r mutations per nucleotide. The replacements
have the same compositional bias as the target se-
quence. Having the mutations all occur after the
completion of growth does not necessarily reflect
the actual workings of Nature; indeed there is an
infinite number of ways single mutations may be
admixed with duplications. Rather the scheme is
adopted in this paper simply to limit the number
of parameters in the model.

The lengths l of the duplicated segments are
given by a distribution on which the results have
a weak dependence. Here we simply use a square
distribution having the range 1≤l≤lx. A χ2 proce-
dure based on comparing empirical values of Lr(k)
with those computed from a set of twenty model se-
quences that match twenty randomly selected prokary-
otic genomes was used to determine optimal values
for the parameters L0, r and lx. The χ2 is ob-
served to have a strong dependence on L0 favoring
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very short initial sequence lengths and weaker de-
pendence on lx and r. We find that the best re-
sults for the prokaryotes are obtained when L0=8,
lx=250 and r=0.95 (detail of this search will be re-
ported elsewhere). The initial sequences are com-
positionally self-complementary but otherwise ran-
dom. Hence an L0=8 sequence can only have p=0,
0.25, 0.5, 0.75 or 1.0. Because in our model p and
1-p sequences are mathematically equivalent, the
initial sequences are chosen to have p=0.25 or 0.5.
Two measures was taken to shorten computation
time, neither of which is expect to qualitatively af-
fect the presented results. Firstly, because lx>>L0,
an initial sequence is first replicated to a length
just greater than lx before it is subjected to growth
by stochastic segmental duplication. Secondly, for
model eukaryote sequences, lx is taken to be 10,000
once the sequence grows beyond 2 Mb.

6.2. Results from model

Using the optimal parameters (L0=8, lx=250 and
r=0.95) we generated 248 model sequences whose
profiles more or less match those of the genomes/
chromosomes in the main universality class and com-
puted MR and Lr(k) for the model sequences. The
� in Fig. 5 summarize results for Lr(k). Each
symbol in the figure is obtained by averaging over
248 sequences; standard deviations from the mean
are given by the error flags. It is fair to say that
the extremely simple model accounts for the k-

dependence and universality of the data very well.
A general property of sequences generated by the
model is that a correct value for MR of a k-spectrum
guarantees a correct shape for that spectrum [9].
The plotted 5-spectra in Fig. 6, where the the spec-
tra from the model sequences are given in light gray
and those from three genome sequences in black
(dark gray curves are from the random matches)
indicate the typical agreement between model and
genome spectra. We emphasize that it is not a triv-
ial task to generate a sequence whose k-spectra are
genome-like for all k’s; it is far easier to generate
sequences that do not have the observed properties
of genomes than it is the opposite.

The existence of the Plasmodium chromosomes
as a separate universality class is a blessing in dis-
guise, for it shows that there is nothing inevitable
about the main universality class. The 14 model
Plasmodium chromosomes are similarly generated
as the main group except that L0=80 and r=0.20.
The results are shown as ◦ in Fig. 5. On the surface,
the larger L0 and smaller r for Plasmodium suggest
that, compared to other organisms studied, this or-
ganism experienced either less duplication or sig-
nificantly fewer point (or small) mutations per site,
or both, than genomes in the main class. The real
cause for the distinctiveness of Plasmodium may
be far more complex. Among the eukaryotes stud-
ied Arabidopsis, which belongs to the main class, is
phylogenetically the least remote from Plasmodium
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[11, 12]. It will be interesting to see how closer tax-
onomic relatives of Plasmodium [12] are classified
by MR.

7. Discussion

7.1. Universality in diversity

Our main findings concerning Shannon informa-
tion in complete genomes revealed two important
facts: (i) for short k-mers Shannon information
in complete genomes is uniformly very large, even
enormous; (ii) the Shannon information in com-
plete genomes unequivocally exhibits a universal-
ity that coexists with the huge diversity of species.
We have found a simple, coarse-grain model for
genome growth and evolution that can account for
both phenomena: very early on, when they were
much less than 300 b long, genomes started to grow
mainly by stochastic segmental duplication followed
by (or admixed with) small mutations. The model
allows a genome to diverge at any stage during
its growth such that, in principle, all the genomes
studies could have had a single common ancestor.
The simplicity of the model and the maximally
stochastic nature of the growth mechanisms may
underlie the robustness of the results and explain
the emergence of the universality classes in the pres-
ence of a huge diversity of species. As a computa-
tional device the compositional bias and comple-
mentarity in the model sequences are generated by
the bias in the replacement mutations. The pro-
posed model should be viewed as a crude proto-
type for a realistic model for genome growth and
evolution. In particular it does not explain the ori-
gin of compositional bias. The model will need to
be refined when it is confronted with finer textual
details in the genome.

7.2. Why is Plasmodium different?

We need to examine the data and our model in
greater detail to ascertain whether the genome Plas-
modium is truly fundamentally different from all
other genomes. In particular, in view of the fact
that the genome of Plasmodium has the most biased
base composition among all completed genomes, we
need to conduct a detailed study of the p-dependence
of MR. The case of Plasmodium raises several ques-
tions: (i) Why is the MR of Plasmodium differ-
ent? (iii) (If Plasmodium is truly different then)
Are there other organisms in the Plasmodium class?
(iii) Are there more than the two universality classes
reported here in existence? (iv) What are the bio-
logical causes of different classes?

7.3. Neutral theory of evolution

Whereas the complete genomes studied vary greatly
in coding regions as a percentage of the whole genome
(from 85% in microbes to less than 2% in H. sapi-
ens), the universal genome property reported here
seems not to depend on that percentage. Indeed
we have shown that in prokaryotes there is no dis-
cernible difference between the reduced Shannon
information of the coding and non-coding regions
(Fig. 5). In the context of our growth model, our
findings appear to imply that the majority of the
individual fixed duplications and replacements dur-
ing genome growth do not act differently in the two
regions. If we assume that coded words other than
genes such as binding sites, regulatory signals, and
microRNA’s [13] collectively do not occupy a dom-
inant portion of the non-coding region in eukary-
otes, then we may assume that the fixed events in
the non-coding region were selectively neutral and
hence, by inference, so were essentially all the fixed
events. This notion of selective neutralism, based
as it is on the present whole-genome analysis, seems
to independently corroborate Kimura’s neutral the-
ory of molecular evolution [14, 15], a theory that
was based on the investigation of polymorphisms
of genes.

7.4. Genomes are rich in duplications

Independent from our contention that large Shan-
non information in a genome suggests a large amount
of random duplications over the entire genome, there
are many other evidence of duplications in genomes:
the existence of many transposable elements; the
large amounts of repeats in both prokaryotes [16]
and eukaryotes [17, 18]; the preponderance of par-
alogs (genes) and pseudogenes in all life forms [19,
20, 21]; chromosome segment exchanges that seem
to characterize mammalian [10] and plant [22] ra-
diations. Our proposed growth model may at least
be taken as a starting point for an explanation of
all these phenomena.

7.5. Random segmental duplication as a re-
sult of natural selection

We have learned from this study that the reduced
Shannon information (MR) in a genome increases
when it adds homologous sequence to itself. Hence
stochastic duplication is a highly efficient process
for a sequence to increase its MR in a non-directed
fashion. Lifeless random segmental duplication may
have eased the path to the rise of life. A larger
MR implies a wider distribution of occurrence fre-
quencies of oligonucleotides and the consequential
concomitant rapid appearance of large numbers of
over- and under-represented oligonucleotides, which
would make easier - there will be less entropic re-
sistance - the task of endowing some such oligonu-
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cleotides with biological meaning by natural selec-
tion at a later date. Random segmental duplicat-
ion also makes good evolutionary sense after the
rise of the earliest codes. For sometimes such du-
plications will copy a segment in which is embed-
ded a coded sequence, say a proto-gene, which can
later evolve by natural selection into a new gene
in the host genome. This mode of generating new
genes will be enormously faster than having a new
gene evolved entirely from scratch and may provide
a basis for explaining why genes have been dupli-
cated at such a high rate [23], perhaps up to about
1% per gene per million years [24]. Thus having
random segmental duplication as a major mode of
genome growth makes the rapid rise and evolution
of life easier to understand, and may itself be a
consequence of natural selection. This is consistent
with the propositions that a growth strategy with
a reliance on duplication may have the effect of en-
hancing the rate of evolution [25, 26].
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