Shannon information in complete genomes

Chang-Heng Chang¹, Li-Ching Hsieh¹, Ta-Yuan Chen¹, Hong-Da Chen¹ Liaofu Luo³ and Hoong-Chien Lee^{1,2,4}

¹Department of Physics and ²Department of Life Sciences National Central University, Chungli, Taiwan, ROC ³Physics Department, Inner Mongolia University, Hohot, China ⁴National Center for Theoretical Sciences, Hsinchu, Taiwan, ROC

E-mail: hclee@phy.ncu.edu.tw

Abstract

Shannon information in the genomes of all completely sequenced prokaryotes and eukaryotes are measured in word lengths of two to ten letters. It is found that in a scale-dependent way, the Shannon information in complete genomes are much greater than that in matching random sequences - thousands of times greater in the case of short words. Furthermore, with the exception of the 14 chromosomes of Plasmodium falciparum, the Shannon information in all available complete genomes belong to a universality class given by an extremely simple formula. The data are consistent with a model for genome growth composed of two main ingredients: random segmental duplications that increase the Shannon information in a scale-independent way. and random point mutations that preferentially reduces the larger-scale Shannon information. The inference drawn from the present study is that the large-scale and coarse-grained growth of genomes was selectively neutral and this suggests an independent corroboration of Kimura's neutral theory of evolution.

1. Introduction

Shannon information [1] has been widely used in many diverse fields related to information, including the study of information in DNA sequences, in particular in sequence alignment [2]. But it seems not to have been applied to the field of comparative genomics. This could be for a number of reasons. The availability of a large number of completely sequenced genomes is a relatively recent phenomenon. The high heterogeneity of complete genomes may make comparison difficult. For instance, how is the 0.58 million bases (Mb) genome of Mycoplasma genitalium to be compared with the 3000 Mb genome of Homo sapiens? Within a genome different sections such as coding and non-coding regions are thought to have varying amounts of information. What section should be used to represent the genome? There is also the question of Shannon information

itself, which as a broadly defined concept may be applied in many different ways and a definitive way to use it for comparative genomics has not been established.

In this paper we devise a method to measure the Shannon information in a complete genome relative to that in a matching random sequence and apply it to all extant prokaryotic and eukaryotic complete genomes. The method is scale-dependent and highly sensitive to the amount of repeats in the sequence. The results are surprisingly unequivocal. We find that in spite of the wide diversity of the genomes in length, base composition and internal structure, the Shannon information in complete genomes (relative to random sequences) is uniformly very large for shorter words, in a way so regular that all the studied genomes except one that of the malaria causing protozoan *Plasmodium* falciparum - can be put into a single universality class defined by an exceedingly simple formula; the fourteen chromosomes of *Plasmodium* belong to a related but distinct small class. By inquiring into how these results could have possibly come about we arrive at a simple model for genome growth and discuss its implications.

2. Mathematical background

2.1. Shannon entropy and information

Consider a set of occurrence frequencies for τ types of events, $\mathcal{F} = \{f_i | \sum_{i=1}^{\tau} = N\} \equiv \{f_i | N\}$. Shannon's uncertainty [1], or entropy, for the set is

$$H(\mathcal{F}) = -\sum_{i} (f_i/N) \log(f_i/N) \tag{1}$$

This quantity has maximum value $H_{max} = \log \tau$ when all the occurrence frequencies are equal: $f_i = \bar{f} = N/\tau$. Shannon suggested the notion of information as a measure of decrease in uncertainty and there are many ways this notion may be applied. Here we are interested in cases when most of the f_i 's are non-zero and for such cases we define a Shannon information (called *Divergence* in [3]) in \mathcal{F} as

$$R(\mathcal{F}) \equiv H_{max} - H(\mathcal{F}) = \log \tau - H(\mathcal{F})$$
 (2)

2.2. Relation to relative spectral width

From a set of occurrence frequencies \mathcal{F} we can construct a distribution $S = \{n_f | L\}$ where n_f is the number of events with frequency f. The sum-rules $\sum_{f} n_f = \tau$ and $\sum_{f} f n_f = L$ are satisfied. If f is considered as light frequency - discrete in this case and n_f as light intensity, *i.e.*, number of photons, then \mathcal{S} can be considered analogously to a standard optical spectrum. We henceforth call S a spectrum. In terms of n_f the Shannon entropy is

$$H(\mathcal{F}) = H(\mathcal{S}) = -\sum_{f} (n_f f/N) \log(f/N)$$

There is a close relation between our definition of the Shannon information and the relative spectral width of S when the latter is a unimodal distribution. The relative spectral width σ of S is its half-width Δ (or standard deviation) divided by its mean \bar{f} : $\sigma \equiv \Delta/\bar{f}$. The relation is

$$R(\mathcal{F}) = R(\mathcal{S}) = \frac{\sigma^2}{2} + \mathcal{O}(\sigma^3)$$
 (unimodal) (3)

which is particularly useful when σ is small. We give two explicit examples. A histogram approximation of a unimodal distribution is to have a fraction x each of the events respectively have frequencies $f_{\pm} = \bar{f} \pm (2x)^{-1/2} \Delta$, and the rest (fraction 1-2x) has mean frequency. Then

$$R = \frac{\sigma^2}{2} - \frac{\sigma^4}{8} + \mathcal{O}(\sigma^6) \qquad \text{(histogram)}$$

A Gaussian distribution with relative spectral width σ yields

$$R = \frac{\sigma^2}{2} + \frac{\sigma^4}{4} + \mathcal{O}(\sigma^6) \qquad \text{(Gaussian)}$$

In general, an order σ^3 term will occur when the distribution is not symmetric around the mean frequency. Eq. (3) gives one a heuristic understanding of the Shannon information in a spectrum: there is no information when the spectrum is extremely narrow, or when all types of events occur with the same frequency. Conversely, so long as $\sigma < 1$, the broader the spectrum the higher the Shannon information. We remark that our definition of Shannon information is not intuitively useful for cases when the occurrences concentrate in a few types of events. Such situations do not arise in the systems - complete genomes - we are here interested in.

2.3. *k*-spectrum from a DNA sequence

Consider now a single strand of DNA and view it as a linear text written in the four bases, or chemical

letters, A, C, G, T. For a sequence of L nucleotides (nt) we denote by \mathcal{F}_k the set of occurrence frequencies $\{f_i|L\}_k$, where f_i is the occurrence frequency of the i^{th} k-letter word, or (overlapping) k-mer. The frequencies are obtained by sliding a window of width k across the genome, one letter at a time, and recording the number of times each k-mer is seen through the window [4, 5]. Given \mathcal{F}_k we can construct a k-spectrum, $S_k = \{n_f\}_k$, where n_f is the number of k-mers occurring with frequency f. The number of event types is now $\tau = 4^k$, so \mathcal{F}_k and \mathcal{S}_k satisfy the sum rules $\sum_i 1 = \sum_f n_f = 4^k$ and $\sum_i f_i =$ $\sum_{f} f n_f = L$, and the mean frequency is $\bar{f} = 4^{-k}L$. To simplify language we will refer to \mathcal{F}_k also as a k-spectrum. To insure good statistics we do not want k to be so large that f is less than one. Since the canonical size of microbial complete genomes is 2 Mb and 4^{10} is just over 10^6 , the maximum k we consider in this study is 10.

2.4. Shannon information in random sequence

The k-spectrum \mathcal{F}_k obtained from a random sequence Q with even base composition is a set of frequencies of random events of equal likelihood. If the mean frequency f is a very large number, which we assume to be the case, then \mathcal{F}_k (more properly, S_k) will be nearly a Poisson distribution with half-width $\Delta_{ran} = (b\bar{f})^{1/2}$, where $b=1-\tau^{-1}$ is a binomial factor. Thus the relative spectral width $\sigma_{ran} = (b\tau/L)^{1/2}$ falls off as $L^{-1/2}$ with increasing L and, from Eq. (3), $R(\mathcal{F}_k) \approx b\tau/2L$. That is, the Shannon information in a random sequence diminishes as 1/L with increasing L. This is but a simple manifestation of a well known effect in statistics: the average of some measure of a random system gains sharpness as the system gains size, and achieves infinite sharpness in the largesystem limit.

2.5. *n*-replica and root-sequence

There is a simple way for \mathcal{Q} to grow and escape the large-system rule. Suppose we replicate Q n times to generate a sequence Q'. We call Q' an n-replica of \mathcal{Q} and \mathcal{Q} a root-sequence of \mathcal{Q}' . If nis much less than L then to a high degree of accuracy the set of occurrence frequencies for k-mers in Q' is $\mathcal{F}'_k s = \{nf_i | nL\}_k$. Then \bar{f} and Δ for the k-spectrum of $\mathcal{F}'_k s$ will both increase by a factor of n, hence its relative spectral width will remain unchanged. Thus, although Q' is n times longer than Q, the Shannon information in \mathcal{F}'_k for any kwill be the same as that in \mathcal{F}_k , instead of being ntimes smaller. Conversely, the Shannon information in Q' is n times greater than that in a random sequence having the same length as Q'.

2.6. Random mutation and homologous insertion

We thus have the notion of replication as an undesigned way for a sequence to gain length and "gain" Shannon information. Here gaining means not losing in absolute magnitude, as compared to the change in a random sequence when it gains length. Replication is a special case of a general way of gaining length by insertions of homologous segments. The latter is the last step in a common mode of mutation known as replicative transposition, where a segment of the genome is first copied and then inserted back into the genome at another site. Whereas a random mutation would generally decrease the Shannon information in a sequence, replicative transposition is an exception.

3. A first look at genomes

3.1 Length and base composition of genomes

Genomes vary greatly in their "profiles" - lengths and base compositions. An empirical fact is that genomes are almost always compositionally self-complementary, meaning that on a single strand the numbers of A's and T's are approximately equal, as are the numbers of C's and G's. Therefore, for simplicity, we characterize the base composition of a genome by a single number, p, the percentage content of (A+T). In the complete genomes or chromosomes of genomes studied in this work, the length spans a range of about 0.2 to 300 million base pairs and p spans a range of about 0.25.to 0.82 in complete genomes. We say two sequences match if they have the same profile.

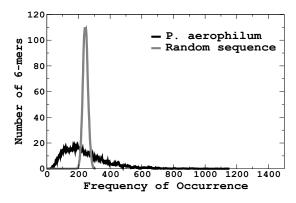


Figure 1: 6-spectra of the genome of $P.\ aerophilum$ (black) $(p{\approx}0.5)$ and its random match (gray). The frequencies have been normalized to that of a 1 Mb sequence. For better viewing only the large fluctuation in the actual spectra have been smoothed out by forward and backward averaging, hence ordinates n_f need not be integers.

3.2. A view of genomic and random *k*-spectra

The black curve in Fig. 1 is the 6-spectrum of the genome of the $p\approx0.5$ hyperthermophile $Pyrobacu-lum\ aerophilum\ [6]$, with the occurrence frequencies of the 6-mers normalized to correspond to a 1 Mb sequence. The gray curve in Fig. 1 shows the 6-spectrum of the random match of the genome, obtained by thoroughly scrambling the genome of P. aerophilum. A random match can of course also be generated using a random number generator. When this is done a totally different sequence would obtain but it would have a 6-spectrum practically identical to the gray curve in Fig. 1. (This is because a k-spectrum does not specify which k-mer has a certain occurrence frequency; it only specifies how many k-mers have frequency f.)

Table 1: Shannon entropy H and information R in units of $\ln 2$ in the k-spectra of the genome sequence of P. aerophilum and its random match. R_{ex} is the expected information in the random match.

	E	Random ma	P. aerophilum		
				1. aeropiniani	
k	$H/\ln 2$	$R/\ln 2$	$R_{ex}/\ln 2$	$H/\ln 2$	$R/\ln 2$
2	3.9999	5.90 E-6	5.77 E-6	3.973	2.66 E-2
3	5.9999	3.72 E-5	3.46 E-5	5.933	6.65 E-2
4	7.9999	1.72 E-4	1.62 E-4	7.881	1.18 E-1
5	9.9993	7.26 E-4	7.53 E-4	9.821	1.79 E-1
6	11.999	2.94 E-3	2.90 E-3	11.75	2.74 E-1
7	13.988	1.18 E-3	1.17 E-3	13.66	3.35 E-1
8	15.955	4.78 E-2	4.71 E-2	15.53	4.69 E-1
9	17.798	2.02 E-1	1.88 E-1	17.26	7.33 E-1
10	19.408	5.92 E-1	5.24 E-1	18.59	1.41 E-0

3.3. Shannon information in a p=0.5 genome

Given a k-spectrum \mathcal{F}_k we have from Eqs. (1) and (2) $H_{max}(\mathcal{F}_k)=2k\ln 2$. The Shannon entropy and information in the k-spectra, k=2 to 10, of the genome of P. aerophilum and its random match are given in Table 1. The column under the heading R_{ex} gives the expected Shannon information in the k-spectrum of a random sequence:

$$R_{ex} = b'_k 4^k / 2L, \qquad b'_k = 1 - 1/2^{k-1}$$
 (4)

Here b'_k is used instead of the binomial factor b=1- τ^{-1} given previously. This is a semi-empirical value used to partly compensate for the fact that the random sequence is not completely random because (i) it is made to be approximately compositionally self-complementary (as most genomes are) and (ii) its percentage (A+T) content, or p, is fixed to be 0.5. Table 1 shows that R_{ex} is in excellent agreement with the actual Shannon information computed from a p=0.5 random sequence.

We make several remarks concerning Table 1. (i) For both sequences the Shannon entropy is in every case very close to its maximum value, $2k \ln 2$.

(ii) The Shannon information is very small, minuscule in the case of the smallest k's, compared with the Shannon entropy. That is, in most cases the Shannon information as defined in Eq. (2) is a tiny signal buried in a huge background. (iii) The ratio of the genomic Shannon information to its random match is very large for the small k's and decreases rapidly with increasing k. For instance, the ratio is about 4600, 100 and 2, respectively, at k=2, 6 and 10. This, according to Eq. (3), implies that the spectral widths of the genomic k-spectra are about 68, 10 (see Fig. 1) and 1.4 times their random counterparts. We have tested this phenomenon on many $p\approx0.5$ genomes and in every case the remarks made above apply substantially. We thus conclude that in so far as such sequences are concerned, our definition of Shannon information seems to be well suited for delineating genomes from random sequences.

3.4. Reduced Shannon Information

We have seen that the Shannon information in genome and random sequences alike is a very small signal compared to Shannon entropy, but the Shannon information in a genome tends to be much larger than that in its random match. A better sense of the magnitude of the Shannon information in a sequence is obtained by measuring it relative to the Shannon information in the random match. Let Q be a genome sequence with $p\approx0.5$, \mathcal{F}_k be its k-spectrum and \mathcal{F}'_k be the k-spectrum of the random match of Q. From our discussion above we expect its k-spectrum to be unimodal, similar to the black curve in Fig. 1. We define a reduced Shannon information in \mathcal{F}_k as the ratio of the Shannon information in \mathcal{F}_k to that expected in \mathcal{F}'_k :

$$\mathcal{M}_{R}^{(0)}(\mathcal{F}_{k}) \equiv R(\mathcal{F}_{k})/R_{ex}(\mathcal{F}'_{k}) = 2R(\mathcal{F}_{k})\bar{f}/b'_{k}$$
 (5)

Obviously, if $\mathcal Q$ is itself a random sequence, then $\mathcal M$

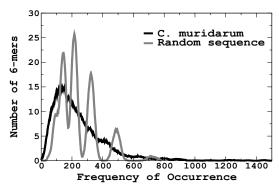


Figure 2: 6-spectra of the genome of *C. muridarum* (black) and its random match (gray). The frequencies have been normalized to that of a 1 Mb sequence and, for better viewing the large fluctuation in the actual spectra have been smoothed out by forward and backward averaging.

3.5. Case when genome is compositionally biased

The situation is slightly more complicated for genomes with p deviating significantly from 0.5. Fig. 2 shows the 6-spectra from the genome of Chlamydia muridarum [7] (black) and its random match (gray). Both have $p\approx0.6$. Whereas the genomic spectrum is still unimodal, the random spectrum is composed of several sharp peaks. These are caused by the biased composition in the sequence. To see this, we denote by m-set the subsets $\mathcal{F}_{k,m}$ of k-mers with m (A+T)'s, m=1 to k. Owing to the biased composition, the mean occurrence frequencies of the subsets $\mathcal{F}_{k,m}$ are spread out: $\bar{f}_m(p) = \bar{f} 2^k p^m (1-p)^{k-m}$, where \bar{f} is the overall mean. (Notice that $\bar{f}_m(p)$ approaches f when p approaches 0.5.) The narrowness - because they are Poisson distributions with large means [8, 9] - of the corresponding subspectra causes the k-spectrum of the random match to appear as the superposition of k+1 separate sharp peaks as shown in the grav spectrum in Fig. 2. Apparently, for the genome the subspectra are sufficiently broad and overlapping such that no individual peak is discernible in its k-spectrum.

Table 2: Shannon information in the m-set of k-mers, $\mathcal{F}_{k,m}$, from the genome C. muridarum and its random match. Frequencies are normalized to that of a 1 Mb sequence. Eq. (8) is a universal formula given later in the text.

		R_{Cmur}		R_{random}	
k, m	$ar{f}_m$	measured	Eq. (8)	measured	expected
2, 1	60,000	1.96 E-2	2.00 E-2	2.88 E-6	4.17 E-6
3, 2	18,000	4.36 E-2	2.93 E-2	2.22 E-5	2.08 E-5
4, 2	3,600	8.18 E-2	7.18 E-2	1.94 E-4	1.21 E-4
5, 3	1,080	1.10 E-1	0.92 E-1	5.19 E-4	4.34 E-4
6, 3	216	1.53 E-1	1.84 E-1	2.98 E-3	2.24 E-3
7, 4	64.8	1.95 E-1	2.42 E-1	9.98 E-3	7.65 E-3
8, 4	13.0	2.84 E-1	4.77 E-1	5.82 E-2	3.83 E-2
9, 5	3.89	4.53 E-1	6.17 E-1	1.82 E-1	1.28 E-1
9, 7	8.75	3.91 E-1	2.74 E-1	7.97 E-2	5.70 E-2
10, 6	0.97	$0.93 \to 0$	$0.80 \to 0$	6.66 E-1	5.15 E-1
10, 8	2.62	6.87 E-1	3.55 E-1	2.87 E-1	1.98 E-1

The overall width of the k-spectrum of a random sequence is determined by the spread of the subspectra which, when the widths of the individual subspectra are ignored, is approximately given by

$$\Delta_k(p) = \bar{f} \left(2^k \left(p^2 + (1-p)^2 \right)^k - 1 \right)^{1/2}$$

For k=6 this gives 126 which is close to the width of 132 of the 6-spectrum of C. muridarum (normalized to 1 Mb). That is, the difference in Shannon information in the genome and its random match is no longer reflected in these widths. Rather, the difference lies in the widths of the subspectra of

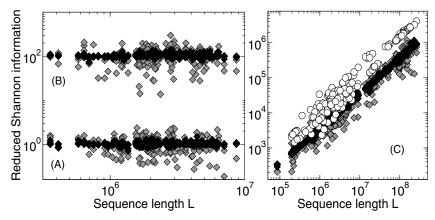


Figure 3: Reduced Shannon information \mathcal{M}_R in the k-spectra, k=2 and 3 (gray diamonds) and 4 to 10 (black diamonds), of sequences in three control sets whose compositions are explained in the text. (A) The random set (135 sequences); \mathcal{M}_{Rave} =1.03±0.12. (B) The century set (135 sequences); \mathcal{M}_{Rave} =101±12. (C) The common-root set (262 sequences); $(300/L)\mathcal{M}_{Rave}$ =1.02±0.13. Also in (C) are the \mathcal{M}_R (multiplied by a factor of 3) for k=2 from the genomes (135 prokaryote and 127 eukaryotes).

the m-sets. Table 2 gives the Shannon information in the subspectra of the m-sets in C. muridarum and in its random match. The measured Shannon informations (column 5) in the m-sets of the random match are close to their expected values b'_k/\bar{f}_m (column 6). The values of the Shannon information in the genomic subspectra, in absolute magnitudes and relative to their respective random counterparts, are both similar to those seen in Table 1. Therefore we generalize the definition for \mathcal{M}_R given in Eq. (5) to be the weighted average over the reduced Shannon information in the m-sets:

$$\mathcal{M}_R(\mathcal{F}_k) \equiv \sum_{m=0}^k L^{-1} \left(2^k (k, m) \bar{f}_m \right) \mathcal{M}_R^{(0)}(\mathcal{F}_{k,m})$$
(6)

where $\mathcal{M}_{R}^{(0)}(\mathcal{F}_{k,m})$ is as defined in Eq. (5), but with \mathcal{F}_{k} replaced by $\mathcal{F}_{k,m}$ and \bar{f} replaced by \bar{f}_{m} , and (k,m) is a binomial satisfying $\sum_{m} 2^{k}(k,m)\bar{f}_{m}=L$. The Shannon information in an m-set is given by Eq. (2) except that now $\tau=2^{k}(k,m)$. In practice, to circumvent large fluctuations in $R(\mathcal{F}_{k,m})$ induced by small unevenness in the A/T (or C/G) contents - this can occur when \bar{f}_{m} is very large at k=2 and 3 - each frequency was divided by a factor $(2^{k}/p^{m}(1-p)^{k-m})\prod_{s}p_{s}^{m_{s}}$, where m_{s} is the number of the s^{th} type of base in the k-mer and $\sum_{s}m_{s}=k$.

3.6. Tests with control sequences

The reduced Shannon information (Eq. (6)) is defined such that its expected value for the k-spectrum of any random sequence is expected to be one, provided the length of the sequence is greater than 4^k . We test this with three sets of control sequences, a "random" set, a "century" set and a "common-root" set. Sequences in the control sets are matches

of sequences that form subsets - called targets - of genomes (see below) composed of 135 prokaryotic complete genomes (the prokaryotes) and 127 complete chromosome sequences of 10 eukaryotes (the eukaryotes). The 127 sequences in the random set are just random matches of the prokaryotes. The 127 sequences in the century set also have the prokaryotes as targets but are 100-replicas of random root-sequences. The 262 sequences in the common-root set have the combined prokaryotes and eukaryotes as targets and are replicas of 300 b random root-sequences. That is, corresponding to a complete genome sequence of length L, there is an L/300-replica in the common-root set.

The diamond symbols in Fig. 3 give reduced Shannon information versus sequence length from the k-spectra, k=2 to 10, of sequences in the three control sets. The figures in panels (A) and (B) have 1,215 data points each (135 sequences times nine k values). Panel (C) has about 2300 data points $(262\times9, \text{ excluding data for which genome length})$ is less than 4^k). The \mathcal{M}_R averaged over all sequences and all k's are as expected: 1.03 ± 0.12 and 101 ± 12 in panels (A) and (B), respectively. In (C), \mathcal{M}_R is proportional to L as expected; the averaged value for $(300/L)\mathcal{M}_R$ is 1.02 ± 0.13 . (The \circ symbols in (C) are genome data; see below.) These results gives us confidence in the normalization used in equations Eq. (5) and Eq. (6) for defining the reduced Shannon information.

4. Information in whole genomes

4.1. Length and base composition of genomes

Complete genome sequences used in the present study were downloaded from the genome FTP site of the (USA) National Center for Biotechnology Information. The 135 complete microbial genomes (the prokaryotes) were downloaded on October 9,

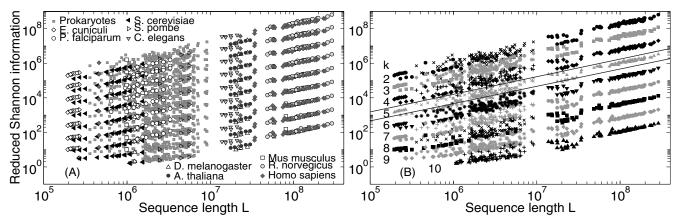


Figure 4: Reduced Shannon information, \mathcal{M}_R , from 135 complete microbial genomes and 127 eukaryotes. Each symbol is the \mathcal{M}_R value of one k-spectrum from one complete sequence. Left panel, \mathcal{M}_R color-coded (gray scale) by organism; right panel, \mathcal{M}_R color-coded by k, excluding data from 14 chromosomes of P. falciparum, where each "k-band" contains data from 248 complete sequences. Data have been multiplied by factor of 2^{10-k} to delineate the k-bands for better viewing. Data for which $4^k > L$, when $\mathcal{M}_R \approx 1$ regardless of sequence content, have been discarded. Straight lines in the plots are $\mathcal{M}_R \propto L$ lines.

2003 from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ and the 127 chromosome sequences of ten complete eukaryotic (the eukaryotes) were downloaded on July 15, 2003 from ftp://ftp.ncbi.nih.gov/genomes/. The ten eukaryotes (number of chromosomes in brackets) are A. thaliana (5), C. elegans (6), D. melanogaster (6), E. cuniculi (11), H. sapiens (24), M. musculus (21), P. falciparum (14), R. norvegicus (21; Chromosome Y missing), S. cerevisiae (16) and S. pombe (3). The prokaryotes are relatively homogeneous in length - 0.4 to 7 Mb - but highly heterogeneous in p - 26% to 0.75%. The reverse is the case for the eukarvotes where length ranges from 0.2 Mb (smaller chromosomes of E. cuniculi) to 268 Mb (R. norvegicus Chromosome I) and p ranges from 53% to 64%. The exception is *Plasmodium* whose p is $81\pm1\%$ [11].

4.2. Shannon information in complete genomes

The reduced Shannon information in the k-spectra of the 135 prokaryotes and 127 chromosomes of eukaryotes are color- (gray scale) and symbol-coded by organism and shown in Fig. 4(A), where each piece of datum gives the \mathcal{M}_R in one k-spectrum of a sequence. The values of \mathcal{M}_R in the figure have been multiplied by a factor of 2^{10-k} to partition data into different k groups for better viewing. The prokaryotic data are all shown as gray squares. Data for which sequence length is less than 4^k are deleted. For each organism the data form separate k-dependent bands running diagonally across the figure, where bands for smaller k's give larger values of \mathcal{M}_R . The data from human (24 chromosomes), mouse (21 chromosome) and rat (22 chromosomes) practically overlap when differences in sequence length is taken into account. Since relative to human chromosomal structure there are large and numerous intra- and interchromosomal

segment exchanges in the mouse and rat chromosome [10], it is evident that Shannon information as applied in the present analysis is insensitive to whatever mutations that may have caused closely related organisms to diverge, from large chromosomal segment exchanges to gene-modifying point mutations. The data in Fig. 4(A) indicate the eukaryotes and the prokaryotes span a similar vertical range, about 2000 when the multiplicative factor of 2^{10-k} is removed. The only glaring exceptions to this similarity are the 14 chromosomes of the malaria causing parasite Plasmodium falciparum; they span a noticeably smaller vertical range of about 13. In Fig. 4(B) the data in (A) excluding those from *Plasmodium* are repeated and colorcoded by k to highlight the well defined k-bands. Each band stretches over the full range of genome/ chromosome length spanning three orders of magnitude. The two straight $\mathcal{M}_R \propto L$ lines, separated by a factor of 3.5 on the ordinate, are shown to give a sense of the linearity of a k-band and the vertical spread of the data within a band.

4.3. Universality classes of genomes

The linear relation between \mathcal{M}_R and L implies that the effective root-sequence length $L_r(k)$, defined as $L_r(k) \equiv L/\mathcal{M}_R$, approximates a k-dependent but genome-independent constant. In Fig. 5, the black symbols are values for $L_r(k)$ obtained by averaging over subsets of genome data: \blacktriangle from prokaryotes, \blacksquare from eukaryotes (Plasmodium excluded) and \blacktriangledown from sequences formed by concatenating the noncoding segments in prokaryote genomes. These results are well summarized by the simple formula $(L_r(k))$ in units of bases):

$$\log L_r(k) = ak + B; \quad 2 \le k \le 10 \tag{7}$$

where $a=0.410\pm0.030$ and $B=1.58\pm0.19$.

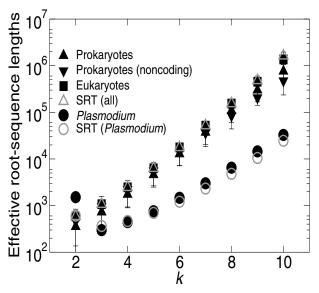


Figure 5: Effective root-sequence lengths L_{τ} . Each piece of data (with error flags) is obtained from averaging L/\mathcal{M}_R over a k-band as seen in Fig. 4 (B). Black symbols are from genomic data: \blacktriangle , prokaryotes; \blacktriangledown , non-coding regions in prokaryotes; \blacksquare eukaryotes; \bullet Plasmodium; The straight line gives the mean of the relation Eq. (7). Gray symbols show results obtained from model sequences : \triangle , all model sequences except Plasmodium; \bigcirc , model sequence for Plasmodium.

We refer to Eq. (7) as a universality class, whose mean is given by the straight line in Fig. 5. (Gray symbols in Fig. 5 are results obtained from model sequences, to be discussed later.) There is a number of ways to understand the universality of meaning of $L_r(k)$. One way is to see that, for given k, the Shannon information in a genome is the same as that in a random sequence of length $L_r(k)$, irrespective of the true length of the genome. This is to be compared with the Shannon information in a random sequence, which decreases as the reciprocal of its length. In other words, if a genome of length L is x times $L_r(k)$, then the Shannon information in the genome is x times that in a random sequence of length L. From Eq. (7) we have $L_r(2)$, $L_r(6)$ and $L_r(10)$ being approximately 250 b, 11 kb and 480 kb, respectively. Hence the Shannon information in the 2-, 6- and 10-spectra of a genome approximately 2 Mb long is about 8,000, 1,820 and 4.2 times that of a 2 Mb random sequence matching the genome.

The universality class expressed by Eq. (7) includes all the genomes/chromosomes studied except the fourteen chromosomes of *Plasmodium*, whose L_r 's are shown as \bullet 's in Fig. 5 (A). This small group forms a separate class given by the constants $a=0.146\pm0.012$ and $B=2.14\pm0.05$.

4.4. A universal formula

From Eq. (7) we extract a formula for the Shannon information in an m-set $\mathcal{F}_{k,m}$ of a genome sequence

of composition p in the main class:

$$R(\mathcal{F}_{k,m}) \approx 0.012(1-2^{1-k})e^{0.44k}(2^k p^m (1-p)^{k-m})^{-1}$$
(8)

When p approaches 0.5 the formula collapses to

$$R(\mathcal{F}_k) \approx 0.012 \ (1 - 2^{1-k}) \ e^{0.44k}$$
 (9)

This last formula gives not only the Shannon information in a genome sequence with $p\approx0.5$, it also gives the weighted average (over the m-sets) of the Shannon information in any genome sequence in the main class. Note that Eq. (8) is independent of L and Eq. (9) is independent of both L and p. Eq. (8) was used to produce the numbers given in column 4 of Table 2.

From the above and Eq. (3) we also obtain a formula for the relative spectral width for $\mathcal{F}_{k,m}$: $\sigma(\mathcal{F}_{k,m}) \approx (2R(\mathcal{F}_{k,m}))^{1/2}$ when the genome has $p \neq 0.5$, and $\sigma(\mathcal{F}_k) \approx (2R(\mathcal{F}_k))^{1/2}$ for the whole k-spectrum when $p \approx 0.5$. Note that $\sigma(\mathcal{F}_k)$ cannot be used as an estimate for the relative spectral width of the k-spectrum of a genome whose p deviates far from 0.5.

4.5. Coding and non-coding regions

About 85% of a prokaryote is comprised of coding regions, whereas coding regions typically occupy less than half of an eukaryotic chromosome. Generally, coding regions occupy a smaller the fraction the higher life form of the organism; coding regions make up less than 2% of the human genome. In Fig. 5 the $L_r(k)$ for sequences obtained by concatenating the non-coding segments in prokaryotes are shown as \blacktriangledown . Both these and the eukaryote data (\blacksquare) show a slight leveling-off beginning at k=9. Overall, from the data shown in Fig. 5 one may infer that no essential difference in \mathcal{M}_R between coding and non-coding regions obtains.

This is not to say that statistical sequence similarity between coding and non-coding sections is so great that no difference in Shannon information between them may be measured. Quite the contrary. But there are several reasons why such a difference tend not show in \mathcal{M}_R for the whole genome. First, most genes are protein genes and they are coded in three-letter codons. This implies that the greatest difference between a coding and a noncoding segment will be detected when the sliding window used to count word frequencies slides three letters at a time. Our sliding window slides one letter at a time. Second, differences between coding and non-coding regions tend to cancel when viewed over the whole genome. An example is the compositional self-complementarity on a single strand of a genome, in spite of the fact that, as a rule, the

contents of complementary bases in coding regions are different. The reason that the difference cancels out over the entire strand is because coding regions are more or less uniformly distributed on both strands, such that on a single strand, there are as many positively oriented genes as there are negatively oriented genes. Consequently, on a single strand the excess (if there is any) in A's in genes in one orientation will approximately be equal to the excess in T's in genes in the opposite orientation.

5. Interpretation of results

5.1. Duplications increases \mathcal{M}_R uniformly

The existence of universality classes in reduced Shannon information implies that the latter is a signature in complete genomes undiminished by the enormous diversity in growth and evolution experienced by individual genomes. Since it is easy to show that most biologically plausible models for genome growth and evolution do not generate any class, even less so the observed universality classes, the existence of the universality classes and their precise form provide powerful constraints on models for genome growth and evolution. Our experience with robust signals in systems composed of highly diverse members suggests a growth process in which stochasticity plays a strong role.

The very large amount of reduced Shannon information in complete genomes, at least for the shorter k-mers, is consistent with the hypothesis that genomes contain very large amounts of duplications. The k=2 band of genomic data in Fig. 4(B) is reproduced as o's in Fig. 3(C). It is extremely similar to the band of data (black and gray \$\displays) obtained from the common-root set of sequences composed of n-replicas made from replicating random root-sequences 300 b long. The fact that 300 b is close to the value of $L_r(2) \approx 300$ b of the main universality class hints at the possibility that genomes are to a large extent n-replicas with a common rootsequence length of about 300 b. However, the \mathcal{M}_R from n-replicas lacks the clear k-dependence seen in the genome data and this rules out the possibility that genomes are simple n-replicas. Some other mechanism is needed to generate the observed kdependence in \mathcal{M}_R .

5.2. Point mutations decreases \mathcal{M}_R differentially

An obvious candidate that may generate the observed k-dependence are small mutations. For simplicity, we consider the effect of random point replacements on a k-spectrum of an n-replica. Suppose d is the average distance between two adjacent

mutation sites. When the total number of mutations is very small, d>>10 (10 is the maximum k in the present study), the effect of the mutations on the k-spectrum will be negligible to give $\mathcal{M}_R \approx n$. Conversely, when the number of mutations is very large, d<<1 and all traces of replication in the n-replica will be obliterated reducing the n-replica to a random sequence yielding $\mathcal{M}_R \approx 1$. In between, when d is of the order of k, the mutation will affect the k-spectra in such a way that the \mathcal{M}_R in a k-spectrum of a larger k will suffer a higher degree of reduction. Presumably, given an n-replica, there may be an appropriate number of mutations whose effect is to generate a k-dependence in \mathcal{M}_R similar to that observed in Fig. 4.

6. Model for genome growth

6.1. A minimal model

Based on the above considerations we devised a number of simple growth models having the two main ingredients: a large number of random segmental duplications to create large values for \mathcal{M}_{R} ; a suitable number of random point replacements to generate the observed k-dependence in \mathcal{M}_R . In addition, the model must have the flexibility allowing the growing genomes to diverge at any stage and the robustness to prevent the Shannon information from depending on the diverging events. Here we report the results obtained from a stochastic replicative transposition (SRT) model in which an initial random sequence of length L_0 is grown to full length via duplications of randomly selected segments (in the sequence) of random lengths that are then reinserted into the sequence at randomly selected sites [9]. After full growth the sequence is subjected to random point replacements at a rate of r mutations per nucleotide. The replacements have the same compositional bias as the target sequence. Having the mutations all occur after the completion of growth does not necessarily reflect the actual workings of Nature; indeed there is an infinite number of ways single mutations may be admixed with duplications. Rather the scheme is adopted in this paper simply to limit the number of parameters in the model.

The lengths l of the duplicated segments are given by a distribution on which the results have a weak dependence. Here we simply use a square distribution having the range $1 \le l \le l_x$. A χ^2 procedure based on comparing empirical values of $L_r(k)$ with those computed from a set of twenty model sequences that match twenty randomly selected prokaryotic genomes was used to determine optimal values for the parameters L_0 , r and l_x . The χ^2 is observed to have a strong dependence on L_0 favoring

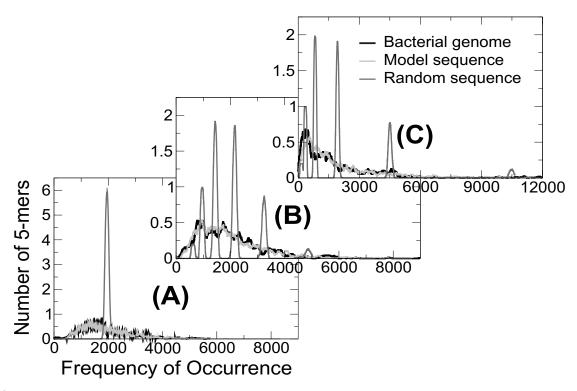


Figure 6: Comparison of 5-distributions of genome (black), random (dark gray) and model (light gray) sequences with p=0.5 (A), 0.6 (B) and 0.7 (C), respectively. The genomes are A. fulgidus (A), S. pneumoniae (B) and C. acetobutylicum(C).

very short initial sequence lengths and weaker dependence on l_x and r. We find that the best results for the prokaryotes are obtained when $L_0=8$, $l_x=250$ and r=0.95 (detail of this search will be reported elsewhere). The initial sequences are compositionally self-complementary but otherwise random. Hence an $L_0=8$ sequence can only have p=0, 0.25, 0.5, 0.75 or 1.0. Because in our model p and 1-p sequences are mathematically equivalent, the initial sequences are chosen to have p=0.25 or 0.5. Two measures was taken to shorten computation time, neither of which is expect to qualitatively affect the presented results. Firstly, because $l_x >> L_0$, an initial sequence is first replicated to a length just greater than l_x before it is subjected to growth by stochastic segmental duplication. Secondly, for model eukaryote sequences, l_x is taken to be 10,000 once the sequence grows beyond 2 Mb.

6.2. Results from model

Using the optimal parameters (L_0 =8, l_x =250 and r=0.95) we generated 248 model sequences whose profiles more or less match those of the genomes/chromosomes in the main universality class and computed \mathcal{M}_R and $L_r(k)$ for the model sequences. The Δ in Fig. 5 summarize results for $L_r(k)$. Each symbol in the figure is obtained by averaging over 248 sequences; standard deviations from the mean are given by the error flags. It is fair to say that the extremely simple model accounts for the k-

dependence and universality of the data very well. A general property of sequences generated by the model is that a correct value for \mathcal{M}_R of a k-spectrum guarantees a correct shape for that spectrum [9]. The plotted 5-spectra in Fig. 6, where the the spectra from the model sequences are given in light gray and those from three genome sequences in black (dark gray curves are from the random matches) indicate the typical agreement between model and genome spectra. We emphasize that it is not a trivial task to generate a sequence whose k-spectra are genome-like for all k's; it is far easier to generate sequences that do not have the observed properties of genomes than it is the opposite.

The existence of the *Plasmodium* chromosomes as a separate universality class is a blessing in disguise, for it shows that there is nothing inevitable about the main universality class. The 14 model *Plasmodium* chromosomes are similarly generated as the main group except that $L_0=80$ and r=0.20. The results are shown as \circ in Fig. 5. On the surface, the larger L_0 and smaller r for Plasmodium suggest that, compared to other organisms studied, this organism experienced either less duplication or significantly fewer point (or small) mutations per site, or both, than genomes in the main class. The real cause for the distinctiveness of Plasmodium may be far more complex. Among the eukaryotes studied Arabidopsis, which belongs to the main class, is phylogenetically the least remote from *Plasmodium*

[11, 12]. It will be interesting to see how closer taxonomic relatives of *Plasmodium* [12] are classified by \mathcal{M}_R .

7. Discussion

7.1. Universality in diversity

Our main findings concerning Shannon information in complete genomes revealed two important facts: (i) for short k-mers Shannon information in complete genomes is uniformly very large, even enormous; (ii) the Shannon information in complete genomes unequivocally exhibits a universality that coexists with the huge diversity of species. We have found a simple, coarse-grain model for genome growth and evolution that can account for both phenomena: very early on, when they were much less than 300 b long, genomes started to grow mainly by stochastic segmental duplication followed by (or admixed with) small mutations. The model allows a genome to diverge at any stage during its growth such that, in principle, all the genomes studies could have had a single common ancestor. The simplicity of the model and the maximally stochastic nature of the growth mechanisms may underlie the robustness of the results and explain the emergence of the universality classes in the presence of a huge diversity of species. As a computational device the compositional bias and complementarity in the model sequences are generated by the bias in the replacement mutations. The proposed model should be viewed as a crude prototype for a realistic model for genome growth and evolution. In particular it does not explain the origin of compositional bias. The model will need to be refined when it is confronted with finer textual details in the genome.

7.2. Why is Plasmodium different?

We need to examine the data and our model in greater detail to ascertain whether the genome Plas-modium is truly fundamentally different from all other genomes. In particular, in view of the fact that the genome of Plasmodium has the most biased base composition among all completed genomes, we need to conduct a detailed study of the p-dependence of \mathcal{M}_R . The case of Plasmodium raises several questions: (i) Why is the \mathcal{M}_R of Plasmodium different? (iii) (If Plasmodium is truly different then) Are there other organisms in the Plasmodium class? (iii) Are there more than the two universality classes reported here in existence? (iv) What are the biological causes of different classes?

7.3. Neutral theory of evolution

Whereas the complete genomes studied vary greatly in coding regions as a percentage of the whole genome (from 85% in microbes to less than 2% in H. sapiens), the universal genome property reported here seems not to depend on that percentage. Indeed we have shown that in prokarvotes there is no discernible difference between the reduced Shannon information of the coding and non-coding regions (Fig. 5). In the context of our growth model, our findings appear to imply that the majority of the individual fixed duplications and replacements during genome growth do not act differently in the two regions. If we assume that coded words other than genes such as binding sites, regulatory signals, and microRNA's [13] collectively do not occupy a dominant portion of the non-coding region in eukaryotes, then we may assume that the fixed events in the non-coding region were selectively neutral and hence, by inference, so were essentially all the fixed events. This notion of selective neutralism, based as it is on the present whole-genome analysis, seems to independently corroborate Kimura's neutral theory of molecular evolution [14, 15], a theory that was based on the investigation of polymorphisms of genes.

7.4. Genomes are rich in duplications

Independent from our contention that large Shannon information in a genome suggests a large amount of random duplications over the entire genome, there are many other evidence of duplications in genomes: the existence of many transposable elements; the large amounts of repeats in both prokaryotes [16] and eukaryotes [17, 18]; the preponderance of paralogs (genes) and pseudogenes in all life forms [19, 20, 21]; chromosome segment exchanges that seem to characterize mammalian [10] and plant [22] radiations. Our proposed growth model may at least be taken as a starting point for an explanation of all these phenomena.

7.5. Random segmental duplication as a result of natural selection

We have learned from this study that the reduced Shannon information (\mathcal{M}_R) in a genome increases when it adds homologous sequence to itself. Hence stochastic duplication is a highly efficient process for a sequence to increase its \mathcal{M}_R in a non-directed fashion. Lifeless random segmental duplication may have eased the path to the rise of life. A larger \mathcal{M}_R implies a wider distribution of occurrence frequencies of oligonucleotides and the consequential concomitant rapid appearance of large numbers of over- and under-represented oligonucleotides, which would make easier - there will be less entropic resistance - the task of endowing some such oligonu-

cleotides with biological meaning by natural selection at a later date. Random segmental duplication also makes good evolutionary sense after the rise of the earliest codes. For sometimes such duplications will copy a segment in which is embedded a coded sequence, say a proto-gene, which can later evolve by natural selection into a new gene in the host genome. This mode of generating new genes will be enormously faster than having a new gene evolved entirely from scratch and may provide a basis for explaining why genes have been duplicated at such a high rate [23], perhaps up to about 1\% per gene per million years [24]. Thus having random segmental duplication as a major mode of genome growth makes the rapid rise and evolution of life easier to understand, and may itself be a consequence of natural selection. This is consistent with the propositions that a growth strategy with a reliance on duplication may have the effect of enhancing the rate of evolution [25, 26].

This work is supported in part by the grants 92-2119-M-008-012 and 92-2112-M-008-041 from the National Science Council, ROC.

8. References

- A mathematical theory of communication. Shannon CE. Bell Sys. Techn. J. 27, 379-423; 623-656 (1948).
- [2] See for example, Computational molecular biology. Clote P & Backofen R (John Wiley & Sons, 2000).
- [3] Information theory and the living system. Gatlin LL (Columbia University Press, 1972).
- [4] Comparative DNA analysis across diverse genomes. Karlin S, Campbell AM & Mrazek J, Annu. Rev. Genet. 32 185-225 (1998).
- [5] Fractal related to long DNA sequences and complete genomes. Hao BL, Lee HC and Zhang SY, Chaos, Solitons and Fractals 11 825-836 (2000).
- [6] Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Fitz-Gibbon ST, et al. PNAS. 99, 984-989 (2002).
- [7] Genome sequences of *Chlamydia trachomatis MoPn* and *Chlamydia pneumoniae AR39*. Read TD, et al. Nucl. Acids Res. **28**, 1397-1406 (2000).
- [8] Visualization of K-tuple distribution in procaryote complete genomes and their randomized counterparts Xie HM and Hao BL, *IEEE Proc. Comp. Sys. Bioinf.*, 31-42 (2003)
- [9] Minimal model for genome evolution and growth. Hsieh LC, Luo LF, Ji FM and Lee HC, Phys. Rev. Lett. 90, 018101-018104 (2003).

- [10] The Promise of Comparative Genomics in Mammals. O'Brien SJ, et al. Science 286, 458-481 (1999).
- [11] Genome sequence of the human malaria parasite *Plasmodium falciparum*. Gardner MJ, *et al. Nature* **419**, 498-511 (2002).
- [12] A kingdom-level phylogeny of eukaryotes based on combined protein data. Baldauf SL, et al. Science 290, 972-977 (2000).
- [13] MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Ambros V, Cell 113, 673-676 (2003).
- [14] Evolutionary rate at the molecular level. Kimura M, Nature 217, 624-626 (1968).
- [15] The neutral theory of molecular evolution. Kimura M (Cambridge Univ. Press, 1983).
- [16] Three views of microbial genomes. Jensen LJ, et al. Res. Microbiol. 150, 773-777 (1999).
- [17] Initial sequencing and analysis of the human genome. Lander ES, et al. Nature 409, 860-921 (2001).
- [18] The sequence of the human genome. Venter JC, et al. Science 291, 1304-1351 (2001).
- [19] The evolution of gene duplicates. Otto S & Yong P, Adv. Genetics 46, 451-483 (2001).
- [20] Duplication, duplication. Meyer A, Nature 421, 31-32 (2003).
- [21] Role of duplicate genes in genetic robustness against null mutations. Gu Z, et al. Nature **421**, 63-66 (2003).
- [22] Genome organization in dicots: Genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Grant D, et al. PNAS 97, 4168-4173 (2000).
- [23] Duplication, duplication. Meyer A, *Nature* **421**, 31-32 (2003).
- [24] The evolutionary fate and consequences of duplicate genes. Lynch M and Conery LC, Science 290, 1151-1155 (2000).
- [25] Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification. Yanai I, et al. Phys. Rev. Lett. 85, 2641-2644 (2000).
- [26] Genome shuffling leads to rapid phenotypic improvement in bacteria. Zhang YX, et al. Nature 415, 644-646 (2002).

