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Quantum holonomy in three-dimensional general covariant field theory and the link invariant

W. F. Cherd
Helsinki Institute of Physics, P.O. Box 9 (Siltavuorenpenger 20 C), FIN-00014, Helsinki, Finland

H. C. Lee
Department of Physics, National Central University, Chungli, Taiwan 320, Republic of China

Z.Y. Zhu
Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing, 100080, China
(Received 14 February 1997

We consider quantum holonomy of some three-dimensional general covariant non-Abelian field theory in
the Landau gauge and confirm a previous result partially proven. We show that quantum holonomy retains
metric independence after explicit gauge fixing and hence possesses the topological property of a link invari-
ant. We examine the generalized quantum holonomy defined on a multicomponent link and discuss its relation
to a polynomial for the link[S0556-282(97)02314-X]

PACS numbgs): 11.15.Tk, 02.40.Pc, 03.65.Fd

Some time ago it was shown that quantum holonomy in a The main aim of the present work is to clarify these prob-
three-dimensional general covariant non-Abelian gauge fieltems. We explicitly work in the Landau gaugand confirm
theory possesses topological information of the link onthe results obtained in Refl] for the case of a one-
which the holonomy operator is defingdl]. The quantum component contour. We then show that a quantum holonomy
holonomy operator was shown to be a central element of theperator defined on a-component link, which by construc-
gauge group so that' in a given representation of the gaud@n is a tensor prOdUCt of those Operators defined on the
group, it is a matrix that commutes with the matrix represen£omponents, is a central element of the universal enveloping
tations of all other operators in the group. In an irreducible@lgebra of the Lie algebra of the gauge group and, when
representation, it is proportional to the identity matrix. Quan-evaluated on a set ai irreducible representations of the
tum holonomy should therefore in general have more infor92uge group, has a uniquely defined eigenvalue that is a
mation on the link invariant than the quantum Wilson loop polynomial invariant of the I_|nk. '
which, for the SW2) Chern-Simons quantum field theory, The quantum holonomy is defined as
was shown by Witteri2] to yield the Jones polynomiaB].

1
Horne[4] extended Witten’s result to some other Lie groups. Z[C]= Vj DAexp(iS[A]f[A,C],
The difference between quantum holonomy and the Wilson
loop becomes apparent in the SUN) Chern-Simons
theory, where the quantum Wilson loop vanishes identically f[A,C]EPeX;{i #;CA), 1)

for any link owing to the property of supertrace, but the

quantum holonomy[1] yields the important Alexander- \yhereC is a contour in the three-dimensional manifoiti

Conway polynomia[5-8]. S[A] is the action of some three-dimensional general cova-
However, the argument used in Rét] was based only jant non-Abelian gauge field theor, means path ordering,

on the formal properties of the functional integral andand V:f’l)g is gauge_invariant group volume. Now we
complications that may arise from the necessity for gaugehoose the Lorentz gauge condition

fixing in any actual computation were not taken into consid-

eration. In addition, in a case when a metric is needed F[A]=9,(V-GG*'A,)=0, G=de(G,,), (2
for gauge fixing, the metric independence of quantum ho-
lonomy may be violated. Furthermore, in the standar
Faddeev-Popov technique used for gauge fixing, ghost fiel
and auxiliary fields that are introduced reduce the origina
local gauge symmetry to Becchi-Rouet-Stora-TyUuBRST)
symmetry, and it is no longer certain that the formal argu- 1EAF[A]f DIl S(F[A%(x)]) 3
ments and manipulations used in Rdf] to derive its results

are still valid. As well, the case of the quantum holonomyinto Eq. (1) and obtain

defined on multicomponent links was not explicitly consid-

hereG,, is the metric of the space-time manifold. Accord-
49 to standard Faddeev-Popov procedure, we insert the
'%entity

ered.
The reason why we prefer this gauge is because it allows one to
avoid the infrared divergence in low-dimensional gauge theories;
*Also at ICSC-World Laboratory, Lausanne, Switzerland. for a discussion on Chern-Simons theory, E&8.
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56 QUANTUM HOLONOMY IN THREE-DIMENSIONAL ... 1171
Z[C]= %J DAAF[A]j DIl S(F[AY(x)Dexp(iS[A]) f[A,C]. (4)
DenotingA® asA and replacing the originah by Ag_l, we rewrite Eq.(4) as
Z[C]:%j DGDAY "A[AY T, 8(F[A])exgiS[AY ])f[AY ',C]

- %f DYDAAL[ AL S(F[A])exp(iS[A]f[AY ',C]

1 — — _
:Vf DgDADBDCDc[exr{iS[A]—iJ d3x\/—GGMV(aMBaA‘;‘—aMcaDVCa) f[AY 1,C]] (5)

where we have used the gauge invarianc&d] and Ba(x),F(x), andc?(x) are, respectively, auxiliary fields, ghost, and
antighost fields.

We perform the following maneuver on E(h). Supposey’ is a global group element, writa asAg/g'fl, and rename
A9 ‘asA and hence the originad is replaced byA% . We thus obtain

Z[C]:%f DgDADBDC—DC[eXF{iS[A]Hf d®x\/— G(B#A2 - c?y,D*c?) f[(Ag_l)g’,C]]

1 — — _
:VJ DgDADBDch[exp{iS[A]JriJ' d3x\/—G(Ba&“AZ—caa#D“ca) Qg ~H[AZ 1,0]99,]=Qg,12[cmg,,
(6)
where we have used the fact that all the fields are in the adjoint representation of global gauge group. $6)ds tge for

every global gauge transformation, according to Schur's lemma, we conclude thatZpM3éris valued in an irreducible
representatiop it has the form

p(Z[C])=F[C]1,, Y

wherel, is the matrix representation of the identity elemenpiandF[C], the eigenvalue oZ[C] in p, is a scalar function
depending on the conto@. Equation(7) is one of the results obtained in REL] without explicit gauge fixing.

In the following, we shall show explicitly the metric independence of quantum holonomy. All fields are valued in the
adjoint representation of the gauge group. As a first step{®an be rewritten as

Z[C]=% J DgDADBDc_Dcexp[i(S[A]Jr f d3x\/— GGH* 5[ c 23, A2 Hf[Agl,C], (8)

where the BRST transformations are
8gA?=D,c?, Sgc?=3faP%CPct, 55c?=B?, 5B?=0. 9

Assuming that the functional measures of fields have no dependence on the metric, we have that

2i 8z[C] 2 5F[C]l
J=G 6G*" =g OGH' P
a4 s EJ D DADBDC_Dcexr{i(S[A]ﬂLJ d3x\/— GG*B (¢ Aa)Hf[Agl C]
- =g ecr|v] 79 BLE Cats ’
1 _ _ _ — _
:VJ DgDADBDchexr{|S[A]+|J’ d3x\/—GG“ﬂéB(ca(9aA2) T, f[A? l,C], (10

whereT ,, is the canonical symmetric energy momentum,
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2 8Sq

T/_Ly \/—_G 5G,U.V

=A29,B%+A%,B%~d,c3D,c)?-3,c%(D,C)%~G,,[AL9*B?— d,c(DC)?],

Seii= Al + f d3x+/— GG’J‘B&B(F‘&QA@. (11
It can be written as a BRST trivial form from a careful observation,

T,,= 0 0 ,,=—3,C%A2—-9,c?A2—G,,,d"C?A2. (12)

o
So we can obtain that
2i  8Z[C] 2i SF(C)

T TG eGr . g oGH

_ _ 1 _
=f DADBDchexp{iS[A]Hf d3x\/—GG“ﬁ5B(ca&aA2)}5B®va Dgf[AY *,C]

A A 1 Pt ~ . 1 P
~(01[Q5.0,..Ty | DoflAe ,CJ|0>=<0|[QB,®WJ Dyf[Ag ,C]}|0>=0, 13

where Qg is the BRST charge corresponding to the BRSTtrivial, which means that the correct path integration vari-
transformation, Eq(9), and the caret denotes an operator. Inagples would not be the original fieldd=(A,B,c,c) but

the above, we have used the physical state condition 'Q/ould be the appropriate tensorial densitBgiven by
BRST quantization,Qg|phy$=0 [9], and the fact that

(IN) [ Dgf[A? l,C] is gauge invariant, $=(-G) WD, (15)

=0, (14  whereG is the determinant of metric tens@,,, the sub-
scripti labels a specific field inb, andw; is the weight

. , associated with the field; whose value depends on the
as well as the explicit cAoro_IIaronb§erved by Witld®]: For  tensorial character of the corresponding field. Replading
two operatorsA and B, if [Qg,A]=0, then AlQg.B]  py §. as the path integral variables and at the same time
=[Qg,AB]. Therefore, from Eq(13), Z[C] andF[C] are  rewriting the action in terms of these new variables, we
generally covariant. could make the path integral measure metric independent.

We shall now justify the assumption that there is no met-This procedure would transfer the metric dependence of the
ric independence for the path integral measure. This assumesth integral measure to the effective action, and this would
property was very crucial in the proof of the general covari-affect all the symmetries of the effective action such as
ance of quantum holonomy. The justification can be mad®RST symmetry, etc. In Ref18], it was shown that for a
from two aspects. First, a metric dependence in the path incohomological topological field theory, whose action can al-
tegral measure means that under metric variation the paiyays be written as a BRST-trivial form, this line of reason-
integral measure has a nontrivial Jacobian factor. Accordingng can be used to define an invariant path integral measure
to Fujikawa[11], this implies that the theory would have a so that the topological character of the theory is preserved.
conformal anomaly; i.e., the trace of the energy momentunHowever, for topological field theories of the Chern-Simons
(®%) does not vanish. Since the trace of the energy momertype, whose action cannot be written as a BRST commutator,
tum is proportional to thgs function of the theonf12], the it is not clear how this technique can be applied. We intend
existence of a conformal anomaly would mean that theo explore this problem in detail elsewhere.
theory is not finite. On the other hand, it has been proved that Now we try to understand the result, E), from the
three-dimensional topological field theories such as Cherneperator viewpoint. Since the global gauge symmetry is not
Simons[13] and BF[14] theories are finite to any order; that affected by gauge fixing, the Noether current and charge cor-
is, the B8 function and anomalous dimension vanish identi-responding to global gauge transformation are, respectively,
cally. This has also been verified by explicit computation in
concrete regularization schemes to two loofds—17. ar
Therefore the conformal anomaly and hence the metric de- o= _iTr&a"d) [T2,d], Qazf d3xj§, (16)
pendence of the path integral measure should not exist.

We could also approach the issue from the opposite direc-
tion and impose the conformal anomaly-free condition. Therwhere®=(A,B,c, c) After quantization, since there is no
the Jacobian associated with the metric variation would b@nomaly in three-dimensional gauge theory, we have

L1 -
Qa.y | PoflAs )
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(;,u<]‘a>:0’ Qa|0>:0_ (17) where eachrj is irreducible. Then it follows from Eq.22)

” that ®_,p;(Z[L]) will be a diagonal matrix of dimension
N, with its N diagonal matrix elements being composed of

possiblym distinct polynomials, each polynomial repeating

N(7;) times.
[O2,0P]=ifabedC, (18) The above is a general a_Igebraic p_ropert)Z[JIt], regard-

' less of whether the theory is topological or not. For a topo-
logical field theory, the polynomials im{_,p;(Z[L]) carry

Correspondingly, Ug,=exp{—i§a(§a] are global gauge ~C AR ;
additional topological information. In the case of the Chern-
group elements anéf are group parameters. Under a glObaISimons theory in three dimensions, the polynomials will

gauge transformation, the holonomy operafoh,C] trans- a1y information pertaining t& being a member of an iso-

forms as topy class. Let us take the traces of all the representations in
A Gl FIA CT9 = U=MTA CTU = 0.~ L[A C1Q ®_,p; except one, say, that gf,. Then we obtain the
[A,C]=TIACI® =Uy f[A,ClUg =Qq H[AC] (gl’é) counterpart of Eq(7):

_ _ _ ® Tr, (®{L1pi(Z[L])=F(L)1,, (25
where ), =exd —i£°T?] are the matrix representations of j£k
group elements. So we have

The Q2 constitute the operator realization of the generator
of the global gauge group,

where F(L) is a polynomial of them polynomials in
Z[C]=(0|f[A,C]|0>=<O|U§,1f[A,C]Ug,|O) ®1pi(Z[L]); itis a polynomial for_L. One might think that
F(L) would be labeled by,, but it has been showji9]
:<0|Qj1f[A,C]Qg,|o>:lez[C]Qg,_ (200  that Egs.(22) and (25 are sufficient to prove thef(L) is
g g independent of the choice @f,. ThusF(L) is a uniquely
Z[ C] commutes with every global gauge transformation, andlefined eigenvalue &[L ] and is a link polynomial fot. on
from Schur’'s lemma we obtain E7). the set of representatiofpy,pz, . - . ,pn}-
Finally let us consider the generalized quantum holonomy An explicit evaluation ofZ[L] by the right-hand side of
defined on a multicomponent Iink the disjoint union of EQ. (22) is nontrivial. This contrasts with the rather straight-

n simple knotted contour€;, j= .n. The holonomy forward evaluation of the link polynomid (L) by algebraic
operator is the tensor product of those defined on each conffeans. This method, based on long-standing theorems by
ponentC; Alexander[20] and Reidemeiste21], begins by making a

planar projection of a link, called a link diagram, in such a
way that the projection is a network whose only nodes are
fIALI= Pexp( ﬂg ®j= 1Pexr< éC]A)' @D either one of two kinds of crossings — overcrossing or un-
dercrossing — each being a four-valent planar diagram. To-
Using the same reasoning that was used to derivdBg. pologically equivalent classes of links are classified accord-
we can see that quantum holonomy defined a multicompoing to isotopic classes of link diagrams. The connection to a
nent link commutes with any appropriately tensored generagauge group either through a skein relati®]j, the braid

tors of the gauge group, group [22], or directly [19] is made by mapping the over-
crossing(undercrossingto (the inverse ofan invertible uni-
[®,TG).Z[L]]=0, versal R matrix, which is a constructmore specifically, a
second rank tensor prodiithat exists in universal envelop-
Z[L]=<f(A,L))=<PeXp<i fﬁ'&)> 22) gg(sl)gebras of Lie algebras such as the Lie algebra of
L .

In Ref. [23], the emergence of aR matrix in Wilson
This shows thaZ[ L] is a commutant of the universal envel- |oops of the three-dimensional Chern-Simons theory was in-
oping algebraof the Lie algebra of gauge groupThe ma-  vestigated. It was shown that by choosing a special gauge —
trix representation oZ[L] is not as simple as that of the the almost axial gauge — and working in the space-time
quantum holonomy of a simpléone-componentknotted  manifold S'x R?, one can use the technique of standard per-
contour, however. If we now evaluaL ] in the represen- turbation theory to reveal the assignment ofRumatrix to
tation ®_,p;, the result willnot be a polynomial times the the crossing on a link diagram. Since the trace of the Wilson
N-dimensional matrix representation of the unity elementloop was actually not taken in R¢R3], its conclusions more

whereN is equal to the product of the dimensions®f i appropriately apply to quantum holonomy. However, be-
=1,...n cause the object of investigation, the link invariant, is a non-
| perturbative property of the Chern-Simons theory, the con-

clusion is somewhat clouded through a lack of accuracy
H N(pi)- (23 owing to the nature of the perturbation method. Perhaps a

direct nonperturbative evaluation of E@?2), such as by lat-
This is becaus& !, p; is reducible. Suppose this tensored tice gauge theory, is called for.

representation decomposes as H.C.L. was partially supported by Grant No. 85-2112-M-
m 008-011 from the National Science Council, ROC, and
i=1pi= }"m, =Z N(7)), (24) W.F.C. is grateful to ICSC-World Laboratory, Lausanne,

Switzerland for financial support.
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