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The one-loop renormalizability of both the two-component (LCZ) and four-component (LC4)
formulations of the light-cone gauge is demonstrated by construction of the complete one-loop
counter Lagrangeans. The Mandelstam-Leibbrandt prescription is used to regularize the singular
1/p* factor. In LC4, the one-loop self-energy and three-vertex both have anomalous, unrenormal-
izable ultraviolet divergences, but the counterterms associated with these divergences cancel exact-
ly, rendering the total counter Lagrangeans for the two formulations identical, at least to O (g°).

PACS numbers: 11.10.Gh, 11.15.—q

The light-cone gauge! is a special axial gauge defined
in terms of a null vector n

A-ny=A%*=0, n}=0. (1)

Although known for some time,? this gauge has ac-
quired a certain notoriety for having Feynman in-
tegrals that are more singular than usual and therefore
difficult to evaluate. This has changed following the
recent discovery of a prescription®* with which the in-
tegrals can be well regulated. Simultaneously, the
gauge has become popular in the study of supersym-
metric theories,>>-% after Mandelstam® and Brink,
Lindgren, and Nilsson® used it to prove the ultraviolet
(uv) finiteness of the N =4 model. Recent interest in
the light-cone gauge is further heightened by the
recognition that it is the only gauge in which a quan-
tum formulation of superstring theories is known.?
However, the renormalizability of the simple Yang-
Mills theory in the light-cone gauge has not yet been
demonstrated. Indeed, recent calculations™® have
yield seemingly contradictory results, showing that,
depending on which one of the two formulations (see
below) one works with, the one-loop self-energy may
or may not contain ultraviolet divergences that are un-
renormalizable. The phenomenon of anomalous
divergences is not well known, and its occurrence in
the light-cone gauge has cast doubt on whether the
gauge is really understood. The purpose of this paper
is to study these anomalous divergences by computing |

the complete counter Lagrangean for the light-cone
gauge at the one-loop level. It is shown that associated
with the two- and three-point Green’s functions there
are anomalous, ultraviolet-divergent terms in one of
the formulations. However, the total contribution of
such terms to the counter Lagrangean cancels exactly
to make the theory renormalizable and independent of
the formulation.

A unique feature of the light-cone gauge is that,
depending on the way the gauge constraint (1) is im-
plemented, two distinct formulations are possible.
The first formulation, LC4, results when (1) is imple-
mented via a gauge-fixing Lagrangean, the practice for
most other gauges. In this case the gauge field retains
all four of its components even though the component
A% formally vanishes. The Feynman rules are the
usual ones, except for the propagator,

;sab
Aﬁ‘[x)r)ab(p)= 122 [gp,y_'(P,L”+p+Py”+”)/P+], (2)

which is especially singular because of the factor 1/p*.

The effective Lagrangean for the second formula-
tion, LC2, is obtained by eliminating from the original
Lagrangean both of the light-cone components A*
and A~ using (1) and the equation of motion

9tA~
=3'A'"+g(37) " 1(A'X3T AN =d'A'+gB, (3)
yielding (the bilinear B will appear repeatedly)!?

Lror=—1(Al 324N —g[(8/A) o (A/x A) + (3'A’) o Bl — +2?B?— 1 g2(A/x A))2, 4)

The elimination of A~ from the Lagrangean is valid because it can be shown that (4) and the original full
Lagrangean give rise to the same Hamiltonian.!® It is vital to realize that, because (3) is inhomogeneous in the
gauge field and in the coupling constant g, a term of a given order in 4 and g from the original (LC4) Lagrangean
does not transform into terms of the same order in (4). The only term with a one-to-one mapping between the
two formulations is the last term in (4), a fact that will be utilized later. In LC2 the propagator is very simple,

AP(p) = ——55%,,
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but the three- and four-vertices are unusual,®’

T$0%(p,q,r)=gf*(s,[(p—a)—r(p—q)*/r*1+two cyclic terms}, (6)

+ +
Fl.(”(‘))abcd(p,q'r,s) _ ig2[fabef0d€[8ik8ﬂ— 8idjk + 88k 8? +;I)) +((: +‘Z))+ +two symmetric termsy, @)
and also very singular for the same reason as (2). I

The tensor algebras of the two formulations are very gauge.” 314
different; that of LC2 is two dimensional and that of Once a prescription is found, previously singular
LC4, in addition to being four dimensional, is compli- quantities in (2), (3), (6), and (7) become well
cated considerably by the presence of the two light- behaved rendering all computations involving them, in
cone vectors 7 4 and n_. particular the evaluation of Feynman integrals,
The problem of finding a viable prescription to regu- straightforward in principle. The question, seriously
larize the singular factor 1/p* was solved by Mandel- raised by the discovery®!? of anomalous ultraviolet
stam?® and by Leibbrandt,* who independently devised divergence in the self-energy in LC4, is whether the
prescriptions that can be shown to be equivalent.!! In M-L prescription really works. One way to check this
particular, Leibbrandt’s prescription is to see if, for quantities that are gauge independent,
+_, It p— L the prescription yields the correct results in both LC2
Up ,,l_l.nol+ =/ (p"p™ +im)] ® and LC4. Here, we report the results of such a test
is analogous to the prescription used to regularize the ~ Where the complete one-loop counter Lagrangeans in
propagator for massive Dirac fermions. A key proper- both formulations are constructed by computing the

ty of the Mandelstam-Leibbrandt (M-L) prescriptionis ~ one-loop, two-, three-, and four-point vertices. We
that it obeys the rule of power counting, a property also test the Slavnov-Taylor identities, but only in LC4

that was used by Mande]stam3 and by Brink, Lindgren, because in LC2, with the application of (l) and (3), all

and Nilsson® to prove the finiteness of the N =4 su- gauge' degrees of freedom are removed and no such
persymmetric model. It is worth noting that not all identities can b? derhxvefi. )
prescriptions are acceptable. For example, the The calculation is simplified tremendously by the

principal-value prescription that works well for normal ~ Observation that all Feynman integrals needed can be
axial gauges'>!3 does not work for the light-cone reduced to a generalized integral with a known analytic
representation:

i(we"")“’(,pz)‘”+“+"(p+)"(p"))‘1"(1 +)\)
T(— )T (= W)T (=) T Qo +k+u+v+2r)

[a%q1(p—g)"1(g)*(g*)* (g™ )=

XZ_VG'32"_% (z (1)’2&}(10:’;;::)\,1+w+x+p+v;)] Z==2p+p—/p2, (9)

where the exponents k, u, v, and A as well as the generalized dimension w are continuous variables and G is a
Meijer function with well-known properties. For a discussion of the method of ‘‘analytic regularization’® using the
G-function representation see Lee and Milgram.!*-1* Deuails of the derivation of (9) and of the calculation leading
to the results that follow will be reported elsewhere.!!

For LC2 we obtain the infinite parts (e =w —2; for complete expressions for the vertex functions including the
finite parts see Ref. 11)

IDP(p) line= 15 8°Z 3%8yp%,  Z = Cof (16m%); | (10)
TP (p, = p,0) line= — &3 Z S8 013 an
T30, = p,0,0) lint= — 8*Z (L5 + (4); 1/ (5,8, — 8;8;) + 4 (foceybie — padepebey s 5, (12)

which, except for the infrared-infinite term (4);, can all be canceled by corresponding terms generated from the
counter Lagrangean

dLrcr=0L 43V =22 S (13)

with a single renormalization constant identical to that for the normal axial gauge.!* This establishes the renormal-
izability of LC2 at the one-loop level. The results (11) and (12), which are new [we mention in passing that the uv
and ir divergences in (12) are separated analytically!? witt. use of (9)1, also confirm that the transformation (3) and
the Feynman rules (6) and (7) in conjunction with the prescription (8) give a consistent theory; so far we have en-
countered no surprises.
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For LC4 we find (r,=p " ni,,s,=pn_,)
I)(p) line= 87 Z 81— 5 (0% = pup,) +2[p, (r = 5), +p,(r —5),]
—8r,r/z+4(r,s,+r,5,)/z}, (14)
T{Dab(p, —p,0) line=&>Z S*{~ 5 (283,00~ 8Pr— 8aP,) H483,5, +2g,, (r—s)\ +g,,(r—s),]
' +[—16r\rp,+8(r\s,+r,s)p,—4(s\p, +5.0))r,
—4(pyr,+pura)s, )/ (zp?) +16ryr,r,/(Z2p?)).  (15)

The infinite part of the four-vertex was not computed directly but will be deduced later. Because of (1), the n .
(or r) dependent terms in (14) and (15) do not contribute to the counterterm, constructed essentially by contract-

ing the vertices with the appropriate number of gauge fields. On the other hand, their presence is crucial to the
Slavnov-Taylor identities'®

p JIV%(p) =0, pyT{Dabe(p, —p,0) =igr™ L% (p), 1o

both of which are satisfied for (14) and (15). The n_ (or s) dependent terms, which do contribute to the counter-

term, are anomalous since such terms are absent from the bare vertices. Indeed, in partial counter Lagrangean
derived from (14) and (15),

SLEN =427 (F1(A, - 82A%) + (3,A%)?]—g(3,A,) o (A*x A*)} - 2277 (3,A*) o (3F A7)
+2¢°Z, (3% A, )0 (A™xA®), (17

the last two terms are easily recognized as being anomalous.

How do we reconcile the existence of these terms in LC4 with the fact that LC2, and therefore the light-cone
gauge, is renormalizable? The answer is simple: Although the two anomalous terms look different, because of (3)
they are actually identical in LC2. Thus

(8,A%)o (B*A7) =g (8% A,) e (A" xA*) =g (3'A") - B+¢’B?, (18)

and the two terms cancel exactly from (17) which then has the form that assures the renormalizability of LC4 to
O (g®). This further strengthens our belief that (3) can be used at any time to transform LC4 into LC2. The in-
verse transformation is not generally possible; the one used in-the following is an exception. If we accept the
equivalence of LC2 and LC4, then the counterterm corresponding to the four-vertex in LC4 can be computed by
subtraction of (17) from (13) with the aid of (3) to obtain

8L M =8L 1c;— 8L LV = — L g*Z x L (AXA) 2= — L g*Z x$ (A, XA, 19)
"

The last equality is based on the fact that for the two —

terms in question the mapping between the two for-
mulations is one-to-one. The last expression in (19),
being exactly proportional to the O (g*4*) term in the
original .#1c4, allows one to write, without furthe
ado, -

r{Dabed(p,qr) = —5-&2Z T34 pgr).  (20)

The only thing that remains to be done to complete
the demonstration that LC4 is also one-loop renormal-
izable is the verification of (20) by direct computation.

We close with a few remarks. (i) Slavnov-Taylor
identities provide constraints on vertex functions but
are not sufficiently restrictive to determine even the
infinite parts of such functions. For example, given
(14), the second identity in (16) does not uniquely
determine the infinite part of the three-vertex (15).
(ii) The possession of anomalous divergence seems to
be a unique feature of LC4. It is clear that only
theories with redundant degrees of freedom may have
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anomalous divergences. Thus LC2 cannot have such
divergences. On the other hand, the normal axial
gauge might have such divergences, but does not.!3
(iii) Because canceling anomalous divergences are
rarely encountered, it is not always remembered that
renormalizability is determined by the structure of the
counter Lagrangean which should be gauge invariant,
and not by the infinite parts of individual Green’s
functions which are not gauge invariant. The light-
cone gauge, in particular LC4, illustrates clearly that
renormalization is a process that is operative order-
by-order in the number of loops, but not necessarily in
powers of the coupling constant. (iv) In spite of the
unfamiliar Feynman rules, the computation in LC2 is
exceedingly simple. With the technical difficulty asso-
ciated with the factor 1/p* overcome, LC2 is probably
the simplest of all gauges in which to work. In com-
parison, computations in LC4 are invariably much
lengthier.
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Note added.—The infinite parts of the general
three-vertex I'{)#(p,q,r) in LC4 for arbitrary mo-
menta satisfying p +q +r =0 has recently been com-
puted by Dalbosco!’ and by Lee et al,!3 yielding
results that are in agreement. The three-vertex satis-
fies the generalized version of the three-point
Slavnov-Taylor identity (16) and the 4 T-independent
counter Lagrangean generated by it is identical to that
given in (17).
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i, v, etc. run from 0 to 3; indices i/, etc. run from 1 to 2; A
denotes a vector in the gauge group, A B=A%B%
(AXB)a=fabcAbBc.
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