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Abstract. The general one-loop three-vertex 
F~,~f~(p, q,r) in the four-component formulation of the 
Yang-Mills theory is calculated in the light-cone 
gauge. The nonvanishing counter Lagrangian con- 
structed from this three-vertex and the self-energy is 
proportional to the original Lagrangian, the single 
renormalization constant being - l l g 2  CvMF(2 
--co)/487c 2. Gauge dependent and nonlocal counter- 
terms do not contribute to the renormalization con- 
stant, but are needed to verify the appropriate Slav- 
nov-Taylor (ST) and Becchi-Rouet-Stora (BRS) iden- 
tities. 

1. Introduction 

The light-cone gauge 

- -  _ _  + / z  A + = %  _A =0, (17+)2=0 (1.1) 

has recently become very popular in the study of 
quantum field theories [1]. The gauge is not only 
ghost-free but can also be used to remove from the 
theory all unphysical degrees of freedom associated 
with gauge transformations [2]. For example, the 
S0(1,3) Lorentz symmetry among the four com- 
ponents of the gauge field in the Yang-Mills theory 
is reduced in the light-cone gauge to a SO(2) sym- 
metry o f  the two physical components. The gauge 
has been used to prove the finiteness of the N--4  
supersymmetric theory [3]; it renders the study of 
the quantum dynamic Kaluza-Klein theories es- 
pecially simple [4]; it is also the only gauge in 
which a quantum formulation of superstring theories 
is known [5]. 

Although the light-cone gauge has been known 
for sorne time, the technique for computing Feyn- 
man integrals in the gauge was mastered [6] only 
after the discovery not long ago of the correct pre- 
scription [7] for the operator lip +. Recently, based 
on calculations of the self-energy and certain special 
three- and four-point functions at the one-loop or- 
der, the one-loop renormalizability of the physical 
sector of the Yang-Mills theory in the light-cone 
gauge was demonstrated [8]. 

The light-cone gauge permits two formulations 
[8]: a four-component formulation with the SO(l, 3) 
symmetry (LCM4) and a two-compoent one with 
SO(2) symmetry (LCM2, in which the two unphysi- 
cal degrees of freedom are eliminated using the 
gauge constraint (1.1) and an equation of motion 
(6.3) conjugate to it). Only LCM4 retains the gauge 
degree of freedom which causes it to be more cum- 
bersome than LCM2 in the computation of gauge 
independent quantities. On the other hand, LCM4 
admits Slavnov-Taylor [9] and the usual Becchi- 
Rouet-Stora identities [10]. One of the issues not 
settled in previous studies is whether all the infinite 
parts of radiatively corrected vertex functions in 
LCM4, even those that do not contribute to the 
renormalization constant, are needed to satisfy the 
appropriate ST and BRS identities [11]. This paper 
is addressed to that issue. 

We have calculated the general one-loop three- 
vertex (p, q, r) in LCM4. Our result agrees with that 
recently reported by Dalbosco [12]. The result con- 
firms earlier conclusions [8] regarding the one-loop 
renormalizability of LCM4, in particular that it en- 
tails a single renormalization constant identical to 
that computed for LCM2. However, the three-vertex 
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generates many counterterms, some of which are 
nonlocal, that do not contribute to the renormaliza- 
tion constant. We show that the presence of such 
terms is actually needed to satisfy the ST and BRS 
identities, which are shown to be equivalent. 

In Sect. 2 we construct all the allowed rank-3 
tensors of which the three-vertex can be composed. 
In Sect. 3 we briefly describe the calculation of the 
infinite parts of the one-loop three-vertex and give 
the result, showing that it involves most, but not all 
of the allowed tensors. In Sect. 4 it is shown that the 
complete three-vertex is needed to satisfy the three- 
point ST identity. Two special limits of this identity 
are also examined. In Sect. 5 it is shown that, in the 
limit corresponding to (1.1), BRS identities have 
exact ST counterparts and are satisfied. In Sect. 6 we 
demonstrate the one-loop renormalizability of 
LCM4. A summary and concluding remarks are 
given in Sect. 7. 

2. Allowed Rank-3 Tensors 

Here we enumerate all rank-3 tensors with which 
the three-vertex can be constructed. First define the 
reduced three-vertex by factorizing out the structure 
constant f .hc,  

rfff,~22(p~, P 2 ,  P 3 )  ~ f . . . . . .  I'm . . . . .  (2.1) 

where for convenience a middle Latin letter has 
been used to represent a Lorentz index and a mo- 
mentum 

mi = (#i, Pi). (2.2) 

Because F is symmetric under any permutat ion of 
the labels 1, 2 and 3 while f is antisymmetric, /~ 
must also be antisymmetric and satisfy the proper- 
ties 

/~,,,, : -/~m~, : - ~ :  - ~ , ~ .  (2.3) 

Let T(0 be a set of tensors each of which is anti- Xmnl 
symmetric under the exchange 

n *-~ l 

but has no specific symmetry under 

m+-+n and/or m~--.l 

then/~ can be expanded in terms of T 

/~,,,~ = Z a~ [ T~,)~ + T~(~) m + T~, ]  (2.4) 
i 

where a~ are constant coefficients. 

The tensor functions T ~~ can be constructed from 
the tensor g,~, the vectors p, q, r, n + and n - ,  the 
components p + , p - , . . ,  and the scalars p2, p . q ,  and 
so on, subject to the following constraints: 

(i) If one thinks of the superscripts " + "  and " 
- "  as representing "charges",  then in any tensor 
expansion the total charge conserved. This is a con- 
sequence of the conservation of magnetic quantum 
number associated with S0(3 ,  1). 

(ii) (Let t represent any of the external momenta  
p, q and r so that by t 2 w e  mean p2, or p . q  or q . r  
and so on and b y t + t  we m e a n p + p  o r r + p  - and 
so on.) In an allowed tensor, a factor t -  in the 
denominator is always accompanied by another fac- 
tor t + in the denominator. This rule follows from 
the fact that factors of k - ,  where k is the integration 
variable, occurs only in the numerator  of light-cone 
gauge integrands, for which the Mandelstam-Leib- 
brandt prescription [7] yields the result [8] 

~d2~~ " (neutrally charged integrand) 

=(t - ) " ( t+)  m (neutral power series of tz / t  + t - ) .  

A consequence of this rule is that a tensor such as 

p2 
q r pun v n~ 

is not allowed. 

(iii) The tensor must have the dimension of mo- 
mentum. 

(iv) The tensor must be regular when any one (or 
more) of the three momenta  p, q and r, or any one 
of their squares vanishes. Thus the tensor 

p+(q - r )  + 
p2 p~n~ n x 

is not allowed because it is irregular when p2 is zero. 
On the other hand 

p -  
p ~  (q --r)un + n• 

is allowed because the Mandels tam-Leibbrandt  pre- 
scription [7] for the operator 1/t) + is such that 

lira 1/t) + =0. 
p ~ O  

In constructing the tensor functions, it is con- 
venient to factorize the tensor as 

T(i, +)A (n vx " ' i ,r ,q,  r) or T(~'z)Si(p,q,r)  

where T~i,+)t~r(i,-)~ is a tensor constructed from the ~#vA ~ g v A  ! 
vectors p, q, r, n + and n-  and g.~ which is sym- 


