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Abstract. The general one-loop three-vertex
I;%(p,q,7) in the four-component formulation of the
Yang-Mills theory is calculated in the light-cone
gauge. The nonvanishing counter Lagrangian con-
structed from this three-vertex and the self-energy is
proportional to the original Lagrangian, the single
renormalization constant being —11g? Cyy (2
—w)/487%. Gauge dependent and nonlocal counter-
terms do not contribute to the renormalization con-
stant, but are needed to verify the appropriate Slav-
nov-Taylor (ST) and Becchi-Rouet-Stora (BRS) iden-
tities.

1. Introduction
The light-cone gauge

At =nfAr=0, (n*)*=0 1.y
has recently become very popular in the study of
quantum field theories [1]. The gauge is not only
ghost-free but can also be used to remove from the
theory all unphysical degrees of freedom associated
with gauge transformations [2]. For example, the
SO(1,3) Lorentz symmetry among the four com-
ponents of the gauge field in the Yang-Mills theory
is reduced in the light-cone gauge to a SO(2) sym-
metry of the two physical components. The gauge
has been used to prove the finiteness of the N =4
supersymmetric theory [3]; it renders the study of
the quantum dynamic Kaluza-Klein theories es-
pecially simple [4]; it is also the only gauge in
which a quantum formulation of superstring theories
is known [5].

Although the light-cone gauge has been known
for some time, the technique for computing Feyn-
man integrals in the gauge was mastered [6] only
after the discovery not long ago of the correct pre-
scription [7] for the operator 1/p*. Recently, based
on calculations of the self-energy and certain special
three- and four-point functions at the one-loop or-
der, the one-loop renormalizability of the physical
sector of the Yang-Mills theory in the light-cone
gauge was demonstrated [&].

The light-cone gauge permits two formulations
[8]: a four-component formulation with the SO(1,3)
symmetry (LCM4) and a two-compoent one with
SO(2) symmetry (LCM2, in which the two unphysi-
cal degrees of freedom are eliminated using the
gauge constraint (1.1) and an equation of motion
(6.3) conjugate to it). Only LCM4 retains the gauge
degree of freedom which causes it to be more cum-
bersome than LCM2 in the computation of gauge
independent quantities. On the other hand, LCM4
admits Slavnov-Taylor [9] and the usual Becchi-
Rouet-Stora identities [10]. One of the issues not
settled in previous studies is whether all the infinite
parts of radiatively corrected vertex functions in
LCM4, even those that do not contribute to the
renormalization constant, are needed to satisfy the
appropriate ST and BRS identities [11]. This paper
is addressed to that issue.

We have calculated the general one-loop three-
vertex (p,q,r) in LCM4. Our result agrees with that
recently reported by Dalbosco [12]. The result con-
firms earlier conclusions [8] regarding the one-loop
renormalizability of LCM4, in particular that it en-
tails a single renormalization constant identical fo
that computed for LCM2. However, the three-vertex
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generates many counterterms, some of which are
nonlocal, that do not contribute to the renormaliza-
tion constant. We show that the presence of such
terms is actually needed to satisfy the ST and BRS
identities, which are shown to be equivalent.

In Sect. 2 we construct all the allowed rank-3
tensors of which the three-vertex can be composed.
In Sect. 3 we briefly describe the calculation of the
infinite parts of the one-loop three-vertex and give
the result, showing that it involves most, but not all
of the allowed tensors. In Sect. 4 it is shown that the
complete three-vertex is needed to satisfy the three-
point ST identity. Two special limits of this identity
are also examined. In Sect. 5 it is shown that, in the
limit corresponding to (1.1), BRS identities have
exact ST counterparts and are satisfied. In Sect. 6 we
demonstrate the one-loop renormalizability of
LCM4. A summary and concluding remarks are
given in Sect. 7.

2. Allowed Rank-3 Tensors

Here we enumerate all rank-3 tensors with which
the three-vertex can be constructed. First define the
reduced three-vertex by factorizing out the structure
constant f%¢,

L, 0y P = F 2 ms (2.1)

where for convenience a middle Latin letter has
been used to represent a Lorentz index and a mo-
mentum

m;=(p;, p3)- (2.2)

Because I' is symmetric under any permutation of
the labels 1, 2 and 3 while f is antisymmetric, I’
must also be antisymmetric and satisfy the proper-
ties

fmnlz _‘fmln: _I:l =-—1I

Inm*

(23)

ml

Let TY, be a set of tensors each of which is anti-
symmetric under the exchange

nel
but has no specific symmetry under
m«<n and/or mel

then I’ can be expanded in terms of T
Fo= Y TS+ T

nim

+ T @4

mn.

where a; are constant coefficients.
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The tensor functions T can be constructed from
the tensor g,,, the vectors p, ¢, r, nt and n~, the
components p*,p~,... and the scalars p?, p-q, and
so on, subject to the following constraints:

(i) If one thinks of the superscripts “+” and “
—” as representing “charges”, then in any tensor
expansion the total charge conserved. This is a con-
sequence of the conservation of magnetic quantum
number associated with SO(3,1).

(i) (Let t represent any of the external momenta
p. q and r so that by t> we mean p>, or p-q or ¢q-r
and so on and by t*¢t~ we mean p*p~ or r*p~ and
so on) In an allowed tensor, a factor t~ in the
denominator is always accompanied by another fac-
tor t* in the denominator. This rule follows from
the fact that factors of k~, where k is the integration
variable, occurs only in the numerator of light-cone
gauge integrands, for which the Mandelstam-Leib-
brandt prescription [7] yields the result [§]

§d*®k(k~)"(k*)" (neutrally charged integrand)

=(t")"(t*)" (neutral power series of t2/t*¢7).

A consequence of this rule is that a tensor such as

p’ o
F_punv n,

is not altowed.

(1ii) The tensor must have the dimension of mo-
mentum.

(iv) The tensor must be regular when any one (or
more) of the three momenta p, ¢ and r, or any one
of their squares vanishes. Thus the tensor

prlg—n*
"—*I;Z——P;J’v ny

is not allowed because it is irregular when p? is zero.
On the other hand

b
e (q—r),n ny

is allowed because the Mandelstam-Leibbrandt pre-
scription [7] for the operator 1/p* is such that

lim 1/p* =0.

p—0

In constructing the tensor functions, it is con-
venient to factorize the tensor as

T Adp.q,r) or

T(i’ _)Si(p’ q, r)

ByA

where To (T4 ) is a tensor constructed from the

vectors p, g, r, nt and n~ and which is sym-
D. q Euv y



