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Abstract. By explicit calculation of radiative
corrections to the self-energy and the three-vertex at
one-loop level for Yang—Mills theories in the light-
cone gauge, it is demonstrated that analytically
regulated Feynman integrals defined by the principal
value prescription satisfy the one, two, and three-point
Ward identities. However, both the calculated self-
energy and three-vertex have anomalous, unrenor-
malizable infinite parts, thus confirming the belief,
based on previous calculations of only the self-energy,
that the principal value prescription is seriously flawed
in the light-cone gauge.

Recently [1] it has been shown that Feynman integrals
in the light-cone gauge [2], defined by the constraint*
nA, =0, where A are the gauge fields and n, is an
arbitrary vector satisfying n* = 0 can be regulated by
analytic continuation. The result for a class of
Feynman integrals needed to compute general
two-point functions

Lyo(p,mx, 1, 9) = [d2°q[(p — @)*1°(4*)(@' ™) |2 =0
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(1)
is incomparably simpler than that for general axial
gauges (n? # 0) [3]. With this result** the light-cone

* We work in the Euclidean space throughout, with metricg,, = 6,,
=(1,1,1,1). Minkowski space is reached by analytic continuation.
Early Latin superscripts ar¢ indices of the gauge group and middle
Greek subscripts are Lorentz indices. The structure constants of the
gauge group are defined in terms of the commutator of the generators
[#% "] =f*t". The scalar product acts in the Lorentz space
n-A® = n,A%; and the tensor product acts in the gauge-group space
(A, A Af =f*45A5. Exponents in the representation (1) are not to
be confused with Lorentz indices

** Note the right-hand-side of (1) is defined to be proportional to n2,
instead of the usual 7. This gives a simpler resultinthes = w — 2 —0
limit—Inn terms are absent. For x, u and v being integers, the
limiting process we use to evaluate (1) is to let (x, i, #) = integers first,
then let ¢ approach zero

gauge appears to display the virtue it has long been
thought to possess: being an axial gauge it is ghost-
free, yet its Feynman integrals are as simple as those
of the ghost-infested covariant gauges. A short deriva-
tion of (1) is given in Appendix D. It was also shown
in [ 1] that this result is identical to that for correspond-
ing Feynman integrals defined by the principal value
prescription.

In our method of analytic regularization, divergent
Feynman integrals are defined, by analytic continua-
tion, as limiting cases of integrals where the number
of dimensions and exponents of quantities such as g2,
(p — q)* and gq-n are continuous variables. The reason
why this method is more powerful than the widely used
method of dimensional regularization {4], where only
the number of dimensions is made continuous, is
explained in [1]. However, there appears to be a
widespread point of view [5] that gauge invariance is
not preserved in a general analytic regularization,
except in dimensional regularization. The purpose of
this work is to demonstrate, by explicit verification of
Ward identities, that contrary to the belief just
mentioned, our method does preserve the gauge
invariance of Yang—Mills theories. We succeed in
achieving this goal.

The Yang—Mills self-energy in the light-cone gauge
has already been calculated with the principal value
prescription by several groups [6,7] and has been
shown to contain anomalous infinite parts of O(g?).
Our calculation, based on an entirely different method,
confirms the earlier results. The three-point vertex is
calculated here for the first time and is shown to have
anomalous infinite parts of O(g?), thus reinforcing the
belief that the principal value prescription does not
give a renormalizable Yang—Mills theory in the light-
cone gauge.

The suggestion that analytic regularization is
associated with the violation of gauge invariance
possibly arises from the work of Speer [8]. In Speer’s
method quantum field-theory is regulated by modify-
ing propagators: replacing, say, [(p—q)*]~! by
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[(» — 9)*7* This prescription, much like that of Pauli
and Villars [9], defines a new theory which is ultra-
violet-finite. The real theory is recovered in the limit
A — — 1. However, since the structure of a Lagrangian
with a propagator having a continuous exponent is
not known, gauge transformation is not a well defined
concept in Speer’s modified theory; in this sense gauge
invariance is violated. On the surface Speer’s modifica-
tion of the propagator appears to be identical to the
continuation of exponents in our method. There is,
however, a subtle yet crucial difference in the two
approaches. In our method, infinities of the theory are
controlled by regulating, by analytic continuation,
divergent Feynman integrals, which are the only places
where infinities occur; the propagator of, say, a
massless vector boson is still (p —q) 2, not (p — q)**
This being the case, and since our method obeys the
basic rules of algebra such as associativity and
commutativity of operators, Ward identities can be
formally derived as usual, and are expected to be
satisfied.

To demonstrate this explicitly consider the generat-
ing functional [10] for a non-Abelian Yang-Mills
theory

Z[n1=[[dAJexpiS[n] 2)
with the action (see footnote* on first page)
S{nl= jd4x($YM + &+ 1 A%) (3)
where 73 is the source field,
gYM = _%FZ\)FZ\»

Fy,=0,43— 0,45+ g(A, x A,) 4)
is the Yang—Mills Lagrangian and

1

Li= s (r A (5)

is the gauge-fixing term [11]. From (2), (3) and
(5) it is seen that the axial gauge condition n-4*=0
is realized in the limit & —0. In (3-5), as will be the
practice elsewhere in this article, the space-time
dependence of the fields #j and Aj has been sup-
pressed. The term quadratic in 4§ in the total
Lagrangian & =%yy+ %, gives the 0(g°) self-
energy in momentum space

I (p) = 0" IT)(p)
. 1
= ~l§ab<P25uv*Pqu_Enu”v> (6)

The £-dependent term coming from &, is important:
without it the free propagator A, which is the
reciprocal of IT‘?, does not exist. As (6) stands,
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Then an amputated n-point function I (p;, ~.,p,), is
given by

aww@+m+m{ﬂA%Mﬂ
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where each of the early Greek indices «;,f;,...
stand for a Lorentz index and a gauge-group index.
The symbol I1,,; will be reserved for the amputed two-
point function, 1.e. the proper self-energy. From (8), the
lowest order three- and four-point functions are

ST (p,q.1)

Ay

= gfabc [5/1;1(17 - q)v + 5ﬂv(q - r)ﬁ. + 5”(7 - p);x] (9)

41—‘(0)21:";10(179 q,r, S) = - lgz [fabedee(éupéva' - 5u05vp)
+face bde(éuvépa - 6ua(spv)
+fadef':be(5up60'v - Juvéap)] (10)

These are identical to the corresponding functions in
covariant gauges.

The free propagator A© is transverse to n, in the
limit &—0:

n,ADp)=AQn,=—ilp(pn) (11)

From this and (8), any contraction of an unamputated
n-point function {(A4,, ... 4, > with n, vanishes in the
limit £ —0:

lim (A, ...(nA)... A, > =0 (12)
E-0

This means that the axial gauge condition, n- 4% =0,
is realized in the limit & —0. The O(1/¢) term in IT)
of (6) may cause uneasiness in this limit. However, since
this term is unrenormalized, it is decoupled from every-
thing else and therefore does not cause any reai trouble.
The easiest way to understand this is to recognize that
the ¢&-dependence of all corrections to T comes
solely from A, so that the sum of such corrections
must be a polynomial in ¢ without negative powers.
The O(1/¢) term is thus always unaffected. In this way
the gauge-breaking &, serves its intended purpose:
it allows the free propagator to be constructed, after
which it may be expediently set to zero. Since our
purpose is to understand the structure of the theory
in the light-cone gauge, we do not set ¢ equal to zero
at this early stage. In all our calculations ¢ is in fact
kept finite until the final stage.

It will be shown later that the part of IT,, that is
regular in £ is transverse to p,. Then II,, may always
be expressed as

HMm=Hmm+?wv (13a)

IT,.(p)= —i(1oP,,+ II,N,,) (13b)



