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L'ENERGIE ATOMIQUE DU CANADA, LIMITEE

Théories de Yang-Mills pour les jauges axiales et à cône lumineux,
régularisation analytique et identités de Ward

par

H.C. Lee

Résumé

On commente dans ce rapport l'application des principes de
généralisation et de continuation analytique à la régularisation des
intégrales divergentes de Feynman. Cette technique, appelée régularisation
analytique, est une généralisation de la régularisation dimensionnelle. Elle
permet d'effectuer des représentations analytiques pour deux catégories
d'intégrales à deux points et sans masse. La première catégorie est fondée
sur la prescription d'une valeur principale et elle comprend des intégrales
mesurées dans les théories des champs quantiques au moyen de jauges axiales
sans signal fantôme (n- A = 0),. intégrales pouvant être transformées
exceptionnellement en intégrales mesurables au moyen de jauges à cône
lumineux (n-A = 0, n = 0). La deuxième catégorie est fondée sur la
prescription "3e Mandelstam conçue spécialement pour les jauges à cône
lumineux. Pour certaines intégrales mesurées au moyen de jauges à cône
lumineux, les deux représentations ne sont pas équivalentes. Les deux
catégories comportent des intégrales sous-catégorielles mesurées par des
"jauges ç " covariantes de Lorentz. Les représentations permettent: de
calculer les corrections d'une seule boucle devant être apportées à
l'énergie propre et aux trois sommets, selon les théories de Yang-MiIls,
pour les jauges axiales et à cône lumineux, pour répondre aux exigences des
identités Ward à deux et à trois points; d'illustrer le fait que les
particularités ultraviolettes et infrarouges, indiscernables dans la
régularisation dimensionnelle, peuvent être séparées analytiquement; et de
montrer que certaines intégrales Tadpole disparaissent parce que les
particularités ultraviolettes et infrarouges s'annulent complètement. Dans
la jauge axiale, les constantes de renormalisation des sommets et des
fonctions d'onde, à savoir Z, et Z,, sont identiques de sorte que la
fonction 0 peut provenir directement de Z, (c'est-à-dire de l'énergie
propre) le résultat étant le même que celui obtenu dans les jauges ç
covariantes. Les résultats préliminaires semblent indiquer que les jauges à
cône lumineux employées dans le cas de la prescription Mandelstam et non
dans le cas de la prescription à valeur principale, ont la même propriété de
renormalisation que les jauges axiales.
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A b s t r a c t

The application of the principles of generalization and analytic

continuation to the regularization of divergent Feynman integrals is dis-

cussed. The technique, or analytic regularization, which is a generaliza-

tion of dimensional regularization, is used to derive analytic representa-

tions for two classes of massless two-point integrals. The first class is

based on the principal-value prescription and includes integrals encoun-

tered in quantum field theories in the ghost-free axial gauge (n«A = 0 ) ,

reducing in a special case to integrals in the light-cone gauge (n»A = 0,

n = 0 ) . The second class is based on the Mandelstam prescription devised

especially for the light-cone gauge. For some light-cone gauge integrals

the two representations are not equivalent. Both classes include as a sub-

class integrals in the Lorentz covariant "^-gauges". The representations

are used to compute one-loop corrections to the self-energy and the three-

vertex in Yang-Mills theories in the axial and light-cone gauges, showing

that the two- and three-point Ward identities are satisfied; to illustrate

that ultraviolet and infrared singularities, indistinguishable in dimen-

sional regularization, can be separated analytically; and to show that cer-

tain tadpole integrals vanish because of an exact cancellation between

ultraviolet and infrared singularities. In the axial gauge, the wavefunc-

tion and vertex renormalization constants, Z3 and Z1, are identical, so

that the ß-function can be directly derived from Z3 (i.e. from the self-

energy), the result being the same as that computed in the covariant

Ç-gauges. Preliminary results suggest that the light-cone gauge in the

Mandelstam prescription, but not in the principal value prescription, has

the same renormalization property of the axial gauge.

Atomic Energy of Canada Limited
Chalk River Nuclear Laboratories

Chalk River, Ontario, Canada KOJ 1JO
1984 December

AECL-8630



PREFACE

These notes are based on leatures given at the Physics Centre,
National Taiiùan University, in March and April, 1984, and at a number of
other places in China and Japan in May.

The lectures deal at a pedagogical level with topics related to

the need for, and methods employed to the regularization of divergent

Feynman integrals in quantum field theories. The major part of these notes

is devoted to the development and application of a new analytic regulariza-

tion technique.

Although regularization involves relatively simple mathematical

concepts and techniques, it is not unusual that a student does not learn

about renormalization - perhaps the single most important topic setting

quantum field theory apart from its classical counterpart - because he is

intimidated by divergent integrals he encounters but cannot deal with.

With the advent of the method of dimensional regularization, the evaluation

of divergent Feynman integral has for the most part become routine» In

these leatures we discuss a recently developed generalization of this

method that we call analytic regularization. In essence it ib a hybrid of

an older method bearing the same name and the dimensional method. In

developing the analytic method the two-step procedure of generalization and

analytic continuation is given special emphasis. Among the advantages of

taking such a systematic approach is the reward of finding representations

for classes of Feynman integrals that are extremely easy to evaluate. The

power of this approach is especially manifest in dealing with integrals of

Yang-Mills theories in the ghost-free axial and light-cone gauges.

An often sought after property of a regularization method is the

preservation of symmetries in the associated field theory, some examples of

which are gauge invariance, the Beachi-Rouet-Stora invariance and supersym-

metries. With this goal in mind, these notes follow a program whereby the

operations of tensor algebra and the regularization of integrals are separ-

ated as much as possible. In such a program only formally invariant, or

scalar, integrals need be regularized. From the point of view of such an

approach, the dimensional method is a purely formal technique which need

not be associated with "doing physics in 2o> dimensions". Thus the trace of

the Euclidean metric is equal to the dimension d (an integer), not to the

generalized dimension 2u> (a continuous variable). This approach is the

generalization of the one known in the literature as dimension reduction.

Although we believe it shows great promise, in these notes we have only

shown that it preserves guage invariance, at least at the one-loop level.



The reader is assumed to have a rudimentary knowledge of Yang-

Mills theory and the functional method, which are discussed briefly in Sec-

tion 1. The bibliography - we make no pretense for it being complete -

given at the end of these notes provides the student with material for fur-

ther reading on these topics.

Some of the results given in Section 7, especially those pertain-

ing to Mandelstam's prescription for light-cone gauge integrals, are new,

having been derived after the lectures were given. These results, together

with Section 8, the content of which became possible for discussion within

the context of these notes only after the new results were obtained, are

included here for completeness.

My gratitude to Michael Milgram is best expressed by saying that

without his collaboration all of the work reported here would not have been

done. I am thankful to George Leibbvandt for his help during the early

phase of work and for his continuing interest. I thank Kuo-Lung Chang for

the invitation to National Taiwan University and the Faculty of the Physics

Department for its hospitality during my stay there, where these notes were

first drafted. I thank the Physics Departments of Cheng-Kung University

(Tainan), Zhengzhou University, Wuhan University, Hiroshima University and

Tokyo University (Komaba), and also the Institute of High Energy Physics

(Beijing), the Institute for Theoretical Physics (Beijing) and the Insti-

tute for Fundamental Research (Kyoto), where parts of these lectures were

given, for hospitality. Last but not least, I thank Margaret Carey for

carefully preparing these notes.

This work was partially supported by a grant from the National
Science Council (Taipei).

U.C. Lee, Chalk. River, 1984
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1. Yang-Mills Theory, Gauge Fixing and Ghost-Free Axial Gauges

In the functional method, the sourceless (J=0) generating

functional for a Yang-Mills theory with fields A is given by

Z[J=O] = Z[0] = / [dA]eiS[A] (1.1)

where

S = / d4xi^ (1.2)

is the action and

is the Lagrangian density, and the field tensor is

F = 5 A - Ô A + g ( A x A ) . (1.4)
—\iv \t-\> v-n —|i — v

The gauge field £„ transforms as a vector of the gauge group G. The

components of such vectors will be labeled by the indices a,b,#<>. The

scalar product and the cross product in (3) and (A) are defined

respectively as

A-B = AaBa , (A x B ) a = fabc AbBC (1.5)

where f are structure constants of G. The symbol /[dA], or the path

integral, in (1) is meant to integrate over all possible values of each

gauge field A (x) at each space-time point x. In the following, we will

often drop all labels of the gauge field and simply express it as A.

The group G is defined by the set of "gauge" transformations

leaving the action S invariant. Let h be an element of G, h-€ G. Then

under the action of h,
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S[A] ->• S[Ah] = S[A] . (1.6)

The transformations are gauge transformations, which are local because h is

a function of space-time. Clearly if the number of elements in G is N then

S is N-fold degenerate. For Yang-Mills theories G is a Lie group which,

being continuous, has an infinite number of elements. Thus S has an

infinite degeneracy. It follows that the generating function Z[0] in (1)

is not well-defined, since it contains an infinite factor proportional to

( I / [dAh]) = /[dAJ /dh (1.7)
h6G

As we shall see later, a symptom associated with this infinite degeneracy

is that the propagator derived from (2) will be singular.

In the path integral method, the infinite gauge degeneracy is

removed by imposing on the integral a functional constraint

F[A] = 0 (1.8)

that breaks the gauge invariance, thus insuring that each infinite set of

gauge equivalent paths will be integrated over only once. This is a method

1 2
first used by Faddeev and Popov. Here we follow Lee.

Define the functional

/ÇVl = /dh ô(F[Ah]) (1.9)

where Jdh integrates over the group space for each A at each space-time

point. It is clear that Ap is invariant under the transformation



- 3 -

A + A . We now inser t the factor

1 = Ap[A] Jdh 6(F[Ah]) (1.10)

into the right-hand-side of (1) to obtain

Z[0] = J[dA] ZV, [A] {/dh ô(F[A h])}e i S [ A J . (1.11)

Because /[dA] integrates over all possible values of A, including those

covered by gauge transformations, and because J[dA], ^.[A] and S[A] are

all gauge invariant, we may change variable

A + A (1.12)

and rewrite (11) as

Z[0] = J[dA] ^[A] Ô(F[A]) e i S [ A ] Jdh (1.13)

to isolate the infinite normalization Jdh mentioned earlier. We now

redefine Z[0] by removing from it this infinite factor, so that

Z[0] = /[dA]Af[A]6(F[A])e
1SIA1 (1.14)

is now well-defined; in a manner dictated by F[A], the integral takes only

one path among each set of gauge equivalent paths. This equation will not

be suitable for computation in perturbation theory until the two factors

Ap[A] and 6(F[A]) are exponentiated.

For the first factor, we recall the identity

fix 6(f(x)) = £2L) (1.15)
OT f=0
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I1 [A] = /dh Ô(F[Ah])

n /dh 6[F{Aa(x)}h])
x,a

det
-1 g [A]

F=0

det
-1 ÔF [A] ÔA

F=0

The matrix MF has elements

A, x 9F<x,aJMFjy,b> = 6
4(x-y)

c

where

" i g f
cba .a

(1.16)

(1.17)

(1.18)

is the covariant derivative associated with gauge transformations under G.

Eq. (16) also reads

det(MF) . (1.19)

But a determinant can be expressed as a path integral of anticommuting

2
fields. Let such fields be Ç and r\; then one may write

iS
det(MF) = /[dÇ][dn]e

 g h 0 S t (1.20)

(1.21)
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£ and T| are called ghosts (fields) because they do not represent physical

particles, but owe their existence purely to the constraint (8). Ghosts do

not appear as external legs in sny Feynman diagram representing a physical

amplitude but do propagate as virtual particles. They interact with the

gauge fields through the term ÇMpTi in S h o s t.

We now turn to exponentiating the factor 6(F[A]). The simple

way, sufficient for our purpose, is to make use of the relation

6(F) « lim e i F / 2 a (1.22)
a-»o

A more general result, replacing the constraint 6(F[A]) by the weighted

constraint

2

Jdc e~ i c llCL 6(F[A]-c) (1.23)

where c is independent of A, yields

ô(F-c) > e - i F 2 / 2 a (1.24)

with a now being an arbitrary parameter (the gauge parameter), in particu-

lar not restricted in value to the limit a •• 0. It is clear that the

right-hand-side of (24) no longer implies the constraint F = 0. The con-

straint (22) is obviously a special case of (24) which does imply F = 0.

Recall that the constraint (24) or (22) is imposed on each and every space-

time point, so (24) suggest the gauge fixing action

S . [A] - - / d4x (F[A])2/2a . (1.25)
g«r •

Combining (14), (20), (24) and (25) then leads to the effective action
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and the generating functional with a fixed gauge

IS [A.Ç.T1]
Z[0] = /[dA][dÇ][dri] e r . (1.26b)

Finally, many formal relations are more easily derived from a

generating functional with source ̂ ( x ) , defined as

iS f.[A,Ç,T],J],
Z[J] = J[dA][dg[dnI e e" (1.27a)

SeffIA,Ç,T),JJ = Seff[A,Ç,T|] + /d
4x J ̂  (1.27b)

A class of widely used (Lorentz) covariant gauges is specified by

F [A] = o^A** ; (1.28)

When the condition F=0, realized in the limit a-»0 in (24), is chosen, this

gauge is analogous to the Lorentz gauge in quantum electrodynamics. The

ghost action associated with (28) is

S . = / d \ I [ 6 a V o - igfabc(Ö^AC + AC9 | J)]TI. (1.29)
ghos t ' aL H u• u 7 J t

In the limit a. * 0, b^A0 = 0, so

Sghost " <

the ghosts are still coupled to the gauge field through the ÇA ô r\ term.
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There Is therefore no simplification when the limit a-»0 is chosen. The

gauges fixed by (28) with a having various special values have been given

names associated with their earliest proponents: ocO is the Landau gauge;

a=l is the Feynman gauge; o=l/3 is the Yennie gauge.

The axial gauges 3 form a class of gauges characterized by the

usage of a constant vector n . This singles out a special direction in

space time, so such gauges are not Lorentz covariant. The simplest of the

axial gauges has

F[A] » n A1* (1.31)

which has the ghost action

Significant in (32) is the absence, due to the fact that n u is a constant

instead of an (derivative) operator, of a term corresponding to the

term in (29). Thus in the limit a •*• 0, n ^ ^ = 0, so that

lim S . ,. = / d4x l n^o ri (1.33)

is independent of gauge fields. This means that for axial gauges in the

limit a-O ghosts are decoupled from the rest of the theory, and the factor

lim J[dÇ][dT)]e ß h ° S t = const.
a-K)

becomes just an insignificant normalization constant for the generating

functional.

Lt is ciear from the discussion above that for an axial gauge to

be ghost-free there are two necessary conditions:
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(i) The constraint must not involve any derivative operator acting on

the gauge field;

(ii) The value for the gauge parameter must be taken in the limit a-»0-

An example for an axial gauge constraint containing the derivative and

therefore not ghost-free even at oc->0 is

F[A] = n ^ n v A
V (1.34)

giving a ghost action

S , = -fd4x [(n ô Ç )(n 9Vn ) + gfab°ACÇ o V ) l • (1.35)
ghost ' LV u a v a 6 na h J v

In the rest of these lectures, by axial gauge we shall mean a

gauge constrained by (31), for which the limit a-O will always be taken.

Thus

Sa£al[A] = lim J d4x [- i F -F^V - I- (n - A V ]
eff l ' _ ' L A —U.V — 2 a u — J

lim L / d x [A^ # I

AV) ̂ |_(A^xAv)
2]} (1.36)

from which one can read off the kinetic energy, or the coefficient of the

term quadratic in A, in the momentum representation,

+ I n n ) (1.37)

and the three and four-vertices
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3 C a b c • g f a b c t v p - q ) v + v q - r ) * + 6vx<r-pg

(O)abcd = 2[abefcde ^ 3 + f**)] (1.39)

The reciprocal of IT v^ gives the free propagator

p P*n (p«n)

As is well known, it is much easier to evaluate Feynman Integrals

and to discuss most formal properties of gauge theories in Euclidean space.

Unless otherwise mentioned, we shall work in this space in these notes. In

practice working in the Euclidean space means replacing the metric g,iv by

the Euclidean metric

V * V-= (M.1«1) (1.41)

For Feynman integrals, Mink' wski space can be reached by analytic

continuation after the integrals have been evaluated.

The singularity in A in the limit a*» is directly related to

the divergence of the generating functional for a gauge invariant action.

For in this limit the gauge fixing action vanishes. Another way of recog-

nizing this singularity is to observe that the matrix

has a null determinant.

In perturbation theory the propagator (40) and the three and

four-vertices (38) and (39) are the only quantities needed for computation.
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Among these quantities only Â  depends on a, being finite at œ=0. There-

fore the limit a« can be taken at this stage, thus making the theory ghost

free. The fact that II diverges in this limit may appear worrisome.

Later (see §6) we shall show that the term — n n in IP ' is totally

decoupled from the rest of the theory. Whether it diverges or not is

therefore of no significance.

For completeness we give the propagator in the covariant gauges

defined by the constraint (28):

A(0) covariant gauge = ± _ô_ rfi _ a) ^
 V1 (1 42)

uv p2 |AV ' p2
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2. Hegularization and Dimensional Regularlzation

2.1 Need for Regularizatlon

The class of processes involving the creation and annihilation of

virtual particles is what sets quantum field theory apart from the

classical theory. A typical such process is the vacuum polarization

represented by the Feynman diagram in Fig. 1

Figure 1

where the arrows represent the flow of momenta. Using the propagator and

the three-vertex given in (1.40) and (1.38) respectively to compute this

diagram (see (6.8)) entails the evaluation of the following integral, among

others,

(p-q)

(2.1)

Simple power counting shows that I(p) is (logarithmically) divergent at

q-*">, or ultraviolet (ÜV) divergent, rendering the integral meaningless.

One way to interpret the existence of such divergences in quantum field

theories is to think of such theories as being incomplete in the region of

infinitely large momentum, or at distances very close to zero. A procedure

known as renormalization has been developed to control UV divergences in

quantum field theories in such a way that physical occurrences at finite
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momenta are precisely described independently of what may happen at infin-

ite momentum» The first step in this procedure is to regularize, or regu-

late, divergent integrals such as (1).

Loosely speaking, to regulate a divergent integral is to isolate

the Infinite and regular parts of the integral in a well-defined way. It

is clear that such a separation is not unique, for if

I = » + a

is a separation, then

I = (<=+ b) + (a - b)

is also a separation. This means that there can be more than one viable

regularization method . On the other hand, if a renormalization program is

to be meaningful it must give results describing physical occurrences that

are independent of the regularization method.

One of the oldest and sometimes still used regularization methods

is due to Pauli & Villars.5 It entails the replacement

. .2 , .2 - v2^M2
(p-q) (p-q) (p-q) +M

(2.2)

for some or all factors in the denominator of an integral so that the

integral (1) may be formally defined in the limit

def 4 1

M+« (P-q)2 (p-q)2+M2 q2 q2+M2

The integral on the right-hand-side can be rewritten as
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M4 / dAq 2 2 2 2 2 (2*4>
<p-q) [<p-q) -Hi ]q (q -H« )

which manifestly does not diverge as q-*= ; it is finite for all finite

values of M.

Another regularization method is the cut-off method

/ d \ K(p,q) • lim / 2d
4qK(p,q). (2.5)

A-Ko q <A

Such methods, although useful under certain circumstances, have

shortcomings arising from their undesirable algebraic and/or analytic

properties. For example distributivity

/ d4q(A+B) = / d4q A + / d4q B (2.6)

and partial fraction

f ,4 1 1 r A r 1 1 1 /o -?\

J d q (A+a)(A+b) = I=b J d q feb " ÄST) (2-7)

are sometimes lost in the Pauli-Villars method and the shift operation,

or translational invariance,

J d4q A(q) = / d4q A(q+qQ) (2.8)

is lost to the cut-off method. In the above equations A and B are func-

tions of q, a and b are constants and qg is a fixed momentum. An even

more severe defect suffered by both methods is that they do not preserve

gauge invariance. Technically the methods are also very cumbersome. As a

general rule the evaluation of a "massive integral" such as (A) is always

considerably more tedious than that of a "massless integral" such as (1).
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2.2. Dimensional Regularlzatlon

A very powerful method, known as dimensional regularization, **

based on the principle of analytic continuation, exploits the possibility

of defining integrals in a continuous dimensional space. In dimensional

regularization (dim. reg.), instead of evaluating an integral such as

I[S;2] = /d4q S(q) , (2.9)

one considers as a function of the continuous (possibly complex) variable u

the integral

I[S;uJ = /d2ü)q S(q) (2.10)

and defines

lim I[S;oo] (2.11)

The method is useful because divergent Feynman integrals defined

as in (11) become functions having poles at (IF2 in the complex w-plane,

which therefore have well-defined mathematical properties.

Because dim. reg. is an analytic method, it has very good alge-

braic properties. In particular the method admits

commutivity: A / B = / AB (2.12a)

distributivity: /(A + B) = / A + / B (2.12b)

associativity: /(ABC) = /(AB)C + /A(BC) (2.12C)

shift operation: / d2tIq A(q) = / d2üq A(q+qQ) (2.12d)
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The following illustrates how all of the above can be exploited

to simplify a computation.

P(i J" dq ^(/[(P-i) 1 ] = / d<l P V [ •"] (comm.)

- J / dqfp2-^2 - (p-q)2]/['"]

= J { / dq p 2 / [ ' • • ] + / dq q 2 / [ • • • ] - / d q ( p - q ) 2 / [ - - . ] } ( d i s t . )

2 / 2 2 / 2 \ J 2 (ass.)

(p2/2) / dq/(p-q)2q2 (shift) (2.13)

Hereafter, where there is no risk for confusion, we will often use the

shorthand /dq for Jd q. The last line in (13), having a scalar inte-

grand, is easier to compute than the original integral with a vectorial

integrand. The manipulations employed in (13), although standard for fin-

ite and well-defined integrals, are in general suspect for divergent inte-

grals. In particular they are not allowed when ÜF2, nor are they proper

for the nonanalytic Pauli-Villars and cut-off regularizations described

earlier.

A crucial property of dim. reg. is that it preserves the gauge

invariance of gauge theories. This and reasons given earlier concerning

its superior algebraic properties explain why the method has been used

exclusively in the proof of the renormalizability of nonAbelian gauge

theories.

Powerful as it is, dim. reg. still has some deficiencies:

- Formally the method cannot regulate 'tadpole1 integrals (see below);
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- The method does not distinguish ultraviolet (UV) from infrared (IR)

divergences;

- The method is not powerful enough to regulate some integrals in the axial

gauges.

2 «3 Tadpoles

Tadpoles are Feynman diagrams containing loops but having only

one vertex connected to external legs. Conservation of momentum then

dictates that the integrand for the corresponding loop integral cannot

depend on any external momentum. The simplest tadpole is a 1-loop diagram

with one external leg, as shown in Fig. 2.

Figure 2. A tadpole.

This diagram has the simplest integral for Yang-Mills theory in the

Feynman gauge (a = 1)

r,4 1 def |-,2CJ 1 _ T / . /o i / \

Jd q -y = lim Jd q-y=I(u>) (2.14)
q u+2+ e q

As will be described in detail in §3, the way to proceed is to first

identify a region in the to plane in which I(w) is well-defined, evaluate

the integral in that region, and then analytically continue the result to

the limit w+2. Now simple power counting tells us that I(w) is

- UV divergent (at q 2 * ») when Re(co) _> 1,

2
- IR divergent (at q •> 0) when Re(io) £ 1,
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so no region in the urplane exists in which I( oo) is regular. Therefore

dim. reg. cannot be employed to regulate I(Ü)). This result is general:

the set of integrals

J,4 . 2.N
q (q )

cannot be regulated by dim. reg. for any N. Therefore, if dim. reg. is

used as a regularization method, a supplementary ansatz must be given to

deal with tadpoles. Conventionally the definition

J d q (q ) = 0 (dim. reg.) (2.15)

has been adopted. In §4 we shall show rigorously that this definition,

although surprising at first sight, is an appropriate one. A rigorous

theory of similar integrals is well known to mathematicians.

2.4 Infrared and ultraviolet Divergences

In theories with massless particles Feynman integrals may be 1R

divergent as well as UV divergent. These divergences arise for different

reasons and are to be treated differently. Infinities of the UV type are

to be absorbed into renormalization constants for wavefunctions and coup-

ling constants whereas IR infinities are to be cancelled by their counter-

parts arising from radiation of real, low energy gauge bosons. For this

reason it is sometimes desirable to separate the two types of infinities.

In dim. reg., all infinities arising from integration manifest themselves

as identical poles having the form l/(u-2) in the o>-plane (2to is the gener-

alized number of dimensions). The separation of UV from IR singularities

is therefore generally not straightforward.
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A commonly used technique for isolating IR singularities is to

assign masses m^ to particles with which the singularities are associa-

ted. In this way UV singularities remain as poles in the w-plane whereas

IR singularities are converted to logarithmic singularities Jin mj in the

limit mj •* 0. While effective, this technique replaces massless inte-

grals by massive ones thus invariably making them more difficult to evalu-

ate. Because giving masses to massless gauge bosons also destroys the

gauge invariance of the original theory, Ward-Takahashi identities are

often lost as a tool for checking the calculation.

The inseparability of UV and IR singularities In dim. reg. is

intimately related to the value assigned to tadpole integrals in that

method. Later in §5 we shall show that in many cases the vanishing of tad-

poles result from the cancellation between the two types of singularities.

2.5 Axial Gauge Singularity and the Principal-Value Prescription

In axial gauges the factor p «n appearing in the denominators in

two of the terms for the propagator (1.40) gives rise to a third kind of

singularity in some Feynman integrals. An example of such an integral is

J d \ \ < 2 1 6 >\ 2
(p-q) (q*n)

which, in addition to being UV divergent, has an additional singularity

associated with the possibility that the quantity q#n vanishes.
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Unlike UV and IR singularities, the axial gauge (AG) singularity

is purely an artifact of gauge fixing and is void of physical meaning. It

is nevertheless very real from the mathematical point of view and must be

dealt with if any computation is to be done in an axial gauge.

Until recently the most successful and widely used method to

handle the AG singularity was the principal-value prescription, in which

negative powers of the factor q«n are defined as the limit

(q«n)~N d§ f i lim [(q«n + i T))~N + (q m - in)"N] . (2.17)
rr>0

Combined with dim. reg., integrals Involving suci factors are then defined

o ÏN-1 r , c ,2u) , . q «n-iT)c ,2u) , . q «n-iT) 1 ,„ . .
J d <! S U ) J 5—of ' (2.18)

(q«n) +T1

The evaluation of the right-hand-side, involving two limiting processes, is

usually a tricky and difficult task. We shall give an example of it later.
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3. Generalization and Analytic Continuation

We shall now Introduce a new regularizatlon method which we call

analytic regularlzation (an. reg.). In essence it is a generalization of

dim. reg. designed to remove the shortcomings of that method mentioned

earlier. The term analytic regulariztlon has been used for some older

methods8 employing techniques similar to those employed here for the new

method. The older methods were abandoned partly because they were incom-

plete, and more importantly because the analytic technique employed in the

method was given an incorrect physical interpretation. We shall return to

discuss the old method in a more appropriate context later.

To understand an. reg. properly it is important to have a clear

understanding of the two important steps used in the method, generalization

and analytic continuation, which will be discussed below. Luckily, both

are well established subjects in the theory of functions, relieving us of

any need for detail and rigor in our treatment.

Consider a function f^ formally defined on a set S of discrete

points x^ which can be divided into two subsets, S^ and Sg,

s = sA U sB

such that f£ is well-defined if Y.^ belongs to S A but is ill-defined

if xi belongs to Sß.

An example for such a function is the set of integrals

(p-q) q

formally defined over the 2N-dimension integration (Euclidean) space.
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The set S of points in this case contain the set of half integers 1/2, 1,

•••• In writing fjj the notion that the right-hand-side must also be a

function of p is suppressed. Upon inspection one finds that f„ is UV

divergent when N > 2, is IR divergent when N < 1, and is regular only when

N = 3/2. That is,

SA = {3/2}
(3.2)

SB = {1/2, 1, 2, 5/2, •••} .

Thus, as it stands, fpj is meaningful only when N = 3/2. To make sense of

fN with N •£ SJJ the integral in (1) must be regularized.

This can often be accomplished by first generalizing the

definition of the original function. Instead of considering £]_ on the

set Xj -6- S, we consider the function f(x) formally defined for th*

continuous variable (which may be complex) x in the region R. The

generalization is therefore

Xi(points) •> x (continuous variable)

S (set) •> R (region) (3.3)

Obviously, if the generalized function is to have anything to do with the

original one, R must contain S,

SCR. (3.4)

The mapping (3) satisfying (4) is given schematically in Fig. 3 where R is

shown to contain at least two regions R^ and Rg satisfying
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Figure 3

(3.5)

such that f(x) is well defined if x * RA and ill-defined if x-6 Rß.

Furthermore, for the points x. -t R> f(x, ) must be formally identical to f.

x±-6- S C R. (3.6)

It is clear that (6) does not uniquely define f(x), since the original

definition of f̂  says nothing about points not belonging to S. It

follows that for any set of f̂  infinitely many generalizations are

possible. This also explains why there have been so many regularization

methods for divergent Feynman integrals.

Returning now to our example (1), one of the possible generaliza-

tions for fN is precisely that used in dimension regularization, where

the set of half-integers N is generalized into the continuous complex vari-

able to:
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fN + f(u) S j d
2Uq 4 — 2 , N * " Cl (3#7)

(p-q) q

and the region to which to belongs is the 1-dimensional complex space C .

Since normally integration is defined only for integer-dimension spaces,

one must specify what is meant by the notation / d 4j in (7). The

definition given to it in dim. reg., which is also the one we shall adopt,

is specified via the generalized gaussian integral

/ a ) u . (3.8)

and this is sufficient for one to do all Feynman integrals, as far as the

portion relating to continuous dimensions is concerned.

By power counting, the integral is well-defined at least in the

line section 1 < Re(to) < 2. It is therefore meaningful to compute the

integral. The result, in conjunction with (8) (see a later section for

technical detail), is

(p-q) q

= g(co) , 1 < Re(co) < 2 . (3.9)

Note however that the right-hand-side of the integral, g(w), is well-

defined even beyond the region specified in (9). In fact g(to) is regular

everywhere in C except when us is equal to any integer. It is important to

realize that formally f(io) is not identical to g(to). For power counting

shows that f(co) is ill-defined at least when Re(to) £ 1 and 2 £ Re(to), while

from the analytic property of the gamma function IXz) (poles for nonposi-

tive integral values for z) g(co) is regular everywhere for to C except



when u = 0,±l,±2,««», in which case it has single poles; g(co) is well-

defined everywhere in C . At least in the region 1 < Re(u) < 2, f(w) is

well-defined and equal to g(w). Therefore, according to the principle of

analytic continuation, the region in which g(to) may be used to represent

f(u) can be extended to cover the whole region in which g(u) is well-

defined, that is for all u-€• C . Thus, g((o) is a representation for f(oü)

for u) •€ C . With this understanding, the distinction between f ( u>) and g(w)

may now be forgotten, and the restriction given in (9) on the region of

validity can be neglected.

After the two-step process of generalization and analytic contin-

uation, g(u) can now be used as a representation for the original sometimes

ill-defined set of integrals fN in (1), as follows:

f d= f lim g(co) (3.10)

The right-hand-side has a pole at u = 1 reflecting the 1R divergence of fi

and poles at u> = 2,3,••• reflecting UV divergences of f2, f3, •••• How-

ever, the representation is regular at all positive half-integer values for

a) even as fN at N = 1/2 and N = 5/2, 7/2, ••• are ill-defined. This is

important: a representation derived via generalization and analytic contin-

uation of a ill-defined function need not be singular; it can be regular!

The right-hand-side of (10) has at most pole singularities, which have

well-defined analytic properties, it is therefore said to be a regulariza-

tion of the left-hand-side.

The relations between fN, f(oo) and g(u>) are summarized in the

following diagram.
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H / d2Nq _ *
2 2

(p-q) q

N = 1/2, 1, 3/2,

Regularization Generalization

,2Ü) 1
1 q 2~T

(p-q) q

i-Ê-C1

^(P 2)

r(2o>-2)
1 < Re(to) < 2

lim

' Analytic Continuation

. ">-2. 2
g(w) =

r(2-u))

T( 2u-2)

2N
Figure 4. Regularization of the Function / d q

2 2
(p-q) q

It is clear that in the analytic method the representation func-

tion g(w) plays a pivotal role. For without it the crucial analytic con-

tinuation which allows one to avoid the singularities in the original func-

tion cannot be carried out, leaving the regularization process incomplete.

However, for instances where only the formal existence of a representation

is needed, the key point then becomes whether there is a region for the
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generalized variable in which the generalized function f(u) is well-

defined. For if there exists such a region, then the value of the integral

must be an explicit (albeit perhaps unknown) function of w in that region.

One can then identify this function with g(u) and assume that it is

amenable to analysis and analytic continuation.

The example discussed above gives the basis for dim. reg. In the

following we give another example in which a certain type of singularity is

regulated by generalizing the exponent of an expression. The method used

in this example later will be exploited to regulate the axial gauge singu-

larity that was mentioned in section 2.3; it is the starting point from

which we develop our analytic regularization.

Consider the set of integrals

1 .
£ =S dt N = ...,-1,0,1,..-

0 (t-s) 0 < s < 1, (3.11)

which is ill-defined when N = 1,2, •••• For N = 1, f i is regulated by the

well-known prescription

x lim (J + / ) i ^ = Jh^i) (3.12)
e-K) 0 s+e t-s

This jump-over-the-singularity ansatz is sometimes called the principal-

value prescription but it actually cannot be extended to cases for N _>. 2.

The correct principal-value prescription is

f d£f \ lim / dt { i 57+ ce .} (3.13)
S < 0 0 [(ts)+iri]w

leading to the result
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from which one obtains

f, = in p-=-) (as before)

and so on. Although the computation involved in (14) is elementary it is

nevertheless clear that evaluating fN for large N can be very time-

consuming.

We now do it the analytic way. We generalize f^ into

f(v) i / dt(t-s)V , v-ec1 (3.16)
0

For Re(v) > -1, the left-hand-side of (16) is well-defined, so

f(v) = ̂ - [(l-s)1+V - (-s)1+V], Re(v) > -1 (3.17)

The right-hand-side is however regular in the whole C space, including in

the limit v •*• -1, when it is equal to &i (——) (recall the relation

lim x£ = 1 + eJ!n(x) + 0( e ) ), agreeing with (12). Therefore by analytic

continuation,

g(v) s^j- [(l-s)1+V- (-s)1+V] , v-e-C1 (3.18)

is a representation of f(v) in all of C . The analytic regularization for

fjj is therefore
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f d^f lim g(v) (3.19)
v -• -N

fi

fN = ̂  [d-s) 1^ + (~)N s1""], N= 1,0,2,3,..- (3.20)

The reader can verify for himself that (14) and (20) actually give identi-

cal results. He will also find that the time needed to evaluate (14)

increases sharply with N, whereas the evaluation of (20) is trivial. Note

that in both cases the regulated fN is not only well-defined but also

regular for all values of (integer) N, contrary to what the original defin-

ition may suggest. Here we see a pattern that will emerge again later:

(a) the principal-value prescription and analytic regularization give iden-

tical results for apparent singularities of the type contained in ffj of

(11); (b) the regulated function is regular.

The two-step process regulating fjj analytically is shown in

Figure 5.
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N = •••, -1, 0, 1, •••

Regularization Generalization

f(v) s J dt (c-s)
v

0

-L , Re(v)>-1

Analytic Continuation

g ( v ) , ^ -
1+v

lim
v-»- -N

Figure 5. Regularization of / dt —
0 (t-s)N
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4. Analytic Regularization of the Class of Two-Point Integrals

In the last section we have demonstrated the complete analogy

between dim. reg. that was used to regularize (3.1) and the regulariztion

of (3.11). Each is but a special application of the analytic technique

based on the two-step process of generalization and analytic continuation.

We now apply this method, which we shall call analytic regularization, to

regulate a whole class of two-point integrals - by an n-point integral we

mean an integral with n-1 external momenta. The class of integrals is

defined by

F(K,M,N,s) = Jd4q [(p-q)2 f ( q 2 ) % «n)2N+S, s = 0 or 1,

K,M,N integers (A.I)

and the generalized form of the class is

S(u,ic,n,v,s) = Jd2(Oq[(p-q)2]K(qV(q-n)2VfS , (4.2)

(0, K, |i, V •€ C .

It is clear that when v = s = 0, K and (j. = integers and w = 2, S reduces to

(two-point) Feynman integrals in the covariant gauges; when K, \X, 2V+S =

integer and u> = 2, S reduces to integrals in the axial gauge and when K=0,

H, v integer and w=2, S reduces to tadpole integrals. The feature distin-

guishing (2) from a generalized integral in dim. reg. is the generalized

continuous exponents <, \i and v. The obvious motivation for such an

extended generalization is that if a representation is found for (2), then

the whole class of two-point Feynman integrals, in whatever gauge, can be

simply evaluated by substitution. Later we shall also see that by seeking

a more general representation, the three shortfalls of dim. reg. discussed
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in §2 concerning tadpoles, the separation of IR and UV singularities and

the axial gauge singularity are all avoided.

We first examine the analytic properties of the S-integral and

find it to be

(i) UV div. when Re(o*id-|^v) >_ 0

(ii) IR div. (at p-q=0) when when Re(w)-K) _< 0

(iii) IR div. (at q=0) when when Re(ojt-^\+s) ^ 0

(iv) Axial-gauge singular when Re(vt-s) _< -1/2 (4.3)

A representation for S exists if there is at least one region in C x Zj

(the space in which {w, K, \X, V,S} lives) where the integral exists. One such

region is the neighbourhood of the point {to, K, \X, V,S} = {2,-1,-1,-1,1}.

For at this point

(0 + K = 1 > 0

( i ) + u + v + s = l > 0

2v + s = 0 > -1/2

which is outside all the regions in which S is ill-defined. Therefore the

integral exists and all that remains is to find a representation for it in

this neighborhood. Once the representation is obtained it can be

analytically continued to the whole hyperspace C x Z 2-

To evaluate the integral (1), two stock formulas will be used:
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(1) Euler representation:

This representation will be used for exponentiating each and every factor

in the integrand in (1).

(2) Gaussian integral in continuous dimensions:

Jd 2 ü )q(q.n)S
 e " a q 2 + 2 b # q " Y ( < 1 * n ) 2

f-K^r b-n Ï S
 r a ^ 1 / 2 r r ,2 Y ( b « n ) 2 i , , ,. ,-N

= (-) ( j ) ^ 2^ exPlLb " -^ ^-J/al (4-5)
aH-yn otfyn otfyn

This relation, first derived by Capper & Leibbrandt, ** and being a generali-

zation of (3.8), is needed because of the presence of the factor

(q*n)2v+s in (2); the integrand is not rotationally invariant (in 2a>-

dimension Euclidean space; or not Lorentz invariant in Minkowski space).

Eq. (5) is most easily derived in a "cylindrical" coordinate system where

the vector n„ is identified with the z-direction. In this system any

vector a can be decomposed as

.- , ,. 2.1/2 -2 2 2 .. ..
a = (a,an), an = a»n/(n ) , a = a -an (4.6)

and a scalar product is given by

a«b = 7'ïï + a b (4.7)

Then
2

2 2 b ^ "

. 2,8/2 f .2u)-l- -<^2+2b-? r ^ s "[(«t-^^q^- 2b q ]
( n ) Jd q e ^ M J dqn qn e (4.8)

from which (5) is easily verified using standard techniques and (3.8).
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Readers interested in the details of how the representation given

9
below is derived should consult the Appendices. The result is

r( ß ^

,2,3
'3,3

l+a0, 1+otj, 1+v;

0, ß ; 1/2-s
) . I'U

with

x- aQ) IX ßL- ax) IX- aQ- o^-s) IX- v)

G
3,3

1+v.l+v-ßu vfs+1/2

0, V-OL, v a . ;
) ,

ou

y = (p-n)2/p2n2

10

lyl > 1 (4.9b)

(4.10)

10
The symbol G Is a Meijer G-function. It is a known generalization of the

hypergeometric function which can be straightforwardly evaluated. The

analytic property of a G-function is most transparent in its contour

integral representation

a, • • *a ; a , , •• pa
1 n n+1 q

b, • • *b ; b • • «b1 m m+1 p

2itl L

[ n rcbj-t)] _n ixi-aj-t)
(4.11)

n r(i-b
i=m+l

n r(a -t)
j=n+l J
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where the contour L encloses all poles contained in [ ] but not any others.

Although (9) is derived for the neighbourhood around {w, K, \I, V,S }

= {2,-1,-1,-1,1}, it can be shown (although we shall not do it here) that

the representation S is analytic everywhere In C x Z2 with, at most, poles

possibly when any of the conditions below are met.

<zo = integer _> 0 (4.12a)

ai = integer >_ 0 (4.12b)

ßl-v = integer _< 0 (4.12c)
or

v + s + 1/2 = integer jC 0 . (4.12d)

From (9) and (2) we see that (12a,c) are associated with the two types of

IR divergences in the integral while (12b) corresponds to the UV diver-

gence. Condition (12d), corresponding to the axial gauge singularity is

realized only if v is a half-integer. But since in the Feynman integral

(1) the primal variable N corresponding to v is always an integer, the

representation (9) is free of axial gauge singularitias. This result is

reminiscent to the regularization of the integral (3.11): the original

integral is singular and ill-defined but the regulated representation is

completely regular and well-defined.

The regularization of the Feynman integral (1) is summarized in

Figure 6.

The power of the generalized representation is demonstrated by

considering several special cases:

i) Two-point integrals in covariant gauges (v = s = 0).

r ,2co 1 u f t b ) P r(ara)r(ür8)r(-ürf-aH-B)
J d q 5 — -z—r = ——* — (4.1J;

[(p-q) ] (q V r(a)T(ß)r(2ura-ß)
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F(K,M,N.s) =

•*• Regularization

y

S(W, K, \X

lim

S(U,K,

, v,s)

11, V,s)

/d''q[(p-q) 2] K(q 2) M(q-n) 2 N + S, K.M.N integers

s = 0 or 1

well-defined when K = M = N = - s = - l

\' Generalization

exists in isolated regions including the

neighbourhood of {to, K, y, v,s )= {2,-1,-1,-1,1}

•= S(U),K, H, V,8)

\t Analytic Continuation

= right-hand-side of (4.9); well-defined

everywhere in C x Z_ with pole singularities

(2+e,K,M,N)

Figure 6

This result reduces to (3.9) when opß=l, as it must. However, the

representation (13) means all integrals of this type, for any values

for a and ß, can now be trivially evaluated,

ii) Tadpole integrals. Note that in (13) the representation has a nil

value when either a or ß is a nonpositive integer. That the integral

is symmetric with respect to a *-*• ß (the RHS is manifestly so) is a

result of the integral being invariant under shifting of the
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integrated variable. The integral is a tadpole integral when a=0.

Thus tadpole integrals are just a subclass of a class of nil-valued

integrals. The generalized class of tadpole integrals includes

S(u,K, \x, v,s) = 0 , K = integer ^ 0

S(w, K.M.N.S) = 0 , M and N = integers >_ 0 (A.14)

Note how the power of analytic continuation has been exploited to

derive the result (14). Recall in section 2 we said that tadpole

integrals cannot be defined in dim. reg. because a region does not

exist in the w-plane for which such an integral is regular. The more

general an. reg. allows one to go beyond the w-plane to find a region

(in C x Z2) of existence for the generalized integral. After a

representation for the generalized integral is found one then returns

to the w-plane by analytic continuation, where one can verify that the

integral is indeed nil-valued.

Some readers may wonder how a tadpole can be nil-valued when it

may at the same time be UV and IR divergent. The question will be

answered in §5 when we learn how to separate the two types of

divergences.

iii) Two-point integrals in the light-cone gauge. The light-cone gauge is

a special case of the axial gauge defined by the auxiliary constraint

n 2 = 0 (4.15)

It is a very physical and. therefore interesting gauge yet it is notor-

ious for being difficult to regulate. The difficulty originates in

the condition (15) which admits a nontrivial solution for the vector
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n„ only in a non-Euclidean space; in Minkowski space with a metric

g„ v = (1,-1,-1,-1) one such solution is n = (1,0,0,1). Since the

integral (2) is evaluated in Euclidean space, one must either do the

calculation anew for the light-cone gauge, or one may use the already

derived result and reach Minkowski space by analytic continuation. As

it turns out our result (9) allows for the second option. First we

see that (9a) is appropriate for Euclidean space since the inequality

2 2 2 2 2 2
(p*n) = p n cos 9 _< p n (4.16)

must always be satisfied in such a space, enforcing the condition

2 2 2 Jl

y = (p*n) /p n _< !.• Conversely, the condition y >_ 1 for (9b) is

never satisfied in Euclidean space, but can be satisfied In Minkowski

space. The result (9b) is obtained from (9a) by analytic

continuation. In particular, the constraint (15) is reached in the

limit

1/y -»• 0 + (4.17)

in which case (9b) is reduced to the surprisingly simple result

J d 1 Z T7Ï,—5~"ft Z

for which the similarity to (13) is readily recognized. The light-

cone gauge, with Its many peculiar properties, is discussed in more

detail in §7, where we also give a representation based on the

recently devised Mandelstam prescription.



- 38 -

iv) Exponent derivatives. The analyticity of the representation (9)

admits the straightforward evaluation of two-point integrals with

logarithmic factors in the integrand. Specifically from the relation

a E = 1 + eJtaa + 0( e2) (4.19)

follows

aKAi-'a = lim f|̂ ) aK (4.20)

s o t h a t o n e may d e r i v e

(• ,2w , X2K 2M. x 2 N + s . k r / J i . i n . 2 . . J L .J d q(p-q) q (q *n) An [(p-q) Jin (q )Ai (q *n)

.2K 2(1, .2vfs

JI-H9

(4.21)

Thus Feynman integrals with logarithms are just "exponent deriva-

tives"11* of generalized Feynman integrals without logarithms. Through

the representation S, exponent derivatives become normal derivatives.

The potential usefulness of exponent derivatives, although not

much explored, is suggested by its occurrence in perturbation field

theory. In perturbation theory, Feynman integrals associated with

N-loop calculations have integrands with up to (N-l) powers of
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logarithms, and the evaluated Integrals have up to N powers of logar-

ithms. Such terms will appear on the right-hand-side of (21) when

k+m+Jl = N-l. They arise from taking exponent derivatives of the fac-

tor (p2)üri"l<:+^ri'v in S. In fact every term, including all proper

infinite parts, generated for the two-point function from the multi-

loop perturbation expansion can be expressed as an exponent derivative

of S, while infinite terms which must not appear in the expansion

2
(such as UV infinite terms with a logarithmic dependence on p ) are

never generated in any exponent derivative of S. This raises the

speculative but Interesting question whether the two-point function

can be expressed as the solution of a differential equation having the

exponents as variables. Such a solution will In general be a polylog,

or a polynomial containing powers of logarithms as well as the usual

power terms.
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5. Separating DV and IE Singularities

In an. reg. divergences of the two-point integral occurs as poles

if
in C necessarily but not sufficiently when one of the conditions (4.12a,

b,c) are met. In terms of the generalized variables these conditions are

v = integer £ 0 (UV div.) (5.1a)

s = integer <̂  0 (1R div. at q = o) (5.1b)

O (IR div. at q = p) (5.1c)

In Feynman integrals u) = 2 and K, \X, V and s are integers. Near these

integers we write

(o =• 2 + e,

< ' K + p,

H = M + a,

v - N, (5.2)

and define

- (2+K+M+N)

e0 = urt-(t»-vfs - (2-m+N+s) = efa,

E3 = UH-K - (2+K) = efp. (5.3)

When the conditions (la,b,c) are satisfied, S has the single poles 1/ei,

1/eo and l/ea» respectively. Because the three epsilons are distinguish-

able, the three poles representing the UV and the two kinds of IR singular-

ities can be separately identified. It is now instructive to make a com-

parison with dim. reg. In that method the exponents K and M (as well as N)
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are fixed c-numbers, not generalized variables, and the small parameters p

and a are by definition identically zero. Then the three e's are all

identically equal to e

ei = e0 = £3 = e, (dim. reg.) (5.4)

meaning that in dim. reg. it is impossible to identify the origin of poles

in the representation.

Later we shall see that Ward-Takahashi identities of Green func-

tions are true only if S is evaluated in the wplane (C with K, \X, V inte-

ger); the identities do not in general hold when S is evaluated in C , in

3
particular not in the ( to, K, n)-hyperplane C . Naturally once we have

descended from C 4 to C 1 the e's cease to be different. However, because

the paths of descent for the E'S are all different, each of the e's can be

tagged during the descent so that, even though when in c' the three e's

have identical values, their separate identities can be retained.

We have shown that we can distinguish SQ from 53, if needed.

But normally it is unnecessary to separate the two as the following example

shows. Consider the integral

(p-q)V

which is IR divergent at q=0 and therefore is expected to have a pole of

0(1/eg). But by changing the „dummy variable q to p-q we have

I = Id'
, .h 2
(p-q) q
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which Is now IR divergent at q = p and therefore has a pole of 0(1/£3).

Since the two integrals are identical we must take a limiting process such

that this identity is upheld. This means that in (3) we must have p=a, so

that

£0 = £3 = e + p (5.5)

This suggests the following strategy for evaluating two-point integrals

F(K,M,N,s)

An. reg. - generalize point (d=A,K,M,N) to C 4 to find
representation S

Evaluation at specific point in C but keeping separate
identities for UV and IR singularities by setting
(j = 2+e, K = K+p, (i = m-p, v = N

S(2+e,K+p,M=p,N,s)

Recover gauge invariance by descending from C to (»»-plane,
' taking the limit p-O, e -»-small. S has poles of 0(1/ei)

and 0(l/eo) representing UV and IR singularities
respectively

S(2+e,K,M,N,s) (5.6)
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In this program (the necessity for taking the last step is explained in

§6), the covariant gauge integral at the third stage is given by

r ,4 2K 2M 2+e. 2.2+K+M+ EI-,-.„. .. ,,/.,.„. \j d q (p-q) q -»-it (p ) ir(2+K+eQ) r(2+M+eQ
>! •

• r(-2-K-M-e1)/r(-K)r(-M)r(4+K-t«+2e0) (5.7)

The right-hand-side is symmetric under K. •*•-> M, as it should.

The general axial gauge (2N+s # 0) integral, for Iy _< 1, is

given by

r .4 , ,2K 2M. „2N+s
/ d q(p-q) q (q*n) >

rr(2+N+K+e0) r(2+M+N+S+ep) IX-2-K-M-N- e

T(s+l/2) r(-M- et+ eQ) IX4+K-H4+2N+S+2 EQ)

. F (-2-Hl+N+s+Eo, -2-K-M-N-ei, -N
3 2 s+1/2 , -1-K-N-EQ

r(-2-K-N-ep) r(2+K+e0) 2+K+s+eo
r(K+N+s+5/2+eo)r(-N) y

F ^ 0 , -M-ei+e0, 2+K+e0
3 2 K+N+s+5/2+eo, 3+K+N+e0

where the G-function in (4.9) has been decomposed into a sum of two

hypergeometric functions16 by evaluating the contour integral (4.11).

We now give a few examples.
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The formula

er(l+Jl-e)

^ (i) [l + EcKl+i) + 0(e2)]

where the <(r-function satisfies the recurrence relation

1/z + l/(z+l) + ••• + l/(z+n-l) + <Rz), (5.10)

will be used repeatedly.

(1) F(-l,-1,0,0). This integral, appearing in the evaluation of the

one-loop self-energy

Figure 7

(see Fig. 7) is easily evaluated using (7). The result

d4q(p-q)"2q"2

* 2 + £ ( P 2 ) r2(i+e0)r(-e1)/r(2+2eQ)

-it2[— + y + Am + Aip2 - 2 + 0(e) ] (5.11)

where y = 4J(1) = 0.577 • • • i s the Euler-Mascheroni constant, has a UV pole.

The three terms in the expression 1/e^ Q + y+ Stnn always appears in the
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same combination. In calculations related to field theory the integral

usually is multiplied by an extra phase-space factor (2i)~ •* (2ix)~ w so

that a divergent integral typically has the expansion

—L-x / d4q ••• -•-i-T (—— + Y ~ AI4TI+ Aip2 +...)' (5.12)
(2%y 16 it h,0

In t,ie renormalization program, infinite parts of the self-energy is

absorbed into the wavefunction renormalization, so that the renormalized

self-energy is finite. In practice, a Feynman integral for a renormalized

quantity is just the integral minus its infinite part. The process of

removing the infinite part from a divergent integral is called subtraction.

In the minimal subtraction scheme (MS) only the UV pole term 1/ei is

—™~ 1 8
removed. In the MS scheme the combination 1/ei + y - AI4TI is removed

altogether.

For convenience, we define the quantities

l/eQ 1 = 1/EQ 1 + y + Unit, (5.13)

The basic motivation for separating the two types of singulari-

ties is that in the renormalization program only UV singularities need be

subtracted. The removal of IR singularities in field theory is not a com-

pletely understood subject. It is generally believed, and proven in

19
(Abelian) quantum electrodynamics, that a process becomes free of IR

singularities if all possible' ways of emittii.g soft, raassless gauge bosons

(photon in QED) are included in the process.

(2) F(0,-2>0>0) (lyj < 1 ) . Returning now to (11), we notice that when

p -*0, the expression has a logarithmic singularity. In the special case
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when p=0 the integral reduces to a tadpole integral

F(0,-2,0,0) = / d^q q""1*

i2) ei r(2+eQ) IX e0) IX- E ^ ) / [IX- ex+ EQ) 1X2-E^EQ) T(2+2 eQ) ]

= / (l/eQ - l/ei) • (5.14)

In the limit o=0, ê  = £Q = e, so that the representation is identically

zero (it is actually proportional to p), giving the usual result for a

tadpole integral. The important point is that the integral vanishes as a

result of the cancellation between a UV and an IR pole. In other words, if

a distinction needs to be made between these two types of poles, then the

tadpole integral is not zero. This point is not always realized by those

using dim= reg., augmented by the definition that tadpole lategrala ace

nil-valued (see (2.15)), as a regularization tool.

(3) F(-2,-1,1,0). This integral is encountered when evaluating the one-

loop, three-vertex of Fig. 8 in the axial gauge. Because N=l, and

1/T(-N) = 1/IX-l) = 0, the second term in the { } bracket in (8) vanishes.

Power counting (consult (1^) tells us that the integral is both UV and IR

divergent. Substituting the appropriate integers into (8) yields

Figure 8
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n 2 + £(p 2) en2T(3/2) (-e )

Lr(3+2

1/2, -

{1+

2 2

= " ̂ g - (l/e1 - 4y/eQ + 6y - 2 )

2 2
/

(5.15)

2 2
The infinite part due to the UV divergence is -it n /16e i whereas if UV and

IR singularities were not distinguished it would have had an additional

multiplicative factor (l-4y).
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6. Gauge Invariance and Ward Identities

Because of the gauge invariance of gauge theories, an infinite

20
set of identities, Ward identities for short, exists among various Green

functions (n-point functions). A typical Ward identity relates the partial

derivative of an (n+l)-point function to a linear combination of n-point

functions. Because Ward identities are in general nontrivial equalities,

they can be gainfully exploited, among other purposes, to check the consis-

tency of intricate and lengthy computations. For example Ward identities

are often used for testing the viability of a regularization method.

The older analytic regularizations mentioned at the beginning of

these lectures are known to violate gauge invariance and therefore not to

uphold Ward identities in general. In the analytic regularization expoun-

21
ded by Speer, quantum field theory is regulated by modifying propagators,

-" 2 *} A.

replacing, say (for massless particles) (p-q) by (p-q) • A ^depen-

dent theory with such modified propagators is free of UV singularities in

the complex \-plane, except for poles at \ = -1; the theory of interest is

recovered in the limit \ -*• -1. However, since the structure of a

Lagrangian with a propagator having a continuous exponent is not known, the

gauge transformation is not well-defined for theories with \ t - 1 . Speci-

fically, formal Ward identities - formal because they involve divergent

integrals - derived for the real theory are not satisfied in the regular-

ized \ t -1 theories. In this sense Speer's analytic regularization, as

well as other analytic methods similar to it, does not preserve gauge

invariance.

The crucial difference between our method and the old analytic

regularizations lies in two important aspects: (a) the new method is a
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technical hybrid of dim. reg. and the generalization of exponents used in

the old analytic method; (b) the generalized dimension and exponents are

viewed strictly as a means for regulating divergent integrals, rather than

regulating the theory, of which only the four-dimensional one (or whatever

integer dimension, as the case may be) is of interest.

Having a generalized dimension is important; we shall see that

Ward identities are upheld if and only if (the representations of) Feynman

integrals are evaluated in the io-plane (p = a = 0, see (5.2)).

For a Yang-Mills theory described by the generating functional

Z[J] in the axial gauge (see (1.28)),

IS [A,J]
Z[J] = /[dA] e e l r (6.1)

the simplest Ward identities, which are the only ones we shall consider,

are derived by considering the variation of Z[J] under the infinitesimal

gauge transformation

SA = ô A + (A x JO (6.2)

(the local functions A.a(x) are infinitesimal),

6Z[J] = /[dA] {[-!?/C + gfabcAb^(x) ][- I n-A^x)«^ + J*(x) ]}

exp(iS [A,J] ) AC(x) . (6.3)
eff

An m-point Ward identity is obtained by taking (m-1) functional derivatives

of ÔZ[J] with respect to the source Ja(x) at (m-1) localities, and then

evaluating the result at J = 0 in the limit a •> 0:
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m-1
l i a { n —-2 (ÔZ[J])L - 0 (6.4)

The two-point identity, after some manipulation and transformation to

momentum space, has the form before the limit o +0 is taken,

( 6 > 5 )

IL is the self-energy to all orders (in g) and TV: ' is the zeroth order,

or free, self-energy given in (1.37), from which the second equality sign

in (5) is derived. Define

( 6 - 6 )

to be all the radiative corrections to the self-energy (it will be at least

2
of 0(g )) then from (5) we have the tranversality condition

( 6- 7 )

The longitudinal part of IL proportional to n^n /a is of no
K\l A. \X

importance. First of all the fact that it appears only in TT: ' and nowhere

else means that it is decoupled from the rest of the theory. Secondly

it vanishes whenever it is connected to an external gauge field, since the

resulting factor n*A is zero-valued due to the constraint (1.31). There-

fore it need not concern us when (5) appears to diverge in the limit aO.

At the one-loop level, if is given by the two diagrams in

Fig. 9. Diagram (b) is a tadpole, which we shall take to be zero-valued,
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*• H h- i-

(a.) (b)

Figure 9

intending for the moment not to distinguish the UV and IR singularities.

Diagram (a) is given by

(6.8)

where the 3-vertex r and A' ' are given in §1 and C2, defined by

6abC2 - f
acd fbcd (6.9)

is the value of the Casmir operator for the adjoint representation of the

gauge group; for SU(N), C2 = N. The one-loop self energy, being a rank-2

tensor, involves integrals with tensorial integrands such as

I A V» 2 (6.10)
(p-q) q

for which we do not have a generalized representation. The way to evaluate

22
such integrals is to realize that any n-rank tensorial integral can be

expressed as a linear combination of products of n-rank tensors construc-

ted from ô , p and n and scalar (or invariant) integrals. For II the

expansion (actually true to any order in g) may be written as
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(6.11)

^ are scalar functions of p , n and p*n, and are expressible in

terms of the four scalar integrals a±, i = 1,2,3,4 defined by

V p 2

(6.12)

From this example the general procedure for expanding a tensorial

integral in terms of scalar integrals becomes clear. Let Tff be an n-rank

tensorial integral labelled by a (i.e., a = {\|J,*«#}), and 0 , i=l,2,«»«

be the complete set of n-rank tensor operators (one of which is p.p • • • ) •
A. \1

Then the scalar functions A± in the expansion

T a = I <></> A. (6.13)

can be expressed in terms of the scalar integrals

a = 0 T . (a not summed over) (6.14)
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Substituting (14) into (13) yields

so that

A± = I U a. . (6.16)
j

In this program, the operations of tensor algebra and the regularization of

divergent integrals are completely separated, so that it is not necessary

to generalize the algebra originally defined in, say, 4-dimension space to

one in 2w-dimension space. This implies that, among other things,

ô\\ = 4 (6-17)

rather than 6^\ = 2ÜJ as in 2üj-dimension space. Thus, for the task at

hand, the matrix U for (11) and (12) is a 4 x 4 matrix, with

(U~ ) = 6 6 = 4 (not 2<J) (6.18)

The scalar integrals a^ can now be reduced to a form suitable

for representation. For example, suppose

and

oi 0 *0^ - p D (6.20)
v

Then
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i= (p.n) J A -t^n - \ / A
 IP

()(p-q) q (p-q) q

/ ^ rB.2 r J4 l . l f A l l i A l n

(P*n) [f- / d q -5-5 + j / d q — - y / d q — 1
z ( ) 2 2 ( ) z q 2

(p-q)2q2 (p-q)

. ̂ - 2 E ! J d*q _ i _ ^ (6.21)
2 (p-q)2q2

The last two terms on the second-to-last line cancel, being equivalent by

the shift operation.

In evaluating (11) and (12) we will also encounter integrals such

as

I = / d4q K(p,q) (6.22)
(q«n)[(p-q)»n]

The standard technique to be used here is partial fraction:22

I = / d4qK(P>q) -i- [-Ï- + i ]
p *n q *n (p-q) *n

= -i-/d 4q [K(p,q)/(q-n) + K(p,p-q)/(q-n) ] (6.23)
p«n

where the second kernel in [ ] comes from changing variable q + p-q. This

technique can be applied repeatedly if necessary.

We are now ready to explain why it is necessary to take the last

step in (5.6), i.e., sending p=o=0 in (5.2), if Ward identities are to

hold. The reason is that many of the manipulations used to reduce the

Integrals to forms suitable for generalized representation are only appli-

cable to primal Integrals - integrals with only integer exponents. It

follows that Ward identities are true only for expressions involving primal
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integrals - integrals with all <, \x, and v being integers. This is why

Speer's analytic regularization does not uphold Ward identities, whereas

our method does, provided the representation for the integrals are

evaluated for integer exponents as charted out in (5.6).

In the axial gauge the actual computation reducing the A^'s in

(11) to linear combinations of primal integrals is rather lengthy31, and

the resulting expressions are too long to be given here. However,

computations involved in (12), (16) (i.e. computing the reciprocal of U~ ),

and manipulations analogous to (21) and (23) can all be carried out with

the aid of algebraic computer programs such as SCHOONSCHIP, REDUCE II or

MACSYMA. Let us simply take for granted that the A^'s have been thus

calculated. Then, substituting (11) into (7) we have

^ ^ ^ ^ ^ 3 4 ^ 0 (6.24)

implying that the Ai's must satisfy

A1 + A2 = -A3 - A4 . (6.25)

Remarkably, the A^'s we have computed reduce to linear combinations of

primal integrals that satisfy (25) identically, provided we let all tadpole

integrals be zero. Recall that tadpoles vanish exactly only if the associ-

ated exponents are integers; so we see once again the necessity of setting

a = p - 0 (see (5.2)).

Because the Ward identities (25) are satisfied at the integral

level - i.e., before the integral has been evaluated - it is clear that

they are still satisfied when the scalar integrals are generalized to 2or

dimension, regardless of the value of Ü). This strengthens our conviction
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that algebraic manipulation and regularlzation are two operations that can,

and should, be separated.

With the Ai's satisfying the Ward identities (25), (11) can be

rewritten as

% - K ~ P2n/(p-n)][p^p2n^/(p-n)] (6.27)

It is clear that both of the tensors P. and N. are perpendicular to p. so

(26) is guaranteed to satisfy the transversality condition (7).

When all the integrals are evaluated we find

2

no = y i^ [ f ^ - O - *4> (8-6C+ C 2 ) - ^ - ^ 2

8 r2
+ (̂  - 8 + 2Ç -f-) Z]

n.
g2c2

1 "ÏÏ7 (̂> (7- C-^)

-I (ii- 5+ C-^)Z] (6.28)

where 1/e is defined as in (5.13),

2 = 2

2
is proportional to the finite integral S(2,-1,-1,-1,1) = l y Z/(p«n),

Ç = 1/y. Note that only Ilo, the radiative correction to the zeroth order

self-energy has an infinite part. We do not at this stage know whether

this is a UV or an IR infinite term however.
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To find out the origin of the infinite term, we use the limiting

process described in the last section (see (5.6)) to delineate the two

types of singularities. In this calculation we must also take into account

the contribution from diagram (b) of Fig. 8, since tadpoles do not vanish

when UV and IR poles are counted separately. The result of this calcula-

tion is as follows: (a) the relations (25) are no longer manifestly satis-

fied at the integral level, but are satisfied when the primal integrals are

evaluated; this probably implies that there exist identities among primal

integrals of which we are not yet aware, (b) The values for UQ and 11̂  are

identical to those in (28), except that the pole term 1/e in (29) must now

be replaced by 1/ei; the self-energy has only a UV infinite part, but is IR

finite.

Thus, following the usual renormalization procedure, we can

remove this infinite part by adding to the original Lagrangian a counter-

term corresponding to the kinetic energy,

Sit(d--- ̂  >2

We now briefly discuss the verification of the three-point Ward

identity,

*px O p - q ' r ) = g fabC[tVi> - "!>>] (6-3i)

derived from first taking two functional derivatives of <5Z[J] and then

taking the Fourier transformation. Computation of the general one-loop

three-vertex function involves the evaluation of three-point integrals, for

which we do not have a generalized representation. We therefore examine
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only the special case, with q = -p, r = 0. The Ward identity of interest

is

= g n(1)(p) (6.32)

where a factor of fa"c has been removed from both sides. The three-ver-

tex is represented by the diagrams in Fig. 10.

2 *

Figure 10

It can be expanded as described in (13) to (16) so that again only scalar

two-point integrals need be evaluated. Again we find that: (a) if UV and

IR singularities are not separated, then the Ward identity is manifestly

satisfied at the primal integral level; (b) if they are separated, then

the identity is satisfied when the integrals are evaluated (through the

generalized representation), and T^' has only UV infinite parts; all IR

singularities having cancelled among themselves. The result3i is
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r(^v(p,-p,O) - 1 J il- (26 p v - 6jx- 6 ^ ) + finite parts (6.33)
loit Se.

implying for the general case

2
fi \ g C 2 ii cn\
^ q r) Ü - r ^ (p.q.r) + finite parts (6.34)

In the MS scheme , the wavefunction renormalization constant Z3

and the vertex renormalization constant Z 1 are defined respectively via

[if - n ( 0 ) t l f = (z,-i) n ( 0 ) t , (6.35a)
11 |iv |iv -"inf 3 ' Liv ' v y

(6-35b)

From (28) and (34), we see that at the one-loop level

e2c2
u

= 1 + -Ü- (6.36)
16ir2 3ex

The equality of Zj and Z3 is special to axial gauges, but not generally

true in nonaxial gauges.

To conclude this section, we have demonstrated that when properly

applied, analytic regularization preserves gauge invariance. The key point

is that after using the generalized representation S( w, ic, \i, v, s) to evaluate

Feynman integrals F(K,M,N,s) we must take the limit K •* K, \i * M. We also

showed that we can use the limiting process to separate UV singularities

from IR singularities without violating Ward identities. The method used

here to isolate algebra from the analysis for regularization also strongly
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suggests t;hat even though the regularization employs dim. reg«, it may not

be necessary to generalize the algebra to 2urdimension space. This conjec-

ture is certainly true for the limited cases studied here, but a more

extensive investigation is needed before it can be taken as generally

valid. In view of the recent controversy on the question whether super-

symmetric theories can be quantized because a regularization obeying all

supersymmetries may not exist, the task of searching for a regularization

that works independently of algebra becomes more urgent.
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7. The Light-Cone Gauge

7.1 Principal-Value Prescription

The light-cone gauge23 is a special axial gauge constrained by

the additional condition

n 2 = 0 (7.1)

Since only a nil-vector has zero-norm in Euclidean space the constraint (1)

can be nontrivial only in a nonEuclidean space, such as the Minkowski

space. Conventionally, integrals in the axial gauge have been derived

(mostly using the principal-value prescription) in the Euclidean space, in

which (1) cannot be met, so that the integrals had to be derived anew for

the light-cone gauge, and this had led to the belief that the light-cone

gauge is not a special case of the axial gauge.

In our analytic method, which gives results equivalent to those

derived from the principal-value prescription, the representation for the

generalized integrals, although derived in Euclidean space, is sufficiently

analytic to admit continuation back to Minkowski case, so that the

representation for light-cone gauge integrals actually is a special case of

the representation for axial gauge integrals.

In recent years the light-cone gauge, in spite of being

especially singular, has gained increased popularity because it is (a)

ghost-free; (b) at least superficially simple; and (c) physical. It is

ghost-free because it is an axial gauge. It is superficially simple

because, compared to (1.40), the propagator simplfies to

lim A<°)ab = i V (\ ~ — —) <7'2>
A.LL ^ A.LL

a->o p p m
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As well, we have already shown in §4 that two-point integrals in the

light-cone gauge are enormously more simple than the general axial gauge

integrals (see (4.18)).

Another feature adding to the attractiveness of the light-cone

gauge is that it allows one to work explicitly with only two of the four

components of the gauge field. Let us first choose n„ to be (in

Minkowski space with metric (1,-1,-1,-1))

n^ = (l,0,0,l)//2 (7.3)

Now any vector a*1 can be decomposed into the two components

a± = (a° ± a 3 ) / /2 (7.4a)

and the two-component vector that lives on the xy-plane

a = (0, a1, a2, 0) . (7.4b)

Similarly a contravector have components

a ± = (aQ ± a3)//2 = a
+ , (7.5a)

a± = -a
1 , i = 1,2 . (7.5b)

The scalar product is

2
a «b = a b = a.b + a_b + \ a. b

= a+b~ + a~b+ - a«b (7.6)



- 63 -

In particular

a«n = a + . (7.7)

The axial gauge condition therefore reads

n«Aa = A a + = 0 . (7.8)

The component Aa can also be eliminated from the theory by making use of

the equation of motion

ö«C » 9<K. »HaAa
 rabc .b-..cii. n /-i in\

— o — - — = —0 0.A — ef A o.A — U (/.lu)
a— ii a— "* Li ix +

yielding

.a- ô .ai ,abc 1 .bi.+ .ci /T n \
A = —^r A + gf — - A o A . (7.11)

9 ( o )

This means that the theory, which had a four-component gauge field Aa to

start with, can in the light-cone gauge be reduced to a theory involving

explicitly only two of the components.

96

The reduced theory has a particularly simple free boson

propagator

\. = i p 2 l,j = 1,2 (7.12)

but has somewhat more complicated 3 and 4 vertices:

,. _ ,abc
>,q»r) = gf

gfabC

6Jk[(q-r)1 - (q-r)
+ -±] + ̂  [(r-p^ - (r-p)+ -J]} (7.13)
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r(O)abcd, N . 2 r,abe,cde ro R * q sr,a

(p+q)+(r+s)

+ ôlkô..] + permutations} (7.14)

One may choose to use for computation either the Feynman rules

(12-14) or (7) and (1.38,39). The final result should be equivalent.

Because we want to compare our light-cone gauge calculation with the

results in §6, we choose to use the latter set of Feynman rules, in which

case the A a ± fields are not eliminated.

We first describe how the result (4.18) is derived by analytic

2 2 +
continuation. We shall consider n = 0 as a limit of n -> 0 . In this

2 2 2 +
limit y = (p*n) /p n •* », so our starting point is (4.9b),

S(W,K, n, v,s) = ••• x Gj'g (1/y I • • • ) , |y| >. I-

Near 1/y = 0, schematically16

G3*3 C 1 / y( "*° = y° 3 F2 (***l 1 / y )

where the (three different sets of) variables for the 3F2 functions have

been suppressed. The RHS is well-defined only in regions of C x Z2 space

where W<-K+H < 0 and -w-(jr2v-s < 0. Two regions in which these conditions

as well as the conditions for which the original integral exists (see

(4.12)) are the neighborhoods of {w, K, \X, V,S } = {2,-1,-2,0,1} and

{2,-1,-3,1,1}. In any such region, in the limit 1/y + 0+,
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y 3 F 2 ( " ' 1/y) -> 1;

the second and third terms on the RHS of (15) vanish, so that

S(oJ, <, \i, v,o) •> L(u), K, |i,"v =

which is equivalent to (4.18). Now, the RHS of (16) is well-defined in all

of C x Z2 with at most pole singularities, so by the principle of analytic

continuation it is a representation for S in the whole space, when 1/y =

0+, i.e., when n = 0.

We now discuss the Ward identities in the light-cone gauge, first

without attempting to separate UV and IR singularities. We find that again

both the two and three-point identities are manifestly satisfied at the

primal integral level, provided tadpole integrals are discarded (their

representation (16) are nil-valued). The one-loop self-energy22, which has

the form (6.26), is simple enough to be given here,

g2C2

(12L + 4L - 8L ) (7.17)
32 %

with

iT2(p«n)~V L( Ü),-1,-1, v) (7.18)
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22 (1)
The full expression for n (p,-p,0) is still too lengthy to be given

A|iV

here but its contraction satisfies the three-point identity (6.32) and

therefore also has the form (6.26). So far nothing sets the light-cone

gauge apart from the other axial gauges except its relative simplicity.

Its peculiarity is exposed only when the integrals in (17) are scrutinized.

When we evaluate the integrals in (17) using (16), we find

LQ = -1/e + 2

L2 = - l/3e + 13/18

where 1/e is defined in (5.13). This result is unusual in two important

aspects:

(i) The integral L_i contains a double pole of 0(1/e2) and a logarithmic
2

single pole of 0( Jinp /€). The latter is particularly bothersome

because it cannot be removed by a local counterterm.

(ii) The function n^ has an infinite part. This means that a counterterm

in addition to (6.30) and having the form ô A^ô AV is needed for

renormalization; n -dependent terms are not needed because n»A = 0.

The first point casts the renormalizability of light-cone gauge in doubt,

insofar as the usual method of using counterterms is concerned.

Whether a viable renormalization scheme can be found for our regularization

of the light-cone gauge is a question that has not yet been answered.

The strange result for the light-cone gauge can be understood by

examining more closely the analytic continuation used to derive (16) from
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(15). For any finite value of 1/y, the integral may be finite even when

more than one of the three terms on the RHS of (15) have infinite parts. An

example is the integral L_jj for which the first term in (15) is respon-

sible for the poles given in (19), including the double poles. For finite

1/y all of these poles are however cancelled by poles contained in the

second and third terms in (15); the integral is finite in axial gauges with

n2#0, see (6.29). In the limit 1/y •* 0+, the second and third terms are

discarded (see discussion following (16)) and the cancellation effect is

lost. The key point here is that a representation with drastically differ-

ent analytic properties is obtained if the limit 1/y -> 0 is taken before

all others. As an independent check of the correctness of (16) (in the

particular limiting process under discussion) an identical result can be

derived2<* by setting n^O at the outset and taking steps analogous to those

described in Appendix B. Integrals evaluated from (16) also agree, as

expected, with those computed using the principal-value prescription

according to (2.18).

Some of the peculiar properties of (16) are:

(i) The conditions for having pole singularities are different from those

of the general case:

(a) UV sing. when wt-K+|i >̂  0

(b) IR sing. (q=0) when wf|**-v_< 0

(c) IR sing. (q=p) when wt-ic < 0 . (7.20)

Only (c) is the same as before (see (5.1). It follows that in this

regularization power counting Is lost, explaining why the Integral

corresponding to L_i in the axial gauge is finite (see (6.29), but

has single and double poles in the light-cone gauge;
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(ii) UV and IR singularities are indistinguishable. This shows up when

one attempts to separate UV and IR singularities in the three point

Ward identity; the UV-infinite and IR-infinite terms do not separa-

2
tely satisfy the identity (they do in axial gauge with n Ä>);

2 2
(iii) "Unrenormalizable" singularities of order 0(1/e ) and 0(in p /e)

appear in one-loop calculations, as noticed earlier.

9.2 ;The Mandelstam Prescription

In view of the undesirable properties of the regularization (16),

there have been recent attempts to find new regularizations that may have

better properties. One such is proposed by Leibbrandt where

1 Aof V M

q »n (q *n) + n q,

(The scalar product q »n = qi»nit+ q «n in Euclidean space, and the light-cone

2 I ~*l

condition n =0 is satisfied by setting n ^ = ±i|n ) . The prescription

retains power counting, has only single poles and has been shown to satisfy

the two-point Ward identity at the one-loop level, but is Lorentz-

noninvariant.

Another Lorentz-noninvariant prescription, devised by

Mandelstam, 1 3 uses the replacement

q+ [q+] rr>o+ q +
(7.22)

where q- is defined as in (4a) and TI is a small c-number to be set to

zero after integration. Mandelstam used this prescription to prove the



- 69 -

finiteness of the N=4 supersymmetric Yang-Mills theory. Despite appear-

ances, the two prescriptions (21) and (22) have been shown to be

equivalent.32

Recently Capper et al. showed that the light-cone gauge

integral L(2,-1,-1,-1) in the Mandelstam prescription is finite, in sharp

contrast to the result (19) obtained in the principal-value prescription.

We are therefore motivated to find a representation for the generalized

class of two-point light-cone gauge integrals based on Mandelstam1s

prescription. As explained in Appendix C, j.n this prescription it is

necessary to evaluate the integral in Minkowski space.

We define the generalized integral as

M(u,if,|i,v) = lim /d 2 uq[(p-q) 2 + iT|) K(q2+i n) ̂ (q ++ir|qV (7'.23
TÏ>0+ Minkowski

32
for which we find the representation (for derivation see Appendix C)

-U1-
3,2 rl|l+v,l-w-K;l s

M0 G3,3 t5Ï0,wf^v,-u)-K-W >

.. -ill. ü), 2.0)fKH-Ll. +. V

M - K ™ ) (P ) *IP )
0 „, ,„, , "'-v)r(2(ofKrf |J-v)

z = 2p+p"/p2 (7.24)

where p± are the light-cone variables in (4a). This result has some sim-

ilarity to the one given in (4.9) but the two are obviously not identical.
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In particular the extra phase factor of le w œ in (24) comes from the

iact that (23) is defined as an integral in Minkowski space. Aside from

this phase factor, the two sets of results are expected to be identical

when v is a non-negative integer N. Indeed one can show that

r(- K) IX-

(7.25)

which Is identical to L(to, K, |X, V = N) of (16) to within a phase factor.

This implies that the Mandelstam prescription still does not obey normal

power counting for v = N >_ 0, since UV divergence is determined by the

abnormal condition urt-|j+v = integer _> 0.

We now examine the especially interesting integral with K=|JFV=-1,

which is the one (and only one) integral in the principal-value prescrip-

tion to become a regular but nonterminating series in the axial gauge

((6.29)) and to have a double pole and other peculiar properties discussed

earlier in the light-cone gauge ((17)). In the Mandelstam prescription,

from (24), we find it to be finite

< 1,

p +

(7.26)

in accordance with power counting. The one-loop correction to the self-

energy can now be read off from (17), (19) and (26), remembering that L2

and L Q are the same in the two prescriptions, and that L_i Is to be

replaced by (26). We find for the infinite parts
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g2c2

Of interest is that (no)inf is identical to its counterpart in the axial

gauge in the limit y • <= (see (6.28)). Still present is the infinite part

in rij, necessitating an extra counterterm for renormalization.

We briefly summarize some other results:

(i) The three-point Ward identity is separately satisfied for the

UV-divergent, IR-divergent and finite parts;

(ii) As in the axial gauge, infinite parts in both n„v and r^uv are

all of UV origin; all IR singularities cancel among themselves;

(iii) The infinite parts of I\„v are not the same as in (6.34);

(iv) The renormalization constants Z\ and Z3 are not equal, contrary to

(6.36).

This suggests that in the Mandelstam prescription, the light-cone gauge may

still require an unusual renormalization program; our calculation shows

that the theory in this gauge is probably not multiplicatively

renormalizable.

32Noted added: Vexy necent and pnelAmLnaxy KeAuLU, AuggeAt that the. tight-

cone. gauge, in the. MandeL&tm pneAcAiption itqiwiu only the.

noHmat tienoHmaJLlzatÂon pfiogfum, and that 1, - I,, pfiovAAzd

one. wofilvi In the two-component theoiy deAcxibed -in Eqi. {8-14)
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8. REHORMALIZATION, THE ß-FUNCTION, AMD ASYMPTOTIC FREEDOM

Although many quantities in gauge theories are gauge-dependent,

the physics described in such theories must be gauge-independent. One of

the gauge-independent properties in nonAbelian theories is asymptotic free-

27
dom. The coupling constant g for the interaction in an asymptotically

free theory becomes vanishingly small in the limit when the momentum X.

characterizing a physical event is increasingly greater than a certain

fixed momentum scale XQ, rendering the theory interaction-free. This

property can be expressed as

lim g2(X) •> 0 . (8.1)

The fixed momentum scale XQ can only be determined experimentally.

Asymptotic freedom is a result of radiative renormalization

effects symptomatic of all field theories. The calculations we have

already done in the last two sections for the one-loop corrections for the

self-energy ff and the three-vertex I\„v are sufficient for the dis-

cussion of this topic. We shall show that although the self-energy and the

three-vertex are not renormalized the same way in axial gauges as they are

in covariant gauges, the two classes of gauges yield identical quantitative

results for asymptotic freedom.

For theories that are multiplicatively renormalizable lion. the

tight-cänz gauge. i>tt note, at the. end ofa §7) the behaviour of g as a

function of X is characterized by its logarithmic derivative with respect

to \, known as the ß-function

ß(g) E \|BL& . (8.2)
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the X-dependence of g comes via the wavefunction renormalization constant

Z3 and the vertex renormalization constant Z\ which are related to g and

the bare coupling constant g 0 by

go = g Zl Z3 = g Z g <8'3>

where Z3 and Z\ defined by

if = z, n ( 0 ) t

(iV 3 LLV

(8.4)

Xu-v 1 Xfiv

(the superscript t denotes the transverese part of n„v, see §6), embody

radiative corrections which we have calculated to lowest order in g in §§6

and 7. From (6.28,34) these renormalization constants are the same in the

axial gauge (n 2*0).

- ! + til Ü [I + Jin 2 X2Zj_ - Z3 1 + ^ 2 3 £ + *n(p /X ) +

+ (X-independent regular parts)] . (8.5)

We have for the first time explicitly displayed the dependence of the log-

arithmic term on the scale momentum X. For a massless theory where there

are no other momentum to serve as a dimensionful scale, it is clear, from

dimensional arguments, that X must enter in this way. Our calculations

have shown that there are no other terms in Zj that are dimensionful -

2 2 2
the variable y = (p *n) /p n in the axial gauge is dimensionless. For

2 2
massive theories there may be terms such as m /X , but their logarithmic

derivatives always vanish in the asymptotic limit \ •*•<*>•
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In §5 we pointed out that, in radiative corrections, the logar-

ithmic and pole terms always occur in the same linear combination as in (5)

(see also (5.12)). The origin of this correlation lies in the expansion

(P 2A 2) 6 [i+ 0(e°)] = [1 + eAx(p2A2) + 0( e2) ][I + 0< e°) ]

= 1 + Äi(p2/\2) + 0(e°) (8.6)

This implies that for the purpose of calculating the ß-function to lowest
2

order in g , only the infinite parts of the renonnalization constants are

needed, since

öz az
X — - = - 2 — .. (8.7)
d\ 0(1/ e)

Let us define the•coefficients, b, t>i and b3 via

<Vinfinite = " 4 b ^ 1 <8'8)

<Zl,3>infinite = (bl,3 «2> 7 <8'9>

then from (3) and (5), for the axial gauge

11C 2
bYM = ^ ^ Y M = ( V Y M = ^ 2 + 0(g2) , (axial gauge) (8.10)

where the subscript YM denotes contribution from Yang-Mills fields only.

The significance of this relation, arising from the equivalence of the

renormalization constants Z\ and Z3, is that in the axial gauge the

renormalization of the self-energy alone determines the ß-function. This

relation does not in general hold in nonaxial gauges. Indeed, to lowest
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order for covariant gauges

C2 ,17 3a.
...
( V
V Y M -77-2

32 Tt

' 13(bj = (•*- - a) , (covariant gauges) (8.11)
3 ™ 32it2 T

where a is the gauge-fixing parameter (see (1.24)); the inequivalence of bj

and b3 results from the existence of ghosts. However, from (3), (8) and

(11),

11C2 o
bYM = ö + °(S ) « (gauge independent) (8.12)

showing that the coefficient b is a gauge-independent quantity.

We now proceed to demonstrate asymptotic freedom. Because g0

is independent of K, we obtain from (2), (3), (7) and (12), the

gauge-independent ß-function

ß(g) = 2g Z^Og/ad/e)]

» - bg3 + 0(g5) (8.13)

Because C 2 > 0 and therefore bvM > 0 to lowest order, the negative sign

in (13) implies asymptotic freedom. For if there exists a momentum XQ

for which g 2 is sufficiently small for the leading term in (13) to dominate

when \ » \Q, then the solution for g ( \) in the asymptotic region

» 1) is

Asymptotic freedom as prescribed by (1) then follows. We emphasize that
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the constant momentum scale XQ is not calculable in the theory; its

empirical value29 is 250 ± 150 MeV/c.

We now briefly discuss what roles fermions, which we havTe ignored

so far, play in asymptotic freedom and why an Abelian theory sue!' as quan-

tum electrodynamics is not asymptotic-free. The fermionic contributionc

to the renormàlization constants can also be calculated from the diagrams

in Figs. 8 and 9, but with all internal (gauge field) lines replaced by

fermion lines. The gauge independent result is ̂ 8

Nf
bfermion = (Vfermion = ^fermion = " T " 2 (8'15>

24 n

where Nf is the number of fermion species. Significant is the contrast

between the signs in (15) and (11): whereas by^ _> 0, b j e r m ^ o n < 0.

The total value for b is thus

11C 2
b = bYM + bfer,nion = ̂ 2 H ~ " Nf ) <8'16>

This means that a theory with Nf fermions is asymptotically free only if

11C 2
N, < (8.17)
t ~ 2

A nonAbelian theory such as quantum chromodynamics, with gauge group SU(3)

and C2 - 3, is therefore asymptotically free if

N, < 16 (for SU(3) . ) (8.18)
r — color

On the other hand, any Abelian theory must not be asymptotically free,

since C2 = 0 (see (6.9); the structure constant is zero for an Abelian

group) and Nf > 0.
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APPENDIX A - INTEGRATION IN EUCLIDEAN AND MINKOWSKI SPACES

For invariant integrals, where all quantities involved in the

integrand are scalar products, the only thing that matters in deciding

whether the integration space should be Euclidean or Minkowskian is the

possible range of values for the norm of a vector. For this determines how

factors appearing in a Feynman integral can be exponentiated.

Exponentiation is generally necessary before integration in a

generalized continuous dimensional space can be carried out. The only

formula needed for this task is probably also the most useful formula for

evaluating Feynman integrals, namely the Euler's formula

z^ = — - — / dt t"^"1 e" Z t , Re(z) > 0, Re( n) < 0 . (A.I)

IX-ü) o

The constraint Re(z) > 0 is of special interest to us.

In Euclidean space the norm of a vector not being nil is always

positive definite

p2 = P M P ^ > 0 , (A.2)

so one can use (A.I) simply by replacing the z there by p (or pS-m for

massive integrals).

In Minkowski space with metric (1,-1,-1,-1), because the norm of

a vector is indefinite,

P2 = P ^ = PQ " P2 , (A.3)

one must use (A.I) in a more round-about way:
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, 2. u def , . r(p ) p = lim [p

= lim i^ [-i P
2 +

+

œ 2
= lim — ^ — J dt t-pr e P ' " ^ , (Minkowski). (A.4)

T)-*)+ IX-H) o

One can see how the small T) > 0 term is needed to satisfy the first

constraint for (A.I); the limit r\ •*• 0 is to be taken after integration.
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APPENDIX B - DERIVATION OF (4.9)

The integral

S =S(u>,ic,mv,8) = Jd2a)q[(p-q)2r(qV[(q.n)2]V(q.n)S (B.I)

is evaluated in Euclidean space. Use (A.I) to exponentiate the three

2 2 2
factors (p-q) , q and (q *n) separately, and then use (4.8) to do the

q-integration to obtain

= So /"dt /"du /"dv t^"
1 u"1

= nU(p«n)S<n2)V(p2)0tl/[r(-iOlX-|i>IX-v)] ,

2 2 2
= (P*n) /p n ,

CL = c o + i f + n + v . (B.2)

Now transform the variables

u = \T,

t = \(1-T)Ç,

) . (B.3)

2
The Jacobian is a(u,t,v)/9(\, T,Q = \ and the ranges for integration are

(0,1) for x and Ç and (0,°°) for \. The \-integration is easily done -

again using (A.I) - to obtain
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1 ß, -1
S = S F(-CL) j à l l 1 ( 1 - 0

0

/ dx T - ^ d - T ) ^ " 1 ^ ! + y^l-D/l]1 (B.4)
0

where ao = -w-prv-s and ßi = «!-KH-V as well as ai are the same parameters

given in (4.10). The t-integration can be identified as a hypergeometrie

function 3F2 (see Luke, Sec. 3.6.(1); p.57), which can be expressed as a

1 2
G-function G ' (Luke, Sec. 5.2.(14); p.147) so that after a further trans-

»̂ ̂
formation

v = (1-Q/Ç , (B.5)

we have

» -0^,-1 - ß i + o t o 1 2 , i 1 + a l ' 1 + v ; ,
S = Sn r ( v f s + l / 2 ) / dv v U (1+v) l U G , ' , ( y v ) (B .6)

o ^ . ^ I 0 . 1 / 2 - s
0 . 1 / 2 - s

The integral is known, yielding (Luke, Sec. 5.6(18); p.165)

S J ( v f s + l / 2 ) - 1+a 1+CL,1+V;

S = " , . K 1 M (B.7)
K ^ OQ) j , j I 0 1 / 2 _ s

which is the result for y _< 1 given in (4.9a). The result (4.9b) for

y M is obtained by analytic continuation (Luke, Sec. 5.4.(3); p.150).

The reference used in (5.8) and (7.15) for expanding the G-func-

tion in terms of hypergeometrie functions is (Luke, Sec. 5.2.(7); p.145).
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APPENDIX C - DERIVATION OF (7.24)

Mandelstam's prescription for the light-cone gauge is devised

explicitly for integration in Minkowski space, so according to (7.22) and

(A.4), we define

M(ü),K,n,v) = lim / d2Wq[(p-q)2 + 1T1]< ( q ^ i i ^ (q++iîiqV (cl)
T1-»O+

the evaluation of which always depends on a generic integral over the

whole xy-plane

I = lim J dxdy(x+iTiy) e v y " " , Re(c) > 0 . (C.2)

n->o+

In order to exponentiate the factor (x+iriy) v with the aid of (A.I) we

integrate over the upper and lower-half y-plane separately and obtain

CD 00

lim / dt t~v" ie~T 1 t | dy "
cT(-v) Ty«+ o o

x [ i v e 2 i b v 6(y + f e + f ) + (-i)Ve-2iby 6(y + fe - §) ] (C.3)

where the 5-functions are from the x-integrations. The result for (C.3) is

easily shown to be proportional to a confluent hypergeometric function

lFj(-v;l-v;2iab/c) (Luke, Sec. 3.1.(18);p.4O). However, for our purposes

we write

^ ^ ( lim / dt t ^ 1

c (~v) TI^O+ 0

Now use this result to derive the equivalent of (4.8) for Mandelstam's

prescription in Minkowski space
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J(c.pu) = lim

= ••• /d q /dq dq •••

= ̂  fl*)" (-2ip-)-v a"1?2* / dt t-- l e2ipVt/c ( c > 5 )

The light-cone decomposition of vectors was explained in (7.4-6). We now

return to (C.I) and exponentiate the first two factors according to (A.4)

to find

K+Ll oo CD 2
H > j dC j dS r-«-lr^.~***VP r JfHsrp^). (C.6)

After substituting (6) into (5), changing variables

r = Hl-O

s = \Ç (c.7)

and integrating over \ (from 0 to °°), we obtain

1 CL

x / dt t"^1 [l + zt(l-a/ç] (C.8)
0

where ai = -ur\i and z = 2p+p~/p . This integral is identical in form to

(B.4), and can be evaluated following the same steps as those given in

(B.5-7), yielding (7.24) for Iz _< 1. The result for jzl >_ 1 is again

obtained by analytic continuation.
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