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L*ENERGIE ATOMIQUE DU CANADA, LIMITEE

Théories de Yang-Mills pour les jauges axiales et @ cone lumineux,
régularisation analytique et identites de Ward

par
H.C. Lee

Résumé

On commente dans ce rapport 1'application des principes de
généralisation et de continuation analytique a 1la régularisation des
intégrales divergentes de Feynman. Cette technique, appelée régularisation
analytique, est une généralisation de la régularisation dimensionnelle. Elle
permet d'effectuer des représentations analytiques pour deux catégories
d'intégrales a deux points et sans masse. La premiére catégorie est fondée
sur la prescription d'une valeur principale et elle comprend des intégrales
mesurées dans les théories des champs quantiques au moyen de jauges axiales

sans signal fantome (n. A = 0}, intégrales pouvant é&tre transformées
exceptionnellement en énté@ra]es mesurables au moyen de jauges & cone
lumineux (n-A = 0, n® = 0). La deuxiéme catégorie est fondée sur la

prescription de Mandelstam congue spécialement pour les Jjauges a cone
lumineux. Pour certaines intégrales mesurées au moyen de Jjauges a codne
lumineux, les deux représentations ne sont pas équivalentes. Les deux
catégories comportent des intégrales sous-catégorielles mesurées par des
“jauges ¢ " covariantes de Lorentz. Les représentations permettent: de
calculer les corrections d'une seule boucle devant é&tre apportées a
1'énergie propre et aux trois sommets, selon les théories de Yang-Mills,
pour les jauges axiales et a cOne lumineux, pour répondre aux exigences des
identités Ward & deux et & trois points; d'illustrer le fait que les
particularités wultraviolettes et infrarouges, indiscernables dans 1la
régularisation dimensionnelle, peuvent étre séparées analytiquement; et de
montrer que certaines intégrales Tadpole disparaissent parce que les
particuiarités ultraviolettes et infrarouges s'annulent complétement. Dans
la Jjauge axiale, les constantes de renormalisation des sommets et des
fonctions d'onde, a savoir Z, et Z], sont identiques de sorte que Tla
fonction 8 peut provenir d1§ectnment de Z, (c'est-a-dire de 1'énergie
propre} le résultat étant le méme que célui obtenu dans les jauges ¢
covariantes. Les résultats préliminaires semblent indiquer que les jauges a
cone lumineux employées dans le cas de la prescription Mandelstam et non
dans le cas de la prescription & valeur principale, ont la meme propriété de
renormalisation que les jauges axiales.
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ATOMIC ENERGY OF CANADA LIMITED

YANG-MILLS THEORIES IN AXTAL AND LIGHT—-CONE GAUGES,
ANALYTIC REGULARIZATION AND WARD IDENTITIES

H.C. Lee

Abstract

The application of the principles of generalization and analytic
continuation to the regularization of divergent Feynman integrals is dis-
cussed. The technique, or analytic regularization, which is a generaliza-
tion of dimensional regularization, is used to derive analytic representa-—
tions for two classes of massless two-point integrals. The first class 1s
based on the principal-value prescription and includes integrals encoun-
tered in quantum field theories in the ghost-free axial gauge (n+A = 0),
reducing in a special case to integrals in the light~cone gauge (n°*A = O,
n2 = 0). The second class is based on the Mandelstam prescription devised
especially for the light—-cone gauge. For some light—cone gauge integrals
the two representations are not equivalent. Both classes include as a sub~
class integrals in the Lorentz covariant "Ef-gauges”. The representations
are used to compute one-loop corrections to the self~energy and the three-
vertex in Yang-Mills theories in the axial and light-—cone gauges, showing
that the two- and three-point Ward identities are satisfied; to illustrate
that ultraviolet and infrared singularities, indistinguishable in dimen-
sional regularization, can be separated analytically; and to show that cer-
tain tadpole integrals vanish because of an exact cancellation between
ultraviolet and infrared singularities. 1In the axial gauge, the wavefunc—
tion and vertex renormalization constants, Zj3 and Z;, are identical, so
that the B-function can be directly derived from Z3 (i.e. from the self-
energy), the result being the same as that coumputed in the covariant
f-gauges. Preliminary results suggest that the light-cone gauge in the
Mandelstam prescription, but not in the principal value prescription, has
the same renormalization property of the axial gauge.
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PREFACE

These notes are based on lectures given at the Physics (Centre,
National Taiwan University, in March and April, 1984, and at a number of
other places in China and Japan in May.

The lectures deal at a pedagogical level with topics related to
the need for, and methods employed to the regularization of divergent
Feynman integrals in quantum field theories. The magjor part of these notes
ig devoted to the development and application of a new analytic regulariza-
tion technique.

Although regularization involves relatively simple mathematical
concepts and techniques, it is not unusual that a student does not learn
about renormalization - perhaps the single most important topic setting
quantum field theory apart from its classical counterpart - because he is
intimidated by divergent integrals he encounters but cannot deal with.

With the advent of the method of dimensional regularization, the evaluation
of divergent Feynmman integral has for the most part become routine. In
these lectures we discuss a recently developed gemeralization of this
method that we call analytie regularization. In essence it <6 a hybrid of
an older method bearing the same name and the dimensional method. In
developing the analytiec method the two-step procedure of generalization and
analytie continuation is given spectial emphasis. Among the advantages of
taking such a systematic approach ig the reward of finding representations
for classes of Feynman integrals that are extremely easy to evaluate. The
power of this approach is especially manifest in dealing with integrals of
Yang-Mills theories in the ghost-free axial and light-cone gauges.

An of'ten sought after property of a regularization method is the
preservation of symmetriee in the associated field theory, some examples of
which are gauge invariance, the Becchi-Rouet-Stora invariance and supersym-
metries. With this goal in mind, these notes follow a program whereby the
operations of tensor algebra and the regularization of integrals are separ-
ated as much as possible. In such a program only formally invariant, or
sealar, integrals need be regularized. From the point of view of such an
approach, the dimensional method is a purely formal technique which need
not be associated with "doing physiecs in 3w dimencions". Thus the trace of
the Euclidean metric 18 equal to the dimension d (an integer), mot to the
generalized dimension 2w (a continuous variable). This approach is the
generalization of the one known in the literature as dimension reduction.
Although we believe it shows great promise, in these notes we have only
shoun that it preserves guage invariance, at least at the one-loop level.



The reader is assumed to have a rudimentary knowledge of Yang-
Mills theory and the functional method, which are discussed briefly in Sec-
tion 1. The bibliography - we make no pretense for it being complete -
given at the end of these notee provides the student with material for fur-
ther reading on these topics.

Some of the results given in Section 7, especially those pertain-
ing to Mandelstam's prescription for light-cone gauge integrals, are new,
having been derived after the lectures were given. These results, together
with Section 8, the content of which became possible for discussion within
the context of these notes only after the new results were obtained, are
included here for completeness.

My gratitude to Michael Milgram ie best expressed by saying that
without his collaboration all of the work reported here would not have been
done. I am thankful to George Leibbrandt for his help during the early
phase of work and for his continuing interest. I thank Kuo-Lung Chang for
the invitation to National Tatwan University and the Faculty of the Physics
Department for ite hospitality during my stay there, where these notes were
first drafted. I thank the Physics Departments of Cheng-Kung University
(Tainan), Zhengzhou University, Wuhan University, Hiroshima University and
Tokyo University (Komaba), and also the Institute of High Energy Physics
(Beijing), the Institute for Theoretical Physics (Beijing) and the Insti-
tute for Fundamental Research (Kyoto), where parts of these lectures were
given, for hospitality. Last but not least, I thank Margaret Carey for
carefully preparing these notes.

This work was partially supported by a grant from the National
Setience Council (Taipeti).

4.C. Lee, Chalk River, 1984
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l. Yang-Mills Theory, Gauge Fixing and Ghost-Free Axial Gauges

In the functional method, the sourceless (J=0) generating

functional for a Yang-Mills theory with fields Ai is given by

2[J=0] = z[0] = [ [da]elSIA] (1.1)

where
4
Ss=[dax& (1.2)

is the action and

=~ L W
K=-gF F (1.3)

is the Lagrangian density, and the field tensor is

F,=0A - BA +g(d xA) . (1.4)

The gauge field ép transforms as a vector of the gauge group G. The
components of such vectors will be labeled by the indices a,b,**s. The
scalar product and the cross product in (3) and (4) are defined

respectively as

AsB = A% , (A x E)a - fabc AbBc (1.5)

where fabc are structure constants of G. The symbol f[dA], or the path
integral, in (1) is meant to integrate over all possible values of each
gauge field Ai(x) at each space-time point x. In the following, we will
often drop all labels of the gauge field and simply express it as A.

The group G is defined by the set of "gauge"” transformations
leaving the action S invariant. Let h be an element of G, h€ G. Then

under the action of h,



A > Ah

S[A] > S[A"] = s[a] . (1.6)

The transformations are gauge transformations, which are local because h 1s
a function of space-time. Clearly if the number of elements in G is N then
S 1s N-fold degenerate. For Yang-Mills theories G 1s a Lie group which,
being continuous, has an infinite number of elements. Thus S has an
infinite degeneracv. It follows that the generating function Z[0] in (1)

is not well-defined, since it contains an infinite factor proportional to

(I [raa") = frda]l fan .7
hé&G

As we shall see later, a symptom associated with this infinite degeneracy

is that the propagator derived from (2) will be singular.
In the path integral method, the infinite gauge degeneracy is

removed by imposing on the integral a functional constraint
F[A] = 0O (1.8)

that breaks the gauge invariance, thus Insuring that each infinite set of
gauge equivalent paths will be integrated over only once. This is a method
first used by Faddeev and Popov.l Here we follow Lee.2

Define the functional

A;I[A] = [dh &CF[A"]) (1.9)

where fdh integrates over the group space for each A at each space-time

point. It is clear that Ap is invariant under the transformation



A > Ah'. We now insert the factor
1= A[A] fdn S(F[AP]) (1.10)

into the right-hand-side of (1) to obtain

z[0] = [[dA] 4 [A] {fdn s(r(aP)) Je1SIAT | (1.11)

Because f[dA] integrates over all possible values of A, including those
covered by gauge transformations, and because f[dA], A&[A] and S[A] are

all gauge invariant, we may change variable

n~1
A +A (1.12)

and rewrite (11) as
2[0] = [1da] 4 1] &F(a]) 5141 fan (1.13)

to isolate the infinite normalization fdh mentioned earlier. We now

redefine Z[0] by removing from it this infinite factor, so that
- isfA
2[0] = [(da] A [A] (F[a])eSA] (1.14)

is now well-defined; in a manner dictated by F[A], the integral takes only
one path among each set of gauge equivalent paths. This equation will not
be suitable for computation in perturbation theory until the two factors
AF[A] and &(F[A]) are exponentiated.
For the first factor, we recall the identity
-1

fax £y = ) (1.15)
£=0



and write
-1
6. Al = fdn &(F(A"))
= fan o[F a0 }"])
x,a
-1 |&F[A
= det —E;-l
" |F=0
= -1 |6F[A] &
- et |
F=0
— -1
= det (M) (1.16)
The matrix Mp has elements
a
<x,alMFly,b> = 64(x-y) EE;———rDCb(x) (1.17)
c p
aAu(x)
where
:b cb cba ,a
D = 8§70 =~ igf 1.1
“(X) p - 18 A (1.18)

is the covariant derivative associated with gauge transformations under G.

Eq. (16) also reads
AF[A] = det(MF) . (1.19)

But a determinant can be expressed as a path integral of anticommuting

fields.2 Let such fields be £ and mn; then one may write

i8s host
det(M;) = [[dg)[dnje E"°° (1.20)

— 4 4 ab
Sghost[A’F” n = [d xxghost = [a'x £, (M) ™ (1.21)



€ and n are called ghosts (fields) because they do not represent physical
particles, but owe their existence purely to the constraint (8). Ghosts do
not appear as external legs in any Feynman diagram representing a physical
amplitude but do propagate as virtual particles. They interact with the
gauge fields through the term EMgn in sghost'

We now turn to exponentiating the factor &(F[A]). The simple

way, sufficient for our purpose, is to make use of the relation

2
5(F) « 1im e IF /20 (1.22)

x>0

A more general result, replacing the constraint &(F[A]) by the weighted

constraint
-ic2/2a
fdc e &(F[A]-c) (1.23)
where ¢ is independent of A, yields

2
§(F-c) » e 1F /20 (1.24)

with @ now being an arbitrary parameter (the gauge parameter), in particu-
lar not restricted in value to the limit a + 0. It is clear that the
right-hand-side of (24) no longer implies the constraint F = O. The con-
straint (22) is obviously a special case of (24) which does imply F = O.

Recall that the constraint (24) or (22) is imposed on each and every space-

time point, so (24) suggest the gauge fixing action
4 2
S,.¢.[A] = - [ d'x (F[A]) /2a . (1.25)

Combining (14), (20), (24) and (25) then leads to the effective action



(A E,n] _ o[A] {A,E,n]
Serr =3 + sghost + Sg.f.[A] (1.26a)

and the generating functional with a fixed gauge

is_ . [A,E, 7]
210] = f[dA][dE][dn] e °©if . (1.26b)

Finally, many formal relations are more easily derived from a

generating functional with source i“(x), defined as

18 [A,E, 0, 0],
Z[J] = [[dA][dE)[dn] e °©ff (1.27a)

= 4o ok,
SepelArEimd]l = S IA 8 m) + Jd'x IFA (1.27b)
A class of widely used (Lorentz) covariant gauges is specified by

Fla] = 3, At : (1.28)
When the condition F=0, realized in the limit a0 in (24), 1is chosen, this
gauge 1s analogous to the Lorentz gauge in quantum electrodynamics. The
ghost action associated with (28) is

= 4 ab. i, _ abe, W ¢ c
Sgnose = J 4 x 5,[8770" — 1g£%7%(2a% + Ao In (1.29)

In the limit « =+ O, a“Ai = 0, so

4 b abc,c
= I - B .
iim Sghost ;dx ga (6‘3 Op igf Ap)a % (1.30)

the ghosts are still coupled to the gauge field through the EAuapn term.



There 1s therefore no simplification when the limit «+0 is chosen. The
gauges fixed by (28) with a having various special values have been given
names associated with their earliest proponents: o=0 is the Landau gauge;
a=1 is the Feynman gauge; a=1/3 is the Yennie gauge.

The axial gauges3 form a class of gauges characterized by the
usage of a constant vector n,. This singles out a special direction in
space time, so such gauges are not Lorentz covariant. The simplest of the
axial gauges has

F[A] = n A" (1.31)

i

which has the ghost action

_ 4 ab_p. _ abec p,c
Sghost = Jd'x ga[a n'd - igf A“] m, (1.32)

Significant in (32) is the absence, due to the fact that n, is a constant

instead of an (derivative) operator, of a term corresponding to the

§A“3“n term in (29). Thus in the limit a + O, nuéu = 0, so that

- 4 B
ii;nol Sghost [d'x Enon (1.33)

is independent of gauge fields. This means that for axial gauges in the

limit «#0 ghosts are decoupled from the rest of the theory, and the factor

is

lim J[dE][dn]e ghost const.
a0

becomes just an insignificant normalization constant for the generating

functional.

"t is csear from the discussion above that for an axial gauge to

be ghost—-free there are two necessary conditions:



(1) The constraint must not involve any derivative operator acting on
the gauge field;
(i1) The value for the gauge parameter must be taken in the limit a-0.
An example for an axial gauge constraint containing the derivative and

: L
therefore not ghost-free even at o0 is

F[A] = nua“nvé" (1.34)
giving a ghost action

abcAc

Sehost = - Ja*x [(“pauia)(“vavna) + gf uia(a“nb)] . (1.35)

In the rest of these lectures, by axial gauge we shall mean a
gauge constrained by (31), for which the limit o0 will always be taken.
Thus

axial - 4 .1 R o 2
Seff [A]—ii;gfdx[ 4E—p.v£ Za(nué)]

1 4 2 1
= }7:3 {5 fa" [a¥(s g, 0,0, 5" n JaY

2
-g(da-aa (K xaTy - B x4 %) (1.36)

from which one can read off the kinetic energy, or the coefficient of the
term quadratic in A, in the momentum representation,

rI(O)abE <t.)abH(O) - - 6ab (I—‘25

1
- + = .
v ™ 1 pupV nn ) (1.37)

[ ZNTRRY

and the three and four-vertices



1,,(O)abc: = gf abc[

3Ty S (P * 8, (=), + 8, (r-p) ] (1.38)

p(0abed _ _; 2reabecede s s _ o 5 oy 4 by Coh] a3

4 uvpo Up VO uo vp v+*p
The reciprocal of Hﬁg)ab gives the free propagator
sab P DR R P P
Af;(\):)ab = &P E;O) 2 6, - P (g 7] (140
P pen (p*n)

As 15 well known, it is much easier to evaluate Feynman integrals
and to discuss most formal properties of gauge theories in Fuclidean space.
Unless otherwise mentioned, we shall work in this space in these notes. In
practice working in the Euclidean space means replacing the metric 8uv by

the Euclidean metric

g,y > 8y = (LLLD) (1.41)

For Feynman integrals, Mink. wski space can be reached by analytic

continuation after the integrals have been evaluated.

The singularity in Aig) in the limit a+= is directly related to
the divergence of the genmerating functional for a gauge invariant action.
For in this limit the gauge fixing action vanishes. Another way of recog-

nizing this singularity is to observe that the matrix
2 -
P8y PyPy

has a null determinant.
In perturbation theory the propagator (40) and the three and

four-vertices (38) and (39) are the only quantities needed for computation.
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Among these quantities only Atz) depends on a, bteing finite at o=0. There-

fore the limit a0 can be taken at this stage, thus making the theory ghost
free. The fact that Hﬂ%) diverges in this limit may appear worriscvme.

(0)
lein Huv is totally

decoupled from the rest of the theory. Whether it diverges or not is

Later (see §6) we shall show that the term -% n

therefore of no significance.
For completeness we give the propagator in the covariant gauges

defined by the constraint (28):

ab PP
A(0) covariant gauge _ 1 o) [5 - (1-q) B v] (1.42)
Ry . P2 wv P2



-11 -

2. Regularization and Dimensional Regularization

2.1 Need for Regglgrization

The class of processes involving the creation and annihilation of
virtual particles is what sets quantum field theory apart from the
classical theory. A typical such process 1s the vacuum polarization

represented by the Feynman diagram in Fig. 1

Figure 1

where the arrows represent the flow of momenta. Using the propagator and
the three-vertex given in (1.40) and (1.38) respectively to compute this
diagram (see (6.8)) entails the evaluation of the following integral, among
others,

1(p) = J a*qe —1 (2.1)

(p-9)q

Simple power counting shows that I{p) is (logarithmically) divergent at
g*®, or ultraviolet (UV) divergent, rendering the integral meaningless.
One way to interpret the existence of such divergences in quantum field
theories is to think of such theories as being incomplete in the region of

infinitely large momentum, or at distances very close to zero. A procedure

known as renormalization has been developed to contrel UV divergences in

quantum field theories in such a way that physical occurrences at finite
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momenta are precisely described independently of what may happen at infin-
ite momentum. The first step in this procedure is to regularize, or regu-
late, divergent integrals such as (1).

Loosely speaking, to regulate a divergent integral is to isolate
the infinite and regular parts of the integral in a well-defined way. It

is clear that such a separation is not unique, for if

is a separation, then
I =(2+ b))+ (a~-b)

is also a separation. This means that there can bé more than one viable
regularization method. On the other hand, if a renormalization program is
to be meaningful it must give results describing physical occurrences that
are independent of the regularization method.

One of the oldest and sometimes still used regularization methods

is due to Pauli & Villars.® It entails the replacement

1 1 1
> - (2.2)
(p-q)2 (p-q)2 (p-q)2+M2

for some or all factors in the denominator of an integral so that the

integral (1) may be formally defined in the limit

def
4 1 1 1 1
I(p) = lim [ d'qf - = - -5l (2.3)
Mo (P-q)2 (p-q)2+M2 q2 q2+M2

The integral on the right-hand-side can be rewritten as



—13_

4 ¢ b 1
M [d'q (2.4)
(p=0) 21 (p-q) 241212 (q2P)

which manifestly does not diverge as q#~ ; it is finite for all finite

values of M.
Another regularization method is the cut-off method

4
[dak(p,) »1m [, , d*q Rp,0). (2.5)
Aro g <A

Such methods, although useful under certain circumstances, have
shortcomings arising from their undesirable algebraic and/or analytic

properties. For example distributivity

i d4q(A+B) = f d4q A+ [ d4q B v (2.6)

and partial fraction

1 _ 1 4 1 _ 1
[ & ey =as J el ery) 2-7)

are sometimes lost in the Pauli-Villars method and the shift operation,

or translational imvariance,

f a*q a@) = J a%q Alaray) (2.8)

is lost to the cut—off method. In the above equations A and B are func-
tions of q, a and b are constants and qq is a fixed momentum. An even
wore severe defect suffered by both methods iIs that they do not preserve
gauge invariance. Technically the methods are also very cumbersome. As a
general rule the evaluation of a "massive integral” such as (4) is always

considerably more tedious than that of a "massless Integral” such as (1).
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2.2. Dimensional Regularization

A very powerful method, known as dimensional regularization,”
based on the principle of analytic continuation, exploits the possibility
of defining integrals in a continuous dimensional space. In dimensional

regularization (dim. reg.), instead of evaluating an integral such as

"t

11s52] = fa%q s(a) ' (2.9)

one conslders as a function of the continuous (possibly complex) variable w

the integral

.2
I[s;e] = [ a°%g s(q) (2.10)
and defines
11s;2] %€F 1m 1(s; 4 (2.11)
w2+e

The method is useful because divergent Feynman integrals defined
as in (11) become functions having poles at «w=2 in the complex w-plane,
which therefore have well~defined mathematical properties.

Because dim. reg. is an analytic method, it has very good alge-

braic properties. In particular the method admits

commutivity: A[B= (4B (2.12a)
distributivity: JtA+B)=[A+ [B (2.12b)
associativity: fcaBc) = [(AB)C + [A(BC) (2.12¢)

shift operation: f dzuh A(q) = f dth A(q+qo) (2.124)
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The following illustrates how all of the above can be exploited

to simplify a computation.

P, f dq qp/[(p-q)zqz] = [dq peq/[*°*] (comm.)

2 [ aqlp*a® - (pmq) 21/ ++1)

3 { Jaap®/toeel + [dq %/ 1eee) = [ aa(e-0) /[ +++1} (atst.)

702 [da/(p=aDa?+ 3 [ da/(p-q) % - } [ da/q? (ass.)

(p2/2) qu/(p-c1)2q2 (shift) (2.13)

Hereafter, where there is no risk for confusion, we will often use the
shorthand qu for fdzuh. The last line in (13), having a scalar inte-
grand, is easier to compute than the original integral with a vectorial
integrand. The manipulations employed in (13), although standard for fin-
ite and well-defined integrals, are in general suspect for divergent inte-
grals. In particular they are not allowed when w2, nor are they proper
for the nonanalytic Pauli-Villars and cut-off regularizations described
earlier.

A crucial property of dim. reg. is that it preserves the gauge
invariance of gauge theories. This and reasons given earlier concerning
its superior algebraic properties explain why the method has been used
exclusively in the proof of the renormalizability of nonAbelian gauge
theories.

Powerful as it 1s, dim. reg. still has some deficiencies:

- Formally the method cannot regulate 'tadpole' integrals (see below);
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- The method does not distinguish ultraviolet (UV) from infrared (IR)

divergences;

- The method is not powerful enough to regulate some integrals in the axial

gauges.

2.3 Tadpoles

Tadpoles are Feynman diagrams containing loops but having only

one vertex connected to external legs. Conservation of momentum then
dictates that the integrand for the corresponding loop integral cannot
depend on any external momentum. The simplest tadpole is a 1~loop diagram

with one external leg, as shown in Fig. 2.

Figure 2. A tadpole.

This diagram has the simplest integral for Yang-Mills theory in the

Feynman gauge (a = 1)

fa*q L9 1 2% & = n(w (2.14)
7 7
q w2te q

As will be described in detail in §3, the way to proceed is to first
identify a region in the w plane in which I(w) is well-defined, evaluate
the integral in that region, and then analytically continue the result to
the limit w»2. Now simple power counting tells us that I(w) is

- UV divergent (at q2 + ©) when Re(w) > 1,

- IR divergent (at q2 + 0) when Re(w) < 1,
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so no region in the w-plane exists in which I(w) is regular. Therefore
dim. reg. cannot be employed to regulate I(w). This result is general:

the set of integrals
4 2. N
1,=Jd'q (a)

cannot be regulated by dim. reg. for any N. Therefore, if dim. reg. is
used as a regularization method, a supplementary ansatz must be given to

deal with tadpoles. Conventionally the definition

[ a?% (BN f o (dim. reg.) (2.15)

has been adopted. In §4 we shall show rigorously that this definition,
although surprising at first sight, is an appropriéte one. A rigorous

theory of similar integrals is well known to mathematicians.30

2.4 Infrared and Ultraviolet Diveraences

In theories with massless particles Feynman integrals may be IR
divergent as well as UV divergent. These divergences arise for different
reasons and are to be treated differently. Infinities of the UV type are
to be absorbed into renormalization constants for wavefunctions and coup-
ling constants whereas IR infinities are to be cancelled by their counter-
parts arising from radiation of real, low energy gauge bosons. For this
reason it is sometimes desirable to separate the two types of infinities.
In dim. reg., all infinities arising from integration manifest themselves
as identical poles having the form 1/(w-2) in the w-plane (2w is the gener-—
alized number of d'mensions). The separation of UV from IR singularities

is therefore generally not straightforward.
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A commonly used technique for isolating IR singularities is to
assign masses my to particles with which the singularities are associa-
ted. In this way UV singularities remain as poles in the w-plane whereas

IR singularities are converted to logarithmic singularities #n my in the

limit my - 0. While effective, this technique replaces massless inte-
grals by massive ones thus invariably making them more difficult to evalu-
ate. Because giving masses to massless gauge bosons also destroys the
gauge invariance of the original theory, Ward-Takahashi identities are

often lost as a tool for checking the calculation.

The inseparability of UV and IR singularities in dim. reg. is

intimately related to the value assigned to tadpole integrals in that
method. Later in §5 we shall show that in many cases the vanishing of tad-

poles result from the cancellation between the two types of singularities.

2.5 Axial Gauge Singularity and the Principal-Value Prescription

In axlal gauges the factor pr*n appearing in the denominators in
two of the terms for the propagator (1.40) gives rise to a third kind of

singularity in some Feynman integrals. An example of such an integral is

L (2.16)

4
[dq —FF"
(p-9)2(q n)>

which, in addition to being UV divergent, has an additional singularity

assoclated with the possibility that the quantity qe°n vanishes.
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Unlike UV and IR singularities, the axial gauge (AG) singularity

is purely an artifact of gauge fixing and is void of physical meaning. It
1s nevertheless very real from the mathematical point of view and must be

dealt with if any computation is to be done in an axial gauge.

Until recently the most successful and widely used method to

handle the AG singularity was the principal-value prescription,7 in which

negative powers of the factor qen are defined as the limit

(qen)"N def %. o [(qun+ i N+ (qm - 1pV] . (2.17)
0

Combined with dim. reg., integrals involving suct factors are then defined

as

[ a% s(q)(qem)™V def

(N-]:l)' lin Re %;,JN—l {1m [ a*% s 2221} . (2.8
-0 w2+e (q ) 1

The evaluation of the right-hand-side, involving two limiting processes, is

usually a tricky and difficult task. We shall give an example of it later.
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3. Generalization and Analytic Continuation

We shall now introduce a new regularization method which we call
analytic regularization (an. reg.). In essence it is a generalization of
dim. reg. designed to remove the shortcomings of that method mentioned
earlier. The term analytic regulariztion has been used for some older
methods 8 employing techniques similar to those employed here for the new
method. The older methods were abandoned partly because they were incom—~
plete, and more importantly because the analytic technique employed in the
method was given an incorrect physical iInterpretation. We shall return to
discuss the old method in a more appropriate context later.

To understand an. reg. properly it is important to have a clear
understanding of the two important steps used in the method, generalization
and analytic continuation, which will be discussed below. Luckily, both
are well established subjects in the theory of functions, relieving us of
any need for detail and rigor in our treatment.

Consider a function f; formally defined on a set £ of discrete

points x; which can be divided into two subsets, S, and Sg,

s =551 S
such that f; is well-defined if x; belongs to S, but is ill-defined

if x; belongs to Sp.

An example for such a function 1s the set of integrals

£z fafNg — 1 (3.1)

N~ 2 2
(r-q)" q

formally defined over the 2N-dimension integration (Euclidean) space.
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The set S of points in this case contain the set of half integers 1/2, 1,
**+. In writing fy the notion that the right-hand-side must also be a

function of p2 is suppressed. Upon inspection one finds that fN is UV
divergent when N > 2, is IR divergent when N < 1, and is regular only when
N = 3/2. That is,

(3.2)
{1/2, 1, 2, 5/2, **} .

Sy

Thus, as it stands, fy is meaningful only when N = 3/2. To make sense of
fy with N € Sg the integral in (1) must be regularized.

This can often be accomplished by first generalizing the
definition of the original function. Instead of considering fj on the
set x4 € §, we consider the function f(x) formally defined for th=
continuous variable (which may be complex) x in the region R. The

generalization is therefore

£y - f(x)
xi(points) > x (continuous variable)
S (set) =+ R (region) (3.3)

Obviously, 1f the generalized function 1s to have anything to do with the

original one, R must contain S,
SCR. . (3.4)

The mapping (3) satisfying (4) is given schematically in Fig. 3 where R is

shown to contain at least two regions Ry and Ry satisfying
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Figure 3

RD RA@ Rg, R, D8, RBD Sg (3.5)

such that f(x) 1is well defined if x & Ry and ill-defined if x € Rp.

Furthermore, for the points x11& R, f(xi) must be formally identical to fi

£(x;) = £, , x, € S R. (3.6)

It is clear that (6) does not uniquely define f(x), since the original
definition of f{ says nothing about points not belonging to S. It
follows that for any set of f; infinitely many generalizations are
possible. This also explains why there have been so many regularization
methods for divergent Feynman integrals.

Returning now to our example (1), one of the possible generaliza-
tions for fN is precisely that used in dimension regularization, where

the set of half-integers N is generalized into the continuous complex vari-

able w:
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1 1

£, £w) = [a?% 5, N»>uw C (3.7)
(p-9)" g

and the region to which w belongs is the 1-dimensional complex space Cl.
Since normally integration 1s defined only for integer-dimension spaces,
one must specify what is meant by the notation f dzuh in (7). The
definition given to it in dim. reg., which is also the one we shall adopt,

ie specified via the generalized gaussian integral

2
[ a?8g T2 def ., 0 (3.8)

and this is sufficient for one to do all Feynman integrals, as far as the
portion relating to continuous dimensions is concerned.

By power counting, the integral is well-defined at least in the
line section 1 < Re(w) < 2. It is therefore meaningful to compute the
integral. The result, in conjunction with (8) (see a later section for

technical detail), is

f d2wq 1 i nw(pZ)w-Z
(p-q)zq2

[T 1) PR(2-w)/ (2 w-2)

W

g(w , 1 < Re(w) <2 . (3.9)

Note however that the right-hand-side of the integral, g(w), is well-
defined even beyond the region specified in (9). In fact g(w) is regular
everywhere in Cl except when w is equal to any integer. It 1s important to
realize that formally f(w) is not identical to g(w). For power counting
shows that f(w) is ill-defined at least when Re(w) < 1 and 2 £ Re(w), while
from the analytic property of the gamma function I{z) (poles for nonposi-

tive integral values for z) g(w) 1s regular everywhere for w Cl except
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when w = 0,#1,+2 eee  ipn which case it has single poles; g(w) is well-
defined everywhere in Cl. At least in the region 1 < Re(w) < 2, f(w) 1is

well-defined and equal to g(w). Therefore, according to the principle of

analytic continuation, the region in which g(w) may be used to represent
f(w) can be extended to cover the whole region in which g(w) is well-

defined, that 1s for all w-e-Cl. Thus, g(w) 15 a repfesentation for f(w)

for w € Cl. With this understanding, the distinction between f(w) and g(w)

may now be forgotten, and the restriction given in (9) on the region of

validity can be neglected.

After the two-step process of generalization and analytic contin-
uation, g(w) can now be used as a representation for the original sometimes

ill-defined set of integrals fy in (1), as follows:

e 980 140 g(w) (3.10)

N w>N
The right-hand-side has a pole at W = 1 reflecting the IR divergence of )
and poles at w = 2,3, ** reflecting UV divergences of f,, f3, °*¢+. How-
ever, the representation is regular at all positive half-integer values for
w even as fy at N = 1/2 and N = 5/2, 7/2, s+ are ill-defined. This is
important: a representaticn derived via generalization and analytic contin-
uation of a ill-~defined function need not be singular; it can be regular!
The right-hand-side of (10) has at most pole singularities, which have
well-defined analytic properties, it is therefore said to be a regulariza-
tion of the left-hand-side.

The relations between fy, f(w) and g(w) are summarized in the

following diagram.
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£ = [ a®¥y —1—2— , N =1/2, 1, 3/2, see
(p—q) q
« Regularization ¥ Generalization
f(wy = [ dzuh ___1_5_7 , wec!
(p-9) g
Y
w, 2, w2 2
= Z) [MeD] TE=0) ) ¢ ge(w) < 2
T(2w-2)
Y Analytic Continuation
w, 2, w2 2
g(u) 2D TIND)TIR-W el
r'(2w2)
lim
w>N
2N 1
Figure 4. Regularization of the Function f dq — 3
(P-q9)7q

It is clear that in the analytic method the representation func-
tion g(w) plays a pivotal role. For without it the crucial analytic con-
tinuation which allows one to avoid the singularities in the original func-
tion cannot be carried out, léaving the regularization process incomplete.

However, for instances where only the formal existence of a representation

is needed, the key point then becomes whether there is a region for the
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generalized variable in which the generalized function f(w) is well-
defined. For if there exists such a region, then the value of the integral
must be an explicit (albeit perhaps unknown) function of w in that region.
One can then identify this function with g(w) and assume that it is
amenable to analysis and analytic continuation.

The example discussed above gives the basis for dim. reg. In the
following we give another example in which a certain type of singularity is
regulated by generalizing the exponent of an expression. The method used
in this example later will be exploited to regulate the axial_gauge singu-
larity that was mentioned in section 2.3; it is the starting point from
which we develop our analytic regularization.

Consider the set of integrals

! 1
fy = [ dt — N = eoe,=1,0,1, sce
0 (t-s) 0<s <1, (3.11)

which is ill-defined when N = 1,2, °***. For N = 1, f; is regulated by the

well-known prescription

8—€ 1

£ % () 4 )& m@l—;—s) (3.12)
e+ ] st+e t-s

This jump-over—the-singularity ansatz is sometimes called the principal-
value prescription but it actually cannot be extended to cases for N > 2.

The correct principal-value prescription is

1
£, 95 2 lim [ ar P ¥ cuc.} (3.13)

N w0 0 [(t-s)in]"

leading to the result
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N-1
_ 1 3 1-s+in
fy = Um 737 Re (1 an) ) (m]—) (3.14)
n30
from which one obtains
£, = i Elgi) (as before)
- (41
£, =- G5+ 7)) (3.15)

and so on. Although the computation involved in (14) is elementary it is
nevertheless clear that evaluating fy for large N can be very time-
consuming.

We now do it the analytic way. We generalize fy into

1
£(v) = [ dt(t-s)’, ve€C (3.16)
0

For Re(v) > -1, the left-hand-side of (16) is well-defined, so
+ +
f(v) = ;%I [(l-s)1 V- (-s)1 v], Re(v) > -1 (3.17)

The right-hand-side 1s however regular in the whole C1 space, including in
the limit v » =1, when it is equal to XnGlgi) (recall the relation

lim x5 =1 + efn(x) + 0(52)), agreeing with (12). Therefore by analytic
e+0

continuation,

g(v) = le (- - ], vect (3.18)

1
is a representation of f(v) in all of C°. The analytic regularization for

fy is therefore
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£f.0= 1lim  g(Vv) (3.19)

so that

£ = (Z2),

N gl™), N = eee-1,0,2,3, 00 (3.20)

[y}
1

& [a-ot™+ o)

The reader can verify for himself that (1l4) and (20) actually give identi-
cal results. He will also find that the time needed to evaluate (14)
increases sharply with N, whereas the evaluation of (20) is trivial. Note
that in both cases the regulated fy is not only well-defined but also
regular for all values of (integer) N, contrary to what the original defin-
ition may suggest. Here we see a pattern that will emerge again later:

(a) the principal-value prescription and analytic regularization give 1iden-
tical results for apparent singularities of the type contained in fy of
(11); (b) the regulated function is regular.

The two-step process regulating fy analytically is shown in

Figure 5.
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1
.—1_ N = (XN —]_. 0’ ]_’ eee

+ Regularization Y Generalization

v€C

s v
v f(V) 0 dt (E-S) ’

- (=) -=)*V] |, Re(w) > 1

L
1+v

Y Analytic Continuation

g = (a9 - )], ved
1+v
lim
v+ =N
1 1
Figure 5. Regularization of f dt X
0 (t-s)
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4. Analytic Regularization of the Class of Two—Point Integrals

In the last section we have demonstrated the complete analogy
between dim. reg. that was used to regularize (3.1) and the regulariztion
of (3.11). Each is but a special application of the analytic technique
based on the two-step process of generalization and analytic continuation.
We now apply this method, which we shall call analytic regularization, to
regulate a whole class of two-point integrals - by an n—point integral we

mean an integral with n-1 external momenta. The class of integrals is

defined by
FmN,e) = [ a'e [m0)? K (@M@ m®™S, s =00r,
K,M,N integers (4.1)
and the generalized form of the class is
S(w Ky 1 ,8) = [ a2 [(p-0)? 1D Ha m2 Ve, (4.2)

1
w, K, Uy V€ C

It is clear that when v=8s = 0, k¥ and u = integers and w= 2, S reduces to
(two—~point) Feynman integrals in the covariant gauges; when k, u, 2vts =
integer and w = 2, S reduces to integrals in the axial gauge and when k=0,
B, v integer and w2, S reduces to tadpole integrals. The feature distin-
guishing (2) from a generalized integral in dim. reg. is the generalized
continuous exponents k, uand v. The obvious motivation for such an
extended generalization 1s that i1f a representation is found for (2), then

the whole class of two-=point Feynman integrals, in whatever gauge, can be

simply evaluated by substitution. Later we shall also see that by seeking

a more general representation, the three shortfalls of dim. reg. discussed
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in §2 concerning tadpoles, the separation of IR and UV singularities and
the axial gauge singularity are all avoided.
We first examine the analytic properties of the S-integral and

find it to be

(i) UV div. when  Re(whihptv) > 0

(ii) IR div. (at p—q=0) when when Re(wtk) < O

(i11) IR div. (at g=0) when when  Re(uwkptvks) < 0

(iv) Axial-gauge singular when Re(wvs) < -1/2 (4.3)

N
A representation for S exists if there is at least one region in C x Zj

(the space in which {w,x,u,v,s} lives) where the integral exists. One such
region is the neighbourhood of the point {w,k,p,v,s} = {2,-1,-1,-1,1}.

For at this point

-1 <0

w+ x+ pt+ v

w+ xk=1>0

w+ p+ v+ s 1>0

2v+ 85 =0 > -1/2

which 1s outside all the reglons in which § is ill-defined. Therefore the
integral exists and all that remains 1s to find a representation for it in
this neighborhood. Once the representation is obtained 1t can be
analytically continued to the whole hyperspace c* x Z 9

To evaluate the integral (1), two stock formulas will be used:
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(1) Euler representation:

¢4

2% = 'F(i—a)f T Re(z) > O. (4.4)

»
0
This representation will be used for exponentiating each and every factor

in the integrand in (1).

(2) Gaussian integral in coutinuous dimensions:

2 2
2 -aq 42b*q-
[ a?%(q ) e”% *2bramx(qm)

w . s 1/2 oy 2
=€) ) (Bg) expi[pt - L) 4.5)
at+yn atyn oty

This relation, first derived by Capper & Leibbrand;,“ and being a generali-
zation of (3.8), is needed because of the presence of the factor

(q'n)Z\’+S in (2); the integrand is not rotationally invariant (in 2w~
dimension Euclidean space; or not Lorentz invariant in Minkowski space).
Eq. (5) is most easily derived in a "cylindrical” coordinate system where
the vector n, 1s identified with the z-direction. 1In this system any

B

vector a, can be decomposed as

p
= (a = A 21/2 =2 _ 2__ 2
a = (a,an), a =a n/(n » a =a-a (4.6)
and a scalar product is given by
a*b =a*b+ ab (4.7)
nn

Then
2 - 2
2 - + Zb - .
[ d*%(qm)S & ™ *«q - y(qen)

2425 q ~[(arm®ql - 25 q ]
2 —_— - o,
- (n2)5/2 f 4 urlq o™ +2b *q I dqn qs e n nn (4.8)

from which (5) is easily verified using standard techniques and (3.8).
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Readers interested in the detalls of how the representation given

below is derived should consult the Appendices. The result 159

7 2 (a3 V(p m)S I( vts+1/2)
I( Bl- ao) I( Bl- al) F(-ao" a-l—s) T'(=v)

S( Wy Ky My Vy8) =

l+ag, 1+a;, 1+v;
- 633 6 ) [yl <1, esa
’ 0, Bl; 1/2-s

ANV ) e wst1/2)

I( Bl- ao) I( B “1) (- 5" "1"8) (- v)

1+v,1+v=83; vis+1/2
. cgi g ), |y 21 (4.9b)
? 0, Vs Vg
with
%=%MWWQ,H=MHMW %=mmv
2
y = (pen) /p2n2 (4.10)

0
The symbol G is a Mel jer G-function.1 It is a known generalization of the

hypergeometric function which can be straightforwardly evaluated. The

analytic property of a G-function is mest transparent in its contour

integral representation

mn a1 e .an; an+1 .on laq
qu(y )
bl oo .bm’ bm+]_ s .bp
m n
[ n I(b,-t)] M N(1-a;-t)
S (L J=1 - (4.11)
2 L I T(-bo+t) N  [(a-t)

i=mtl j=n+l J
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where the contour L encloses all poles contained in [ ] but not any others.

Although (9) is derived for the neighbourhood around {w,«x,p,v,s}
= {2,-1,-1,-1,1}, it can be shown'l (although we shall not do it here) that
the representation S is analytic everywhere in C|+ x Z2 with, at most, poles

possibly when any of the conditions below are met.

ag = integer 2_0 (4.12a)
@] = integer > 0 (4.12b)
B1=v = integer £ 0 (4.12¢)
o v+s +1/2 = integer < 0 . (4.124)

From (9) and (2) we see that (l2a,c) are associated with the two types of
IR divergences in the integral while (12b) corresponds to the UV diver-
gence. Condition (12d), corresponding to the axial gauge singularity is
realized only if v is a half-integer. But since in the Feynman integral
(1) the primal variable N corresponding to v is always an integer, the
representation (9) is free of axial gauge singularities. This result is
reminiscent to the regularization of the integral (3.11): the original
integral 1s singular and ill-defined but the regulated representation is
completely regular and well-defined.

The regularization of the Feynman integral (1) is summarized in
Figure 6.

The power of the generalized representation is demonstrated by
considering several special cases:

i) Two-point integrals in covariant gsuges (v =5 = 0).

" _ 3P r(ya) (w8 I(-utatp) .13
(-2 1%®)P NP R2wep
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F(K,M,N,8) = [ d%[(p-q) 2I¥q DM(q n)2™"S, K, M,N integers

s =00r1l

well-defined when K =M =N = -5 = =]

+ Regularization ¥ Generalization

SCw, %, 1, v,8) = Ja"a[(p-0) 21a D a m) 28, {w e m v.s}GC“xzr

exists in isolated regions including the
neighbourhood of {w, K, u, v,s}={2,-1,-1,-1,1}

S(w, K, 1, V,8) I

\[ Analytic Continuation

S(w, K, 1, v;s) = right-hand-side of (4.9); well-defined
everywhere in ch x 22 with pole singularities

1lim

(w, K, p’l V) > (2+€’KIM)N)
Figure 6

This result reduces to (3.9) when o=f1l, as it must. However, the
representation (13) means all integrals of this type, for any values
for a and B, can now be trivially evaluated.

ii) Tadpole 1ntg§§als. Note that in (13) the representation has a nil

value when either a or B is a nonpositive integer. That the integral

is symmetric with respect to a +> B (the RHS is manifestly so) is a

result of the integral being invariant under shifting of the



111)

-3 -~

integrated variable. The integral is a tadpole integral when a=0.
Thus tadpole integrals are just a subclass of a class of nil-valued

integrals. The generalized class of tadpole integrals includes

S(w,K, i, v,s) o, K = integer > O

o, M and N = integers > 0 (4.14)

S(w,k,M,N,s)

Note how the power of analytic continuation has been exploited to
derive the result (l4). Recall in section 2 we said that tadpole
integrals cannot be defined in dim. reg. because a region does not
exist in the w-plane for which such an integral is regular. The more
general an. reg. allows one to go beyond the w-plane to find a region
(in ct x Z2) of existence for the generalized integral. After a
representation for the generalized integral is found one then returns
to the w-plane by analytic continuation, where one can verify that the
integral is indeed nil-valued.

Some readers may wonder how a tadpole can be nil-valued when it
may at the same time be UV and IR divergent. The question will be
answered in §5 when we learn how to separate the two types of
divergences.

Two—point integrals in the light-cone gauge. The light-cone gauge is

a special case of the axial gauge defined by the auxiliary constraint

n?=0 (4.15)

It is a very physical and therefore interesting gauge yet it is notor-
ious for being difficult to regulate. The difficulty originates in

the condition (15) which admits a nontrivial solution for the vector
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ny, only in a non-Euclidean space; in Minkowski space with a metric

Buv = (1,-1,-1,-1) one such solution is n, = (1,0,0,1). Since the
integral (2) is evaluated in Euclidean space, one must either do the
calculation anew for the light-cone gauge, or one may use the already
derived result and reach Minkowski space by analytic contin;ation. As

it turns out our result (9) allows for the second option. First we

see that (9a) is appropriate for Euclidean space since the inequality

2 2 2
(p’n)2 = p2n2cos 8<pn (4.16)

must always be satisfied in such a space, enforcing the condition

y 2 (p-n)z/pznz_s 1. Conversely, the condition 'y' 2 1 for (9b) is
never satisfied in Euclidean space, but can be satisfied in Minkowski
space. The result (9b) is obtained from (9a) by analytic
continuation.!? 1In particular, the constraint (15) is reached in the

limit
1/y » ot (4.17)

in which case (9b) is reduced to the surprisingly simple result

f dqu 1
[(p-2)% 1% %) Pg m) ¥

_ DT B )™V e 0) T( - B v) (= ok o+ B) , (n’=0) (4.18)
I @) T(B) T(2w-a-B-v)

for which the similarity to (13) 1s readily recognized. The light-

cone gauge, with its many peculiar properties, is discussed in more

detail in §7, where we also give a representation based on the

recently devised Mandelstam prescription.13
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iv) Exponent derivatives. The analyticity of the representation (9)

admits the straightforward evaluation of two-point integrals with

logarithmic factors in the integrand. Specifically from the relation

a®=1+ ema + 0(ed) (4.19)
follows
K, j 0 3 K
a f’a = lim (—&) a (4.20)
KK

so that one may derive

[ a4 pm0) X g™ (q m) 2™ 1k [(p-0)? 1™ (q%) tn(q om)

Ck m 2
- D B 0 2w 2k 2p  2VHS
Lin &) &) & e e
PN
2N
k m L
d 3 d
= lim G G &) staxmv,s) (4.21)
M
2N

Thus Feynman integrals with logarithms are just "exponent deriva-

tives"!® of generalized Feynman integrals without logarithms. Through
the representation S, exponent derivatives become normal derivatives.
The potentlial usefulness of exponent derivatives, although not
much explored, is suggested by its occurrence in perturbation field
theory. In perturbation theory, Feynman integrals associated with

N-loop calculations have integrands with up to (N-1) powers of
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logarithms, and the evaluated integrals have up to N powers of logar-
ithms. Such terms will appear on the right-hand-~side of (21) when
k+mt+2 = N-1. They arise from taking exponent derivatives of the fac-
tor (pz)w+m+p+v in 8. 1In fact every term, including all proper
infinite parts, generated for the two~point function from the multi-
loop perturbation expansion can be expressed as an exponent derivative
of S, while infinite terms which must not appear in the expansion

(such as UV infinite terms with a logarithmic dependence on p2) are

never generated in any exponent derivative of s.1l This raises the
speculative but interesting question whether the two-point function
can be expressed as the solution of a differential equation having the
exponents as variables. Such a solution will in general be a polylog,
or a polynomial containing powers of logarithms as well as the usual

power terms.
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5. Separating UV and IR Singularities

In an. reg. divergences of the two-point integral occurs as poles
in Cu necessarily but not sufficiently when one of the conditions (4.12a,

b,c) are met. In terms of the generalized variables these conditions are

wretptyv = integer 2_0 (Uv div.) {5.1a)
whptvts = integer < 0 (1R div. at q = o) (5.1b)
wkk < 0 (IR div. at q = p) (5.1c)

In Feynman integrals w= 2 and k, P, vand s are integers. Near these

integers we write

w=2+ ¢,

k =K+ p,

u=M+ o

v =N, (5.2)
and define

€] = whrtutv — (2+KMHAN) = etpto,

gy = whpbwvts — (2HM+N+s) = eto,

€3 = whk = (24K) = etp. (5.3)

When the conditions (la,b,c) are satisfied, S has the single poles 1l/¢),
1/eo and 1/€3, respectively. Because the three epsilons are distinguish-
able, the three poles representing the UV and the two kinds of IR singular-
ities can be separately identified. It is now instructive to make a com

parison with dim. reg. In that method the exponents K and M (as well as N)
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are fixed c-numbers, not generalized variables, and the small parameters p
and o are by definition identically zero. Then the three e's are all

identically equal to €
E] = €9 = €3 = €, (dim. reg.) (5.4)

meaning that in dim. reg. it is impossible to identify the origin of poles
in the representation.ls

Later we shall see that Ward-Takahashi identities of Green func-
tions are true only if S is evaluated in the w-plane (Cl with k,p, v inte—
ger); the identities do not in general hold when S§ is evaluated in Cq, in

particular not in the (w,«k, p)-hyperplane Ca. Naturally once we have

descended from C* to C! the €'s cease to be different. However, because
the paths of descent for the e's are all different, each of the e's can be
tagged during the descent so that, even though when in Ccl the three e's
have identical values, their separate identities can be retained.

We have shown that we can distinguish gy from e3, if needed.
But normally it is unnecessary to separate the two as the following example

shows. Consider the integral

1

y
L=fdaa——5=
(p=9) “q

which is IR divergent at q=0 and therefore is expected to have a pole of

0(1/€eg). But by changing the dummy variable ¢ to p~q we have
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which is now IR divergent at q = p and therefore has a pole of 0(1l/ej3).
Since the two integrals are identical we must take a limiting process such
that this identity is upheld. This means that in (3) we must have p=o0, so

that
g =¢e3=¢e¢+p. (5.5)

This suggests the following strategy for evaluating two-point integrals

F(K,M,N,s)

 An. reg. - generalize point (d=4,K,M,N) to c" to find
representation §

.

8(w, K, ity V,8)

. Evaluation at specific point in c" but keeping separate
W identities for UV and IR singularities by setting
w= 2+, «k = K+p, = Mp, v=N

S(2+¢€,K+p,M=p,N,s)

Recover gauge invariance by descending from c" to w~plane,
¥ taking the limit p»0, € *small. S has poles of o(1l/ep)
and 0(1l/eg) representing UV and IR singularities
respectively

$(2+¢,K,M,N,s) (5.6)
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In this program (the necessity for taking the last step 1s explained in

§6), the covariant gauge integral at the third stage is given by

fd4q (p-'q)ZKqZM N T:2+€(p2)2+K+M+€1F(2+K+ED)I"(2+M+s Y .

0

. P(-Z—K—M—sl)/F(-K)I(-M)P(4+K+M+2€O) (5.7)

The right—-hand-side 1s symmetric under K «+ M, as it should.

The general axial gauge (2N+s # 0) integral, for 'yl <1, is

given by

4 2N+
[ a*a(p-a) g (q o) * >

2+¢
T

2 24KHM+N+e) 2N 8
N (p n

)
T'(-K-¢

(pen)  T(N+s+l/2)

+ €

1t %)

(P(24+N+K+ £ ) T(2+MHN+S+ £g) T(~2-K-M-N~€1)
L
T(s+1/2) T(-M- £, +€,) T(A+KHH2N+s+2 €)

(2+M+N+s+so, -2-K-M-N~¢], -N
s+tl/2 , -1-K-N-¢gg

y)

3F2

['(-2-K-N-€g) T[(2+K+eq) 2+K+s+eg
T(KFN+s+5/2+Eg) T(-N) ~

F 44K+M+2N+s+2 €9, -M~ejt+eg, 2HK+egp 'y)}

(5.8)
K+N+s+5/2+¢eg, 3+K+N+eg

*3%2
where the G-function in (4.9) has been decomposed into a sum of two

hypergeometric functions!® by evaluating the contour integral (4.12).

We now give a few examples.
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The formula

_ () ra-erate)
el(1+ =€)

T(e-8)

2
G M (-lg) 1+ ep(1+) + 0(52)]
T(1+2)

where the ¢~function satisfies the recurrence relation
$(z+n) = 1/z + 1/(z+1) + e+++ + 1/(z4+n-1) + (z2), (5.10)

will be used repeatedly.

(1) F(-1,-1,0,0). This integral, appearing in the evaluation of the

one~loop self-energy

Figure 7

(see Fig. 7) 1s easily evaluated using (7). The result

F(-1,-1,0,0) = [ d*q(p-q) 2q~2

€}
> 75 Peey) M- )/ T(242¢y)

= -nz[%r-+ Y+ fnn + Rnp2 -2+ O(E)] (5.11)
1

where v = ¢(1) = 0.577 e+ is the Euler-Mascheroni constant, has a UV pole.

The three terms in the expression 1/51’0 + y+ fnn always appears in the
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same combination. In calculations related to field theory the integral
-4 -
usually 1s multiplied by an extra phase-space factor (2m) + (27) 2w g

that a divergent integral typically has the expansion

1 4 1 2 :
(z—n)z- ,rd q ee°-° "I-;—ﬂ?- (—q-g"' Y - b+ mp + "’) (5.12)

In tae renormalization program, infinite parts of the self-energy is
absorbed into the wavefunction renormalization, so that the renormalized
self-energy is finite. In practice, a Feynman integral for a renormalized
quantity is just the integral minus its infinite part. The process of
removing the infinite part from a divergent integral is called subtraction.
In the minimal subtraction scheme'!’ (MS) only the UV pole term 1/€] is
removed. In the MS schemeIB the combination 1/e] + Yy - 47 is removed
altogether.

For convenience, we define the quantities

l/eo’1 = l/eo’l + Y+ fm (5.13)

The basic motivation for separating the two types of singulari-
ties is that in the renormalization program onlv UV singularities need be
subtracted. The removal of IR singularities in field theory is not a com-
pletely understood subject. It is generally believed, and proven in
(Abelian) quantum electrodynamics,19 that a process becomes free of IR
singularities.if all possible ways of emitting soft, massless gauge bosons

(photon in QED) are included in the process.

(2) F(0,-2,0,0) (Iyl < 1). Returning now to (11), we notice that when

p2+0, the expression has a logarithmic singularity. 1In the special case
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when p=0 the integral reduces to a tadpole integral

g
F(0,-2,0,0) = [d'q q

» D L r(2re) Mgy T(- ) )/ [I(= e+ ) T(2- e + ) T(242¢,) ]

= (1/e0 - 1/e1] . (5.14)
In the limit p=0, €; = g = €, so that the representation is identically
zero (it 1s actually proportional to p), giving the usual result for a
tadpole integral. The 1mportant point 1s that the Integral vanishes as a
result of the cancellation between a UV and an IR pole. In other words, if
a distinction needs to be made between these two types of poles, then the
tadpole integral is not zero. This point 1s not always reaiized by those
using dim. reg., augmenited by the definition cthat tadpole initegrals are

nil-valued (see (2.15)), as a regularization tool.

(3) F(-2,-1,1,0). This integral is encountered when evaluating the one-

loop, three-vertex of Fig. 8 in the axial gauge. Because N=1, and

1/0(-N) = 1/T(-1) = 0, the second term in the { } bracket in (8) vanishes.
Power counting (consult (1)) tells us that the integral is both UV and IR

divergent. Substituting the appropriate integers into (8) ylelds

Figure 8
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2102 B2 ra/2) ra+ &) T2+ ey T(-5))

F(-2,-1,1,0) »
: T(1/2)T(2- ¢ +e0) T(1- € +e ) T(3+2¢,)

2+e,.,— -1
0 &
. F y
a2 |
n2n2 2. ¢ 1 (2+e)e
= aray (P L+ w226} [:El—) 1 Yo ]
2 2
= - l‘-lg- (1/e, - 4yley + 6y - 2) (5.15)

2 2
The infinite part due to the UV divergence i1s -n n /l6e) whereas if UV and

IR singularities were not distingulshed it would have had an additional

multiplicative factor (1l-4y).
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6. Gauge Invariance and Ward Identities

Because of the gauge invariance of gauge theories, an infinite
set of identities, Ward20 identities for short, exists among various Green
functions (n-point functions). A typical Ward identity relates the partial
derivative of an (ntl)-point function to a linear combination of n-point
functions. Because Ward identities are in general nontrivial equalities,
they can be gainfully exploited, among other purposes, to check the consis-
tency of intricate and lengthy computations. For example Ward identities
are often used for testing the viability of a regularization method.

The older analytic regularizations mentioned at the beginning of
these lectures are known to violate gauge invariance and therefore not to
uphold Ward identities in general. In the analytic regularization expoun-
ded by Speer,21 quantum field theory is regulated by modifying propagators,
replacing, say (for massless particles) (p-q)_2 by (p-q)zk. A A-depen-
dent theory with such modified propagators is free of UV singularities in
the complex A-plane, except for poles at A = =1; the theory of interest is
recovered in the limit A + -1. However, since the structure of a
Lagrangian with a propagator having a continuous exponent is not known, the
gauge transformation is not well-defined for theories with A # -1. Speci-
fically, formal Ward identities - formal because they involve divergent
integrals - derived for the real theory are not satisfied in the regular-
ized A # -1 theories. 1In this sense Speer's analytic regularization, as
well as other analytic methodé similar to it, does not preserve gauge
invariance.

The crucial difference between our method and the old analytic

regularizations lies in two important aspects: (a) the new method is a
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technical hybrid of dim. reg. and the generalization of exponents used in
the old analytic method; (b) the generalized dimension and exponents are
viewed strictly as a means for regulating divergent integrals, rather than
regulating the theory, of which only the four-dimensional one (or whatever
integer dimension, as the case may be) is of interest.

Having a generalized dimension 1s important; we shall see that
Ward identities are upheld if and only if (the representations of) Feynman
integrals are evaluated in the w-plane (p= o= 0, see (5.2)).

For a Yang—-Mills theory described by the generating functional

Z[J] in the axial gauge (see (1.28)),

iS . [A,J]
2(J] = faa] e °ff (6.1)

the simplest Ward identities, which are the only ones we shall consider,
_are derived by considering the variation of Z[J] under the infinitesimal

gauge transformation

A =3 A+ (A x A 6.2
A o (_u gy (6.2)
(the local functions A?(x) are infinitesimal),

ez(3] = [laa}{[-88° + e a000 ][ L na’Con + 20 ]} -

- exp (18_. [4,J]) AS(x) . (6.3)

An m-point Ward identity is obtained by taking (m-1) functional derivatives
of 8Z[J] with respect to the source J3(x) at (m-1) localities, and then

evaluating the result at J = 0 in the limit a + O:
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m—-1
Um {1 (31}l g =0 (6.4)
@0 1=1 _ 31 J=0
&1 (xi)

The two—-point identity, after some manipulation and transformation to

momentum space, has the form before the limit a + 0 is taken,

PP = L B =p, KO (6.5)

M

pr is the self-eaergy to all orders (in g) and Hiﬁ? is the zeroth order,
or free, self-energy given in (1.37), from which the second equality sign
in (5) is derived. Define

()] (6.6)

Ap Ap Ap

to be all the radiative corrections to the self-energy (it will be at least

2
of 0(g")) then from (5) we have the tranversality condition

Px”iu(P) =0. 6.7)

The longitudinal part of qu proportional to nxpu/a is of no
importance. First of all the fact that it appears only in Hgi) and nowhere
else means that it is decoupled from the rest of the theory. Secondly
it vanishes whenever it is connected to an external gauge field, since the
resulting factor neA is zero-valued due to the constraint (1.31). There-
fore it need not concern us when (5) appears to diverge in the limit a+0.

At the one-loop level, Hip is given by the two diagrams in

Fig. 9. Diagram (b) is a tadpole, which we shall take to be zero—valued,
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N~
x
N
x

(a) (b)

Figure 9

intending for the moment not to distinguish the UV and IR singularities.

Diagram (a) is given by

7% (O-) = &1

2
ap 8 C2

= -6 2 / dhq[chr.(p,-q,q-p)Aﬁgz(q)Furc.(-p,p-q,q)ASZ?(p-q)]a=0
(6.8)
where the 3-vertex T and A(?) are given in §1 and C,, defined by
éabcz - facd fbcd (6.9)

is the value of the Casmir operator for the adjoint representation of the
gauge group; for SU(N), C2 = N. The one-loop self energy, being a rank-2

tensor, involves integrals with tensorial integrands such as

9.4
[ d*q y (6.10)

{p=q)7q

for which we do not have a generalized representation. The way to evaluate

22
such integrals 15 to realize that any n-rank tensorial integral can be

expressed as a linear combination of products of n-rank tensors construc-
(L)
v

ted from 6uv’ pu and nu and scalar (or invariant) integrals. For Hp the

expansion (actually true to any order in g) may be written as
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(1), \ _ e 2 2 .

H)\u (P) - 1 [Alp 6)\u + Azp )\pu + A3P (P knu + Pun k)/(p n)
4 2

+ AP nknu/(p-n) ] (6.11)

wacre A; are scalar functions of pz, n? and p*n, and are expreséible in

terms of the four scalar integrals aj, i = 1,2,3,4 defined by

- == (l) 2
ial Hku 5Ku/p

: 1 4
-ia, = Hg\u) p)\pu/p
~tag = 1) pyn /(o om)” 1y
- ia4 = Hit) nxnu_/(p-n)2 (6.12)

From this example the general procedure for expanding a tensorial

integral in terms of scalar integrals becomes clear. Let T, be an n-rank
tensorial integral labelled by « (i.e., a = {Aus*<}), and Ozf), 1=1,2,00.
be the complete set of n-rank tensor operators (one of which is pkpu---).

Then the scalar functions A; in the expansion

1, =] ol a (6.13)
i

can be expressed in terms of the scalar integrals

= 0(1)T . (a not summed over) (6.14)

a
i 14 13
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Substituting (14) into (13) yields

A7 o) oD, - -1
a; E 0, 0y A, = LW, a, (6.15)

so that

A, = LU a; . (6.16)
h]

In this program, the operations of tensor algebra and the regularization of
divergent integrals are completely separated, so that it is not necessary
to generalize the algebra originally defined in, say, 4-dimension space to

one in 2w-dimension space. This implies that, among other things,

Byy = 4 (6.17)

rather than §)) = 2w as in 2w-dimension space. Thus, for the task at

hand, the matrix U for (11) and (12) is a 4 x 4 matrix, with

.—1 - -
4] )11 = ékpékp =4 (not 2w) (6.18)

The scalar integrals ay can now be reduced to a form suitable

for represeniation. For example, suppose

4 "y
Te* Ty = [dq ) (6.19)
(p=q)7q
and
(1) 1) _
Oa > Ouv = pupv (6.20)

Then
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2 2 2
(pen) fa'q B4 =2 [ d%q e ¥ =) ]

a =
t (P-q)q2 2 (p-q)2q2
[B_ZJ.4 1'114 1 L[ abq ]
= (p*n) d'q———==+5 Jdq——-5 [dq—
2 (- %? 2 (prq)? 2 2
2
-LPZ'L)LJ'd“q__l_z_Z (6.21)
(p-1) “q

The last two terms on the second-to—last line cancel, being equivalent by
the shift operation.

In evaluating (11) and (12) we will also encounter integrals such

as
4 1
I=/dqK(p,q) (6.22)
(g*n)[(p-q) *n]
The standard technique to be used here is partial fraction: 22
4 1 1 1
I=[d'qk(p,q) — [—+ ——ro
pm qen  (p—q)°n
4
=L fa% [K(p,q)/(a*n) + X(p,p-q)/(q"m) ] (6.23)

p°n
where the second kernel in [ ] comes from changing variable q + p—-q. This
technique can be applied repeatedly if necessary.

We are now ready to explain why it is necessary to take the last
step 1n (5.6), i.e., sending p=c=0 in (5.2), if Ward identities are to
hold. The reason is that many of the manipulations used to reduce the
integrals to forms suitable for generalized representation are only appli-
cable to primal integrals - integrals with only integer exponents. It

follows that Ward identities are true only for expressions involving primal
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integrals - integrals with all «, p, and v being integers. This 1is why
Speer's analytic regularization does not uphold Ward identities, whereac
our method does, provided the representation for the integrals are
evaluated for integer exponents as charted out in (5.6).

In the axial gauge the actual computation reducing the Ai's in
(11) to linear combinations of primal integrals is rather lengthyal, and
the resulting expressions are too long to be given here. However,
computations involved in (12), (16) (i.e. computing the reciprocal of U'l),
and manipulations analogous to (21) and (23) can all be carried out with
the aid of algebraic computer programs such as SCHOONSCHIP, REDUCE II or

MACSYMA. Let us simply take for granted that the A;'s have been thus

calculated. Then, substituting (11) into (7) we have
1p, M1 (p) = (A +a,44.) pp + (A,*A,)p'n /(pen) = O (6.24)
A TAp 17273 1! 374 11

implying that the A;'s must satisfy

+4A,=-A;, = A (6.25)

Ay tAy=-Ay=4A, .

1

Remarkably, the A;'s we have computed reduce to linear combinations of
primal integrals that satisfy (25) identically, provided we let all tadpole
integrals be zero. Recall that tadpoles vanish exactly only if the associ-
ated exponents are integers; so we see once again the necessity of setting
o= p =0 (see (5.2)).

Because the Ward identities (25) are satisfied at the integral
level - i.e., before the integral has been evaluated - it is clear that

they are still satisfied when the scalar integrals are generalized to 2uw-

dimension, regardless of the value of w. This strengthens our conviction
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that algebraic manipulation and regularization are two operations that can,
and should, be separated.
With the Ay’'s satisfying the Ward identities (25), (11) can be

rewritten as

rI(1)(p) = -1 (1, P, R Np\,). Iy = A, I = Ag, (6+26)
2

PM)' = p 6Kp, - pkpp,

N, = [py - pn,/(pen) ][p ~p2n /(pen)] (6.27)

Ap © P)\ P A P Pup N, P .

It is clear that both of the tensors Pxp and pr are perpendicular to Py 80

(26) 1s guaranteed to satisfy the transversality condition (7).

When all the integrals are evaluated we find

2
g C2
1 (22 44 2
e = B ao- ) e-6rr D -
o 3272 ¢ 5 ¢
2
8 L
+(E-8+2C-—2)Z]
2
g Cs
1 10 9
I = L8 tem D -c-2)
17552 T3 4 1-¢
-3 B -5+ c- 2=k (5.28)
where 1l/e is defined as in (5.13),
2=2 W [0 4+ ) + o(3/2+
=2 L gy, Dy e+« ) y] <1 (6.29)

is proportional to the finite integral S(2,-1,-1,-1,1) = n2y Z/(pen),
C =1/y. Note that only Ilg, the radiative correction to the zeroth order

self-energy has an infinite part. We do not at this stage know whether

this is a UV or an IR infinite term however.
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To find out the origin of the Infinite term, we use the limiting
process described in the last section (see (5.6)) to delineate the two
types of singularities. In this calculation we must also take into account
the contribution from diagram (b) of Fig. 8, since tadpoles do not vanish
when UV and IR poles are counted separately. The result of this‘calcula-
tion is as follows: (a) the relations (25) are no longer manifestly satis-
fied at the integral level, but are satisfied when the primal integrals are
evaluated; this probably implies that there exist identities among primal
integrals of which we are not yet aware. (b) The values for Ilg and II} are
identical to those in (28), except that the pole term 1/e in (29) must now
be replaced by 1/€); the self-energy has only a UV infinite part, but is IR

finite.

Thus, following the usual renormalization procedure, we can
remove this infinite part by adding to the original Lagrangian a counter-

term corresponding to the kinetic energy,

88 = 5 — (8, A -8, A Jz (6.30)
16n° 3¢ "

We now briefly discuss the verification of the three—point Ward

identity,

1p, Topsaur) = g £ (@) - 1 ()] (6.31)

derived from first taking two functional derivatives of 6Z[J]} and then
taking the Fourier transformation. Computation of the general one-loop
three-vertex function involves the evaluation of three-point integrals, for

which we do not have a generalized representation. We therefore examine
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only the special case, with q = -p, r = 0. The Ward identity of interest

is

(1

ey
uv

ipy Mw(p.—p.O) =gl )(p) (6.32)

where a factor of £2P¢ has been removed from both sides. The three-ver—

tex is represented by the diagrams in Fig. 10.

po—
+
—’.
S’

Figure 10

It can be expanded as described in (13) to (16) so that again only scalar
two-point integrals need be evaluated. Again we find that: (a) if UV and
IR singularities are not separated, then the Ward identity is manifestly
satisfied at the primal integral level; (b) if they are separated, then
the identity is satisfied when the integrals are evaluated (through the
generalized representation), and (1) has only UV infinite parts; all IR

singularities having cancelled among themselves. The result 3! is
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3
Y (p,=p,0) = = 2 u (26, p_ - 6 p. - 6 p )+ finite parts (6.33)
Apv b B 2 P v wP A AW *
l6m 3e1
implying for the general case
gzc
1 2 11 (0
F;\ui(p qr) = —s g\pl (p,q,r) + finite parts (6.34)
1lé6n 3e1
17

In the MS scheme"’, the wavefunction renormalization constant Zj

and the vertex renormalization constant Z) are defined respectively via

(Hiv - Hfl(\)))t]inf = (Z3-1) fo(\);)t , (6-35a)
(rkuv - gzi)inf = (21_1) Pgii (6.35b)

From (28) and (34), we see that at the one-loop level

g°Co 11
2 =2, =1+ 1 (6.36)
1672 351

The equality of Z; and 23 is special to axial gauges, but not generally
true in nonaxial gauges.

To conclude this section, we have demonstrated that when properly
applied, analytic regularization preserves gauge invariance. The key point
is that after using the generalized representation S(uw,x, u, v,s) to evaluate
Feynman integrals F(K,M,N,s) we must take the limit x + K, p +M. We also
showed that we can use the limiting process to separate UV singularities
from IR singularities without violating Ward identities. The method used

here to isolate algebra from the analysis for regularization also strongly
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suggests that even though the regularization employs dim. reg., it may not
be necessary to generalize the algebra to 2w-dimension space. This conjec—
ture is certainly truec for the limited cases studied here, but a more
extensive investigation is needed before it can be taken as generally
valid. 1In view of the recent controversy on the question whether super-
symmetric theorles can be quantized because a regularization obeying all
supersymmetries may not exist, the task of searching for a regularization

that works independently of algebra becomes more urgent.
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7. The Light-Cone Gauge

7.1 Principal-Value Prescription

The light—cone gauge23 is a special axial gauge constrained by

the additional condition

2 (7.1)
Since only a nil-vector has zero-norm in Euclidean space the constraint (1)
can be nontrivial only in a nonEuclidean space, such as the Minkowski
space. Conventionally, integrals in the axlal gauge have been derived
(mostly using the principal-value prescription) in the Euclidean space, in
which (1) cannot be met, so that the integrals had to be derived anew for
the light—-cone gauge, and this had led to the belief that the light=-cone
gauge is not a special case of the axial gauge.

In our analytic method, which gives results equivalent to those
derived from the principal-value prescription, the representation for the
generalized integrals, although derived in Euclidean space, 1s sufficiently
analytic to admit continuation back to Minkowskl case, so that the
representation for light-cone gauge integrals actually is a special case of
the representation for axial gauge integrals.

In recent years the light-cone gauge, in spite of beilng
especially singular, has gained increased popularity because it is (a)
ghost-free; (b) at least superficially simple; and (c) physical. It is
ghost-free because it 1s an axlal gauge. It is superficially simple

because, compared to (1.40), the propagator simplfiles to

ab p,n +pn
1im AgA?l)ab -1 8- (8, - ) (7.2)

a+o P P°n
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As well, we have already shown in §4 that two-point integrals in the

light-cone gauge are enormously more simple than the general axial gauge

integrals (see (4.18)).

Another feature adding to the attractiveness of the light-cone
gauge 1s that it allows one to work explicitly with only two of the four

components of the gauge field. Let us first choose n, to be (in

Minkowski space with metric (1,-1,-1,-1))

n, = (1,0,0,1)/v2 (7.3)
Now any vector a can be decomposed into the two components

a* = (¥ ta’)/ »2 (7 .4a)
and the two~component vector that lives on the xy-plane

a= (0, al, a2, 0) . (7.4b)

Similarly a contravector have components

0
+
|

= (ay *a;)/¥2 = a® (7.5a)

i

a, =-a , i=1,2. (7.5b)

The scalar product is

+ - 2
asb =abl=ab +ab + ) a, b
u + - i=li

i

A A

atb™ + a bt - ab (7.6)
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In particular
an = a+ . (7.7)

The axial gauge condition therefore reads

nea? = a2t =90 . (7.8)

The component A2 can also be eliminated from the theory by making use of

the equation of motion

ai -2 a‘ﬁ_ = -a¥p A% - gr2P° Aba+A°“= 0 (7.10)
aA T B u
n
yielding
1
R S Lok (7.11)
) (3)

This means that the theory, which had a four-component gauge field Ai to
start with, can in the light-cone gauge be reduced to a theory involving

explicitly only two of the components.

The reduced theory26 has a particularly simple free boson

propagator
&%
Aig)ab =1 — 1,j = 1,2 (7.12)
P

but has somewhat more complicated 3 and 4 vertices:

(0)abe
37 5k

(p,q.r) = g™ Figlz(p.q,r)

r
= g2 {8, ;[(e=a) - [ r—:]

-

i

q
+ 8, (a0 - @0 31+ g, [@-py - 2" ) (7.13)

©
K=
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+
4F((i))ﬁ!;cd(p’q,r’s) - —igz {fabe cde 25 q{ﬂ g
J (p+a) (r+s) "

+ 61k6 R] + permutations } (7.14)

One may choose to use for computation either the Feynman rules
(12-14) or (7) and (1.38,39). The final result should be equivalent.
Because we want to compare our light-cone gauge calculation with the
results in §6, we choose to use the latter set of Feynman rules, in which
case the A%* fields are not eliminated.

We first describe how the result (4.18) is derived by analytic

2 2
continuation. We shall consider n = 0 as a limit of n = ot. In this

limit y = (p‘n)z/pzn2 > 6+, so our starting point is (4.9b),

S(0, 6,1, %,8) = w00 X625 Uy | wew, |y] 21

Near 1/y = C, schematically16

63°51/y[ o0y = y0 JEpCene[Liyy + v Ry Cennf1ry)
by YR, ey (7.15)

where the (three different sets of) variables for the 3F, functions have
been suppressed. The RHS is well-defined only in regions of c" x Z 9 space
where whrxkty < 0 and —w-pu-2vs < 0. Two regions in which these conditions
as well as the conditions for which the original integral exists (see
(4.12)) are the neighborhoods of {uak,p,v,s} = {2,-1,-2,0,1} and

{2,-1,-3,1,1}. 1In any such region, in the limit 1l/y - ot,
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(0]
y gF,(eee 1/y) » 13

the second and third terms on the RHS of (15) vanish, so that
S(w, K, By V, ) > L{w, K, 4, v = 2vs)

. 2D e )Y Ik T ) =urew)

T(= k) T(= ) T(2 whick u+ v)

, (7.16)

which is equivalent to (4.18). Now, the RHS of (16) is well-defined in all
of Cq X Zo with at most pole singularities, so by the principle of analytic
continuation it is a representation for S in the whole space, when l/y =
0+, i.e., when n2 = 0.

We now discuss the Ward identities in the light-cone gauge, first
without attempting to separate UV and IR singularities. We find that again
both the two and three-point identitles are manifestly satisfied at the
primal integral level, provided tadpole integrals are discarded (their
representation (16) are nil-valued). The one-loop self-energy22, which has

the form (6.26), is simple enough to be given here,

ngz
HO = '32—112- ('4].:2 - 6L0 + BL_l)
g%C,
Hl = 32n2 (12L2 + 4L0 - BL_l) (7.17)

with

- = 7 2(pen)"" L(w-1,-1,7) (7.18)
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The full expression22 for F(l)
Auv

here but its contraction satisfies the three-point identity (6.32) and

(p,~P,0) is still too lengthy to be given

therefore also has the form (6.26). So far nothing sets the light-cone
gauge apart from the other axlal gauges except its relative simplicity.
Its peculiarity is exposed only when the integrals in (17) are scrutinized.

When we evaluate the integrals in (17) using (16), we find

L0 = ~l/e + 2
L, = - 1/3e + 13/18
1.1 2. 1 2 2
L, = -kt G+ m) +5 [(v+ fmpt)” - /6] (7.19)

where l/e is defined in (5.13). This result is unusual in two important

aspects:

(i) The integral L_) contains a double pole of 0(1/82) and a logarithmic
single pole of O(anz/e). The latter is particularly bothersome
because it cannot be removed by a local counterterm.

(ii) The function II} has an infinite part. This means that a counterterm
in addition to (6.30) and having the form bdAuvav is needed for
renormalization; n“-dependent terms are not needed because neA = 0.

The first point casts the renormalizability of light-cone gauge in doubt,

insofar as the usual method of using counterterms 1s concerned.

Whether a viable renormalization scheme can be found for our regularization

of the light-cone gauge is a question that has not yet been answered.

The strange result for the light—cone gauge can be understood by

examining more closely the analytic continuation used to derive (16) from
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(15). For any finite value of 1/y, the integral may be finite even when
more than one of the three terms on the RHS of (15) have infinite parts. An
example is the integral L_;, for which the first term in (15) is respon-
sible for the poles given in (19), including the double poles. For finite
1/y all of these poles are however cancelled by poles contained in the
second and third terms in (15); the integral is finite in axial gauges with
n?#0, see (6.29). In the limit 1/y » 0%, the second and third terms are
discarded (see discussion following (16)) and the cancellation effect is
lost. The key point here is that a representation with drastically differ-
ent analytic properties is obtained if the limit 1/y - ot is taken before
all others. As an independent check of the correctness of (16) (in the
particular limiting process under discussion) an identical result can be
derived2* by setting n%=0 at the outset and taking steps analogous to those
described in Appendix B. Integrals evaluated from (16) also agree, as
expected, with those computed using the principal-value prescription
according to (2.18).
Some of the peculiar properties of (16) are:

(1) The conditions for having pole singularities are different from those

of the general case:

(a) UV sing. when whictp 2 0

(b) IR sing. (q=0) when whv < 0

(c) IR sing. (q=p) when wke <0 . (7.20)
Only (c) is the same as before (see (5.1). It follows that in this
regularization power counting 1s lost, explaining why the integral

corresponding to L_; in the axial gauge is finite (see (6.29), but

has single and double poles in the light-cone gauge;
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(i1) UV and IR singularities are indistinguishable. This shows up when

one attempts to separate UV and IR singularities in the three point
Ward 1dentity; the UV-infinite and IR-infinite terms do not separa-
tely satisfy the identity (they do in axial gauge with n2¢0);

(iii) "Unrenormalizable” singularities of order 0(1/52) and O( fn p2/e)

appear in omne-loop calculations, as noticed earlier.

9.2 ‘The Mandelstam Prescription

In view of the undesirable properties of the regularization (16),
there have been recent attempts to find new regularizations that may have

better properties. One such is proposed by Leibbrandt25 where

1 def ~(d+8 + 1 [3]q,)

»2 2
q

(7.21)
P Y

(The scalar product gen = quny + Jq; in Euclidean space, and the light-cone
condition n?=0 is satisfied by setting ny = ii,;1). The prescription
retains power counting, has only single poles and has been shown to satisfy
the two-point Ward identity at the one-loop level, but 1s Lorentz-

noninvariant.

Another Lorentz-noninvariant prescription; devised by

Mandelstam,13 uses the replacement

i, 1+ def lim_ S (7.22)
t o q7] mot ¢t + 19477

S=]

where qi is defined as in (4a) and n is a small c-number to be set to

zero after integration. Mandelstam used this prescription to prove the
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finiteness of the N=4 supersymmetric Yang-Mills theory. Despite appear-
ances, the two prescriptions (21) and (22) have been shown to be
equivalent.32

Recently Capper et al.26 showed that the light-cone gauge
integral L(2,-1,-1,-1) in the Mandelstam prescription is finite, in sharp
contrast to the result (19) obtained in the principal-value prescription.
We are therefore motivated to find a representation for the generalized
class of two-point light-cone gauge integrals based on Mandelstam's
prescription. As explained in Appendix C, i«n this prescription it {is

necessary to evaluate the Integral in Minkowski space.

We define the generalized integral as

_ 2 2 2 ., -
M(w, ¢, 1, V) = lim [a°%[(p~)° + 1 (g H " ()" (7-23)
0" Minkowski

for which we find the representation (for derivation see Appendix C)32

_ - 2,3 1-wy, 1+ whchpt v, 1+ v;
M= M,z G3:3(z|0, s i), |z|<1

3,2 /1j1+v,1=wx;l
%‘%J %ON;WW-me)’ 'z'>1

_ 1(ne 1T Up?y ety v

O " I(= ) T~ 1) T(= V) T(2 wh ek 2 v)

(7.24)

N
n

o= 2
2p'p /p

where pt are the light—cone variables in (4a). This result has some sim=-

ilarity to the one given in (4.9) but the two are obviously not identical.



- 70 -

In particular the extra phase factor of 1e”1mw 10 (24) comes from the
iact that (23) is defined as an integral in Minkowski space. Aside from
this phase factor, the two sets of recults are expected to be identical

when v 1s a non-negative integer N. Indeed one can show that

1(e ™ m(pz)url-ld-u(P+) VI whic) T wh N ) T(=ur =)

P(=x) (= p) T(2 wh ek (4N)

M(w, k, u,N>0) =
(7.25)

which is identical to L(w,x,p;; = N) of (16) to within a phase factor.

This implies that the Mandelstam prescription still does not obey normal

power counting for v =N > 0, since UV divergence is determined by the

abnormal condition whptv = integer » 0.

We now examine the especially interesting integral with k=p=v=-1,
which is the one (and only one) integral in the principal-value prescrip-
tion to become a regular but nonterminating series in the axial gauge
((6.29)) and to have a double pole and other peculiar properties discussed
earlier in the light-cone gauge ((17)). In the Mandelstam prescription,

from (24), we find it to be finite

2
im 1,1,1 4 _ 1,1
M(2,-1,-1,-1) = ;I—'z[an( 2’5 z) - inz 2F1( 5 lz)], 'zl <1,
2 2
i 1,2 -1 1,1,1 1,1
=;:“_[{%t—_-7£nz+z [3F2(§’§ z - fnz 2F1[i|z)]}, Iz‘Zl,

(7.26)

in accordance with power counting. The one-loop correction to the self-
energy can now be read off from (17), (19) and (26), remembering that L
and Ly are the same in the two prescriptions, and that L.; 1s to be

replaced by (26). We find for the infinite parts
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g Csy 11
(r{))inf = 16152 ; 4
BZCZ 4
(M)yne = en? € (7.27)

Of interest is that (IIp)ipf is identical to its counterpart in the axial
gauge in the limit y » = (see (6.28)). Still present is the infinite part
in II}, necessitating an extra counterterm for renormalization.
We briefly summarize some other results:
(1) The three-point Ward identity is separately satisfied for the
UV-divergent, IR-divergent and finite parts;
(i1) As in the axial gauge, infinite parts in both HHV and Pkuv are
all of UV originj all IR singularities cancel among themselves;
(iii) The infinite parts of Pkuv are not the same as in (5.34);
(iv) The renormalization constants Z) and Zj3 are not equal, contrary to
(6.36).
This suggests that in the Mandelstam prescription, the light—-cone gauge may
still require an unusual renormalization program; our calculation shows
that the theory in this gauge is probably not multiplicatively

renormalizable.

Noted added: Veny necent and preliminary neAu£1432 suggest that the Light-
cone gauge Lin the Mandelstam prescription nequires only the
normal nenormalization progham, and that Z, = 23, provdded
one wonks in the two-component theony desciibed in Eqs. [(§-14).
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8. RENORMALIZATION, THE f~FUNCTION, AND ASYMPTOTIC FREEDOM

Although many quantities in gauge theories are gauge—dependent,
the physics described in such theories must be gauge-indepeﬁdent. One of
the gauge-independent properties in nonAbelian theories is asymptotic free-
dom.27 The coupling constant g for the interaction in an asymptotically
free theory becomes vanishingly small in the limit when the momentum XA
characterizing a physical event 1s increasingly greater than a certain

fixed momentum scale Agy» rendering the theory interaction-free. This

property can be expressed as

lim g2(») +0 . (8.1)
M Ao e

The fixed momentum scale A, can only be determined experimentally.
Asymptotic freedom 1s a result of radiative renormalization
effects symptomatic of all field theories. The calculations we have
already done in the last two sections for the one-loop corrections for the
self-energy HuV and the three-vertex Pva are sufficient for the dis-
cussion of this topic. We shall show that although the self-energy and the
three-vertex are not renormalized the same way in axial gauges as they are
in covariant gauges, the two classes of gauges yield identical quantitative

results for asymptotic freedom.

For theories that are multiplicatively renormalizable ([for the
Light-cone gauge see note at the end 0§ §7) the behaviour of g as a
function of X 1s characterized by its logarithmic derivative with respect

to A, known as the f-function

pa) = A BN, (8.2)
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the A-dependence of g comes via the wavefunction renormalization constant

Z3 and the vertex renormalization constant Zj) which are related to g and

the bare coupling constant g, by

-3/2 .

8, = 82174 = gzg ' (8.3)
where Z3 and Z] defined by
. (0t
Hiv Z3 Huv
(8.4)
r =1z I’(O)

Apv 1 “Apv

(the superscript t denotes the transverese part of Hpv’ see §6), embody
radiative corrections which we have calculated to lowest order in g2 in §§6

and 7. From (6.28,34) these renormalization constants are the same in the

axial gauge (n2#0).

2

g Ca
z, =z, =1+-—0 L[Ls wm(p /22y +
1 3 2 3 €

167

+ (A-independent regular parts)] . (8.5)

We have for the first time explicitly displayed the dependence of the log-
arithmic term on the scale momentum A. For a massless theory where there
are no other momentum to serve as a dimensionful scale, it is clear, from
dimensional arguments, that A must enter in this way. Our calculations
have shown that there are no other terms in Zj that are dimensionful -

the variable y = (p'n)2/p2n2 in the axial gauge is dimensionless. For
massive theories there may be terms such as m2/K2, but their logarithmic

derivatlves always vanish in the asymptotic limit A > =,
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In §5 we pointed out that, in radiative corrections, the logar-

ithmic and pole terms always occur in the same linear combination as in (5)
(see also (5.12)). The origin of this correlation lies in the expansion

2,.2.erl

GIA3E L+ o] = [1+ emp?/ W) + 0(eH) ][& + 0() ]

1
€

+ (p/ad) + 0(°) (8.6)

This implies that for the purpose of calculating the f~function to lowest

order in g2, only the infinite parts of the renormalization constants are

needed, since

oz 2
N S S S (8.7)
A a(1/¢)

e - L2y 1
(Zg)infinite - (2 bg ") [ (8-8)
2y 2) = (b, ,gH 1 (8:9)
1,3’infinite 1,387 % *

then from (3) and (5), for the axial gauge

11GC

boy = (B)yy = (b3)yy = el o(gz) R (axial gauge) (8.10)

where the subscript YM denotes contribution from Yang-Mills field= only.
The significance of this relation, arising from the equivalence of the
renormalization constants Z; and Z3, is that in the axial gauge the
renormalization of the self-energy alone determines the f~function. This

relation does not in general hold in nonaxial gauges. Indeed, to lowest
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order for covariant gauge528
C2
17 3
(byy = —3 (& - Eg) s
32n
by =22 13 .
( 3)YM = ;;;E (3— -, (covariant gauges) (8.11)

where a 1s the gauge-fixing parameter (see (1.24)); the inequivalence of b;
and b3 results from the existence of ghosts. However, from (3), (8) and

(1D,

11C>

bYM =

5 + O(gz) R (gauge 1independent) (8.12)
48 ¢

showing that the coefficient b is a gauge—independent quantity.
We now proceed to demonstrate asymptotic freedom. Because g,
is independent of A, we obtain from (2), (3), (7) and (12), the

gauge—independent f-function

_ -1
Bg) = 28 Z, [azg/a(l/e>]

= - bg? + 0(g”) (8.13)

Because C; > 0 and therefore byy > 0 to lowest order, the negative sign

in (13) implies asymptotic freedom. For if there exists a momentum A,

for which g2 is sufficiently small for the leading term in (13) to dominate
when A >> A,, then the solution for gz(x) in the asymptotic region

(Mhg > 1) is
2 2,,2, 11
g (M = [ba(r/A) T (8.14)

Asymptotic freedom as prescribed by (1) then follows. We emphasize that
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the constant momentum scale A, is not calculable in the theory; its
empirical value?? is 250 * 150 MeV/c.

We now briefly discuss what roles fermions, which we have ignored
so far, play in asymptotic freedom and why an Abelian theory suci as quan-
tum electrodynamics is not asymptotic-free. The fermionic contributionc
to the renormalization constants can also be calculated from the diagrams
in Figs. 8 and 9, but with all internal (gauge field) lines replaced by

fermion lines. The gauge independent result is28

bfermion = (bl)fermion = (b3)fermion - 24ﬂ2 619

where N¢ is the number of fermion species. Significant is the contrast

between the signs in (15) and (11): whereas byy 2 0, brarnion < O-

The total value for b is thus

(8.186)

= —— (———--N

b =b, +
24n2 2

Y™ bfermion

This means that a theory with Ny fermions is asymptotically free only if

11¢,
N < (8.17)

A nonAbelian theory such as quantum chromodynamics, with gauge group SU(3)

and C; = 3, is therefore asymptotically free if

N, < 16 (for SU(3) ) (8.18)

f color
On the other hand, any Abelian theory must not be asymptotically free,

since C2 = 0 (see (6.9); the structure constant is zero for an Abelian

group) and Ng > O.
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APPENDIX A - INTEGRATION IN EUCLIDEAN AND MINKOWSKI SPACES

For invariant integrals, where all quantities involved in the
integrand are scalar products, the only thing that matters in deciding
whether the integration space should be Euclidean or Minkowskian is the
possible range of values for the norm of a vector. For this determines how
factors appeafing in a Feynman integral can be exponentiated.

Exponentiation is generally necessary before integration in a
generalized continuous dimensional space can be carried out. The only
formula needed for this task is probably also the most useful formula for

evaluating Feynman integrals, namely the Euler's formula

zH = 1 f dt t:—u—1 e-ZC N Re(z) > 0, Re(u) <0 . (A.1)
T(-p) o

The constraint Re(z) > 0 is of special interest to us.

In Euclidean space the norm of a vector not being nil is always

positive definite
2
p =pupp>0, (A.2)

so one can use (A.l) simply by replacing the z there by p2 (or pzhm2 for

massive integrals).

In Minkowskl space with metric (1,-1,-1,-1), because the norm of

a vector 1is indefinite,

2 W g2 g2 (A.3)

one must use (A.l) in a more round—-about wavy:
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2.p dgf

(") lin [p%+ 1n]*

n20

n 1% [-1 p? + n]¥
n0t

-] 1 2 -
lim —E— [ ge ¥ L IPTET  Minkowski).  (A.4)
ot T(-p) o

One can see how the small n > O term is needed to satisfy the first

constraint for (A.l); the limit n > 0% is to be taken after integration.
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APPENDIX B — DERIVATION OF (4.9)

The integral

S 2 8(wkmvs) = f d2%[(p-0)% [%a?)*[(q )2 ]¥(q m)®

is evaluated 1in Euclidean space. Use (A.l) to exponentiate the three

(B.1)

factors (p—q)z, q2 and (q-n)2 separately, and then use (4.8) to do the

q-integration to obtain

© o <«

$=8,/ dt [ du [ dv Wl Ve lbs Ly wrl/2
o o

[o]

s+1/2 v_

x ()2 e [L0) (6 - 521)],

P @) e H Y [0 TEwT-w ],

w
HI

= (pen) /pa?

<
1]

a1 Zw+t K+ pt+ v,

Now transform the variables

u = AT,
t = M1-1)E,
v = M1-1)(1-8) .

(B.2)

(B.3)

The Jacobian is 3(u,t,v)/d(A, T, E) = Xz and the ranges for integration are

(0,1) for T and £ and (0,) for A« The Aintegration 1s easily done -

again using (A.l) - to obtain
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1 B, -1 -a,-1
1 %
s=s F-a) [ dEE" (1-8) x

0

1 -v=1 vks=1/2 !

x [ dt 1t (1-7) [1+yw1-8)/¢] (B.4)
0
where @9 = ~w-p~v=s and B] = wrktv as well as «a] are the same parameters

given in (4.10). The tintegration can be identified as a hypergeometric

function 3;F, (see Luke,10 Sec. 3.6.(1); p.57), which can be expressed as a

1

G-function G ’g (Luke, Sec. 5.2.(14); p.1l47) so that after a further trans-
2

2
formation
v = (1-8)/¢, _ (B.5)
we have
© -a,-1 -B,+q Ha, 1+v;
S = 8, [(vrs+1/2) [ dv v 07 (e 10 G;’g(yvl A ) (B.6)
o ’ 0; 1/2-s

The integral is known, yielding (Luke, Sec. 5.6(18); p.165)

~ SOF(v+s+l/2) 2,3

} . (y|1+a0,1+al,1+v;
T8 =) 33700, g5 1727

s (B.7)

which is the result for 'Y‘.S 1 given in (4.9a). The result (4.9b) for
'y| > 1 is obtained by analytic continuation (Luke, Sec. 5.4.(3); p.150).
The reference used in (5.8) and (7.15) for expanding the G-func-

tion in terms of hypergeometric functions is (Luke, Sec. 5.2.(7); p-.145).
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APPENDIX C - DERIVATION OF (7.24)

Mandelstam's prescription for the light—cone gauge 1is devised
explicitly for integration In Minkowskl space, so according to (7.22) and
(A.4), we define

o0 2 Ln [ @m0 + 0] @t @PHmDY e
n

the evaluation of which always depends on a generic integral over the

whole xy-plane

L=l [ dxdy(x+iny) Ye2T(@xtbytexy) o paey >0 . (C.2)
10

In order to exponentiate the factor (x+iny)V with the aid of (A.l) we

integrate over the upper and lower—half y-plane separately and obtain

7 =2 lin, [ dr £ VL™ ™ [ gy x
cl'(-v) mot o o
v _2iby t a _syV _=21by t _a
x [1V e oy +g—+ D) + (-7 e By +5=- D]  (C.3)

where the & functions are from the x—integrations. The result for (C.3) is
easily shown to be proportional to a confluent hypergeometric function
1F (- v;1-v;2iab/c) (Luke, Sec. 3.1.(18);p.40). However, for our purposes

we write

1
lim, [ dt t
mot "o

v e-21ab/c w1 e21abt/c-nt . (C.4)

- T[ =
I = E—I..W (21a)

Now use this result to derive the equivalent of (4.8) for Mandelstam's

prescription in Minkowskl space
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2
J(e,p) = ln [ a%%(qt + 1m0V el(ea 2p )
N0

[ 2D [ aqt aq7 ees

w ey ogn2 1 _ +_—
i-—v (-in) (-21p7)"" e ip'e fo ac ¢~ Vle2ir'p t/c (C.5)

The light-cone decomposition of vectors was explaired in (7.4-6). We now

return to (C.1l) and exponentiate the first two factors according to (A.4)

to find
Kt 1 - - 2
M= Tflij?E:Ej lim f dr f ds r K 1s “-le ﬂ(r+s)eip r J(r+s,rp ). (C.6)

o o
After substituting (6) into (5), changing variables

r = M1-8)

s = AL (c.7)

and integrating over A (from 0 to =), we obtain

-1 2"1

1(re IH® (p <2p> r( ) -1 -q'-1

M= 1 fdaaﬂl (1-a)a° x
T(-) (- p) T(~ v)

0’1

1
x [ ar ™V 1+ ze1-8)/e) (C.8)
0

where aé = -y-pand z = 2p+p—/p2. This integral is identical in form to
(B.4), and can be evaluated following the same steps as those given in
(B.5-7), ylelding (7.24) for ’zl < 1. The result for 'z' 2 1 1s again

obtained by analytic continuation.
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