Tangle invariants and
centre of the quantum group

H.C. Lee

Abstract. An ambient isotopy V for (n, n)-tangles 7™, V : 7™ — A®" is contructed on
the quasitriangular Hopf algebra A of a quantum group. V[T(O)] is an invariant for links.
A theorem stating that the set {V[T"]|all 7"} C centre of A is proved. This implies
that V[TV] is also an invariant of links. In particular, if 7 € End(V) is an irreducible
representation of A, then for all (1, 1)-tangles T" whose closure is L, a link polynomial
Q~[L] € C|lg]] is given by the relation 7(V[T"]) = Qx[L]7(1), and redundantly by
n(V[L]) = Q#[L]Tracex(h), where h is a universal element of A and ¢ denotes a generic
deformation parameter of the quantum group. The isotopy is extended to cabled tangles
using the coproduct in A. Two examples, when 7 is the fundamental 2 x 2 representation
of sl(2; C)q and when it is that of (gl(2;C)/U(1))q,s, are discussed. The Qx[L] in these
cases are respectively the Jones and Alexander-Conway polynomials.

1. Quantum group and Hopf algebra

We understand a quantum group in the sense of Drinfeld [1]. Specifically it is a
quantized universal enveloping algebra of a Lie algebra g, denoted by U,(g), or
simply (g), in this paper. It has a Hopf algebra structure composed of the set
{A,m, A u,e, S} = {bialgebra, product, coproduct, unit, counit, antipode} over
the field V4. Often we refer to the Hopf algebra as A. The maps m,/\, u and
¢ are homomorphisms; S is an antihomomorphism. The following relations are
especially important for our purpose:

(id® A)A(a) = (A ®id)A(a), (1.1)
m(id ® S)A(a) = m(S ® id)A(a) = ue(a), Va € A. (1.2)
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2. Quasitriangular R-matrix

It is assumed that A is quasitriangular, namely that there exists an invertable
universal R-matrix R € A ® A, whose inverse is R™! = (S® id)R = (id ®
S—TYR, that satisfies the relations

ToA(a)R =RA(a), Vac€ A, (2.1)

(A®id)R = Ri3Rys, (id® A)R = RnpRy, (2.2)

where if R = ). a; ®@ b;, then, e.g., R)3 = )_, a; ® 1 @ b;, and so on. The braid
relation

Ri12R13R23 = RuaRizR2, (2.3)

is a consequence of the above two relations.

From its property of quantum doubling [1], A has Hopf subalgebras A™ and
A~ which are dual to each other, so that the (opposite) coproduct on A* (A7)
induces the product on A~ (A™"). This means that if {e, } is a basis for A, then
[1,2] there exists a basis {e? } for A™ dual to {e,}, and

K= Z e ®e7. (2.4)

For quantum groups that are quantized universal envoloping algebras of simple
Lie algebras A are finitely generated infinite algebras so that the summation over
o in (2.4) is infinite. This makes the derivation of certain properties of a quasitri-
angular Hopf algebra problematic. (For instance (2.1) and (2.2) express the same
relation if the sum were finite.) In the following we take another approach to the
description of R so that the summation in (2.4) may be replaced by the limit of
a finite summation.

Consider A* as linear spaces respectively spanned by {e, } and {¢}. We want
to construct a series of finite subspaces

Sy, CSx,---CSx =A%, M <N;...00 " (2.5)
each having the property
A(SE) € Sy © Sy (2.6)
This is can be achieved because coproduct is homogeneous in the lowering (and
raising) generators. In the case of sl(2; C'), with generators (2] {k,k™!, X=} and
coproduct A(X*) = X*@k+ k™' @ X* we let Si; be spanned by the smallest
set containing (X *)V. Then the ideals Z}; generated by (X*)¥*! are ¢ Sj. For
example S° is spanned by {k~',k, X*}, S§ D S by (k=3 k™ k,k* k72X *,
XE RXE EY(XE)? k(X*)?, (X))}, etc. In general,

VS5, 3N’ > Nsuch that S§; C Si,. (2.7)

The generalization to quantum groups with higher ranks is straightforward.
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from above and exit from below. Closing a strand means joining the two ends of
a strand in an area external to the interior strip. Closing a tangle means closing all
strands of a tangle. The result is the closure of the tangle. In this work we restrict
our consideration to those tangles that can be closed without generating any new
crossings. In what follows, all Reidemeister moves [5] are restricted to within the
interior strip.

Consider an operation, called splicing, under which a positive (negative) cross-
ing is replaced by an uncrossing, represented by a plus (minus) sign and two
noncrossing strands, as shown below:

x ~ s , \/\ ~ - (4.1)

The result of splicing all the crossings in a 7™ is the union of a set of n
noncrossing strands, m unknots, called Seifert circles, and uncrossings located at
the verticies of 7). In a spliced tangle, called a splice, the relative positions of
uncrossings along any strand or Seifert circle may not be altered. An untangle is
a tangle that has no crossings. The following lemma is self evident:

Lemma 4.2. Splicing is a bijection between tangles and splices.

Consider a Seifert circle with s uncrossings around its perimeter which divide
its circumference into s sections. If s > 1 the Seifert circle may be deformed such
that no two uncrossings are allowed to be on the same latitude so that the sections
point generally either upward or downward; at least one section will point up and
at least one down. If s = 1 we consider the sole section to be pointing up and
call the Seifert circle trivial. A tangle is said to be trivial if its splice contains
at most only trivial Seifert circles; otherwise it is nontrivial. A trivial tangle is
equivalent to a braid (by the Reidemeister move I, see below). The following has
been proven elsewhere [22]:

Lemma 4.3. It is possible to deform, without generating any additional crossing,
a tangle to one such that each of the Seifert circles in the splice contains one and
only one section pointing up.
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5. Reidemeister moves

We construct a homomorphism V between the complete set of (n,n)-tangles and
A®" and define the Reidemeister moves under V. It is then shown that under V
the tangles are invariant under the Reidemeister moves.

The homomorphism V is a natural one: each strand in the tangle is mapped to
an element in an A factor in A®". The actions of V on a local part of a tangle
are defined as

[ — 1 €A, (5.1a)

) & - 191 €A®A, (5.1b)

><—. e, @7 =R €ARA, (5.1¢)
} — h €A, (5.1¢€)

(in a counterclockwise circle)

{ — h' €A (5.1f)
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This explains the need for (5.1e and f). The general rules for the insertion of k

and/or h~' factors on a tangle 7' is:

(a) Splice T and call the result P. P is the union of a set of noncrossing strands,
uncrossings and Seifert circles.

(b) On each counter-clockwise (clockwise) Seifert circle in P, insert a factor of
h (h~') on the upward-pointing section (each Seifert circle has one and only
one such). Call the result P’.

(c) Generate from P’ a unique tangle 7" by inverse splicing (by Lemma 4.1). 7"
is the same as T except that it has factors of h and/or h~! inserted on all the
sections having the wrong directions.

An example suffices to explain these rules.
S /
S

) +

Henceforth it will be understood that by a tangle 7" we mean 7".
It follows that (3.5) and (3.6), respectively, induce the equivalence relations

J g
(> ~ < ~ (5.4b)
\ /
) N
> - Q - H (540
\ %

These, together with (5.4a), establish the complete invariance under the Reide-
meister move I].
The inverse images of (3.3) and (3.4) under V , respectively, induce the equiv-

alence relations
~ 9 ~ A2 (5.6a)
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Recall that (5.6) only gives regular isotopy. In order to establish ambient isotopy
the factors of A*!/2 on the right-hand side of (5.6) must be compensated. This is
achieved by defining the action of V on the writhe number w of the tangle as

V|w] — (multiplicative factor of) A*/* € C [[q]]. (6.1¢c)

To summarize, a 7™ that is a disjoint union of n open strands {0;} and any
number of closed strands {c;} and has a writhe number w is mapped by V to
A®n by

VIT™) = N[ Tr(v(e)) (@ V(o)) €A4%".  (63)
7 1
By definition V is a homomorphism:

V[T T = y[T™)y[re), (6.4)

where the product on V is just the product on .A . We now have our first result:
Theorem 6.5. The map V gives an ambient isotopy for tangles.

The proof follows from the local properties, (5.1a-f), and global properties, (6.1a-
¢), of V, and from Reidemeister’s theorem [5]. O

An l-component link, denoted generically by L, is a (0,0)-tangle with ! closed
strands, therefore

Corollary 6.6. The map V|L| is a link invariant.
V has special properties when n = 1. For simplicity denote 7" by 7'. From the

invariance of Reidemeister moves I and II7 it follows that for any two 7" and
T', VITT'] = V[T'T] so that, from (6.4)

[VIT),VIT]] = o. (6.7)

Therefore,

Lemma 6.8. The set {V|T)| all (1,1)-tangles T'} is a commutative subset of A.
Then we have, from Schur’s lemma,

Theorem 6.9. Every irreducible representation of V[T is one dimensional.

In section 7 we prove a more powerful theorem:

Theorem 6.10. V(T is a central element in A NT € {TV}.
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Consider a splice. Call the result of replacing all its uncrossings by unsigned
dots a shadow splice. Consider an equivalence relation whereby two tangles are
equivalent if they only differ by at most the signs of the crossings, and call the
equivalence classes of tangles under this relation shadows. It is clear that splicing
a shadow obtains a shadow splice. The first of the following is obvious.

Lemma 7.1. Splicing is a surjection from tangles to shadow splices and a bijection
between shadows and shadow splices.

Lemma 7.2. Under splicing, the reverse image of every shadow splice contains a
tangle equivalent to an untangle.

Proof of Lemma 7.2. Consider a shadow splice S whose reverse image the shadow
P is composed of a set of closed and open strands. Consider a three dimensional
manifold M> ~ R? x Z in whose R? factor reside S and P. Let T be a tangle
in M? that is the disjoint union of the components of P, each of which resides
in R? but with a distinct Z coordinate. Since there are no crossings in T, by
Reidemeister’s theorem its projection 7" on R? is equivalent to an untangle. By
definition the shadow of T is equivalent to P. O

VIT) is central if it commutes with all the generators {k=', X*} of A. We omit the
proof of [V[T] k') = 0, which follows trivially from the relations [A(ki'z R| =
0 and [k*',h*'] = 0 and is a simpler version of the proof of [V[T], X*] = 0,
given below. Under coproduct

A(Xg)=X¢®ki+ki_l®Xi, i=1...m (73)
where r is the rank of the quantized Lie algebra. Since the index ¢ plays no role
in the proof it will be suppressed in the rest of the discussion. On a diagram,

represent X by a solid circle, k (k~') by a hollow arrow pointing along (against)
the orientation of the strand. Thus (2.1), with a = X, is diagrammatically

X+X~X+X (7.40)

and its companion relation R~'7 o A(X) = A(X)R™!
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X+X~\/\+X (7.4b)

The splices of the above two relations differ only by the signs of the uncrossings,
therefore they combine to give a relation for shadow splices

R - W

Similarly, from the relations A(k)R = RA(k) one obtains

- N

or with all the directions of the hollow arrows reversed when k is replaced by
k~'. These relations mean that, on a shadow splice, a pair (k,k) (or (k' k™))
may freely cross a dot, while the two pairs (X,k) and (k~', X) must move in
tandem to cross a dot. Recall that any dot in these shadow splices may represent
a positive or a negative crossing. Let P be the splice of the the tangle T', and
denote the spliced V[T X and X V[T, respectively, by PX and X P. Similarly
define Pk and kP.

Lemma 7.7. [V[T], X | = 0 implies PX = X P, and vice versa.

This follows from Lemma 4.1. The lemma does not apply to higher tangles.
To see how X may be commuted through P, consider

- W N

obtained by combining (7.5 and 7.6). T" being a (1, 1)-tangle, there is only one
open strand in P. By identifying the left-hand strands in the diagram on the left-
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si. Then ). w;/2 = w. Define

i l n
Viry[T™] = ([T ™) = T2 [T Tre,(Vies) (Q) Valoi))-
i i=]

j=n+l i=1
(8.1)

Theorem 8.2. V(. }[T™)] is an (n, n)-tangle invariant.

This follows from (6.3) and Corollary 6.11. If 7"~") is obtained from 7™ by
closing, say, the open strand o,, then the invariant Vi, [T~ "] is given by the
right-hand side of (8.1), with the exception that the factor (V;,[o,]) is replaced
by Trx,(V[ou])TTx, (h) = Trx, (V[0y]) T4, (h71).

9. Cabled tangle invariants

We use the coproduct in the quantum group on V to construct invariants for
cabled tangles. In a cabled tangle, at least one of the strands (closed or open)
is replaced by a set of parallel strands. The point is to use A : A—A & A for
V(strand|—V|cable]. Define a homomorphism A™ : A—A®% where u is a
positive integer, by

AW =(1@---@10A)AMY,  u>1, (9.1)

with A" = 1. If # € End(V,) is a fundamental representation of A , then from
the fusion rule

e = Pey’ € End(V4®) (9.2)
k

irreducible representations ¢ of .A4®“ are obtained. The idea of using the co-
product and the fusion rule for cabling is expressed in the following diagram

li
tangle M cabled tangle
|v |v
A L, A®u
L lq)f:‘)
fusion rule

End(Vy4) End(V,®")
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Define
() _ ¢ (u) W)y A (W) (v)
R =(0; ®¢; )(A™ @ AR, (9.3)

h = i (A@h), (9.4)
where in (9.3), R = e, ®€?, and A™ (A®™) acts on e, (e). For simplicity
we write

a'=A"a) € A% (9.5)
for generic a € A and u. Similarly the various quantities in (9.3) and (9.4) will
respectively be written as Rj;, ¢; and k], etc., with the understanding that, in
(9.3), u and v need not be the same. The discussions in section 5 can be repeated
for cables, provided the appropriate R};, h; and A} are substituted for the R, h
and A used there. We omit the discussion, except to point out that

X = oM (A) = (M), (9.6)

which is easily understood from from the diagram below.

/‘/ ~ / / (9.7)

This establishes the ambient invariance of the Reidemeister moves for cables.
There is a significant difference between the description here and in section 5:
here cables are mapped to irreducible representations of A®“, whereas in section
5 single strands were directly mapped to A . Let 7" be a cabled tangle. By changing
every cable in 7" into a single strand one obtains the single-strand tangle 7', for
which (8.1) gives an invariant. By replacing the quantities 7', Tr, A 0; and ¢; in
(8.1) by their respective cabled counterparts (denoted by primed symbols) and the
set {m;} by {¢x} one obtains

Vig [T™' = @ &:(VIT™') = ([T )T 775, Vi) :(VIel)).
i i J )
(9.8)

where the indices 7 and j have the same range as in (8.1). The discussion in
section 6 can be repeated to give:

Theorem 9.9. V; o1} [T(")'] is an ambient isotopy for cabled tangles.

Similarly, Theorem 6.10 holds with A replaced by A (A) C A®¥. Therefore,
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Corollary 9.10. For any cabled (1, 1)-tangle T, Vi 6x) [T'] is proportional to the
unit matrix.

Suppose ¢, € {@r} acts on the open cable in 7" whose closure is L', then the
analog of (6.6) is

Ve IT'] = Qo (TN (1), (9.11)
so that

Corollary 9.12. Q' , [T '] is a link polynomial for the closure L' of TV,

10. Examples

We use the simplest nontrivial representations of two quantum groups, sl(2;C),
and (gl(2:C)/U(1))q,s, to demonstrate some of the ideas discussed in the pre-
ceding sections. ¢ and s are deformation parameters; s instead of the usual ¢ is
used for sl(2; C)s to make the comparison between the two quantum groups more
transparent. Correspondingly, the generic algebraic field C [[q]] referred to in pre-
vious section should be replaced respectively by C [[s]] and C {[g, s]] for the two
quantum groups.

s1(2; C)s. The generators H, X* and X ~ are constrained by the usual defining
relations [1,13,2]. Define k = s/2, The minimum set (section 2) S* closed under
coproduct are

S* = (k7" k, X%}, (10.1)

whose finite bases are [12]
{es}={er=k"ea=kea=X"}, (10.2)
{7} ={e' = (s7"2k~" = s'2k)/(s7" = 3),

e = —(s"2k7 —s7V2k)J(s7 = 5), € =X}, (10.3)
that are dual under the 2 x 2 representation 7'

,H_lO XY — 0 0 ox+ 0 1
T N L e ()

(10.4)
where 7> = s'/2(s~! — 5). Then from (2.8) and (3.1)

(7 o120 20 )
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A(Z)=Z®ky+ k' ® Z. The minimum sets that close under coproduct are

S§* = {k, ™' ky, Z%}, (10.12)
with bases [4]
{es}={er=h"ea=k,ea=2} (10.13)
{7} = {e' = (s'%k; ™" 4+ 57V2ky) /2,
e =512k -5k /2, € =2ZT), (10.14)

that are dual under the 2 x 2 representation 7

o 1 0 Ne 1 0
7'!'( )—(O —l), 7'.()_(0 l),

I zy=n[ " 10.15
m( )—n(l o)’ m( )—n(o 0), (10.15)

-1
aw=ar((7 s (! ) (1 Yo"
0 1 00 0 —s 0 1
+(s"—s)(0 O)@(O l)) (10.16)
1 0 0 0/)/)

s 0
a(A)=s""', =(h)= ( ) (10.17)
0 -s

Note (10.16) differs from (10.5) only by one matrix element in the second term. By
definition @ [unknot] = 1. Furthermore, it can be shown [4,18] that Q. [L] is the
Alexander-Conway polynomial [19,20]. A peculiar property of this representation
is that Tr,(h) = 0 identically, so that V;[L] = 0 identically. This is the reason
why the polynomial vanishes for any split link and the source of a well known
difficulty one encounters when attempting to construct the polynomial using the
Markov trace method, and explains why the Markov trace method breaks down
even for the Jones polynomial at s> = —1, since at this value of s the Jones and
Alexander-Conway polynomials are identical.

It is easy to verify by direct computation that the counterparts of (10.7 and
8) hold [18], with Jones replaced by Alexander-Conway. The fusion rule of = is
very different from that of its counterpart 7', however [21]. Here, for generic s,

Then

2?.!—[

o = @{2 — dim. reps. ¢ }. (10.18)
k=1
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¢y are parafermionic representations [21]. (gl(2;C)/U(1)),,s do have m x m
representations, but only at g2 = e~2'"/™_The associated polynomials form a hi-
erarchy of Alexander-Conway polynomials [4]. Since these representations do not
appear on the right-hand side of (10.18) for any wu, unlike their Jones counterparts,
the polynomials are not cabled versions of the fundamental Alexander-Conway
polynomial.

This work is partly supported by a Canadian NSERC grant; I thank the or-
ganizers of the Osaka Knot Conference, especially Professor A. Kawauchi, for
support at the conference and for giving me the opportunity to present it.

Note added in proof. Invariants of tangles were recently discussed in terms of
category theory by Turaev [23] and Reshetikhin [24].
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