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1. INTRODUCTION

It is by now well known' that for each simple Lie algebra or Kac-
Moody algebra g there is a quantum group %q(g), and that for each repre-

sentation of this group, a knot ‘invariant of the Jones type can be
defined. Thus the Jones polynomial® corresponds to the #*2 matrix repre-
sentation of %q(u{Z,tI:)) and the Akutsu-Wadati polynomial’, the 3xX3 matrix

representation. Intcrcstingl% cnough, the oldest knot polynomial, the
Alexander-Conway polynomial®, is yet to be identified with a quantum
group. On the other hand, it is already known that the Alexander-Conway
polynomial is given by a two-state  solution of the quantum Yang-Baxter
equation.  Recently, Kauffman® derived the polynomial from a state model,
and discovered a bialgebra associated with it. Lee” has shown that the
polynomial at least is associated with a pseudo Hopf algebra - the repre-
scntation for the universal #R-matrix was given, but the abstract form of
the antipode of the algebra was not.

Here we show that the Alexander-Conway polynomial is given by the 2x2
representation of the quantum group: qu(u{Z,c)xZN) There seems to be an
infinite family of quantum groups obtained by extending qu(u(Z,c)) this
way: qu(utz,c)xzn). We also give an explicit representation for N=3,
which giv%s the Alexander-Conway type polynomial derived previously by Lee
& Couture’.

A characteristic of an Alexander-Conway type link invariant is that

it has as its kernel the set of all spiit links".  This property is not
shared by Jones type invariants defined on th(g), where g 1s a simple Lie
algebra. In fact, the standard Markov trace of a braid group

representation constructed from the universal &@-matrix of f?zq(utz,-r)xZN)
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damental group of the configuration space of n indistinguishable particles
in two dimensions, Braid group representations are related to strange
statistics (neither Bose or Fermi) in quantum mechanics in 2+1 dimensions
[9-12]) and quantum field theory in 1+1 dimensions [13] and to the mono-
dromy of multipoint correlation functions in two dimensional conformal
field theory [14,15].

In an earlier paper [12], we proposed an algorithm for constructing
N-state representations of B. of the maximally symmetric type (defined in

section 2); from this family of representations one can derive an infinite
sequence of link polynomials. The N=2 case in this family corresponds to
the famous Jones polynomial. The method consisted of solving a set of
equations of the Yang-Baxter type. The resulting family of solutions had
been first discovered by Akutsu and Wadati [1,2); their method consisted
of extracting representations of B from exactly solvable N-state vertex

models in statistical mechanics at criticality. Recently our method led
to the discovery of a new family of N-state representations of B ; solu-

tions for N=2, 3 and 4 were given [16,17).
The object of my talk (M.C.) is to give a detailed account of those

representations. In section 2 solutions to both families of representa-
tions are given up to N=6.

2. N-State Representations of Bn

Artin’s braid group B, [18,19] is generated by a sect of (n-1) genera-
tors (elementary braids) g, &g  and their inverses subject to the
following necessary and sufficient defining rclations

g8 = 88 li-i] = 2 (2.1a)

B8 .8 = B8, (2.1b)

An clement £ in B , called a braid, is a word in the g's

g, o
ﬁ=gi ;" oo g €1

Let V be an N-dimensional vector space and R € End(VeV) be an N* x N?
matrix that has an inverse. The mapping

p:B_ > End(v®?) (2.2)
with
pg) =1 e..el eRel eo..el (2.3)

is a representation of B., where [ € End(V) is the identity matrix, the

subscgpt i means the i’h vector space in VQ', and R acts on the i'h and

(i+1)™ vector spaces. The form of (2.3) insures that (2.1a) holds. Let
us now consider (2.1b). Component wise :
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