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A variation-after-projection Hartree-Fock calculation shows that the rms radius of
Ne decreases with increasing spin in the ground-state band. This decrease is consis-

tent with the significant reduction in & width between the 6 and the 8 states. It also
leads to the theoretical B(E2) values reproducing the measured values exceedingly well.

The atomic nucleus "Ne has provided one of
the classic manifestations of collective rotation-
al motion in light nuclei. ' The low-lying mem-
bers of its ground-state band have energy spac-
ings proportional to J(J+1) and have the strong
intraband E2 transitions characteristic of the
rigid rotor. However, higher-lying members of
the band, especially the recently observed 8'
state at 11.95 MeV,"have properties which are
markedly different from those of the simple rota-
tional model. Thus in the rigid rotor the 8 state
is predicted to be at a considerably higher ener-
gy than 12 MeV, and the ratio of the E2 y-decay
strengths, (R=B(E2; 6+ -4')/B(E2; 8'-6'), which
is predicted to be 0.96, is measured' to be 2.7',",.
Qn the other hand both the j-j coupled' and the
SU(3) ' shell-model calculations predict 6(= 1.6
and level spacings close to those observed. In
these models an (additional) effective charge of-0.5e per nucleon is needed to reproduce the ab-
solute B(E2) values.

The n decay of excited states is another inter-
esting facet of the structure of "Ne. Among

members of the ground band the 6' and 8' states
are n-particle unbound, and the n widths of
these states have recently been measured, ' the
result being I,+ =110+25 eV and I',+"=35+10
eV. As usual one analyzes the experimental
width I', in terms of the product of a spectro-
scopic factor S, and a single-particle width I', '~',
or I', '"~ =S,I', 'P . Here the "single particle"
has reduced mass number '-,', and its motion is
the relative motion of the departing e particle
and the residual "0. Arima and Yoshida' calcu-
lated I', 'I' using the Coulomb potential plus a
real %oods-Saxon potential of appropriate depth,
radius R, and diffusivity a; these parameters
are chosen in such a way that the wave function
has maximum overlap with the wave function ob-
tained in the cluster model' and that the reso-
nance energy coincides with the observed energy.
The following results' were then obtained: (a) As-
suming R,+ = R,+, then one must have $,+ = 2$,+

=0.24 in order to reproduce the experimental n
widths; (b) if one demands that S,+ =S,+ =0.24
then R,+ —R,+ —=0.25 F. Neither (a) nor (b) is
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compatible with the shell models mentioned pre-
viously. However, since 8,+ =$,+ =0.24 is pre-
dicted io their a-cluster model, Arima and Yo-
shida favor the second possibility and interpret
the a-decay data as experimental evidence of
anticentrifugal stretching in "Ne.

In this Letter we report results obtained in
many-body variational calculations for ' Ne.
These results reproduce, without the help of an
effective charge, all absolute measured B(E2)
values in the ground band and confirm the specu-
lation of Arima and Yoshida that R,+ &R,+. As
we shall see, the two phenomena are actually in-
timately related. This then presents a unified
picture for the ' Ne ground band. Our variation-
al calculations are carried out with the projected
Hartree-Fock (PHF) method, where the projec-
tion of angular momentum is done befog varia-
tion. We use a five major-shell oscillator basis
to expand the single-particle wave functions.
The frequency of the oscillator is determined by
the variational principle. ' The Hamiltonian is 0
=t„~+v~+v, , where t„& is the total kinetic en-
ergy zvith respect to the center of mass, v~ is
the two-body N-N interaction, here represented
by the Saunier-Pearson potential No. 2, ' and v,
is the two-body Coulomb interaction plus the one-
body approximated electromagnetic spin- orbit in-
teraction. ' We define the intrinsic Hamiltonian as

b($(X) I FI;„,(x) I p(A. )) = 0. (2)

For each state of good J the variational parame-
ters are determined such that

sE, s g(~) IHP, Iy(z))
sz si (g(i) I&, III (~))

where P~ is the angular momentum projection
operator. In practice since the optimum value
for A. ~ is very similar throughout the band, the

average value of A.~ =0.27 is taken, and only A.

is varied in the final computation. Technical de-
tails of the calculations are found elsewhere. '"

In Fig. 1 the energies of the J-projected states
in the ground band of ' Ne are plotted versus the
variational parameter A, =A., as well as the suit-
ably defined' quadrupole deformation parameter
P. One observes that as the spin increases, the
optimum value of X. or p decreases. The trend

&;„g(&)= 8;„t(Aq, Xo) = H —A~J —A og,o,

where Q,' is the mass quadrupole operator. For
given values of X's, the single-particle wave func-
tions are determined by the Hartree-Pock equa-
tion
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is broken only for the 10' state, which has com-
ponents mainly outside the s-d shell. A very sim-
ilar effect is also observed in the o.-cluster cal-
culation for Ne by Horiuchi, "where the dis-
tance between the centers of mass of the "0 and
n clusters is taken as a variational parameter.
Various computed B(E2) strengths are also shown

in Fig. 1. The B(E2) values of the transitions a-
e (technically these are "cross-band" transitions)
between the optimum states agrees exceedingly
well with the measured' values. A value of 1.9
for S is predicted. In contrast, for the "in-band"
transitions, particularly the sequence h-l, which
is obtained with A, =0, the rotational values are
predicted, and 8=0.98.

Because the 8' state (hereafter a state is under
stood to be that obtained at the optimum value of
A.z for that spin) is less deformed than the 0+

I I I i I }
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FIG. 1. Projected energies of the ground-band states
in Ne versus the mass quadrupole cranking parame-
ter A, as defined in the constrained Hamiltonian H&=B
-0.27J' —~Q& . The abscissa is linear in P, the quadru-
pole deformation parameter as defined in Ref. 7. B(E2)
values for the transitions indicated by lettered arrows
are also given in Weisskopf units (& W.u. =3.23e F ).
The transitions a, b, c, d, and e occur between states
at the energy minima.
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TABLE I. Change in p, the o.'—~60 cluster distance in the ~ONe ground-
state band.

B~~q ( Ne)
(F)

p{o. —~GO)

B(6= 2.85 B)6= 2.50
(&) (F)

pg -po
A)6 = 2.85 R)6 = 2.50

(F) (F)

2.678
2.678
2.655
2.685
2.606
2.674

3.682
3.840
8.761
3.672
3.540
8.844

3.812
8.287
3,194
8.089
2.981
3.292

0
0.022
0.101
0.190
0.322
0.018

0
0.025
0.3.18
0.223
0,381
0.020

state, one expects the former to have a smaller
radius. In column 2 of Table I the rms radii. for
states in the ground band, calculated toitIt respect
go the center of mass, are listed. An anticentri-
fugal-stretching effect i.s evident, as from 0' to
8' the rms radius decreases by ™39o.This de-
crease can be related to the change of p, the rms
distance between the centers of mass of "0 and
e in a clustering state of 'ONe, through the equa-
tion

the experimental errors' in the o. widths, then
from Table 2 of Ref. 6 the radii of the Woods-
Saxon wells for 6' and 8' are 3.81'~', ,'and 3.52+0'„'
F, respectively. From the analysis given above
this 1mplles pe+ —3.6I + 0.10 F RDd pa+ —3.33
+0.10 F, or an isomer shift of 0.28+0.20 F,
which, considering the size of the error, is in
xeasonable agreement with our prediction.

We thank A. Arima, Q. H5usser, and T. K.
Alexander for illuminating discussions.

TRble I shows p RDd Apg = pg+ —po+~ for R~ = 1.44
F Rnd two fixed vRlues fox' Ryeo. We see thRt pe+-
p, + =0.13 to 0.16 F, which agrees reasonably mell
with the chRDge of 0.25 F 1D the 1Rd11 of the Woods-
Saxon potentials of Arima and Yoshida. ' A more
direct comparison mould be made if me could
compare p with the rms radii of the internally
normalized resonance mRve fuDctloDS obtRined by
these authors. Though these radii are not avail-
able, the size parameters were given' for the
harmonic osclllRtox' wRve functions hav1ng max1-
mum overlap with the resonance wave functions
in the internal region. Taking v =0.740 F ' for
the 6' state and v =0.851 F ' for the 8 state, and
knowing that the oscillator wave functions have
eight quRDtR, we find pe+ = 3.58 F RDd pe+ =3.34 F.
Thi. s represents an i.somer shift of 0.24 F. In
other molds„ tjle isomer shift 1D the rRdlu8 of the
Woods-Saxon well is essentially equal to the iso-
mer shift in p. If me now take into consideration
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