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Protein folding dynamics is one of major issues constantly investigated in the study of protein functions. The
molecular dynamic �MD� simulation with the replica exchange method �REM� is a common theoretical ap-
proach considered. Yet a trade-off in applying the REM is that the dynamics toward the native configuration in
the simulations seems lost. In this work, we show that given REM-MD simulation results, protein folding
dynamics can be directly derived from laws of inference. The applicability of the resulting approach, the
entropic folding dynamics, is illustrated by investigating a well-studied Trp-cage peptide. Our results are
qualitatively comparable with those from other studies. The current studies suggest that the incorporation of
laws of inference and physics brings in a comprehensive perspective on exploring the protein folding
dynamics.
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I. INTRODUCTION

Protein folding dynamics is one of major issues constantly
investigated in the study of protein functions. Because the
protein folding process involves complicated many-body in-
teractions, MD simulation is a common theoretical approach
considered. However, one issue hinders the practical usage
of MD simulation in studying protein folding processes. As it
is recognized from energy landscape theory, protein folding
is a series of processes that starts with many possible states
and goes through a rough potential energy surface created by
many-body interactions �1�. It then ends with a few possible
states associated with native structures. However, proteins
may be trapped in one of local energy minima on the energy
surface during simulations. To resolve this issue, the replica
exchange method �REM� has been proposed �2�. However,
the introduction of the Monte Carlo aspect in REM seems to
lose dynamical information of the folding process. Juraszek
and Bolhuis’ recent studies suggest that the dynamics is not
lost and is merely hidden beneath the sampling space �3�. To
reveal the dynamics, they propose to integrate appropriate
sampling techniques such as transition pathway sampling
�TPS� �4–6� in MD simulation. By studying Trp-cage pep-
tide folding dynamics, they found two folding trajectories in
their simulations and were found to be consistent with the
experimental results �3�.

In this work, we tackle the folding dynamics problem
differently by asking “Can we reveal folding dynamics from

pure REM-MD simulation results directly? And if so, how?”
Because protein folding primarily associates slow processes
such as the backbone movement compare to fast atomic mo-
tions, the approach hinges on the idea of developing a dy-
namical law that specifically takes information relevant to
slow folding processes into account. Because the common
procedure to develop such physical laws is normally started
with the establishment of a mathematical formalism, upon
which one then tries to append an interpretation, it is difficult
to develop a dynamical law of many bodies, which only
takes specific information such as many body interactions
into account, based on the procedure.

However, a reverse procedure, in which one constructs a
physical theory by first deciding what the subject is and what
one wants to accomplish, and then designing an appropriate
mathematical formalism, provides a solution. Because our
goal is to study dynamics of many-body systems by process-
ing the corresponding dynamical information directly, the ap-
propriate formalisms are found to be laws of inference, con-
sistency, objectivity, universality, and honesty. They are
sufficiently constraining that they lead to a unique set of
rules for processing information: rules of probability theory
and the method of maximum entropy �ME� �7,8�. Further-
more, Caticha argues that information geometry is a conve-
nient tool to proceed. An information manifold is constructed
based on independent parameters that characterize the sys-
tem. The probability distributions of the system at specific
states are treated as points in the manifold. The evolution of
probability distributions then is simply represented by that a
point object “moves” in the manifold. Caticha shows that the
dynamics of a physical system can be derived directly from
laws of inference �7,9,10�. He therefore termed this approach
the entropic dynamics. It should be noted that information
geometry was originally proposed as a method of applying
differential geometry to study statistical estimation �please
refer to �11� for details�. It has been successfully applied to
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different disciplines such as fluctuation theory in statistical
physics �12�, phase transitions �13�, model selection �14�,
and neuroscience �15�.

Following Caticha’s studies �7,9,10�, we argue that pro-
tein folding dynamics also can be derived from laws of in-
ference given REM-MD simulation results and propose en-
tropic folding dynamics. A well-studied Trp-cage peptide, the
native structure is shown in Fig. 1 generated by the software,
visual molecular dynamics �VMD� �16�, is then studied to
illustrate its applicability.

II. METHODS

A. Entropic dynamics: From laws of inference to the
dynamical laws of physics

In entropic dynamics, dynamical laws follow from recog-
nizing the appearance of changes from one point to a neigh-
boring point in the manifold. According to the ME principle,
the preferred neighboring point is the one at the state of
maximum entropy.

Consider the microstates of a physical system that are
defined by parameters x, and let m�x�dx be the number of
microstates within dx. Furthermore, consider that a mac-
rostate of the system is defined by the expectation values A�

of some nA variables �a��x� ;�=1,2 , ¯ ,nA�, �a��x��
=	dxp�x�a��x�=A�, where p�x� is the probability distribu-
tion function �PDF� of the system at microstate x. Given this
constraint equation, the method of ME indicates that the
probability distribution of the system at x updated from some
prior probability distribution m�x� is given by p�x 
A��
= 1

Zm�x�e−��a��x�, where the partition function and Lagrangian
multipliers are given by Z=	dxm�x�e−��a��x� and − � log Z

���

=A�.
According to information geometry, a convenient way of

distinguishing two states A� and A�+dA� is to treat each as a
point in the space of states, the information manifold with
coordinates A�. One can then show that the difference be-

tween the two states is given by the distance dl between
p�x 
A�� and p�x 
A�+dA�� by

dl2 = g��dA�dA�, �1�

where a general expression of g�� is given by

g�� =� dxp�x
A��
� log p�x
A��

�A�

� log p�x
A��
�A� , �2�

which is the Fisher-Rao metric �17–19�, which is the only
Riemannian metric that adequately reflects the underlying
statistical nature of the manifold of distributions p�x 
A��
Namely, This result indicates that when the probability
p�x 
A�� is assigned to each point A�, it automatically pro-
vides the space of states with a metric structure. Note that the
coordinates of the manifold need not be the expected values.
Here, because the coordinates are chosen as the expectation
values A�, one can show that an alternative expression for
the Fisher-Rao metric is

g�� = −
�2S�A�

�A� � A� . �3�

Having determined the metric structure, one can tackle
the question of how the system evolves from one state to a
nearby one by a small amount dl. Because there are many
states that lie on the surface of nA dimensional sphere of
radius dl centered at A�, Caticha shows the preferred one is
given by the method of ME, which moves along the entropy
gradient with a changing rate,

dA�

dl
= Ȧ� =

1

�
g���S�A�

�A� =
1

�
g����, �4�

where ��= �S�A�+dA��
�A� , g�� is the inverse of g��, and one also

can show entropy gradient along the trajectory is given by
�=dS�A�+dA�� /dl= ������1/2 and ��=g����. The gradient
vector �� refers to a direction in which there is a maximum
increase per unit distance. Note that one cannot talk about
the gradient vector without introducing a metric at first place.
Eq. �4� shows that the system evolves according to its own
clock, the intrinsic time d�. Caticha argues that one conve-
nient choice of intrinsic time is the distance of the space of
macrostates, i.e., dl. However, the absolute speed dl /dt, the
ratio of the intrinsic time dl and external time of real world
dt, remains unknown. Entropic dynamics may be a reason-
able theory but it is not yet “physical” because it does not
take all dynamical information such as the absolute speed
into account �7,10�. When a conformal factor that codifies
the information of the motions and the interactions of par-
ticles and defines the absolute speed is introduced, Caticha
and Cafaro �10� recently show that the equation of motions
of particles can then be derived purely from entropic dynam-
ics.

B. Ordering points to identify the clustering structure

As it is recognized that two issues always hinder the in-
terpretation of protein simulation results. The first issue is
that when there are no crystal protein structures available as

PRO19

TRP6 PRO18

PRO12

FIG. 1. �Color� The NMR structure of Trp-cage �PDB code is
1L2Y�. The structure shows Trp6 is caged inside the hydrophobic
pocket formed by three proline.
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the references, it becomes obscure to evaluate the structural
results from simulations. The second issue is how one deter-
mines the native structure or a structure close to native state
in REM-MD simulations. The cluster analysis is commonly
considered to provide partial solutions for these two issues.
To cluster samples without a reference, we consider a
density-based clustering method, ordering points to identify
the clustering structure �OPTICS� �20�. It applies five crite-
ria: �1� The neighborhood within an empirically defined ra-
dius � of a given protein is called the �-neighborhood of the
protein �here we set �=4 Å�; �2� If the � neighborhood of a
protein contains at least an empirically defined minimum
number of proteins, MinPts �here we set the number to 7
proteins�, then the protein is called a core protein; �3� Given
a set of proteins D, a protein p is directly density reachable
from a core protein q, if p is within the � neighborhood of q;
�4� A protein p is density reachable from protein q with
respect to � and MinPts in D set, if there is a chain of pro-
teins p1 , . . . pn, where p1=q and pn= p such that pi+1 is di-
rectly reachable from pi for 1� i�n; �5� A protein p is den-
sity connected to protein q in D set, if there is a protein o
�D such that both p and q are density reachable from o.
Note that for our studies here, the radius � is defined by the
root-mean-square deviation �RMSD� of any two protein
structures in the sampling space. The density-based cluster-
ing regards a cluster as an union of � neighborhood of core
proteins and each two proteins within the cluster are density
connected.

OPTICS further defines two quantities, the core distance
rc and reachability distance r̂ to indicate density distributions
within a cluster and to reveal similarities of the proteins.
First, the core distance of a core protein p is defined as the
shortest radius �, the RMSD of any two protein structures
within the � neighborhood of protein p. The short core dis-
tance of a core protein indicates a high dense � neighbor-
hood. We then can measure the difference between two core
proteins q and p by a quantity, reachability distance, which is
defined by the greater value of the core distance of p and the
Euclidean distance between p and q. Based on these defini-
tions, OPTICS first ranks the sets of proteins in the order of
density or reachability distance r̂. Furthermore, the decreased
similarity of proteins within the set is also ranked in the
increased order of r̂. Therefore, the decreased similarity of
protein structures is ranked according to the increased order
of reachability distance r̂. Note that more explanations on the
practical implementation of OPTICS in protein studies will
be given in the section of Results.

C. Potential energy that associates with folding process

Because we are interested in the structural changes of
Trp-cage along the time line rather than the equilibrium
states, potential energy provides sufficient information to ad-
dress it. However, the fast stochastic atomic motions, which
have minor effects on folding processes, always results in
large energy fluctuations. These may veil the energy distri-
bution that primarily associates with the slow folding pro-
cess. We propose a two-step approach to extract the energy
components that are associated with the slow folding process

from the potential energy profile of Trp-cage obtained from
REM-MD simulations. The method first decomposes the po-
tential energy profile into several components by an adaptive
signal separation method, empirical mode decomposition
�EMD� �21�. The EMD is specifically designed to decom-
pose a nonlinear and nonstationary signal into several com-
ponents, intrinsic mode functions �IMF�, with different in-
stantaneous frequencies. An IMF satisfies two conditions: �1�
that the number of extrema and the number of zero crossings
must either equal or differ at most by one in the whole data
set; and �2� that the mean value of the envelope defined by
the local maximum and the envelope defined by the local
minima at any point is zero �21�. Because IMFs are adaptive
and locally determined, they have physical representations of
underlying processes �21,22�. In addition, IMFs form an or-
thogonal set, and they can be used as the basis to represent
the data.

We then select the components that primarily associate
with the slow folding process according to the selection cri-
terion determined based on the in silico studies on dynamics
of Trp-cage folding conducted by Hu et al. �23�. Their MD
simulations show that Trp-cage collapses into a partially or-
ganized globular state within a very short time. Particularly,
it takes around 0.8 ns to form the � helix. One of protein
folding theories suggests before proteins fold into tertiary
structures, it will first form secondary structures including �
helix or � sheet �24�. Therefore, we consider the time re-
quired to form an � helix as the minimum criterion in Trp-
cage to identify all folding processes that requires the same
or longer time. Namely, the IMFs with mean periods equal to
or longer than 0.8 ns are likely the components of the folding
processes such as the formation of the alpha-helix and the
movement of backbone. Practically, because the EMD can-
not exactly separate the IMFs with the mean period 0.8 ns
from the energy profile, we set the criterion as 0.5 ns to
include a margin of uncertainty.

As an example, we consider an EMD analysis of the po-
tential energy of a 40 ns long Trp-cage MD simulation at
room temperature with the same initial structure and simula-
tion settings as introduced previously. The first row of Fig. 2
shows the original potential energy. The rest of the rows

signal

imf1

imf2

imf3

imf4

imf5

imf6

imf7

imf8

imf9

imf10

res.

FIG. 2. An example of applying EMD to decompose the poten-
tial energy profile of a 40 ns long Trp-cage MD simulation. The first
row is the raw potential energy profile. The last row “res” is the
residual component after the decomposition.
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shows the IMF 1 to 10 with a mean period of 0.015, 0.031,
0.059. 0.107, 0.217, 0.406, 0.837, 1.605, 3.043, and 10.71 ns
respectively obtained from the EMD. The last row, labeled
“res,” represents the residual trend of the energy profile.
Note that because the sampling rate for outputting energy
profile is set to 5 ps, the energy profile can only present the
motions with relaxation time longer than 5 ps. Thus, the
superposition of IMF 7 to 10 and “res” will be considered to
primarily associate with the slow folding process, and be
defined as the smoothed potential energy ū.

D. Target protein

Trp-cage is a twenty amino acids long minipeptide
�NLYIQWLKDGGPSSGRPPPS� designed by Neidigh et al.
�25� as a target for investigating protein folding problems.
This peptide folds spontaneously and cooperatively from a
random coil into this native structure in about 4 �s �26�. Qiu
et al. further experimentally showed that the folding process
is a two-state folding �26�. The native structure of Trp-cage
contains three key secondary structures: a short �-helix in
residues 2–9; a 310-helix in residues 11–14 and a C-terminal
polyproline II helix after residue 14. The hydrophobic resi-
due Trp6 is caged inside the hydrophobic pocket formed by
polyproline II helix and Pro12 as marked by the green labels
in Fig. 1.

E. REM-MD simulations

The AMBER 8 package is utilized for MD simulations
�27�, which are performed on our 24-node cluster. We use the
AMBER 2003 force field and the generalized Born model for
mimicking the effects of solvents. The minimum time step is
2 fs. The initial structure of Trp-cage is set to be an extended
state. The REM is applied using the multisander REM mod-
ule of AMBER 8. Twenty four replicas are simulated over a
range of temperatures from 276 to 507 K including 276, 283,
290, 298, 305, 313, 321, 329, 337, 346, 355, 364, 373, 382,
392, 402, 414, 426, 439, 451, 465, 478, 492, and 507 K. The
REM attempts to swap replicas every 4.0 ps. The protein
structures are recorded every 2.0 ps. The accumulated simu-
lation time for each replica is 140 ns and the total CPU time
is around 49 days. Totally, seventy thousand protein struc-
tures are recorded, which forms the Trp-cage sampling space
to be used in this work.

III. RESULTS

A. Two-dimensional information manifold for Trp-cage

The first step of entropic folding dynamics is to construct
the information manifold that codifies the Trp-cage structural
and dynamical information. Two macroscopic quantities that
characterize protein structures and the slow folding process
are considered as two coordinates.

For the first quantity, instead of directly utilizing RMSD
to characterize structures in the Trp-cage sampling space, we
utilize a density-based clustering analysis method, OPTICS
�20�. It quantifies structural differences through ranking pro-
teins in the order of similarity defined by reachability dis-
tance without any reference structures. The seventy thousand

Trp-cage structures then are clustered according to the clus-
ter order and the first structure is chosen to has the lowest
core distance as shown in Fig. 3. Hereafter, the same cluster
order will be used for energy and probability analysis. In Fig.
3, we also show three examples of Trp-cage’s cartoon repre-
sentations generated by SWISS-DeepView �28� at cluster or-
der 5000, 45 000, and 65 000 to illustrate the structural dif-
ferences of Trp-cage in the sampling space.

For the second quantity, as shown in the gray line of Fig.
4, the potential energy of our REM-MD simulation results
for Trp-cage fluctuates from −300 to −360 kcal /mol. The
plot includes seventy thousand structures, ranked according
to the reachability distance proposed above. The large fluc-
tuations raise the difficulty to reveal the slow folding pro-
cess. Although the energy profile of seventy thousand Trp-
cage structures is a function of the cluster order rather than
the time, we argue in the followings that the proposed
smoothing approach still can be applied to extract the energy
component associated with the slow folding process. Be-

FIG. 3. �Color� The ranking scheme of seventy thousand Trp-
cage structures obtained from OPTICS. The definition of reachabil-
ity distance is given in the text. To illustrate the differences of
Trp-cage structures at different ranks, three cartoon representations
generated from Swiss-DeepView �28� are shown.

FIG. 4. The potential energy profile of seventy thousand Trp-
cage structures, which is ranked according to the ranking scheme
obtained from OPTICS �the gray line�. The dark line represents the
smoothed potential energy obtained from the EMD-based method.
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cause each structure in the cluster ordering scheme repre-
sents a state of Trp-cage at a specific time in one of the
REM-MD simulations, the cluster order can be treated as an
implicit time dependent parameter. Furthermore, the total ac-
cumulated simulation time to obtain seventy thousand struc-
tures is 140 ns. In addition, because the ranking scheme
ranks the Trp-cage structures from a random state, cluster
order 70 000, to a folded state, cluster order 1, we may ana-
log this scheme to the result from performing a 140 ns long
MD simulation with the sampling interval 2 ps. Conse-
quently, the frequency spectrum of this energy profile can
still reflect the atomic motions during the folding process.
Therefore, the same selection criterion proposed above is
still applicable. The smoothed potential energy ū based on
the proposed smoothing method is then defined by the super-
position of components of potential energy with mean peri-
ods longer than 0.5 ns as represented by the dark line in Fig.
4.

Given the reachability distance r̂ and smoothed potential
energy ū, we plot the sampling space of seventy thousands
structures in �ū , r̂� space as shown in Fig. 5 to present the
range of the sampling space generated from REM-MD simu-
lations and to demonstrate the structural differences at differ-
ent locations in that space. Each dot labeled by �bi

� ; �=1
denotes for r̂i and �=2 for ūi� where subscript i denotes the
rank as well as the ith microstate of this Trp-cage statistical
system represents a Trp-cage structure at a specific time and
temperature in the simulations. We also present seven Trp-
cage’s cartoon representations at different locations from
large to small ū and r̂ to show the structural differences.

Next suppose all possible Trp-cage folding trajectories
can be described by �ū , r̂�, we can treat a transition state
along the folding trajectories as an average structure of all
possible structures in the phase space with specific probabili-
ties, P�i�. Therefore, we define two macrostates,

B� = �
i=1

N

P�i�bi
�, �5�

where N is the total number of protein structures, B1 denotes
the expectation reachability distance and B2 is the expecta-
tion smoothed potential energy as the two coordinates for the
information manifold. Note that ideally, all possible struc-
tures in the folding process are expected to be equally gen-
erated from the REM-MD simulations. When there are no
constraints provided, the most honest choice is to assign an
equal probability to each structure as a priori. Furthermore,
even though one of the constraints, smoothed potential en-
ergy, refers to quasistatic equilibrium state, Jaynes proved
that the method of maximum entropy is still applicable �29�.
Therefore, given a uniform prior probability and the con-
straint equation, Eq. �5�, ME PDF P�i� is given by

P�i
B� =
1

Z
exp�− 	�bi

�� , �6�

where the partition function is Z=�i=1
N exp�−	�bi

��. Note that
in tensor notation, 	�bi

�=	1r̂i+	2ūi, is used. The Lagrangian
multipliers 	� are numerically determined by using MATLAB

scripts �30�. Furthermore, the entropy of the Trp-cage statis-
tical system at state B� is given by

S�B� = − �
i=1

N

P�i
B�log P�i
B� = log Z + �
n=1

2

	nBn. �7�

Finally, according to information geometry, when a prob-
ability distribution is defined, a metric space for the informa-
tion manifold is created naturally. Therefore, the action of
choosing the expectation reachability-distance and smoothed
potential energy as the coordinate system defines the metric
tensor, Eq. �3�. Practically, the component of the metric ten-
sor, function of B, is calculated through

gnm�B� = −
�2S�B�

�Bn � Bm
= −

�	�B�
�B

, �8�

where either n or m equals to 1 or 2. By applying the chain
rule, �	�B�

�B
�B

�	�B� =1 in Eq. �8�, we have

gnm�B� = − 
 �B

�	�B��−1

= − �BnBm − �bnbm��−1. �9�

The entropy gradient is given by ��= �S�B�
�B� =	�.

B. Folding dynamical equation of Trp-cage

After the metric space is determined, the evolution of the
Trp-cage from a given initial macrostate to the final mac-
rostate in the information manifold is determined by the ME
principle. The Trp-cage statistical system will evolve from
the jth macrostate B��j� to neighboring state B��j+1� via

B��j + 1� = B��j� + dB��j� . �10�

The change, dB��j� calculated from Eq. �4�,

FIG. 5. �Color� Seventy thousand Trp-cage structures are plotted
in reachability distance vs smoothed potential energy diagram.
Seven cartoon representations of Trp-cage structures generated
from Swiss-DeepView �28� at different locations in the diagram are
presented to show the structural differences at various locations of
the diagram.
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dB��j� =
g���j�	��j�

�	��j�	��j��1/2dl , �11�

where 	��i�=g���i�	��i� and g���j�g���j�=1. However, Eq.
�10� is not yet a physical law without introducing dynamical
information to constrain dl, the minimum distance between
two macrostates.

To constrain dl, as is recognized in many studies and is
also demonstrated in Figs. 3 and 4, proteins tends to fold in
a direction that decreases the reachability distance and po-
tential energy globally. We thus constrain the “direction” of
changes with regard to the potential energy and reachability
distance dB��j�. We set a negative absolute speed dl /dt when
the rate of the ith macrostate change dB��j� /dl is positive.
On the other hand, if dB��j� /dl
0, this indicates that the
protein evolves in the right direction. The absolute speed will
then be set to positive to maintain the direction of changes.
According to Eq. �4�, the magnitude of absolute speed influ-
ences the resolution of two neighboring states only and not
the folding trajectories. Furthermore, when the change of po-
tential energy dB2�j� approaches a threshold �such as dB2

=10−6 kcal /mole in our studies�, Eq. �10� is considered to be
converged. The system then reaches the maximum entropy
state. The corresponding average protein structure will be the
preferred final structure. Note that this final structure needs
not be the native structure of Trp cage. It only represents the
maximum entropy state of the Trp-cage sampling space.
When more samples and more dynamical information are
included, one can expect the preferred structure to coincide
with the native structure.

C. Evolution of ME PDF

We further investigate the evolution of the probability dis-
tribution P�i 
B��, Eq. �6�, along entropic folding trajectories
when an initial state B1=2.2 Å and B2=−312 kcal /mole is
considered. Furthermore, we simply set dl /dt=0.01 and dt
=1 unit time. Note that we only use 35 000 structures
sampled from the ranked raw data with the rate 0.5 cluster
order−1 in the following studies. The probability distribution
and the corresponding cartoon representation of the average
structure of this initial state are shown in left upper panel of
Fig. 6. This structure contains a loose helix and a bend
around residue 11–19, and is structureless after residue 19.
Furthermore, Trp6 slightly points outward from the paper.
This structure qualitatively agrees with Ahmed et al.’s ex-
perimental studies, in which they show the appearance of an
�-helical structure in the denatured state �31�. The system
evolves from this initial state toward the maximum entropy
state with 57 steps. We select three steps in the trajectory as
examples to show the evolution of the PDF along the trajec-
tory in Fig. 6, in which the corresponding average structures
of Trp-cage generated by VMD �16� are also presented. The
figure shows that the probabilities of the system at the first
10 000 microstates, structures, gradually increase from be-
low 10−5 to around it while the probabilities of the system at
rank from 60 000 to 70 000 decrease from above 10−4 to less
than 10−5 in the final step. Note that if the 70 000 structures
are equally likely, the probability of observing one structure
is 1 /70 000�1.43�10−5. Furthermore, we mark this prob-
ability by a horizontal line to emphasize to what extent the
probability of each microstate at specific step along the tra-
jectory differs from the uniform probability. Figure 6 shows

FIG. 6. �Color� The evolution of ME PDF, Eq. �6�, given an initial state B1=2.2 Å and B2=−312 kcal /mole. The plot only shows the
results at the initial, 20th, 40th, and the final step along with the corresponding averaged Trp-cage cartoon representations generated by VMD
�16�. The figure shows that the probabilities at lower ranks are gradually increased while at higher ranks are gradually decreased along the
trajectory.
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the first 30 000 microstates in the final step, which are shown
to have reachability distance around 1 Å in Fig. 3, likely to
have similar probabilities. However, the probabilities of hav-
ing the microstates after the cluster order 30 000 start de-
creasing and fluctuating. It indicates the maximum entropy
state, final average structure, is primarily contributed from
the first 30 000 structures. This final average structure pre-
sents several key features of the native structure of Trp-cage
including a solid alpha helix, 310 helix and polyproline II
helix. This evolution corresponds to the formation process of
the solid � helix, 310 helix and polyproline II helix. Further-
more, it shows that the Trp6 is gradually rotated and buried
in the hydrophobic proline pocket at almost the same time.

D. Two features of Trp-cage entropic folding trajectories

Finally, we investigate the properties of the folding trajec-
tories when the initial states are given differently with
dl /dt=0.01. The three initial states, including the one used
previously, are �A� B1=2.2 Å; B2=−312 kcal /mole, �B�
B1=2.5 Å; B2=−318 kcal /mole, and �C� B1=1.5 Å; B2=
−316 kcal /mole. The initial state �B� has the lowest
smoothed potential energy, and yet has the largest reachabil-
ity distance. In contrast, the initial state �C� has the shortest
reachability distance. Both initial states are in the vicinity of
the upper and lower boundaries of the sampling space shown
in Fig. 5. Figure 7 shows how Trp-cage evolves toward the
maximum entropy state on the three-dimensional entropy
surface through three trajectories. It also shows the steepness
of this entropy surface. Furthermore, we project the same
trajectories on two dimensional entropy contour map in the

bottom to show the differences of the trajectories in terms of
smoothed potential energy and reachability distance. Six car-
toon representations of averaged Trp-cage structure at initial
�bottom� and final �top� steps are presented in the same fig-
ure. The entropy of the system is calculated from Eq. �7� for
each state B� and its magnitudes are denoted by the color
scale. Note that the entropy contour map is plotted to roughly
cover the region of the sampling space shown in Fig. 5. It
takes 29 and 48 steps for state �B� and �C� to reach the
maximum entropy state, respectively.

Furthermore, the projection of trajectories onto reachabil-
ity distance vs potential energy surface in Fig. 7 shows two
features of folding trajectories. The first feature, revealed by
either trajectory �B� or �C�, is that the system likely evolves
through a straight route. There is a linear relation between
smoothed potential energy and reachability distance. The
second feature, revealed by trajectory �A�, shows a curve
type route. This type of route first shows the system evolves
with the reachability distance having a decreasing rate faster
than the smoothed potential energy does. After around B1

=1.75 Å and B2=−316 kcal /mole, the system switches to
evolve with the decreasing rate for the reachability distance
being slower than the decreasing rate for the smoothed po-
tential energy. In general, when the initial state of the system
is in the vicinity of the sampling space, the system tends to
evolve through a straight route. Otherwise, a curve type route
will be expected.

To quantitatively analyze the structural changes along the
trajectories, we calculate the RMSD of the C� atoms of the
average structures at each step of the three trajectories and
the NMR structure of Trp-cage. The results are shown in Fig.
8. The RMSD of final structures and the NMR structure are
2.17, 2.17, and 2.26 Å, respectively. For both trajectories A
and B, the RMSD gradually decrease to around to 2.13 Å
after 45 and 20 steps and climb back a little bit to 2.17 Å,
respectively. This suggests that when the system evolves to
the lower left region in Fig. 7, the corresponding average
structure is likely to be equilibrated and approaches to the
native structure.

FIG. 7. �Color� Entropic folding trajectories of Trp-cage given
three various initial starting structures. The three trajectories are
plotted on the three-dimensional entropy surface. In the bottom, the
same trajectories are projected on the two dimensional entropy con-
tour map. The averaged initial �bottom� and final �top� structures
generated by VMD �16� are also presented for comparisons.

FIG. 8. The RMSD of averaged structures along the three tra-
jectories and the NMR structure of Trp-cage. The lines with hollow
square, circle and triangle are from trajectories �a�, �b�, and �c�,
respectively. Note that we only label the data points by symbols at
every 4 steps.

FROM LAWS OF INFERENCE TO PROTEIN FOLDING… PHYSICAL REVIEW E 82, 021914 �2010�

021914-7



IV. DISCUSSION

The features of folding trajectories discussed previously
suggest that the folding process begins with quickly collaps-
ing the protein structure �the reachability distance is de-
creased faster than the changes of the potential energy�. It
forms a partially folded and loose � helix and a bend struc-
ture around residue 11–14. Afterward, the structure will un-
dergo a fine tuning process to the native structure �the
smoothed potential energy is decreased faster than the
changes of the reachability distance�. In the process of the
fine tuning, the helicity of the partially folded � helix is
gradually increased. In the meantime, the 310 helix is formed
and the Trp6 is packed within the polyproline hydrophobic
pocket. Furthermore, our results also indicate that when the
system evolves to the lower left region �reachability distance

1.6 Å and smoothed potential energy 
−320 kcal /mol�,
the averaged structures of Trp-cage from different trajecto-
ries are slightly different in the 310 helix only. Although the
RMSD of the structure at maximum entropy state and Trp-
cage crystal structure in Fig. 8 is still too large to indicate
that the maximum entropy state is the native state �normally,
two structures are considered similar when their RMSD is
less than 1 Å�, we cannot simply conclude that the entropic
folding trajectory fails to reach the native state. Several fac-
tors are likely to cause large RMSD. For example, the num-
bers of samples used for calculations may not provide suffi-
cient statistics. Furthermore, because the potential energy
difference between two neighboring states when the system
at that region is insignificant, it also suggests a broad global
energy minima in the Trp-cage energy landscape.

This folding process qualitatively agrees with the results
of other studies such as Juraszek and Bolhuis �3�. Juraszek
and Bolhuis propose a modified REM-MD simulation, in
which the transition pathway sampling technique �4–6� is
integrated, to solve sampling issue to study the folding dy-
namics �3�. Their results first show that Trp-cage is a two-
step folder, which agrees with the results of a free energy
landscape study �32�. In addition, they discover twofolding
pathways, LN and IN, where L stands for the loop state, I
stands for the intermediate state and N for the native state. In
both pathways, Trp-cage starts by undergoing either a fast
initial collapse or the formation of the helical structure. Next,
the protein will either form a loop structure in state L, or the
helical structure in state I. Both states will eventually reach
the native state. Their studies further show that the occur-
rence of the LN pathway is four times more likely than that
of the IN pathway. In addition, there are switching events
between these two pathways. Despite the results of Juraszek
and Bolhuis differ from those from an all-atom Go model
presented by Linhananta et al. �33�, Juraszek and Bolhuis
showed both LN and IN pathways agree with experimental
results �31,34�.

Our studies also present an advantage and one insight
with regard to the folding dynamics. The advantage is that
there is no need to modify the current REM-MD simulation
protocol, such as by integrating it with some sampling tech-

niques. Instead, one can directly apply the proposed ap-
proach to the systems that have investigated using either
REM-MD or Monte Carlo simulations as long as “right”
coordinate systems are defined to construct the information
manifold. For the insight, as expected, our results also indi-
cate that the folding dynamics is driven by ME principle.
One may dismiss this conclusion by arguing that this is
merely a consequence of thermodynamic second law. How-
ever, one cannot talk about these folding trajectories without
mapping the systems into information manifold at beginning.

V. CONCLUSIONS

In this work, we show that given REM-MD simulation,
protein folding dynamics can be directly derived from laws
of inference. The crux hinges on appropriately codifying in-
formation relevant to the dynamics of many-body systems
into an information manifold. There are no restrictions in
applying this method to different systems. However, the evo-
lution trajectory may not be the correct pathway, but instead
is merely a route preferred over all possible routes based on
the information provided. When the system is appropriately
characterized and dynamical information, the absolute speed,
relevant to it is included, the preferred route is then likely to
coincide with the correct one.

To illustrate the proposed approach, we study the folding
dynamics of Trp-cage. Two quantities, reachability distance
and smoothed potential energy, are used as coordinates of the
two dimensional information manifold for Trp-cage. A pre-
ferred folding trajectory is then derived and found to quali-
tatively comparable with those from other studies.

Despite the promising results in this work, there are still
some fundamental issues that need to be investigated further.
For example, we only consider two parameters to construct
the information manifold in this work, but it is unknown if
these are sufficient for all different proteins. Moreover, is
there any other dynamical information that can be included
as the constraints? One can expect that a more complete
entropic approach that will better tackle the dynamical prob-
lems of more complicated biological systems such as binding
problems will be available when these issues have been ap-
propriately investigated. Nevertheless, our current studies
still suggest that laws of inference are not merely the prin-
ciples of information processing. In searching the link be-
tween physics and information in Wheeler’s late works �35�,
the current studies provide a strong evidence to show that the
incorporation of laws of inference and physics brings in a
comprehensive perspective on exploring the nature. Further-
more, our works suggest that the introduction of information
geometry likely to be an appropriate tool to bridge physics
and information.
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