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It is shown that, in a non-Abelian quantum field theory without an anomaly and broken symmetry,
the set of all matrix-valued quantum holonomies ¥[y]l=(Pexp(i$,4dx)) for closed contours y form a
commutative semigroup, whereas (Pexp(i f4.4dx))=0 for every open path a. The eigenvalues ®[y] of
¥[y] are classified according to the irreducible representations of the gauge group. In an irreducible
representation p, Tr(¥[yl) =®[y]Tr(1,) is a Wilson loop. This equation solves a puzzle in the relation
between link invariants and Wilson loops in the Chern-Simons theory in three dimensions when the
gauge group is SU(N|N), and provides useful insight in understanding nonperturbative quantum chro-

modynamics as a string theory.

In gauge theories [1], probably the most important
quantity is the matrix-valued holonomy Pexp(i$,dx),
where A is the connection (or vector potential), y a closed
contour, and P means path ordering. In the case of classi-
cal electromagnetism, the contour integral gives the mag-
netic flux, and the holonomy is the celebrated Aharonov-
Bohm phase [2], which is itself a special case of Berry’s
phase [3]. The analogous quantity in quantum field
theory is conventionally taken to be the Wilson loop [4]
Wyl =Tr(Pexp(i$, A4 dx)), namely, the trace of the ex-
pectation value of the holonomy. Wilson loops are the
keys to a geometric approach to quantum field theories [5]
and are essentially the Boltzmann weights in lattice gauge
theories [4,6]. Recently, Witten’s observation [7] that
Wilson loops in the three-dimensional Chern-Simons
theory are topological invariants of links has revealed a
glimmer of the deep connections among low-dimensional
quantum field theory, statistical models, knot theory, and
quantum groups that are just beginning to be understood
[8].

The Wilson loop rather than the quantum holonomy
(Pexp(i$,A4dx)) has been the focus of attention because
the former is manifestly gauge invariant while the latter is
not. However, the act of taking the trace of a matrix may
have masked some nontrivial algebraic property the ma-
trix possesses. Indeed, we shall show in this paper that
when gauge anomalies and spontaneous symmetry break-
ing are absent in a quantum field theory over a compact
manifold M, the quantum holonomies form a commuta-
tive semigroup valued in the matrix representation of the
universal enveloping algebra of the Lie algebra of the
gauge group G. We shall give an example that strikingly
illustrates the difference between the Wilson loop and the
quantum holonomy: information containing the proper-
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ties of the SU(V | V) Chern-Simon theory lies in its quan-
tum holonomies, but not in its Wilson loops, which van-
ishes identically for every 7.

We consider the expectation value of a functional £(4):

z=v ' [Daef(a), M

where 4 =A(x)=A;(x)t, is the matrix-valued connec-
tion (¢, are representations of the generators of G), I[4] a
gauge-invariant action, V=f2g, g€ G, and DA and
Dg=I1.du(g(x)) are invariant measures [9]. Under a
local gauge transformation,

AGx)— AG)EP =0 ' (x)A(x) 0, (x)
+0,'(x)o0,(x), (2)
and under a global gauge transformation,

A — A =0, A(x) a, . 3)

The set of all global transformations is a subset of the set
of all local transformations.

The integral DA in (1) includes integrating over the
entire orbit {4(x)} ={4(x)¢¥|g(x) € G} for every
A(x), while one actually wants an integration including
only one point in each orbit. That is one wants to in-
tegrate over the equivalence classes [4(x)]=1{4(x)}/G.
This is the reason why the right-hand side of (1) is divided
by V. This program can be carried out using the method
of Faddeev and Popov [10]. Let F(A42) be a (gauge
fixing) function of 4 such that F(A48) =0 has exactly one
solution go for every orbit. Define the function Ar[A4] by

1 =arlal [ Dgs(F(a). @
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It follows that Af '[A] is also (locally) gauge invariant,
which justifies it being written as a function of the
equivalence class [4]. If the function f(4) in (1) is
gauge invariant, then, upon substituting the right-hand
side of (4) into (1), it is readily verified that the integrand
of fDg is independent of g, so that [ Dg cancels the factor
¥ !, and one obtains the well-known result [10] that

Z = DAarrlale™I (1) 6(F(4))

= [ DA A4l () 5(F(4)) )

is precisely the sought for g-independent path integral
over [A].

Consider now the case when f(A) is not gauge invari-
ant. Specifically consider the matrix-valued exponentiat-
ed path integral

f(A4,a) =Pexp [iJ;Adx] , )

where P mean path ordering and a is a path from x to xg.
Under a local gauge transformation [5],

fA,0)— f(4%,0) =0, x6) f(4,0) g (x0) . (7)

The fact that the two matrices f(4,a) and Q, do not
commute appears to prevent one from deriving (5). The
standard way to circumvent this apparent difficulty is to
replace f by its matrix trace Tr(f) which, by virtue of the
cyclic symmetry of the trace, is locally gauge invariant
provided xo=xy, i.e., provided « is a closed contour. The
corresponding Z is what is known as a Wilson loop.

Let us nevertheless examine the global property of the
path integral

Z(a),s=V_'f$gf$A ArlAl
xe N (f(4,0)),6(F(48)). (8)

Henceforth rs, which are indices of an irreducible matrix
representation of G, will be suppressed. The transforma-
tion property of Z(a) is revealed by the following
maneuver. Let g’ be a global gauge transformation.
Write 4 in (8) as 42" '¢ and rename A2~ as 4. Use the
fact that DA, ArlA4], and the action I are gauge invariant,
JDg=[Dg'g, and the x-independent version of (7) to
reexpress the right-hand side of (8) as

V_'f.ng'gfﬂA ArlAle™ a7 f(4,a) 0 8(F(A45%))
=0,'Z(a)ay. (9)

Since this is true for every global transformation, one has
[Z(a),04,1=0, Vg' € G, and, from Schur’s Lemma,

Z(a)=C(a)1,, (10)

where the scalar function C(a) is any one of the diagonal
matrix elements of Z(a) and 1, is the matrix representa-
tion of the identity element in G in the irreducible repre-
sentation p.

Equation (10) suggests that Z(a) belongs to some alge-
braic structure. Let X}, ..., X, be a basis of the Lie alge-
bra ¢ of Lie group G in the representation p. Then
f(4,a) is a linear combination of the set of monomials
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XX X" lo1=0,. .. ,v,= 0}, that is, it is valued in
the p representation of the universal enveloping algebra
U(8) [the representation of & extends to %(8) by the
Poincaré-Birkhoff-Witt theorem [111]. The path integra-
tion in (8) affects only the coefficients of the f(A4,a) as a
linear combination of the monomials. Therefore Z(a) is
also a linear combination of the monomials. Therefore
Z(a) € p(U(€)). An infinitesimal global tansformation
has the form Q.=1+¢X;. Z(a) commuting with all
such Q/s implies that it commutes with all the X;’s, and
therefore with all matrices in p(%(§)). We conclude
that Z (@) is valued in the p representation of the center of
U (8). This also gives another proof of (10).

We now analyze the consequence of changing the in-
tegration variable 4 in (8) to 4% by a local gauge trans-
formation. From (7) and (10),

Z(a)[y(x0) — Qg(x0)]1=0. an

This being true for every local gauge transformation g’,
and Qy(x¢) being generally not equal to Q,(xo) when
XX, one concludes that

C(a){=0’ a is an open path , (12)

#0, ais a closed contour.

Equations (10) and (12) form the main result of this pa-
per. In what follows we reserve a to represent an open
path and use y to denote a closed contour. The result
C(a) =0 may be understood as follows. Because a is an
open path, f(A4,a) has a strong dependence on the
geometry of a. Changing A4 in f(A,a) is like changing the
geometry of a with only its end points fixed. Therefore
the path integral in (8) is like a sum of f(4,a) over paths
of random geometries but fixed end points, and Z(a) is
like a sum of random matrices.

To see that C(y) does not depend on the initial point xg
(which is also the final point) of ¥, note that the gauge
dependence of A% in the factor 6(F(A42)) in (8) can be
absorbed by DA so that, for a closed contour, (8) may be
rewritten in the form of (5), with f(4) there replaced by
the gauge-invariant quantity

fan=v=' [ Dga,osu, e xo)
=fdy(g)f(Ag",y)/fdn(g)
=fdu(g)f(Ag,7)/fd#(8) -

The second equality being a consequence that only the
gauge transformation at xg is involved. A proof of (10)
again follows. Moreover, this relation defines C(y) as a
conjugacy class, that is, aC(y)a ~'=C(y), Va € p(G).
If ¥ and y differ only by their initial points, then f(4,7")
=af(A4,y)a "' for some a € p(G). It follows that C(y")
=aC(y)a ~'=C(y). Therefore C(y) is initial-point in-
dependent.

Henceforth, we denote the path integration on the
right-hand side of (8) by (f(4,a)). For a closed contour,
we reexpress the result as

W[r(y)]E(Pexp [iﬁAdx]>=<l>[y]l,,, 13)



RAPID COMMUNICATIONS

R944

which also defines the matrix function ¥ and the scalar
function ®@; 7 (y) will be explained later. It is sufficient for
the formal relation (13) to hold when the following two
conditions are satisfied. (a) The theory does not have any
gauge anomaly. Implicit in this condition is that, if one
were to study perturbation theory, a regularization that
preserves gauge invariance would exist. (b) None of the
symmetries of the theory is spontaneously broken. In this
case a heuristic argument for (13) is as follows. With no
symmetry spontaneously broken, the expectation value in
(13) may be viewed as that of a vacuum state that has
zero quantum number for every symmetry of the theory.
Then the only operators that can have nonvanishing vacu-
um expectation values are those that transform as scalars
with respect to the symmetries of the theory. The result
(Pexp(i [, Adx)) =0 may be interpreted the same way:
because of (7), no nonvanishing linear combination of
Pexp(ifo,Adx) can ever transform as a scalar. For
closed contours, we believe the quantum holonomy to be

as well defined as the Wilson loop. |
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We now explain the meaning of the notation 7 (y). The
quantity (Pexp(i$,4dx)) is valued on the fiber bundle
whose base is Wil and whose fiber is G. Whereas 7 is a
closed loop in M, 7 (y) is the lift of y into the fiber bundle;
it has two open ends that carry the “colors” [the indices r,
s in (8)] of G. Equation (13) states that [for gauge
theories that meet the conditions (a) and (b)] colors are
conserved on 7(y) and the Berry’s phase is classified ac-
cording to the irreducible representation of G so that all
color states in a given irreducible representation have the
same Berry’s phase. Thus the quantum holonomies
¥z (y)] of a gauge theory form a commutative semi-
group. It is a semigroup because every ¥[z (y)] does not
have an inverse. The composition law of ¥[z (y)] is just
the commutative composition law of open strings, or that
of a commutative groupoid [12] (roughly speaking, a
groupoid is a set of oriented open strings with an associa-
tive composition that multiplies two strings by connecting
them tip to end), which, in /M, becomes the composition of
contours:

Yl (p)1¥lc (YD1 =¥l (yDI¥ [ (y )] =¥z (y2) ot (yD] =¥z (y)) ot (y2) ] =¥ [z (y,0 7)1 =¥z (3,0 ))].

When Tr(1,)=0, the value of the Wilson loop W1yl
=Tr{vlz ()1} =0(y)Tr(1,) differs from ®(y) by a
nonessential proportionality constant. This is no longer
true when Tr(1,)=0. Then the Wilson loop vanishes
identically and the information of the quantum theory is
contained only in ®[y]. One such example will be dis-
cussed below. In any case, it is readily seen from (13)
that ¥[z] retains all the useful properties of the Wilson
loop. For instance, the quantum theory of loops [5] can
just as well be applied to ¥[z].

There is at least one theory that satisfies criteria (a)
and (b) given above, namely, the topological Chern-
Simons theory (CST) in three dimensions. In this case,
the integration contours may be knots or links, which we
shall denote collectively by K. Witten [7] has shown that
the Wilson loop WIK] in three-dimensional (3D) CST
(for certain quantized values of the coupling constant)
must be a link invariant [13], and that the partition func-
tion of the theory is a topological invariant of three-
manifolds. Both of these assertions have been verified by
direct computations [14,15]. This implies that for 3D
CST the path integral is well defined. Since ¥[z(K)]
must satisfy the same skein relation as its trace, it follows
from (13) that ®[K] is a link invariant. One may visual-
ize 7(K) as a one-tangle equivalence class, namely, the
class of topological objects with two fixed open ends whose
closure is the link K. The set of all ¥[7(K)]’s forms a
semigroup instead of a group because generally a one-
tangle does not have an inverse under the groupoid com-
position. This is reflected in the fact that a link invariant,
which is a rational function, generally does not have an in-
verse that is also a rational function.

A theorem on functors of one-tangles and links on the
quantum group, or quantized universal enveloping algebra
[16,17], having the form

vz (K)1=QIK]11,, a4
has recently been proven [18,19], where VI[z(K)] is a

'one-tangle invariant, Q[K] a link invariant, and 1, is the
identity element of the quantum group in the irreducible
representation z. Given Witten’s theory on the relation
between Wilson loops and link invariants, it would be
surprising if only one of (13) and (14) existed. However,
we have nothing to say about how the universal enveloping
algebra discussed in conjunction with (13) became quan-
tized in the case of 3D CST. Denote isotopy by —. The
implication from (14) that ¥V [z (K)]1=%¥I[7'(K)] even
when 7(K)-+£7'(K) is the counterpart to ¥[z (K)] being
independent of the initial-point on K. The striking simi-
larity between (13) and (14) has motivated the conjecture
that topological invariants in CST and in quantum groups
belong to the same category of functors [19]. The func-
tors V and ¥ give a stronger relation among the tangle
and link invariants than there exists between tangles and
links. Denote the closure of ¢ by 7; 7 is a link. Let
f1~72, tT17472 73 be any other one-tangle and
7'=1,073, t"=1,01;3. Then ¥Y[t'1=YI["]1=0I[7']1,
=QIl7"11,, although 7'+ 7". The same is true when V is
replaced by ¥ and Q by ®.

Skein relations for Wilson-loop link invariants of CST
with other gauge groups have also been derived [20]. As
far as (13) and (14) are concerned, the most interesting of
these results is that, in the fundamental representation of
G =SUW|M), WIK] is the HOMFLY polynomial [21]
when N=M, but vanishes identically when N =M. On
the other hand, the HOMFLY polynomial itself becomes
the Alexander-Conway polynomial [22] when N =M.
This apparent paradox is resolved by (13). Recall that for
SU(NTM), Tr is a supertrace [23], so Tr(1,)=N—M
and WIK]1=®[K1(W —M). Thus, although the bosonic
fields and the fermionic fields have the same quantum
holonomies, they contribute to the Wilson loop with oppo-
site signs. Consequently in the balanced case with N =M,
the information of the theory resides not in the Wilson
loop which vanishes exactly for every ¥, but in the quan-
tum holonomy ®[y] which is equal to the Alexander-
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Conway polynomial. This structure has been shown to
duplicate via (14) on the quantum groups gl(N+M;N), ;
at g2=—1 [19] and sl(N|M), [24], which are isomorph-
ic.

Our result seems to suggest that the quantum holonomy
defined by a quantum field theory may exist as an abstract
semigroup living in the center of % (§). Whether this is
true remains to be seen. In the case of 3D CST, whose ap-
parent relations to quantum groups have already been
noted [25], relations (13) and (14) supply another ex-
planation for the integrability of the theory: each quan-
tum holonomy may be interpreted as a conserved topolog-
ical charge of the theory, and there are an infinite number
of such conserved charges associated with the infinite
number of links. It is worth pointing out that since the
condition (a) mentioned above is only a sufficient one, it is
not impossible for (13) to hold even in the presence of
anomalies. An intriguing possibility is quantum electro-
dynamics (QED) [26], which has a gauge anomaly [27],
but for which the normal Wilson loop (with trace) is a
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well-defined object. We therefore expect (13) to hold for
QED. A more interesting case is quantum chromodynam-
ics (QCD), whose potential gauge anomaly is cancelled
owing to flavor symmetry. We therefore expect (13) to
hold for QCD as well. Assuming that to be the case, then
the set {¥[yl| all classes of y's} completely defines the
theory nonperturbatively as a theory of strings (or of loops
in the base manifold M) with Abelian multiplication. In
view of the recent interest in studying nonperturbative
QCD as a string theory [28], it would be extremely useful
to know whatever additional algebraic structure the set
may possess.
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