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Background-field quantization and the light-cone planar gauge:
An exception to Kallosh’s theorem
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The one-loop vacuum-polarization tensor for pure Yang-Mills theory is examined using
background-field quantization in the light-cone planar gauge, i.e., with the gauge-fixing Lagrangian
L=(1/2a)n-Q°D**(A)n-Q® where n?=0. The divergent part of the vacuum polarization,
[IT,..(p)]aiv, is found to depend on both a and n,, and hence is gauge dependent. This result does
not comply with Kallosh’s theorem, according to which the counterterms should be independent of
gauge choice. We argue that the occurrence of nonlocal counterterms in the light-cone-type gauges
violates one of the implicit assumptions of Kallosh’s theorem. We also point out that a similar
violation of Kallosh’s theorem occurs also in the ordinary light-cone gauge, i.e., using the gauge-
fixing Lagrangian % y= —(1/2a)(n-Q)?, where n?=0.

The role of the light-cone gauge"? in supersymmetric
and superstring models has recently stimulated an exam-
ination of radiative processes in Yang-Mills theories quan-
tized in this gauge. One definite advantage of this gauge
choice is that it allows one to eliminate unphysical degrees
of freedom from the analysis.> >

In earlier studies? of this gauge singularities of the form
(k-n)~! presented a problem in Feynman integrals when
n?=0. The “principal value” prescription, first suggested
for handling such singularities® in the context of dimen-
sional regularization, proved to be deficient as it led to in-
tegrals which do not obey naive power counting. Explicit
calculations using this prescription also led to results in-
consistent ~ with the wusual axial anomaly,”®
renormalizability,”® and the vanishing of the 8 function
in the N =4 supersymmetric theory.* Subsequently Man-
delstam® and Leibbrandt® found a prescription that over-
comes all the above-mentioned deficiencies of the
principal-value prescription, is consistent with canonical
quantization,'® and preserves gauge invariance.

Even when it is used in conjunction with the
Mandelstam-Leibbrandt prescription, the light-cone gauge
still appears peculiar. Specifically, the one-loop vacuum
polarization in the Yang-Mills>®!"!12 and N =4 super-
symmetric® theories and the vertex functions®!>'* in the
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Yang-Mills theory have nonlocal, unrenormalizable diver-
gences unless field equations are either used to explicitly
eliminate the unphysical modes, in which case the
unwanted divergences do not appear, or, in case all modes
are retained, used to cause the unwanted terms to cancel
among themselves in the counter Lagrangian. This
feature is not known to exist in any of the other nonco-
variant gauges that have been studied.

In this paper, for pure Yang-Mills theories, we employ
a gauge that is related to the light-cone gauge in the same
way that the planar gauge is related to the axial
gauge'>—we call it the light-cone planar gauge. We work
within the context of background-field quantization'® so
that the gauge-fixing term in the Lagrangian (analogous
to the term used in Ref. 17) is

ng*l"n'QaDZ(A)aberb. (1)
2a
Here A, is the classical background field, QZ is the quan-
tum field, n, is a fixed lightlike vector, and
DZ"(A ):6“baﬂ+gf“PbA5 is the background covariant
derivative. We use the light-cone planar gauge initially,
rather than the ordinary light-cone gauge [see Eq. (10)], as
we do not lose power-counting arguments when we let a
be nonzero. Consequently we can give our results for ar-
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bitrary values of a. In the ordinary light-cone gauge such
renormalizability arguments force us to restrict our atten-
tion to a=0.

The gauge-fixing Lagrangian (1) ostensibly satisfies the
conditions for Kallosh’s theorem: we are dealing with
pure Yang-Mills theory, the usual power-counting argu-
ments for renormalizability are still valid and the effective
Lagrangian is invariant under the background gauge
transformations

SQZ :gfachZGC ,
8AL=D"(A4)6" .

(2a)
(2b)

Consequently, it is to be expected that the divergence en-
countered in the two-point function will be independent of
the gauge-fixing condition.'®

In the covariant!®?° and noncovariant generalized axi-
al'? gauges, the one-loop two-point function has the diver-
gent piece in 2w dimensions

1
2—w

ab _ L b, 2
(TP laiv= L6772 C,8%%
X 5 (p28—Pupy) - (3)
Clearly, Kallosh’s theorem is satisfied for these gauges. It
is natural to check if the gauge condition of Eq. (1) leads
to a divergent contribution to the vacuum polarization
consistent with Eq. (3). It is this problem we wish to ad-
dress now. The Feynman rules appropriate to the calcula-
tion of the vacuum polarization can be derived in the usu-
al way. However, it is actually possible to deduce the
form of these rules from the analogous Feynman rules for
the axial planar gauge.!” In Ref. 17 the gauge-fixing term
in the Lagrangian took the form

DZ(A )ab

1 a
L yr= —2-a*n Qf———n

4
- )

'Qb9 n?.#:o .
We see that the parameter redefinition an’—a gives us a
gauge-fixing term of the type we are considering. It is
now possible to allow n2=0 without meeting any singu-

larities. For example, the vector propagator obtained
J
] 1
ey, = L, 8%g2
[ uv P]dxv 1677'2 2 ) w

X (P,upv —P 28#1/)
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after the replacement of an? by a is

Gab(p)=—————6ab _ Pulty Py
ol i(p2+ie) | M n-p
Pupyla+n?)
W (5a)

If we now let n’=0, and using the usual notation
ng=n,, p*=n]p, we obtain

Bab

_ puny Apyng
i(p*+ie)

v +
P

DuPv
(pt)?

GZ’L(p)z

(5b)
This is precisely the propagator which one finds when
computing directly in the light-cone planar gauge.
Indeed the Feynman rules for the light-cone planar
gauge can now be obtained from those of the axial planar
gauge by the two replacements, taken in order,

2

an (6)

—a, n?—0.

As in the axial-planar-gauge computation, the only
nonzero contributions to the vacuum polarization will be
from the Nielsen-Kallosh ghost loop diagram!” and from
the gauge-vector loop diagram. In the evaluation of the
associated Feynman integrals we follow the prescription
of Refs. 8, 9, and 5 for dealing with the (n-k)~! singular-
ities. (As the principal value prescription of Ref. 6 does
not obey power counting, it cannot be expected to yield re-
sults consistent with Kallosh’s theorem.)

The contribution of the Nielsen-Kallosh ghost loop di-
gram is given by

1

C8ab2
2078 o

(1ab _ !
[H;w (p)]div— 167T2
X %(Pzapv-Pva) ’ (7a)
exactly as in the axial-planar-gauge calculation in Ref. 17.
This expression is independent of the gauge parameters a
and n, and is transverse. The vector-loop contribution,
although transverse, is dependent on a and n s AS follows:

2

2
+2apupy o

._)2

+(p,nd +pnt)|2p ™ —2a
Puny +pynp) |2p = e
— 2
+(puny +pyny) —2p++2ap"—a2-%1p)—2
_ 2
+nind —4p2L++20:p2 L+]
p p
4 _
+(nfny +ning) 2p2+a26%)3 —2ap2n;n;], (7b)
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a form which displays quite clearly the nonlocal nature of
the divergent part of the vacuum polarization, and hence
of the appropriate counterterms. The combined result can
be more compactly expressed in terms of four tensors
transverse to p,,:

Puy=pubu—p 8y (8a)
R, =rury, ry=p*p, —2zp,/2, z=2p*p~/p?, (8b)
Sy ="uSy+rySy, =p _n: —zp, /2, (8¢c)
T# =55, , (8d)

of which the last three are gauge dependent and nonlocal
through their dependence on the two vectors r, and s,
and the variable u.

The total vacuum polarization is then

1
NP lay = | ——C,8%>
[ yv(P)]dlv 161T2 2 g )
X (~%+za’—%za'2)Puv
+2a'Ry, — ~ +a”? Suv
2
= —a' |T , 9
+ ;% | Tuv 9)

where a’=ap?/(p*)? and in which the transversality,
gauge dependence, and nonlocality of the vacuum polari-
zation is clearly displayed.

From Eq. (7) or (9) it is obvious that polarization in the
light-cone planar gauge does not take the simple form of
Eq. (3) which we might have expected on the basis of
Kallosh’s theorem. It follows that the counterterms re-
quired to cancel the divergent point of the vacuum-
polarization tensor are gauge dependent in the light-cone
planar gauge—even in background-field quantization.
This result is clearly in violation of Kallosh’s theorem.

A similar violation of Kallosh’s theorem occurs also in
the ordinary light-cone gauge in background-field quanti-
zation. This gauge corresponds to using the gauge-fixing
term

fgf:—i(n-Q“)z, n?=0, (10)
2a

in the limit a—0 (to avoid losing power-counting argu-
ments). It turns out that in this case, just as occurred in
the axial (n%=£0) cases, the computation of the vacuum-
polarization tensor is exactly the same as using conven-
tional techniques.>®!'"12 The result is again gauge depen-
dent and nonlocal,

1

C Sab 2
2 2—w

ab
[HMV(P)]diV: 16 )

1 4 2
X _TPH.V—;S;LV"__Z_T#V (11)

and indeed coincides with Eq. (9) in the limit a—0.

It is interesting to contrast this result with the results
obtained in the axial gauges, i.e., using the gauge-fixing
condition (10) but for n%£0. In that case,!” the gauges
for a0 were pathological—Kallosh’s theorem was not
applicable for a0 due to the O (1) behavior of the vector
propagator at large momenta. However, in the limit
a—0 the correct O(p—2) behavior was obtained and
Kallosh’s theorem was satisfied. In the light-cone gauge
case, however, as demonstrated by Eq. (11), Kallosh’s
theorem is not satisfied even in the limit a—0.

It is important to try to understand why Kallosh’s
theorem is being violated in these calculations, as this
theorem is given as one of the reasons for using
background-field quantization. The explicit assumptions
of Kallosh’s theorem are (1) pure Yang-Mills gauge
theory and (2) background gauge invariance maintained
by the quantization procedure. It is quite clear that both
of these assumptions are still valid. However, on closer
examination of Kallosh’s theorem, we notice two implicit
assumptions: namely, (3) power-counting arguments are
valid, and (4) counterterms are local, i.e., the divergences
of the theory have local structure. Assumption (3) has
previously been noted!” in the context of the axial gauges.
Assumption (4) has not been highlighted before, to our
knowledge, as it is only recently that the phenomenon of
nonlocal counterterms has been noticed.>!'"!? In the
light-cone and light-cone planar gauges assumption (4) is
not valid and, consequently, we have no reason to expect
that Kallosh’s theorem should be applicable to these
gauges.

We wish to stress that quantization in the background-
field formalism involves a gauge-fixing condition only on
the quantum fields and not on the external background
fields. Consequently, the program for eliminating non-
physical modes advocated in Ref. 5 is not immediately
applicable.

The breakdown of Kallosh’s theorem due to the pres-
ence of gauge-dependent and nonlocal infinite terms in the
vacuum polarization once again raises the question wheth-
er Yang-Mills theory in the light-cone (planar) gauge is re-
normalizable, this time in background-field quantization.
In conventional quantization, where a similar situation
was encountered,”®!1121% renormalization was achieved
by using a crucial field equation in the total counter La-
grangian to affect a complete cancellation of all the
unwanted counterterms;’ the counter Lagrangian is con-
structed from all the radiatively corrected primitive
Green’s functions. Because of the presence of the back-
ground field as well as the quantum field, the situation in
background-field quantization is more complicated. For
example the construction of the part of the counter La-
grangian quadratic in the vector fields calls for the
radlatlve corrected vacuum polarlzatlons (QL Q ) and
(Q¢ uA ) as well as the quantlty (4,4 by calculated here.
Furthermore, because it is non- Abehan it always assures
that the field equation relates counterterms appearing in
Green’s functions with numbers of external points, the ex-
pected cancellation cannot be demonstrated until at least
the various one-loop, three-point functions are also calcu-
lated. That task is considerably beyond the scope of this
work.
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In this paper we have shown, by direct computation in
the light-cone planar gauge using background-field quant-
ization, that the divergent part of the one-loop vacuum-
polarization tensor is highly gauge dependent. We have
also noted that a similar result holds in the ordinary
light-cone (a¢=0) gauge. Both of these results appear to
contradict Kallosh’s theorem. However, we have argued
that the occurrence of nonlocal counterterms in both of
these gauges violates one of the implicit assumptions built
into the proof of Kallosh’s result. Hence it is not surpris-

ing that Kallosh’s theorem is not satisfied in explicit com-
putations.
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