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By adjusting the Weyl factor in (d + 1)-dimensional Kaluza-Klein theory, we obtain a one-
parameter family of gauges which give rise to propagating, massive ghosts in the compactified
theory on M9xS!. We calculate the one-loop Casimir energy of this vacuum for all values of the
gauge parameter S and arbitrary noncompact “‘space-time” dimension d. As expected, the result is
independent of S and coincides with those previously obtained in other gauges. Our calculation con-
firms recent formal proofs due to Cohler and Chodos and Yasuda concerning the gauge indepen-

dence of the graviton one-loop effective potential.

I. INTRODUCTION

Kaluza-Klein theories'? provide a possible geometrical
unification of gravity with the other fundamental interac-
tions. Moreover, the existence of extra space-time dimen-
sions arises naturally in formulations of extended super-
gravity’ and is an essential feature of consistent string
theories.* Most recent calculations are either purely clas-
sical, or deal with one-loop quantum corrections to the
classical vacuum energy. Although the classical analyses
lead to considerable insight into the geometrical structure
of such theories, their direct physical significance is weak-
ened by the fact that the extra dimensions are expected
a priori to ‘“curl up” to sizes of the order of the Planck
scale (~10733 ¢cm) in order for the effective gauge cou-
pling constants to have reasonable values.

A potentially more fruitful approach taken recently by
many authors®~? is to calculate the one-loop effective po-
tential due to either matter fields’ or the graviton it-
self.*~° In particular, by finding self-consistent solutions
to the quantum-corrected equations of motion for the
background field, it is possible to predict the effective
coupling constants and radii of the internal dimen-
sions.>®° However, as pointed out in Ref. 8, the graviton
one-loop effective potential is not, in general, gauge in-
variant, although its minima are expected to be so. Two
recent papers!'®!! have provided formal proofs of the
gauge invariance of the graviton one-loop effective poten-
tial for certain classes of gauge choices when the back-
ground is chosen to be a solution to the classical equations
of motion. Unfortunately, in order to predict coupling
constants self-consistently in quantized Kaluza-Klein
theory, it is necessary to first evaluate the effective poten-
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tial off-shell and then fine-tune parameters (such as the
cosmological constant) in order to ensure that the chosen
background minimizes the quantum-corrected effective
action. The hope is that the predicted physical parame-
ters emerging from this manifestly noncovariant pro-
cedure will nonetheless be independent of the gauge
choice. Recent work,!? however, seems to indicate that
this hope may not be realized in practice.

We are thus motivated to analyze in some detail the cal-
culation of the Casimir energy of the gravitational field in
D=d+1 space-time dimensions compactified to
M?4xS'. This calculation was first done for d =4 in a
specific gauge by Applequist and Chodos.® In addition to
generalizing the number of space-time dimensions to d,
which does not in itself present any severe complications,
we introduce an arbitrary Weyl or conformal factor into
the parametrization of the (d + 1)-metric in terms of d-
dimensional fields. Although the resulting field redefini-
tion does not affect the classical dynamics of the reduced
d-dimensional theory, it does provide an interesting one-
parameter family of gauge choices with nontrivial quan-
tum properties. Specifically, propagating massive ghosts,
scalars as well as graviton modes in the reduced theory all
contribute to the one-loop effective potential in this fami-
ly of gauges. We are, therefore, able to verify with expli-
cit calculations the formal proofs!®!! of the gauge in-
dependence of the effective potential and Casimir energy.

This paper is organized as follows. In Sec. II we briefly
review the (d + 1)-dimensional Kaluza-Klein theory with
a Weyl factor. We derive the effective d-dimensional
linearized action and discuss its dynamics. Section III re-
views the calculation of the effective potential in the
cylindrical gauge® generalized to d + 1 dimensions, while
Sec. IV contains the calculation in the new family of
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gauges. In Sec. V we close with conclusions and com-
ments on future work.

II. LINEARIZED KALUZA-KLEIN ACTION
WITH ARBITRARY WEYL FACTOR

We consider a Kaluza-Klein theory in D=d+1 di-
mensions with metric parametrized as follows:

i guv+¢Ay.Av ¢Au
éo %4, ¢

(In our notation, all quantities defined in the full D-
dimensional space-time are barred and carry upper-case
latin indices {4,B,...=0,1,...,d —1,D}. Quantities
defined on the d-dimensional reduced space-time carry
greek indices {u,v,...=0,1,...,d —1}. d-dimensional
space-time coordinates will be labeled by x*, while the
remaining coordinate y is periodic with period 27R.)

As yet no assumptions have been made about the coor-
dinate dependence of g, =g4p(x,y). The so-called Weyl
factor or conformal factor (¢/d,)° has been normalized
by a constant ¢, which will be chosen as the vacuum ex-
pectation value of ¢, for reasons that will become clear in
the subsequent calculations. Note that a change in the
Weyl exponent S induces a field redefinition of the effec-
tive d-dimensional fields 8uvs Ay, and ¢ without chang-
ing the dynamical content of the theory. In particular,
there appears to be an ambiguity in the definition of the
reduced space-time metric g,,. This ambiguity can only
be resolved by determining the coupling of matter fields
to geometrical quantities. For example, if one considers
test particles in d + 1 dimensions which traverse geodesics
of g4, then there exists a natural choice of Weyl ex-
ponent, namely, S =0, for which these geodesics project
onto geodesics of g,,,.">!*

The action is the ordinary Einstein-Hilbert action in D
dimensions:

N

8ap= (2.1)

I =Tlg [a’V g Rz, (2.2)
where
§4B=F Mo —T s —T T an+T T its 2.3
and

T Y=58""@un5+8sN,4—BusN) - (2.4)

Instead of writing out the full action (2.2) in terms of the
fields g,,, 4,, and ¢, we perform the expansion

gyvznyv+hpv ’ (25)
d=¢o(1+¢), (2.6)
A,=0+4,, (2.7)

where h,,, ¥, and A, are small fluctuations of Of(e)

which depend on all coordinates {x*,y}. In terms of the

full D-dimensional metric, this is equivalent to setting
Bap=B up+has » (2.8)

where

o Muv O

848= | o o (2.9
and to O(e)

#= | god,  (S+Déov ] 219

The reason for our normalization of the Weyl factor by ¢,
now becomes apparent: it ensures that the expansion in
Egs. (2.5)—(2.7) yields the same D-dimensional back-
ground g 9% for all choices of Weyl factor, thus avoiding
the rescaling of the coordinates which was required by
Applequist and Chodos® in order to yield a Minkowski
space-time background.

It is now straightforward to calculate the action to
second order in the fluctuations. The result is (note that
T'9=T V=0 because our background is a flat solution to
the D-dimensional field equations)

_ ¢01/2
IP=—— [ d%[.L(h)+ L2+ L5 (¢?
161rGf x[ZL1(h5)+ L2+ L 5(¢°)
+ L)+ Ls(A, k)] (2.11)
with
Z\(h))=5h*Dh,,— chOh+ 3hh" — Th*RS,
— L (ha,2n—n,,8,m (2.12a)
0
ZLr=Lem=—1oFu F*, (2.12b)
2 a2 -2
Ly >=01¢Dll/—¢—¢a, v, (2.12¢)
0
34(¢,h)=a3¢(h"_oh)-Z-“npa,zh , (2.12d)
0
ZLs(A,9,h)=2a40,(3,4")
+hd,(3,4*)—h*d,(4,,),  (2.12¢)
where O denotes the d-dimensional Laplacian 8“8“,
h=hy,n", (2.13a)
h'=h*, (2.13b)
and
a;=-S(d—1)(Sd+2)/4, (2.14a)
a,=8%d(d—-1)/4, (2.14b)
a;=[Sd-1+1]/2, (2.140)
a,=Sd—-1)/2. (2.14d)

Consider the harmonic expansion of an arbitrary func-
tion f(x*,y):

f(x",y): i f(n)(xy)einy/R.

n=—c

(2.15)
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Ir(l )the (pre)sent analysis all fields are real, so that
f n —_ ft —-n and

fdyf(x”,y)g(x“,y)=27rR i FM(x)g*M(xk)

n=—ow

=2tk 3 Famg k) |

n=—o
(2.16)
In Eq. (2.16) we have defined the real fields:
f(")(x“)E\/iRef(")(x"), n>0, (2.17a)
F ™M) =v2Imf™(x#), n <0, (2.17b)
FOUxH)=fO(xH) (2.17¢)
Similarly,
f dyf(x“,y)ig(x",y)_—z‘:rR 2 B Fmgm
(2.18)
and
32
f dyf(x“,y)yg(x“,y)
> ;—Zf‘"’(x“)g""’(x") . (219

n=—oo

In terms of these new expansion coefficients, quantities of
the form in Eq. (2.18) give rise to mixing between dif-
ferent n sectors. In particular, only .#5(4,¥,h) in Eq.
(2.11) contains such terms. Such mixing is, however,
eliminated by the redefinition 4 " — 4 (=7,

Using Egs. (2.15)—(2.18) in Eq. (2.11) we get

- 1
1(2) d4 (n) (n) f(")
T6rG, "__Q f x( L+ L+
+ L8P+ 20, (2.20)
where
f‘{”‘:‘%(h'(::,)[]h(")”v—-h(")ﬂh("))
+_;_(h(n)h(n)"__h(n)yvh(n)x )

—h;,’:,’h(""“’] , (2.21a)
°f(2r1)= _ %FL?F(")#V , (2.21b)
L =a O™ +a,m, (2.21¢0)
ggn)=a3¢(n)(h(n)"_Dh(ﬂ))+a4m"2¢(")h(") , (2.21d)
.Y(”)=m,,( _2a4¢(n)a#A(n)y_h(n)a”A(n)#

+h""“"aVAL")) . (2.21e)

In the above the tildes over the fields have been dropped
(they will henceforth be implicit); the vector potential has
been rescaled, A,—A /\/%, the “mass” appearing in
each sector is defined by m,=n/(RV $y); and the effec-

G. KUNSTATTER, H. C. LEE, AND H. P. LEIVO 33

tive d-dimensional gravitational constant G, is defined by

Gd = (2.22)

_G
2mRV'$,

Note that only the coordinate-invariant circumference of
the compact direction f V8opdy =2mRV $o=27R ap-
pears in these expressions. The final answer, therefore,
will also be invariant under rescalings of the y coordinate.
We will for simplicity, henceforth, drop the ¢, from our
expression, and R will be understood to refer to the in-
variant length R.

A few brief comments concerning the dynamical con-
tent of the reduced action T ' are in order here. (See also
Refs. 15—17). The full D-dimensional gravity theory con-
tains +D(D +1) functions of the D coordinates. Of these
only %D(D —3) propagate dynamically due to the mani-
fest coordinate invariance in the theory. The reduced ac-
tion 7‘® has the same dynamical content but in a drasti-
cally altered form. The harmonic expansion has yielded a
countable infinity of propagating modes each of which is
now a function of only d coordinates x*. Note that the
different choices of Weyl exponent can radically alter the
form of T‘® without changing its dynamical content. For
example, if S=—(d —1)~! (i.e,, a;=0) then there is no
derivative coupling between h(") and ¢, while if S=0
then the kinetic term for y'” vamshes The equivalence
of the different forms of T ‘? can be verified by observing
that one can change the Weyl exponent in 7 ® from S to
S’ by performing the following invertible field redefini-
tions:

h:,':)—»h(")'i- (('§+‘1S)) ¢(") (2.23a)
UER ((i‘j—_ll)) e (2.23b)
AL")‘“’AL") ) (2.23¢)

The n =0 sector contains d (d —3)/2 massless graviton
modes, (d —2) gauge vector modes, and a scalar mode,
for a total of D(D —3)/2 as required. This sector is also
invariant under space-time coordinate transformation and
has an (Abelian) gauge symmetry. These are the only un-
broken gauge symmetries in the reduced theory,'®!” and
correspond to the generators of y-independent coordinate
transformations in the full theory.

The Lagrangian in the nth Fourier sector (n540) is in-
variant under the following gauge transformations:

h:::)—»h;::,) (p(nz,_*_p(n)) S"hw}»(")
45+ ” 2t m (2.24a)
"
(ll) A(n) +p‘(‘n) ) (2.24b)
¢(n)_)¢(n)+k(n) (2.24¢)
where p{" is an arbitrary vector field and A'™ an arbitrary

scalar. Thus, the fields A" and ¢'™, ns£0, are pure
gauge, and can be transformed to zero without loss of
dynamical content. In this gauge (which is the analogue
of the unitary gauge in the spontaneously broken Abelian
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Higgs model) the physical content of the massive sectors
is manifest. Each ns£0 sector contains a d-dimensional
massive “graviton” with (d +1)(d —2)/2=D(D —3)/2
dynamical modes. In the language of spontaneously bro-
ken symmetry, the generators of coordinate transforma-
tions in these sectors correspond to symmetries which are
spontaneously broken by the chosen vacuum solution,
g %s; the massless vector and scalar fields are the Gold-
stone bosons which get absorbed to produce the massive
graviton. As we shall see in the next sections, only the
massive modes contribute to the one-loop effective poten-
tial.

III. EFFECTIVE POTENTIAL
IN CYLINDRICAL GAUGE

The one-loop effective action can be formally expressed
as follows:'®

[[42]1=1[¢{1+ 3IndetZ "', (3.1)
where ¢? generically denotes the background fields

¢ =80 A 28"1=[7,1,0,0], the inverse propagator & -t
is defined by

% f dDX hig—l,‘jhj =T(2) (3.2)

and h; denotes the fluctuations [h,,,4,,¥]. Expression
(3.1) is not well defined, however, because the general co-
variance of the original action manifests itself as a gauge
invariance of I'? under the field transformations:

hap—hap+24p+2p 4 (3.3)
or, in terms of the d-dimensional fields:
28 2p,p
h[lv_’h[tv"'(zu,v"}'zv,‘u)—mnpv’-go—- ’ (3.4)
1
A#—-»A,‘—F%(E#,D +Zpu) s (3.5)
Yot —2—3 (3.6)
(S+1) 72 '

As is well known, this invariance gives rise to a singulari-
ty in the functional integral, which must be removed by
the addition to the Lagrangian of a gauge-fixing term and
a corresponding Faddeev-Popov!® term. The one-loop ef-
fective action thus modified is

T[¢71=1[¢{1+ 3IndetZ ~!;; —IndetAgp , (3.7)

where detAgp is the Faddeev-Popov determinant and in-
stead of (3.2) now

+ [ dPx (0T ~ ok (x)=T?+T ¢ . (3.8)

The cylindrical gauge is defined by the following
gauge-fixing condition:

9,8 “°=0. (3.9)

The calculation in this gauge was first done by Appelquist
and Chodos® for d=4 and S =0. Since it is much
simpler to calculate in Euclidean space than in Minkowski
space, we Wick rotate as follows:

[t’if’ fddx’ fddk]Minkowski
— [iXo,——i,i fddx,—i fddk]Euclidean ’

We also transform to d-dimensional momentum space to
obtain

d%
V‘e”=l
ff 2 f (21;_)4

IndetZ ~!;(k)—IndetAgp, (3.10)

where
Z k= fddx g —lix), (3.11)

with & ~!;(x) defined by Eq. (3.8). In Eq. (3.10), Vi is
expressed as energy per unit (d —1)-volume. In order to
express it in terms of d spatial dimensions it is necessary
to divide by (27R).

The relevant gauge-fixing term that must be added to
the action following procedures described in the last sec-
tion can be reduced to

d _ (1 n 4Dy
Jdfxdy Zy=[ 53,87 d%dy

27R
=~;’a—2 J d%m DA+ ()]

(3.12)

This gauge constraint is trivially implementable in the
limit a—0, because it merely introduces a product of &
functions [T,_.,8( 45" (x))8(¢'"(x)) into the functional
integral. Performing the integration then removes all ex-
pressions containing AL") and '™ (n+£0) from the
second-order Lagrangian. Note that we have not fixed the
residual D gauge degrees of freedom in the n =0 sector,
but this is not important since only the massive sectors
contribute to the one-loop effective potential. Note also
that in this gauge the Weyl exponent S has completely
disappeared from the calculation. The remaining inverse
propagator for each n is simply that of a massive spin-2
particle with mass m, ~n /R.
We therefore have the following expression:

7(2)+'I'(g%)

d
= ZZR b ak RD PIhkRPk),  (3.13)

(Zﬂ)d [2ad
where
D natk)
= 7(my? + k))[8uBr0— 7 (81uB0v+ 81,80, ]
+ +(8uak ok, 48,3k ok +8uknk, + 8,0k 1k ,,)
— 5 (8ukrk o +8r0k k) (3.14)
and we have suppressed the coupling constant for sim-

plicity.

In order to evaluate the determinant, we )exPand eigen-

vectors X\ of the inverse propagator D1, in a com-

plete orthonormal basis as follows:
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N Al odol
X\n) =ak,k,+b3 pupy+ 3 bipupy

i=1 i=1

z o (p,‘ v+pvk,,)+2 d,,(p,,pv+p.p}‘)

i%j
(3.15)
where ﬁ,,zk,,/]k | and pj, i=1to d —1 satisfy
kup\8#=0, plpl=8", (3.16)
8=k, k,+3 pipt (3.17)
i

-_ %(kz—{-m,,z)ll
g(zn)—1=

1.2
—7My 12

and we require 3,,b;=0. In this basis & ~',, », has the
following simple representation:

— (k2 4+m, NI,

In Eq. (3.20), I, is the (d 2)-dimensional unit matrix
acting on tensors 3.b; p,,pi, I, is the (d —1)-dimensional

unit matrix acting on ZiC(p“k +p,.k ) and I3 is the
(d —1)(d —2)/2-dimensional unit matrix acting on

zigejdij(Pva'f'PsPL)
Substitution of Egs. (3.18)—(3.20) into (3.10) yields the
effective potential

3

2.

lndet(g('” h

“
-

wf
| oy

2+n2)(d+1)(d—2)/2

NI-—-

Il

2 R)“[I"(q
+ln(n2)(d+l)]

+const + ghost contribution . (3.21)

The ghost determinant in (3.10) generates terms similar to
the last term in the square brackets in (3.21), which van-
ishes upon mte ratxon (see below). Thus ghosts do not
contribute to V ! in the cylindrical gauge.’

In the above, we have defined the dimensionless
momentum g =Rk. Note that the expression in Eq. (3.21)
clearly exhibits the presence of (d + 1)(d —2)/2 propaga-
ting modes and d +1 nonpropagating (or constrained)
modes in each sector. The final integral is, of course,
divergent. We will use dimensional regularization® (actu-
ally its generalization, analytic regularization?!) to handle
the divergence. In particular, it can be shown that?!

[ a%=[ d% flg)=0
for any polynomial f(q), so that Eq. (3.21) simplifies to

(3.22)

(3.23a)

g({l)—l 0
g(u)—l= 0 y(zn)—l ’ (3.18)
where
0 (d—1) 2
2
Fm-1= (3.19)
; n2 (d-z*z)( n2+k2)
and
(3.20)
|
where
Cdzﬁi:l_)zﬂ:ﬁ S [ d%ng*+n?), (3.23b)

n=1

which coincides precisely with the calculation of Appel-

quist and Chodos® for d=4. In the Appendix it is shown

that

(d+1)(d—2)
2(4m)4”

rd+1)
rds2+1)

d=— §d+1), (3.24)
where £(z) is the Riemann ¢ function?? which is greater

than zero for z > 1, z real, from which we conclude that

Cy<0 for d=3,4,.... (3.25)
Thus V'{(R) is attractive for any normal space of dimen-
sion greater than 2.

The result for odd dimension d is interesting in two
ways. It has been argued?' that in the early Universe,
when the temperature is extremely high, the effective
number of space-time dimensions is reduced by one, in
which case the physically relevant result would be d=3
instead of d =4.

The other reason the odd-dimensional result is interest-
ing concerns the relation between the ultraviolet (UV) fi-
niteness of the theory and the total space-time dimension
D. In particular, when the method of dimensional regu-
larization is used, a quantum field theory is UV finite if D
is odd, but is infinite if D is even. In the present case
D=d+1, so the theory should be UV finite when d is
even and infinite when d is odd. However, the result for
Cd is such that it is finite whether d is even or odd. This
is easily understood. Despite the nontrivial topology of
the compact dimension, the M?x S! background is flat.
For a generic field theory in D dimensions, evaluation of
the one-loop effective action will yield divergences pro-
portional to the (D /2)th power of a curvature invariant.?®
For the present theory in d +1 dimensions, the only such
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invariants available are those built from the Riemann ten-  (2.1)], Eq. (4.1) actually represents a family of gauges
sor, and hence vanish whether d is even or odd. In this  characterized by the parameter S. This becomes apparent
paper one works instead with the tower of reduced d-  when one calculates the Faddeev-Popov determinant:
dimensional theories, but consistency with the (d +1)- 4
dimensional approach demands the same result. Indeed, det Avo—det 8F (h,2¢,4,) @.3)
Toms? has shown that for consistency it is necessary in FP 538 ’ :
dimensional regularization to perform the mode sum be-
fore expanding in ¢, as is done in the Appendix. where
a4 3 -
IV. A ONE-PARAMETER FAMILY OF GAUGES Fi= —;;"" = 5;(’1,‘0/410) (4.42)
We now consider a set of gauges in which the graviton  and
and scalars are coupled:
i) 19 13 |y Sd -
V_g)= 41) FP=—V_g~-—h=0"— A= .
9,( g)=0, (4.1) 3y g 29 29 S+lhDD (4.4b)

d,(4,)=0. (4.2) B L
and X” are the gauge parameters given in Eq. (3.3). Using

Because g,, is a function of the Weyl factor [see Eq. Eqgs. (3.4) and (3.6) we find that

7

my? 0 0 0 <o 2ikgmy,
54 3} ” my* 0 0 <o 2ikym,
In det 53F | = f (zw)dlndet 0 0 m,? 0 cee 2ikymy,

n=-—ow . . .
: . . . 25dm,*
—ikom, —ikym, —ik,m, —iksm, STl

© d
= d%k In|m,* |k*+ Sd m,* (4.5)
Y ) S+1

We defer evaluation of this integral until the end, but note that after regularization this will, in general, give a nonzero
contribution which depends on both S and d.

We now evaluate +Indet? “,-j. As in the previous section, we implement the (3,4#)=0 gauge condition via a &
function in the functional integral, and integrate over the functions AL")(x), so that the net effect is to set A:,") =0, n#0
in the effective Lagrangian. The remaining gauge covariance will be handled by adding the gauge-fixing term:

1
Ig=-— [ a%dyd3,v—g )

1 z .
=-o [d% 3 mlh"0r+0(e) . (4.6)

n=—oo

Since we have not explicitly eliminated '™ from the functional integral, the inverse propagator in each sector has the
following block structure:

Divis (D" o

707 =\, zEo | %)
where
(g}z’g_l)pv=(gw—l)#v= —GJkpkv+(ask2+a4mn2)8MV ’ 4.8)
2
n

(n)—1 (n)—1
gpv,la =°@pv,ka +

m
a 5;41!8)«7 4.9)
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with Z ;,’:,’ %o given by Eq. (3.14). Thus, in this gauge the graviton and scalar are coupled.

The appropriate basis for calculating the determinant is

f(n)
xm— |21, (4.10)
nv
where X L’L’ is expanded as in Eq. (3.15) and f is a scalar function. In this basis
g(n)—l
g (m-1_ F-1 | (4.11)
where & SV~ ! is again given in Eq. (3.20) but now
2A—ak?+a,m,?) a,my? (d —1)ask®+asm,?)
g\-= a,m,? m,*/a (d —1)(3my*+m,*/a) (4.12)
ask*+am,?  sm2+m,*/a (d—1)m,*/a+ (d— 3 Q=2 w2+ k?)
The one-loop effective potential is thus
Vi{=+IndetZ ~'—IndetApp
2
_1 d% In l(S 2|2 2| (a2 2\ d+1Md=2)/2(, 2\ d+1)
= +1) n®|( ) (n®)
2,.__,,f(2 R)? TS|t
___._q__ln Sd n?
q + (413)
,.=_, f (27R )¢ S+1"
I
Note that the first determinant, detZ ~!, vanishes as ex- S p 1 Sd |3
pected in the limit a— oo reflecting the singularity in & sgn_m 1F - sll.rng 2S+1 |3y v 5.1

when the gauge-fixing term is removed. Although both
this term and the Faddeev-Popov term depend nontrivial-
ly on S and d, we see that all gauge-dependent contribu-
tions do either cancel or drop out so that the total one-
loop effective potential after regularization is exactly the
same as in Eq. (3.21).

V. CONCLUSIONS

We have calculated the one-loop effective potential in
D =(d + 1)-dimensional Kaluza-Klein theory compacti-
fied to M?4x S in a family of gauges characterized by the
Weyl exponent S. In addition to verifying explicitly the
invariance of the one-loop effective potential under infini-
tesimal gauge changes (i.e., changes in S), our calculation
also clarifies the role played by the Weyl factor in the
quantum dynamics of Kaluza-Klein theory, and confirms
an earlier claim® that it is a useful bookkeeping device but
does not affect physical quantities.

Cohler and Chodos!® have proven a theorem stating
that the one-loop effective potential is invariant under in-
finitesimal gauge charges when it is evaluated at a solu-
tion of the classical field equations. Since our gauges fall
into the class of gauges considered by Cohler and Chodos,
their theorem requires the effective potential we have cal-
culated to be independent of S. Moreover, because Eq.
(4.4b) has the limit

the cylindrical gauge is actually a special case of our fami-
ly of gauges. The theorem of Cohler and Chodos also re-
quires that our result agrees with that of Applequist and
Chodos,’ as indeed it does.

Although the Casimir effect in Kaluza-Klein theory
points out semiclassical instabilities of classical compacti-
fications, it is but the first step of a more interesting type
of calculation®®!? which allows the prediction of coupling
constants and stable radii by finding self-consistent solu-
tions to the one-loop corrected equations of motion. Be-
cause in such calculations the one-loop effective potential
must be evaluated off-shell, it is not clear that any of the
theorems concerning the gauge invariance of the effective
potential apply. In fact, recent calculations by Randjbar-
Daemi and Sarmadi'? in the light-cone gauge seem to im-
ply that gauge invariance may not hold. The gauges dis-
cussed in the present paper provide a useful tool for
analyzing the gauge dependence of the self-consistent
one-loop calculations. The results of this analysis will be
presented elsewhere.
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APPENDIX

We compute the quantity

A4=3 [d%inig?+n?) (AD)

n=1

which, on account of its divergence, calls for a regulariza-
tion. We use dimensional regularization.
Consider the known integral

Iw,p,a)= [ d%q(g*+a), Re(a)>0

=m?a° P (—pu—w)/T(—u) . (A2)
Then A may be defined as
- 2
=1 -— .
A G%nglgﬂ % I(d /24 €,u,n%) (A3)

A= —lin%)n‘n‘*‘g( —d—2€)[(—d/2—¢)
€—

—m#%(—d)T(—d /2), d odd

Because

lim 1/T(—p)=0
p—0
but

lim 9-[1/T(—p)]=—1, (Ad)

p—0 aﬂ-
the factor I'( —u) in (A2) is the only one that needs to be
differentiated, and

A=—lim S mn*r (o), (AS)

e—~0,-1

where w=d /2+€. The summation over n yields the
Riemann ¢ function, formally defined as

(=3 n— (A6)

n=1

and extended to Re(z) < 1 by analytic continuation.
Thus

(A7)
= ()24 1 (—)d/2472
P Sl A Sy | (—d) |—— =2 (—
@/2) e1_1’1(1) (1+€lnm)2ed'(—d) p W(d/2+41) |+0(e) @72 2£'(—d), d even
where ¢ is the digamma function, and the property that {(—2m)=0 for m=1,2,. .. has been used.
Using the identity
£(z)=2"7""'sin —’;i ]n 1—2)6(1—2) (A8)
we obtain for all integral d
A=——L_Td+1) .5y, (A9)

" (42 T(d/2+1)
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