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Calculation of electroproduction of W bosons in electron-proton collisions
in the Weizsicker- Williams approximation
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Using the Weizsicker-Williams equivalent-photon spectrum we calculate the electroproduction cross section for

W = bosons in electron-proton collisions.

I. INTRODUCTION

Several proposals' have been made for electron-
proton colliding-beam facilities around the world.
Among the interesting physics that will be pos-
sible at these facilities of the future is the pros-
pect of electroproduction of W* and Z°. Rough
estimates for the electroproduction of these gauge
bosons have been made and appear in the pro-
posals® for these machines. It is desirable to have
a more precise calculation of the production cross
sections. In the present paper we have calculated
the production cross section for e+p~e+ W*+X
using the Weizsicker-Williams? approximation
for the photon spectrum. We expect the Weizsick-
er-Williams approximation to be quite reliable for
the electroproduction of W* since the vector boson
cannot be produced at the lepton vertex in e+p—~e
+W*+X. However, since Z° can be produced at
the lepton vertex, we do not expect the Weizsicker-
Williams approximation to be reliable for e+p —~e
+Z°+X. For this reason we confine our calculation
to the electroproduction of W* only.

The calculation of e+p -~ e+ W*+ X proceeds in
the following steps. (1) We calculate photopro-
duction of W* on quarks, ¥+q—~ W*+q (see Fig. 1).
(2) We fold in the quark distribution functions to
generate y+p~ W*+X. We make use of two quark
distribution functions: those of Barger and Phil-
lips® and Buras and Gaemers.* (3) As a final step
we fold in the Weizsicker-Williams photon spec-

trum to calculate the cross section for e+p—~e
+W*+ X.

In the process of evaluating step (1) we repro-
duce the results of Mikaelian,® thus providing a
useful check on that calculation. In Sec. II we de-
scribe our calculation, provide the essential de-
tails, and present the results. A brief discussion
follows in Sec. III.

II. CALCULATION

A. Photoproduction on quarks

The process we first calculate is y(2)+q(p)
- W*(k')+q(p’). The three processes contribut-
ing to the photoproduction on quarks are shown in
Fig. 1. This part of the calculation essentially
reproduces Mikaelian’s® results. -The final result
for the differential cross section for W* produc-
tion on quarks is (see Ref. 5 for details)

do* ag?
i " Tes T oxQ, 8.0,
s=(p+k)?, t=(k-F'), andu=My%-s -,
> . (2.1)
g2=MW§ cosf,, for AS=0
2
=Aﬂ§551n60~, for AS=1.

k is the anomalous magnetic moment of the W
which in the standard Weinberg-Salam-Glashow
theory is 1. :

The form of T'(x,Q,s,t) is®

T(k,Q,s,t)= - 16(@ - 1)25 - 16Q21—;— -32Q@Q - 1)t%§+ 16[@-—:—1—) -53] [%—Mﬁl(-l"—’—‘)ﬂ]

u s My® -t

_Mal:2+ 8[1;:,2 (s+8)+(1+ K)<t - (;;Wtz) >:|/(MW2 —-t)
- 2[832 — 16tM,% —4(1+ K)sz(l+Min)+ 1+ K)2(4su +-(£%}W£;E>]/(MW2 —1). (2.2)
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B. Photoproduction on proton

The process we calculate next is y+p - W*+X. If we assume that the struck quark has a momentum
fraction x and the final hadron invariant mass is m,?, then the quark-parton model leads to a double dis-
tribution (note that s -=xs, t=¢, and u=M,% -t —xs)

do* a
T 0 1657 208 0T (e, 2Qu,35,0), (2.3)
1

where f,(x) is the ith quark distribution density and x =¢/(f + m? —m,?) with m = proton mass. Written out
explicitly in terms of the u, d, and s quarks, one gets

_do* aGEMm

dm,zdt 16\/—82}‘{14(:( (k,%,x5,t)+ [d(x)cos?0,+5(x)sin®0. 1T (k, 5 ,xs,t)}, (2.4)
47— =S (), 3 x5, 0)+ [de)c08%00+ s ()sin®OCIT (i, § x5, 1) (25)

dmgidt  16v2s%

The last two equations confirm the correctness of

the calculation of Ref. 5.
Next, we generate do*/dm,* by integrating over
the allowed range of ¢,

—2E(E'+ |K'|)st<M,?-2E(E' - |K']),
(2.6)

where (E, k) and (E',k k') are the energy-momentum
of the photon and the W*, respectively. In the vp
center-of-mass frame

E=vV5/2,
E'=(s -A)/2Vs, (2.7)
A=m® —My*.

The resulting do*/dm,? for s=2.5x 10* GeV? are
shown in Fig. 2. The cross section rises steeply
near the end point of the spectrum m,*= 6907 GeV?
(My, =75 GeV is used in all calculations), and then
drops precipitously. This occurs over such a
small measure of m,? that it hardly contributes
significantly to o*(s). The rise of do*/dm,? near
the threshold in m,* is quite smooth and is not
plotted out. The variation of do*/dm,? near the
end point is exaggerated because of the use of a
logarithmic scale for m,.

The final integration over m,® yields o*(s). In
Fig. 3 we show o*(s) vs s for the Barger-Phillips®
and the Buras-Gaemers* quark distribution func-
tions.

We notice that the general trend of c*(s) vs s
is the same for both parametrizations and the

y (K Wk

q (p) q' (p")

(2) (b) (c)

FIG. 1. The three diagrams for y+q —-W+gq.

f

differences are only slight. The general trend

is for the Buras-Gaemers® distribution functions
to generate slightly lower cross sections. The
photoproduction cross section for W* with x=+1
is significantly higher than the cases for k=0 and
- 1. The difference is large enough to prove to be
a useful tool in discriminating the standard Wein-
berg-Salam-Glashow theory (k=+ 1) from other
theories. We note that o*(s) calculated here are
very similar to those obtained in Ref. 5, where

a different set of distribution functions were used.

C. Electroproduction on proton

As the last step in our calculation of the electro-
production cross section for e+p—-e+ W*+X, we
use the Weizsicker-Williams*® equivalent-photon
spectrum and generate the electroproduction cross
section. Using M? as the ep center-of-mass (ener—
gy)? one gets

a M2 (¥ ds s s?
=5 0 1 ot
w
(2.8)

The result of this integration for the Barger-
Phillips® and the Buras-Gaemers® parametriza-
tions of the quark distribution functions is shown
in Fig. 4. As the quantum-chromodynamic correc-
tions soften the quark distribution functions, i.e.,
deplete large-x quarks, and large-x quarks are
more efficient in producing W’s, the Buras-Gae-
mers quark distribution functions lead to smaller
production cross sections.

III. DISCUSSION

Estimates for ¢,,(M?) have been made in the
past (see, in particular, the CHEEP report'. Bas-
ing their argument on several plausible quark mod-
el assumptions they estimate (with M, =65 GeV)
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FIG. 2. do*/dmf2 vs mfz for y+p - W*+X for Barger-Phillips (marked B+P) and Buras-Gaemers (marked B+G).
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FIG. 3. o*(s) vs s for y+p —W*+X using Barger-Phillips (B+P) and Buras-Gaemers (B+G) quark distribution func-
tions. Multiply ¢ by 4 x107% to convert to cm?.
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FIG. 4. o(ep —eWX) vs M? [invariant ep (energy)?] for Barger-Phillips (B+P) and Buras-Gaemers (B+G) quark dis-

tribution functions. Multiply o by 4 X102 to convert to cm?,

02,=2x 10 cm?, (3.1)

- = ~38 2
0,,=5% 107 em

at M?=2.7x 10* GeV2. Note that for energetic
head-on collision of electrons with protons, M?
~4E E,, so that the head-on collision of a 10-GeV
electron with a 500-GeV proton results in M2~ 2
x 10* GeV2. At the same value of M2 we find that
our estimates are higher. We find (with My =75
GeV)

(3.2)

Y. _ {Zx 1037 cm? (Buras-Gaemers)
ep ™

2.4x 107" ¢cm? (Barger-Phillips),

~37 2 - ’
- {2>< 10" em? (Buras-Gaemers) (3.3)

3.0x 10737 cm? (Barger-Phillips).

These estimates are higher than those in the
CHEEP report! by an order of magnitude for o},
and a factor of 4 for ¢;,. With a machine lumi-
nosity of 10°2 cm™2sec™ one would generate an event

rate of 1-2 produced W* per day. The event rate
goes up by a factor of 2 at M2=5x 10* GeV2. Note
that this is only a part of the W-production mech-
anism. The estimate of the CHEEP report! for
e+p—-v+ W*+X is ~107%" em? which will essen-
tially double the event rate.

The detection of W* will involve wide-angle lep-
tons through W* - u*+v, and e*+v,. The branching
ratio into either of these modes is (see, for exam-
ple, the CHEEP report!)

TWr—e'+y,) 1
I(W*—all) 4N,’ (3.4)
where Ny =number of lepton generations assumed
to equal the number of quark generations. With
N =3 this branching ratio is 8%. The rate at which
W* would be observed to decay into one of the lep-
tonic modes will be an order of magnitude lower
than the rate at which they will be produced. We
acknowledge that the Weizsidcker-Williams ap-
proximation overestimates the cross section and
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also that a complete calculation would require
the photoproduction amplitudes for %k%# 0 where
we also expect the Z°%-exchange processes to be
important.
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APPENDIX A: DETAILS OF CALCULATION

Some of the details of the calculation are pro-
vided below. The Barger-Phillips® parametriza-
tion of quark distribution functions is

u(x)=0.594x"1/2(1 - x?)*+ 0.461x71/2(1 - x?)°
+0.621x71/2(1 —x2)7 |

d(x)=0.072x"1/2(1 —x2)3+ 0.206x7/2(1 - x2)°
+0.621x71/2(1 — x2)7

() =a0)=s(x)=5(x)= 0.145x™1(1 —x)°.

The Buras-Gaemers* parametrization of quark
distribution functions is

ulx §)=———3———
77T B[n,(8), 1+ 1,(3)]

1
" B[n,(3),1+n,3)]
-
B[ﬂ3(§), 1+ 774(5)]

xnl(E)-1(1 _x)nz(s)
PAEICITE R LI

d(x,s_‘)= xn3(3>-1(1 -y )14 ® ,

where

_Tx)I(y)
B(x,y)--;r(x_ry)

is the Euler beta function,
7,(5)=0.70 -1.1G%,
1,(5)=2.60+5.0G5 ,
1,(5)=0.85 - 1.5G5 ,
1,(5)=3.35+5.1G5
G=4

257

for four flavors, 5= 1@%2—2/—;\;-2—) ,
Q,°=1.8 GeV?, AZ%=0.09 GeV?,
#(x,3)=dx,5)=s(x,5)=5(,5)

=LA@ (1 —x)s® .

For computational purposes we fitted a quadratic
form to A(S) and 7,(3):
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A(3)=1.21+1.45+0.652
15(5)=10.0+ 6.65+ 1.852.

APPENDIX B: END-POINT ANALYSIS

The rise in al(r/dmf2 near the end point in m,?
mf'max2=(\/_;"MW)2 (B1)

is analyzed in this appendix. The energy denomi-
nators for Figs. 1(a) and 1(c) are of order M2,
As mg® = my ne’, the value of ¢ approaches its
kinematic limit

t=ty= =My (Vs ~M,). (B2)
In this limit one can show that
u=m 2—t=(st)/(t+m2—m2)=————A/I"’ m?
W f MW —\/—ST .
(B3)

Here m is the proton mass. (B3) impliés that

u <My,? and, therefore, near the end point Fig.
1(b) dominates the physics. Near the end point let
us set

M= My = 267 . ' (B4)
Then the range of ¢ is
to— (2My Vs /26 < t<t,+ (2My,Vs )% .  (B5)

The contribution to the cross section do/dm,?
from Fig. 1(b) is of the form

2 _ 2
- %zto+mto - ft2+(lf§+c’ (B6)
where-
b=[2My, (Vs =My)+m?+ 25%] , (B6)
c=My?[s - 2My, Vs + M, —m? - 252] . (B7)

The evaluation of (B6), apart from the prefactor
(to+ m® —m®) /by, yields

o ‘/1?), % In(m?/862), MyVs> 62> m?,
W

1 -1\ ., .,
(SMW\/?)"zmln<\/37_2+1)’ o =m, (B8)

1 _4_5_ 2 2
(2my Vs ) 2m (-m>’ orem®

Clearly this integral goes to zero as § - 0 but does
have a rise as 5 decreases through the region
62>>m?2. The plots of Fig. 2 exaggerate the rise
and fall of do/dm,? near the end point in m,* due

to the use of a logarithmic scale for m,2.
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