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Two-dimensional Coulomb gas studied in the sine-Gordon formulation
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Based on the sine-Gordon field-theory formulation, the two-dimensional Coulomb-gas system is
studied using a Gaussian wave-functional or a Gaussian effective-potential method. In the point-
charge case the results are presented analytically, and the expressions for the critical line are de-
rived.

I. INTRODUCTION
&so =

—,'(Vp) —
2

cospp(r), (2.l)

Since the pioneering work of Kosterlitz-Thouless (K-T)
on phase transitions, investigations of the two-
dimensional Coulomb gas (2D CG) have attracted much
attention. (For an excellent review, see Ref. 2.) Among
the various approaches to this problem, the sine-Gordon
(SG) field theory occupies an important position. In
1985, Minnhagen combined the SG formulation with a
very physical picture of self-consistent linear screening to
obtain an improved Kosterlitz renormalization-group
equation.

In this paper, we report the results of explicit calcula-
tions obtained by applying to this problem variational,
and therefore nonperturbative, methods used in relativis-
tic SG field theory. ' ' The paper is organized as fol-
lows. In Sec. II, the SG formulation will be realized in a
Gaussian wave-functional method. In Sec. III, an essen-
tially equivalent but more flexible method, the Gaussian
effective-potential method, will be presented. In Secs. IV
and V we discuss the physical implications of the
aforementioned calculations, including the critical line,
the phase diagram, and the order parameters. Section VI
contains the summary and discussion. Some mathemati-
cal details are given in the Appendixes.

II. VARIATION WITH A GAUSSIAN
WAVE FUNCTIONAL

For describing the 2D CG, one starts from a nonlocal
SG theory with the Hamiltonian density

where P(r) =P(x,y ) is a real scalar field,

P(r)= f d r'f&(~r —r'~)P(r'); (2.2)

f2)P exp —f d r AsG 0[/]
T

exp — d r so
(2.3)

The absence of a kinetic term in (2.1) allows one to
view &&G as a Lagrangian density LE in 2D Euclidean
space if one identifies the coordinate y with vtz, where tE
is the Euclidean time and v is the typical speed, whose
value will be shown to be irrelevant in later calculations.
Then (2.3) could be looked as a "quantum average" in a
Euclidean field theory, where the Planck constant A is

f&(r) describes the normalized spatial charge distribution
of particles in the 2D CG, g is a length scale that we later
use for the ultraviolet cutoF [see (2.33)], z =exp( E,iT)—
is the fugacity, with E, being the nonelectrostatic part of
the self-energy of each particle that is assumed to be the
same for both positive and negative charges in the neutral
2D CG. The temperature T (with ks= 1) will be ex-
pressed in units of charge squared, which in 2D has the
dimension of energy. Thus z, P=&2tr/T, and P are all
dim ensionless.

In the SG theory, the expectation value of a functional
of P, 0[/], is given by the path integral '
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(2.4)

with

substituted with 1/v. We now take Xz and go to Min-

kowski (1+1) space, then the Lagrangian density reads
2 2

ay 1 ay 2z

ax 2u2 at

[iti(x, t), m~(x, t)]=iu '5(x —x'),

which in turn is realized via the operator form

(2.8)

One can now quantize' the scalar field by imposing the
canonical commutation relation

iti(x, t)= fdx'f~(x x')—ti(ix', t), (2.5)
(2.9)

where f&(x —x') is the one-dimensional charge distribu-
tion function that could be viewed as the projection of
the two-dimensional one defined in (2.2).

After defining the canonical momentum conjugate to
&B[y,e,]&„&+IB[y,e, ]l ~ &, (2.10)

With the Hamiltonian (2.7) thus quantized replacing

&so, the expectation value of 6[/, 8&] is then replaced
by

a

a((} u

one obtains the Hami. ltonian density
2

%=—u n. +-'1 2 2 i a((} 2z
cospp .

BiP=E+ . (2.1 1)

(2.7)
The exact form of + is of course difficult to obtain, here
we confine ourselves to the ansatz of restricting the wave
functional 4 to be of Gaussian type

(2.6} where ip is the solution of the functional eigenequation

ip =N exp iv f dx P„p(x ) ——f dx dy(p„—4„)g(x—y )(iI}»—@» ) (2.12)

fryer*—

+=1, a(x)—=e„=&+(t„le&, (2.12a)

where the correlation functions g(x —y ) and P„=& Vl n&l ip & are. treated as variables to be determined by a variational

procedure that minimizes the energy E,

E=&+I&I+&=fdx&+ ~l+& . (2.13)

Using techniques outlined in Appendix A, one obtains
2

E=fdx P +—'
v2

2 i ae u+—gx 2 g 4 xx f dy5(x —
y )a„g„'— cosP4, exp( —

—,'P u 'g„„')
4v

(2.14)

where

4„=4(x)=fdx'4(x')f&(x —x'),

fdyg(x —y)g '(y —z)=5(x —z) (2.15)

g„:—g(x —y ), and g '(x —y ) =—g„' are defined via the
relation

g 1(xy)pe ip(x —»)d 1

2m g(p)
2

gxy
= dp f (p);,i.—»i

22r g (p}
e

(2.19)

(2.20)

Variation of E with respect to P„ leads to P„=O.
We now treat g (p ) as a variable, then the condition

so that

g .'= (x —y g, ' (z —x'dydz.

Define Fourier transformations

(2.16)

5g(k )

gives

v g ( k ) =k + b, 2k cosP4,

(2.21)

(2.22)

f&(x —y)= f f(p)e'»'"dp

g(x —y)= f g(p)e'»'"8p
2K

we have

(2.17}

(2.18}

where

=A()f (k), b,0=ac, I= P ', (2.23)
tt2 d t 2( )

4v 2m. g(p)
where a =—2zp g . Thus in the space uniform con-
figuration the energy density c, that is the integrand in
(2.14), is
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Mpe+ —„' p Mpe — e cos 4,dp —
, dp 2

— 2z
2m 2m

,' —f M(p, 4)—,'b, — os' f f (p)/M(p, 4)2~ 2'

The further variational condition

BE,

ad 02

reproduces

(2.25)

e cosp4,2z —I
(2.24) 6 =Q =me0 (2.26)

M(p, 4 )= (p
—+b, cosP4)'~

in conformity with (2.23). The stability criterion then
gives

8 E d — 2

z 2
= ,

' I—f(p)M (p, 4) 1 — b,ocosP4f f (p)M (p, 4) &0
&(&o)' a'=n' 2' (2.27)

For simplicity, we consider the limit for point charge,
i.e., f&(x )~5(x ), or f(p )~ 1. Then Eq. (2.27) simplifies
to

2~= 2=P & 8' or T & T, =—,
' . (2.28)

then

d~o
d4 d4 (2.29)

The critical value of coupling constant p, =8m in the
SG field theory, first discovered by Coleman, ' ' ' now
implies a critical temperature of phase transition in 2D
CG at least for z —+0 (see further}.

Being a function of 4' and ho(4), the energy density
should take a minimum value with respect to 4. To this
purpose, also consider the f(p ) = 1 case, we first notice
that

P 1„g
—1+( g2+ g

—2 )1/2

4~ A,, '+(A, , '+6')' ' (2.33)

Instability sets in when the right-hand side of (2.32) de-
creases to zero. To find the condition for instability we
send )I,, '~0 and reexpress (2.33) as a function of

+2(2.
' 4T/(4T —1)4'

7l [2+2(1+rl)' +g] ' ' "=0

(2.34)

cutoff A,, ' is also needed. Hence, for example, the in-
tegral in (2.23) reads

A2

dp p2+g2 —1/2
4m'

d50
d4 =(P boJ sinP@)/(P boJ cosP@—8),

where

J= (P +hocosP4) i &0.dp 2

2'
Thus the equation

= ( —,'Pb OJ cosP4+ aP e )sinP4

indicates that 4=0 corresponds to a stable phase as

(2.30)

(2.31)

—E /TFor some fixed values of E, in z=e ' and varying the
temperature T, we have calculated numerically the roots
of (2.34). The general trend is as follows. For sufficiently
small z, and for temperature interval ( —,', T„), there are
roots in the interval 0 (g & 1. As z increases, or
equivalently, as E, decreases for a given T, the upper
bound T„of the temperature interval decreases. %hen z
increases to =3/8n, (2.34) has no root in the interval
0&g&1. The value of q approaches to zero smoothly
when T~ —,'+0+. This implies the system undergoes a
phase transition at T= T, =—,'. When r) « 1, Eq. (2.34) is
simplified to

E, =ae + —,'P boJ & 0 .d4 q —0
(2.32} q=4

T

4T/(4T —1)

(2.34a)

However, to perform the concrete calculation one has
to be very careful. Because f(p) =1 for the point-charge
case, an ultraviolet cutoff in momentum integration is
needed. Since there is already a small length scale, g, in
the theory, for simplicity, we use g as the ultraviolet
cutoff. This implies that we are not interested in what
happens at a length scale less than g. Similarly, as we
will see, because 50~0 when T~T, +0+, an infrared

( I +g cosP@)' rIP cosP@ . —1

4~ (2.35)

If b,Q' « 1, one has, approximately,

Above the phase transition, the energy density of the
SG system, c., can be evaluated from (2.24), with f(p ) =1,
to be



6950 NI, LOU, CHEN, AND LEE 41

+ —p gcosp4 .1 1

4m 8m.
(2.36)

Thus we see once again that under the critical value of
p, p, =8m, @=0 corresponds to the stable phase with
lowest energy.

%e are now in a position to evaluate the linearly
screened potential VL (r ) related to the one-particle
Green's function G(r ) in the SG theory: '

VL (r)=2mG(r)=2m(P(r )P(0))so . (2.37)

Recall that in this method the spatial dimensions have
been lowered from 2 to 1. However, assuming the 2D
area is large enough and the system is isotropic, we may
replace the argument r by x or vice versa. Thus after us-
ing the methods described in Appendix A, one finds, with
f(p)=1 and 4=0,

Ipr

2~ (P'+go2)'" 2n.

asymptotic behavior

VL (r)=
260r

1/2 —b, r
e

' 1/2

e " (r»A) .
27

(2.39)

(2.40)

and can be calculated in SG formulation to be

( hn (r )bn(0) ) = —4z g (sin[PP(r )]sin[PP(0)])

Now it is clear that A, =—1/50 is just the Debye screening
length in the high-temperature plasma (P) phase. A
finite A, implies a short-range order in this phase. When
A, ~A,,~ ~ as T~T, from above, the system undergoes
a charge-binding transition and becomes a dipole (D)
phase.

Finally, the point-charge density correlation function,
expressed as

(2.38) +25( )g
' ( o [PP(0)]) (2.41)

where Ko(d'or ) is the MacDonald function with the Using Eq. (A9), we have

—I a2 —
1

(2.42)

Comparing to (2.40), one sees that

Zeff =z eXp U goo
—1,

U,+s'+ ( r ) = U,+s' ( r ) =m v ~g~o

(2.43)

2z 1
( b n (r )b n (0) ) = — exp —[ Vl (r ) —VL (0)]

X 1 —exp ——
VL (r )

2

In the point-charge limit, with f(p ) =1, one finds that

(2.44)
2z eff 2z I ~o T~o

nF= = e
p 2m

is just the free charge density [see (5.5) in Sec. V], while

(2.45)

with VL(r)=Ko(d'or) When .d'or »1, T& T, =—,', and

using (2.34a), one has

' 1/T
4z' ~o'0

( bn (r )hn (g) )~— Ko(d'or )-
2

—2Z2 mz

T

' (2 —T)/(4T —1) 1/2
7rz

exp 2
T

' 2T/(4T —1)
r

(2.46)

In the opposite extreme case, d'or «1,
' 1/T

4z
( An(r )An(g) ) (T& T, ) . (2.47)

4z(b,n(r)hn(g))
T —r ((54 s p

(2.48)

Moreover, in the vicinity of phase transition
(T~ ,'+0+), —

which exhibits a quasi-long-range of order of charge den-
sity correlation. Further discussion will be postponed un-
til Sec. V.
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III. METHOD OF GAUSSIAN
EFk FCTIVE POTENTIAL

Whereas the method described in the previous section
has the advantage of being more intuitive, it suffers from
the necessity of sacrificing one spatial dimension and does

not allow simple improvements in calculational accuracy.
In this section we wish to propose an essentially
equivalent but more flexible method that does not require
a lowering of spatial dimensions.

Our tactic is as follows. ' Beginning from the generat-
ing functional of the SG system

ZSG ——W[J] ~y J—8

= f2)P exp —f d r —,'P( V+—M )P ,'M—
rt—)

—cosP(I} + f d r J(r)(]}(r) (3.1)

and defining

@(r)=
sG f2)(])p(r)e
J
5

1 Zso 5W[J]
5J(r) 5J(r)

(3.2}

SJ'"=fd r[ )(t)'( —V' +—M )P' J(r—)P '(r)],

cS' '=c r —
—,'M ' — cos icos

—sinP4 sinP(]}
'
)

(3.7}

and assuming 4 is uniform in space, one can find the
effective potential V,z(C)) via a Legendre transformation:

I'[(I3]—:fd rV,&(4 )= W[J]+fd~r J(r)4(r) . (3.3)

P'(r) =P(r) -4 (r) (3 4)

The inserted mass square M is necessary for calculation-
al purposes and will be fixed by a variational procedure
(see further}. Denoting

(3.8)

(3.9)

The dimensionless parameter c, not to be confused with
the quantity in (2.24), is introduced for discriminating the
order of approximation; it will be set equal to 1 at the
final stage of computation. Rewrite P' as P again and
denoting an unnormalized average of 8[/] as

g[y] &,= fny 8[y] ( s,"'—
)

one may split the action SJ into

s =s"'+s'"+~s"',J J J

where

SJ' '= fd r[ )Cr( —V—)4—J(r)4(r)],

(3.5)

(3.6)

one can recast (3.1) into

ZsG exp( S(0)) ( e Ks [f]) (3.10)

The generating functional related to Sz" is easily calcu-
lated in a manner similar to that described in Appendix
A:

—s'"
ZJ ——f2)(t)e ' =[det( —V +M )] '~ exp ,' fdr, d—r2J(r,)h '(r„r2)J(rz) (3.11)

where

Ii(r), rp)=( —V(+M')5(ri —ri), Ii '(ri, r2)=5(ri —r2), , =, , 5(ri —ri),1 1

22+ M2 V2&+ M2

f" (r( rz)h(r»r3)dry=5(r( r3}

If we confine our calculation to O(s), then

—s'"
ZJ =exp( SJ ')fX—l(t)(1 —ES' )[(t)])e

Substituting (3.8) into (3.13), one needs the following averages:

(p (r))0= Zz =ZJ h '(r, r)+ fdr, dr2J(r))J(rz)h '(r„r)h '(rz, r)
5J(r) 5J(r}

i'(, r ) M(cosPP(r) )0=Re(e' "')0=Re[Zz ]J( ) j( )+ ps( )

—2P h (r, r)=ZJ e ' cos Pfdr, h '(r, r, )J(r, )

(3.12}

(3.13)

(3.14)

(3.15)
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2 —-Ph &rr)
&sinPP(r))o=lm&e'~~")o=ZJ 'e. ' " ""sin Pf dr, h '(r, ,r)J(r, ) (3.16)

MDenoting the determinant in ZJ as K= —,'P h '(r, r) . (3.19a)

=exp —
—,'fd rD (3.17)

with

d2D= lnp +M
(2m )

[det( —V +M )] ' =exp[ —
—,'Trln( —V'+M )]

V.a
M

=0. (3.20)

For point-charge case f(r) =5(r), one easily finds from
(3.20) that

Now the mass-squared parameter M can be fixed via the
variational condition

we can get the effective potential V,ff(4) along the line
sketched in (3.1)—(3.3) as

V,ff(eP, M )=—,'D —
—,'M h '(r, r) — e cosP4,2z

(3.18}

where

2 2Z —KM = e cosp4.

The stability criterion

8 Veff 1
1

P )0
a(M')' 4~M'

(3.21)

(3.22)

[see (3.12)] and

d p 1 5

(2m) (p +M ) BM
(3.19)

leads to the same critical temperature T, =—,
' as that in

Gaussian wave functional method.
The one-particle Green's function in the f (p ) =1 and

4=0 case reads

1 5
G( ) —= & y( )((}(0)&, =

zJ 5J(r }5J(0) J=0,4=0
2 eipr

Vz (r)=h '(r, 0)=f, , = Ko(Mr),
(2m) p +M 2m.

(3.23)

which coincides with (2.38) except for the replacement of
50 by M.

It is a little bit complicated to evaluate the point-
charge density correlation function. But if the area of the
2D system tends to infinity, one eventually gets the same
expression as (2.45) with VI (r }=2m G(r) defined in (3.23).

Although some formulas derived in the present method
look superficially similar to those derived in the last sec-
tion, the two methods do not lead to identical results be-
cause of the difference in spatial dimensions of the
effective Hamiltonians to which the methods were, re-
spectively, applied. Moreover, in the present method,
calculational accuracy can be improved by expanding
exp( —ES' ') in (3.10) to successively higher orders in e
(cumulant expansion). In the following sections we only
work to O(E).

IV. THE CRITICAL LINE
AND PHASE DIAGRAM

where, as before, a=2zp lg =4nz/(2T. Then at the
classical level, Eq. (2.1), the two parameters a and p can
be expressed as

d Va-
dd' y=o

d4Vap2-
d(t' y=o

(4.2)

We define the renormalized version of those parameters

d V,~

d4 c=p

d V,g
aRpR =

4d4 @=0
(4.3)

1

2K 2
1n(g +M ) — in(A, , +M )

2

to be those obtained with the appropriate ultraviolet and
infrared cutoffs applied to all momentum integrations, as
explained in Sec. II. Far instance, the integral D defined
in (3.17) is

g
—

l

D = f, pdp p ln(p'+M }
C

V,ff(4) = ,'D —,'M'h '(r, r) —a—P—e~cosP4, (4.1)

In what follows, unless otherwise stated, we shall
confine ourselves to point-charge case, i.e., f(p) = 1. M +M——'(g —

A,, )+ ln
+M

C

(4.4)
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8 11 g +M
gM2 4~

P g +MK= ln
8~ g

—2+M2

1

+M

The self-consistent condition Eq. (3.21) implies that
T

dM
p

«.~ PM

(4.5)

(4.6)

e
i6~ .—

Ie

C

8

'~

la

1 —1
+M

J

(0,0) 0.05 0.10 0.20 0.25

while the condition

dV, ~ =0

leads to 4=0, so that

az =ae =—Z~a,

(4.7)

(4.8)

(4.9)

FIG. 1. The phase diagram of the two-dimensional Coulomb
gas (point-charge case) in terms of temperature T and fugacity—E /T
z ( =—e ' ). The curve A refers to the border of validity for a
sine-Gordon field theoretic approach, while 8 and C are the
critical lines describing, respectively, the onset and completion
of Kosterlitz-Thouless phase transition in this system. For
more details, see text.

which defines the reg.ormalization constant Z . We now
define the renormalized fugacity as zz =Z z, then from
(3.21) and (4.9) we find

Inserting (4.15) into (4.11) then gives

ln(16mz, ') = [1—1/(4T,')]ln(1 4T,') . — (4.16)

ri„—=M g =4mz„/T

[(I+ri„}u/(1+ri„u )] (4.10)

(1+/ )[g /(1+/ )](4T l)|I4T—(4.11)

Now define the renormalized p by

P„=—ZpP (4.12)

then after a lengthy calculation we obtain

Zp=( 3 +2B )/( 2 —B )

(4.13)

A =8m[1+ad„(1+u)+vP„u], B=P g„(u —1) .

In the physical limit u ~ 00, q„u ))1,

where u:—A,, /g is the ratio of the infrared and ultravio-
let lengths squared. In the physical limit u ~ 00, we have

Note that as g„approaches zero (but still keeping
g„u »1), (4.15) approaches Coleman's condition for
phase transition, P', = 8m, at which point T,

' = ,'. By car-—
rying the procedure for renormalization ' ' twice, we
have extended the region of validity of the SG field
theory beyond the critical point, i.e., to a region where
P'& 8~(T (-,').

The curve, or the critical line, given by (4.16) is shown
as curved in Fig. 1. Numerically, there are real values of
g„satisfying (4.11) in the area above curve A and re-
stricted to 0& T( —,', but no such values of g„below
curve A.

Now, curve 3 cannot be the critica1 line for the KT
transition. For whereas a necessary condition for KT
transition from the plasma (P) phase to the dipole (D)
phase is that the correlation length A, = 1/M approaches
infinity, we have assumed the relation ug„=A, , M %0
in deriving (4.11) and (4.16). Therefore, if one wishes to
obtain the critica1 line for the KT transition, it is neces-
sary to take an alternative approach.

Fortunately, there is a well-established expression for
length-dependent dielectric function e„: '

Zp~[8m(1+v]„)+2P ]/[8~(1+g„)—P ] . (4.14)

This gives a condition for instability

2—=1+ I dr'r'(bn(r')bn(0)) .
Er T 0

(4.17)

1+q
pl 2

8m. 4T' (4.15} Using the same cutoff procedure as before and substitut-
ing Ko(Mr) for VL (r ) we obtain

1 1

C

2Hz &~ 3 2 — 1=1— dpp 1 —exp ——Ko(p&g) exp —[Ko(p&g) —Ko(&g}] (4.18)
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where p=r lg. We are now in a position to impose the
E —T transition condition M~0 on (4.18) by using the

asymptotic expansion

limKo(x )~ln —(1+—,'x + )
2 2

x~0 X

+[—y+ —,'(1 —y)x + ], (4.19)

where y =0.5772 is the Euler constant. Then it is easy to
carry out the integration and get

2 2
1 1+ 277 z

(
p ]ypre„1—4T

(4.20)

Taking the physical limit u ~ Oc one finds, for T & —,
'

27r2Z2=1— (T & —') .
1 —4T

(4.21)

AT, =1 (4.22)

Since e„—=8 is just the dielectric constant of 2D CG, it
seems that there are two alternatives to identify the criti-
cal line:

(i) Substitution of the condition

KT transition. Then curve C could delineate the com-
pletion of the KT transition from the D phase to the P
phase, i.e., above curve C all dipoles are dissolved. Actu-
ally, it is the existence of a finite temperature range for
evolution that characterizes the KT transition as a phase
transition of infinite order.

The fiow equation in the present scheme will be dis-
cussed in Appendix B.

V. THE ORDER PARAMETERS CHARACTERIZING
THE KT TRANSITION

finite, T & T,
T& T, . (5.1)

Having derived the explicit temperature dependence of
correlation length, we are able to compute analytically a
number of order parameters. We list several that are use-
ful in discriminating the P phase from the D phase at the
critical temperature T, or T, .

(a) Correlation length (Debye screening length)
A. = 1/M. As explained in the previous section,
M =g„g is computed by solving (4.11). We obtain

z, = (1 4T, ) . —1

77 2
(4.23)

into (4.21) leads to the critical line (curve B in Fig. 1) (b) The density of free charge. First note that here the
fugacity

z =e ' =expI [p+ —,
' U(0)]/T],

(ii) Substitution of the condition

(T~T, ) (4.24)

with p being the chemical potential and —,U(0) being the
electrostatic self-energy of a particle in 2D CG . Thus
the density of free charge can be expressed as

into (4.21) gives the critical line (curve C in Fig. 1)

zQ
= —(1 4T,)'—1

m.v'2 (4.25)

N T
n(p, T)= —=— lnZG,n @a~

(5.2)

Obviously one has T, & T, for the same value of E, in z.
We are now confronted with the question, which one is
the real critical line? We propose the following resolu-
tion. Because condition (4.22) is derived from the com-
petition between the potential energy and the entropy of
a single CG particle, ' the corresponding critical line
should be the upper bound of the pure D phase. In other
words, curve 8 in Fig. 1 should delineate the onset of the

d I'
Z~= exp 2z cos

~;~=o
(5.3)

Using the method of Gaussian effective potential de-
scribed in Sec. III, one has

where 0 is the area of the 2D system, and ZG is the
grand partition function that in the SG formulation is
given by

z 0 Z d r 2Qz
lnZG =— lnZG =—2 cosPP = e cosP4

Qu T Bz T g~ g~T
(5.4)

consequently

TM
277

T&T,
finite, T & T, . (5.5)

(c) Charge number susceptibility y(p, T). The charge
number susceptibility y(p, T) is analogous to the magnet-
ic susceptibility g in a magnetic system, and can be

defined as

Bn z Bn
g(p, T)=

p T Bz

Using (5.5) and the results in Sec. III, one finds

2T M
(4T —1) )0, T) T, .X(p, T)=

(5.6)

(5.7)



41 TWO-DIMENSIONAL COULOMB GAS STUDIED IN THE SINE-. . . 6955

(d) Consider a charge with 5s = 1 is put at the origin of
2D CG, then the free energy (precisely, the thermo-
dynamical potential) of system becomes F . Let us calcu-
late the difference between F and Fo, which is the free

energy in the case of absence of this charge, whereas

Fo = —T lnZG

= —T ln exp 2z cos
g2

this time we have

'=o
C

(5.8)

F = —TlnZ' = —Tln exp 2z cos e' '~~' 'dE'

q G
g2

Hence

'=o
C

(5.9)

F F=——Tin&8 "~~"') = —Tln(e e"~~"')=TE= 'ln'- +M 1=—'ln 1+
q 0 SG ' "

A. -'+M
C g 00

(5.10)

where (4.6) and q„= lim M (u)g in (4.11) have been
C

used. Therefore

0O,

F —Fo= '

finite, T) T,
(5.11)

could also be served as an order parameter characterizing
the KT transition.

(e) The dielectric constant

2~2z21+, (T(T, )
1 —4T —2~ z

((T) T, ).
(5.12)

Though all the above formulas are expressed in results
of the Gaussian effective potential (GEP) method, they
remain valid in the Gaussian wave functional (GWF)
method with the only replacement of Ao after M .

VI. SUMMARY AND DISCUSSION

Based on the SG field theory formulation of 2D CG,
we have tried to propose a nonperturbative method, ei-
ther GWF or GEP, for explicit calculations. Being a
variational method essentially, as rejected in some self-
consistent relation like (2.30) or (4.7), this method has
both advantages and disadvantages. It systematically
adds up the contributions of a large number of Feynman
diagrams, with the loop number running from the lowest
to infinity. In the research of relativistic quantum field

theory, this kind of approach had been given different
names by different authors, e.g., the Gaussian approxima-
tion, optimized expansion method, ' superdaisy approx-
imation, ' or the cactus approximation. In detailed
cases a comparison can be made between the GWF (or
GEP) method and exact solutions, "' the GWF (or
GEP) method does exhibit its priority over the usual per-
turbative approach, not only in accuracy but also in less
expense of labor. We believe that the GEP (or GWF)

I

method is particularly accurate in dealing with the SG
system, as discussed in Refs. 10 and 14; this is why we in-

tend to study it in this paper. Of course, one still can not
estimate the accuracy of a GEP calculation. Moreover,
sometimes one is not sure if the symmetry in an original
Lagrangian survives as a whole after a variational pro-
cedure has been made, whereas a perturbative loop ex-
pansion can do this order by order. But we believe that
one is in a more secure situation as far as a real scalar
field is concerned. We hope to apply this method to oth-
er problems in statistical physics, especially when trying
to deal with some simplified model where an exact solu-
tion is known. (A simple model, related to this paper, is

proposed to simulate the deconfinement of quark
matter. )

3

Let us go back from general consideration to the 2D
CG system discussed in this paper, many problems
remain to be answered. First of all, if one leaves the ideal
point-charge case and considers the charge as having
finite spatial extension, f(p)%1, then a new length scale
will enter the theory and the ultraviolet cutoff g

' will no
longer be needed. We believe that all the results present-
ed earlier would be changed quantitatively even qualita-
tively.
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APPENDIX A: THE MATHEMATICAL TRICK
IN THE GWF METHOD

Denoting

i+)J=N exp —f P„p„— f (p„—4, )g„(p —4 )+—,
' f J„p (A1)
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where f = f dx and an external source J„=J(x)is introduced. The normalization condition & IIIV&J 0=1 leads to

& q)lq(&J =exp f J(x )4(x )+—f J(x )g„'J(y ) =exp f J(x )4p(x )+—f J(x )g„'J(y )
X 4 xy X 4 xy

(A2)

where

J(x)=f J(x')f&(x' x)—dx', f J„4p„=f J,4„.
X X

For example, one can get

(A3)

&q p„lq &= &qlq&, =c„,
J„ J=O

(A4)

&qly„a„'y„lq &= a„' &qlq &, =c„a2a„+—f s(x —y)a2g„-, ',

fi4x
(A6)

fi=P„+—g„„,J=0
(A7)

&q'le' "Iq'&=&q'Iq'&Jlj =jps(y ) exp ——p g„„' exp(ipse„),
4

(A8)

& q(l exp[iP(4 +(I)o)] I

q' &
=

& q'I (I' & I I J =(p[s(y — )+$(y)] exp iP(+x+@0)
2

(goo +gxo ) (A9)

where the fact g„o' =go„' and goo' =g„„'had been used.

APPENDIX B: THE FLOW EQUATION
IN GEP METHOD

Starting from the length-dependent dielectric function
(4.20) and defining a running "temperature" TR by

will give us the second flow equation as

dZR d
Q ZR

—zR(1+4mzR /T)/(2T)

(1+4mzR /T)(1+4mzR u/T)+m zR(1 —u )/T
(85)

1 1

TR TE II

(81) Substituting (83) into (85) will recast the latter into a
form as

one easily gets a flow equation for 1/TR as follows; dZR
=F(zR, TR,z, T), (86)

1

dl TR

1 1—Q
du TR T

1 1 2mz

TR T T

2T!(,4T—1)

TR T
T(4T 1)—u= 1—

2' z2
(83)

(82)

where a new running variable 1 =lnu =2 in', , /g is intro-
duced. Equation (82) can be integrated with respect to I
(from 1=0 to 1=~) straightforwardly and reproduces
the result (4.21) as expected. Notice that the running
variable u may be expressed in terms of TR and T via
(4.20) and (B1):

with the function F independent of u as desired. Note
that, however, whereas the second flow equation (86) de-
pends on TR, the first one (82) does not depend on zR.
The point ( TR, zR ) on phase diagram runs from its initial
value (T,z) at u =1 to a fixed point (Tg =M, zg) at
Q —+ 00.

Obviously the flow equations here with their results are
different from that of renormalization-group (RG)
method. ' ' . Especially, our critical line 8 is a straight
line with slope

dz, /d T, = —4/m. &2= —0.9003,

On the other hand, Eq. (4.10), i.e.,
—1/4T

4n 4mz (1+4m'zR /T)u
T " T 1+4rrzR u /T

(84)

while the slope of critical line curve at Z~O in the RG
method reads

dZ(1) 2=——= —0.6366 .dT(1), T )/4, z 0 7T
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Moreover, we did not find any special point discriminat-
ing two distinct transitions on the critical trajectory.
As our critical line is derived from Eq. (4.20), which only
depends on (4.17) and (4.18) together with the condition

M ~0, we do not know the reason for the discrepancy
between these two approaches at this moment, so further
investigation is needed.
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