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Abstract

Differential regularization is used to investigate the one-loop quantum corrections to Chern-Simons-Maxwell spinor and
scalar electrodynamics. We illustrate the techniques to write the loop amplitudes in coordinate space. The short-distance
expansion method is developed to perform the Fourier transformation of the amplitudes into momentum space and the
possible renormalization ambiguity in Chern-Simons type gauge theories in terms of differential regularization is discussed.
We also stress that the surface terms appearing in the differential regularization should be kept along for finite theories and
they will result in the finite renormalization ambiguity. (© 1997 Published by Elsevier Science B.V.

Differential regularization is a relatively new regularization scheme [1]. The basic idea of this regularization
is quite simple. It works in coordinate space and is based on the observation that the UV divergence reflects
in the fact that the higher order amplitude cannot have a Fourier transform into momentum space due to the
short-distance singularity. Thus one can regulate such an amplitude by first writing its singular parts as the
derivatives of the normal functions, which have well defined Fourier transformation, and then by performing
the Fourier transformation in partial integration and discarding the surface term, in this way one can directly
get the renormalized result. This regularization scheme successfully avoids the ambiguities of the dimensional
regularization in defining the dimensional continuation of vys-like objects since it does not need to continue
the dimension of space-time. Up to now this method has almost been verified in almost every field theory
including the supersymmetric one [1-5]. Its relation with the conventional dimensional regularization and
the compatibility with unitary at two-loop level have also been investigated {6-8]. In some cases it indeed
has advantages over all the conventional regularization schemes. Especially, it is very convenient to use this
regularization to discuss the conformal properties of quantum field theory [9].

In this letter we use this regularization to investigate the one-loop quantum correction to Chern-Simons-
Maxwell scalar and spinor electrodynamics [10]. One straightforward reason, as mentioned above, is that it
avoids the ambiguity of dimensional continuation in defining the three-dimensional completely antisymmetric
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tensor €,,. As we know, the dimensionality in Chern-Simons-type theory plays an important role since
Chern-Simons term is a topological one and the topological properties of theory depend heavily on the three-
dimensional antisymmetric tensor, thus a calculation without using dimensional continuation is called for. The
main motivation is that we want to explore the possible origin of renormalization ambiguity of perturbative
Chern-Simons theory in the framework of dimensional regularization. This ambiguity depends on the concrete
regularization schemes [11-13] and is the most puzzled feature of Chern-Simons type theories, up to now it has
not been well understood. Therefore, it is desirable to work in a regularization scheme which does not greatly
change the original theory. Indeed, it has been found that higher covariant derivatived Pauli-Villars regularization
can bring non-physical quantum corrections [14], or at least this regularization does not return back to the
original theory when the regulator is removed [15]. We believe that up to now differential regularization is
the most appropriate method in this aspect since it does not change the Lagrangian of the theory explicitly

thic 11 + itahla £ o
Furthermore, from the view point of practical calculations, this regularization is very suitable for the three-

dimensional quantum field theory since the propagators in three-dimensional space-time takes a very simple
form. In particular, the short-distance expansion technique is developed in Ref. [16], which can be used to
calculate the one-loop quantum corrections exactly.

The Lagrangian in Euclidean space is as follows:

1 ik 1
L= 4)[F/WF/.W - S_WG#VPAMaVAP - 5;(3#14”)2 — Lnatters (1)
where
Lunater = D™ Dy + m*¢* ¢, 2)

for the scalar field, and

Lonager = ‘ﬁ('}’p.D,u + im)ip, (3)

for the spinor case. The y matrices are defined as

Yu = ia'p,, Yu¥Yv = -S,uu — €uvpVps TI'(’)’/L‘)’,,) = _28[UJ~ 4)

The propagators for electron, scalar field and gauge field take very simple forms in coordinate space:

S(x) = (yudy — im) (1/47) (1/x)e™™, (52)
D(x) = (1/47)(1/x)e™ ™, (5b)
s ey = | o4 i(;ﬂs —~ 3.9 \-‘ ,1__1 (1 — o=\ (5¢c)
MUY Lk/(477) SpYpYp n2 AV Yur 72 V/J 47Tx \ ’ \~v )

where (here and in what follows) x=|x|, n=Ak/47 and we work in Lauge gauge (a = 0).
Now we calculate the vacuum polarization tensor. Let us first see the contribution from electron loop:

TGP0 (x) = =T [ LuS(x) T, S(—x) ]
2 2 2
e 1 2m m - 1 2m 2m _
=—= A[Zx#xy(—,%- ,+"T\62mx——5’uy(—,+—,.+ A\ezmx
87 | \x*  x x* ) \x* X xs

— 2ime 0, (—};e_"”‘\ glc-e_”’x-l . (6)
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Obviously, the terms 1/x" with n>3 cannot perform their Fourier transformation into momentum space. Ac-
cording to the idea of differential regularization, the vacuum polarization tensor can be written as the differential
regulated version

2 11 1
(Spmor)(x) .___8_:-_2(3#5,’ _ 5,,,,,(92) [(ZF + 5%) e—2mx -I-mZEi(—me):I
ie2 1
+ 53 MEwly (;e 2’”*), (7)

with Ei(y) = [ fe"t“ dt being the exponential integral function. One can see that there is no new dimensional
parameter appearing in Eq. (7), which means the finiteness of the vacuum polarization tensor. As suggested in
Ref. [1] and developed in Ref. [16], we use the short-distance technique to perform the Fourier transformation
in momentum space, so that we can preserve the possible nonvanishing surface term. With the aid of the
formulas

s (sin(pe)

/de3x0,¢f(x)€ip'x=4mapﬂ 5 )f(f)—ipu /Rgdf‘xei""‘f(x),

2
/ P59, 5, F(x) = dmr—2 (S"’("E)) L () e — 47p (S“‘(”E))f()
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Ipudpy D€ apy p

—Pubs / &x f(x)ePT, | 8)
R

where p=|p|, R2 denotes the integration region R?® — B, and B, is a small sphere of radius € around the origin,
we obtain

2 2
Hff,f’m"’)(p) = 26_77- {e#,,ppp% arctan % - (p26,u,, — PuDv) [—2—% + 41—1 (’—Z— — é_;n;_) arctan %J } . (9)
In deriving (9) we have taken the limit e—0 after performing the integration. The necessity of preserving the
surface term should be stressed for a finite theory. Otherwise, if one throws away the surface term (as that
suggested in the original paper [1] on differential regularization), some finite terms as e—0 will lose, this will
certainly lead to the ambiguity of finite renormalization.
The vacuum polarization tensor in the scalar case is a little complicated since there is derivative on the
vertex, but the calculation is straightforward. It reads as

A4 (x) = 2[3,D(~x)3,D(x) — D(x)3,8,D(—x) — D(=x)3,3,D(x) + 3,D(x)3,D(—x)]

5 2
_ e {W‘v o] -2 (350w —D(x)i‘l-d—D(x)]
¥ xdx x dx

872 | x?
ez 1 m _2 2 m —9,
2 1 .
= __lng (8udy — 8,9%) (—2?972"”‘ + %e"z"”‘ +2m? El(—2mx)) : (10)

Its Fourier transformation is read as

m 1 2m?
(scalar)(p) = ——(p 8uv — Pubv) (1? — Earctan% — 7)3— arctan 2£—m> . (11)
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The other one-loop two-point functions are self-energy of matter fields. The amplitude for the self-energy of
electron is

2 2i 1 1
E(x) =]’VS(—x)I’#(x)le(x) = l—;—ﬂ'—z {k/—(;;;)_ [(;Z + %) e M _ (;Z + ’_n_iﬁ + %’f) e—-(m+n)x}
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X X X X X

With similar operations as above, we write (12) as the differential regulated form

o2 2m 1 m i 1 M—N\ _(mimx mr .
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Using the short-distance expansion (8), we obtain the electron self-energy in momentum space as
2 2 2 _ 2
e’ . 2m n 1 m ) 1 m—n p
= | — 4=+ |actan = — | = + ——— £
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47 | k/(4m) {2 2 2p m 2p m+n P m+nf’

(14)
As for the self-energy of the scalar field, since there are derivatives in the interaction vertex, usually it is
very confusing to decide the derivative acting on external or internal lines when writing the amplitude in the

coordinate space. The key technique is directly writing the amplitude in the Fourier transformed form and this
can clearly show the action of the derivative in the vertex on external legs or internal lines,

2(p) =e2/d3xei1"x [iPudy D (x)Gpw(x) + pupyD(x) Gy (x)

- ap.aVD(x)G/.w(x) + ipva,u.D(x)G,uV(x)] - (15)
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Expanding each term in Eq. (15) and writing them in the derivative form, we obtain the scalar self-energy

2 A 1, _
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After performing the Fourier transformation through the short distance expansion, we have

(p) =
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+

an

Since the complete one-loop amplitude is already given, the finite renormalization can be easily performed
by choosing a renormalization point (for example, one typical choice is p = 0), as usual, we can define various
renormalization constants and the radiative corrections.

In summary, we have shown how differential regularization can be used to investigate the one-loop two-point
functions of three-dimensional Chern-Simons-Maxwell spinor and scalar electrodynamics. For the scalar case,
where there is derivative on the vertex, we develop the technique to distinguish how the derivatives act on an
external or an internal line properly when writing the amplitude in coordinate space. In particular, using the
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short-distance expansion technique, we show how a renormalization ambiguity can be generated for a finite
theory. For example, in the Fourier transform of the term 82[(1 —e My )/ x%1, if we consider the surface term
through the short-distance expansion

[ d’x 8* (————1 *e_mx> &P = dar (m z° + p arctan p) (18)
x2 - B m/’

[
original idea of dlfferentlal regularization [1] thxs surfac term is usually discarded. So we see that the surface
terms are very important in Chern-Simons type theories since they are usually finite [17-19] at least at the
one-loop level [20], and thus the non-vanishing surface term would result in an ambiguity in defining the
finite renormalization. As we know, in a finite theory, the B-function and anomalous dimensions of each field
vanish, the renormalization group equation is trivial and the only criterion for the equivalence among different
renormalization conditions is that all the regularization schemes preserving the fundamental symmetry such as

gaugse invariance chn ou 11d nnrp ﬂqp same caunge 1nvqr1anf rqr‘hahvp I‘nrr‘nnhnnc SO that tha finite re alizatin
BAaugL ivaliauall suvuwia IU SQIUL gQupy aavaiidlic aals LA ARG LLTy that LL]V anite renormaiizalion

ambiguity is a serious problem. Therefore, we believe that in this respect differential regularization, thanks to
its nature, provides with a better understanding of the renormalization ambiguity in Chern-Simons type theories.
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