
18 September 1997 

Physics Letters B 409 (1997) 325-330 

PHYSICS LE-ITERS B 

Differential regularization of Chern-Simons-Maxwell 
spinor and scalar electrodynamics 

M. Chaichian a,b, W.F. Chen b,l, H.C. Lee” 
a High Energy Physics Division, Department of Physics, Univeristy of Helsinki, Helsinki, Finland 

b Helsinki Institute of Physics, PO. BOX 9 (Siltavuorenpenger 20 C), FIN-00014 University of Helsinki, Helsinki, Finland 
c Department of Physics, National Central University, Chungli, Taiwan 320, Taiwan 

Received 14 May 1997; revised manuscript received 23 June 1997 
Editor: P.V. Landshoff 

Abstract 

Differential regularization is used to investigate the one-loop quantum corrections to Chem-Simons-Maxwell spinor and 
scalar electrodynamics. We illustrate the techniques to write the loop amplitudes in coordinate space. The short-distance 
expansion method is developed to perform the Fourier transformation of the amplitudes into momentum space and the 
possible renormalization ambiguity in Chem-Simons type gauge theories in terms of differential regularization is discussed. 
We also stress that the surface terms appearing in the differential regularization should be kept along for finite theories and 
they will result in the finite renormalization ambiguity. @ 1997 Published by Elsevier Science B.V. 

Differential regularization is a relatively new regularization scheme [ 11. The basic idea of this regularization 
is quite simple. It works in coordinate space and is based on the observation that the UV divergence reflects 
in the fact that the higher order amplitude cannot have a Fourier transform into momentum space due to the 
short-distance singularity. Thus one can regulate such an amplitude by first writing its singular parts as the 
derivatives of the normal functions, which have well defined Fourier transformation, and then by performing 
the Fourier transformation in partial integration and discarding the surface term, in this way one can directly 
get the renormalized result. This regularization scheme successfully avoids the ambiguities of the dimensional 
regularization in defining the dimensional continuation of ys-like objects since it does not need to continue 
the dimension of space-time. Up to now this method has almost been verified in almost every field theory 
including the supersymmetric one [l-5]. Its relation with the conventional dimensional regularization and 
the compatibility with unitary at two-loop level have also been investigated [G-8]. In some cases it indeed 
has advantages over all the conventional regularization schemes. Especially, it is very convenient to use this 
regularization to discuss the conformal properties of quantum field theory [ 91. 

In this letter we use this regularization to investigate the one-loop quantum correction to Chern-Simons- 
Maxwell scalar and spinor electrodynamics [ IO]. One straightforward reason, as mentioned above, is that it 
avoids the ambiguity of dimensional continuation in defining the three-dimensional completely antisymmetric 
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tensor Em+,. As we know, the dimensionality in Chern-Simons-type theory plays an important role since 
Chern-Simons term is a topological one and the topological properties of theory depend heavily on the three- 

dimensional antisymmetric tensor, thus a calculation without using dimensional continuation is called for. The 
main motivation is that we want to explore the possible origin of renormalization ambiguity of perturbative 
Chern-Simons theory in the framework of dimensional regularization. This ambiguity depends on the concrete 
regularization schemes [ 1 l-131 and is the most puzzled feature of Chern-Simons type theories, up to now it has 
not been well understood. Therefore, it is desirable to work in a regularization scheme which does not greatly 
change the original theory. Indeed, it has been found that higher covariant derivatived Pauli-Villars regularization 
can bring non-physical quantum corrections [ 141, or at least this regularization does not return back to the 

original theory when the regulator is removed [ 1.51. We believe that up to now differential regularization is 
the most appropriate method in this aspect since it does not change the Lagrangian of the theory explicitly. 
Furthermore, from the view point of practical calculations, this regularization is very suitable for the three- 
dimensional quantum field theory since the propagators in three-dimensional space-time takes a very simple 
form. In particular, the short-distance expansion technique is developed in Ref. [ 161, which can be used to 

calculate the one-loop quantum corrections exactly. 
The Lagrangian in Euclidean space is as follows: 

where 

L miltter = D&+D,+ + m2@+, 

for the scalar field, and 

(2) 

c matter = $(Y~D, + im)& 

for the spinor case. The y matrices are defined as 

y/1 = ic+,, YpLyv = -&J - EpvpYp9 ‘MY,Y,) = -24,. 

The propagators for electron, scalar field and gauge field take very simple forms in coordinate space: 

S(x) = (~~8~ -im)(l/47~)(l/x)e-“1X, 

(3) 

(4) 

(5a) 

D(n) = (1/4rr)( l/_x)edn”, (5b) 

[ . 

A 
Gw(X) = &ppdp - ,ca2spv - d,d,) 

1 
-j--i (1 -e-‘*‘) , 

where (here and in what follows) ~~1x1, n-M/4 r and we work in Lauge gauge (LY = 0). 
Now we calculate the vacuum polarization tensor. Let us first see the contribution from electron loop: 

n(spinor)(~) =-Tr[T,S(x)r,S(-x)] fiv 

e-2nlx - S,, e-2m 

(1) 

(5c) 
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Obviously, the terms l/x’ with n>3 cannot perform their Fourier transformation into momentum space. Ac- 
cording to the idea of differential regularization, the vacuum polarization tensor can be written as the differential 

regulated version 

n(spinoqX) = -&Q?v - S,,cJ2) 
PV 

[(t-$ +f~)e-2”“cmZEi(-2mx)] 

ie2 1 
+~~EL”“P% 2e 

-2mx 

( > 
’ (7) 

with Ei(y) = JTe-‘t-’ dt being the exponential integral function. One can see that there is no new dimensional 

parameter appearing in Eq. (7), which means the finiteness of the vacuum polarization tensor. As suggested in 
Ref. [ l] and developed in Ref. [ 161, we use the short-distance technique to perform the Fourier transformation 
in momentum space, so that we can preserve the possible nonvanishing surface term. With the aid of the 
formulas 

J 4 
d3XdPf(x)eiP’r =45-i& ru (F) f(E) - ipP JRzd3xeip.x~~.x~, 

-PILPv J d3x f(x) eip”, 
R? 

where p~(pJ, Rz denotes the integration region R3 - B, and B, is a small sphere of radius E around the origin, 

we obtain 

@spin@ cp) = g C m 
P EWPPP ; arctan & - (p2SPv _P,PY) [$+i (;-~)arctanf.-I}. (9) 

In deriving (9) we have taken the limit E+O after performing the integration. The necessity of preserving the 

surface term should be stressed for a finite theory. Otherwise, if one throws away the surface term (as that 
suggested in the original paper [l] on differential regularization), some finite terms as E+O will lose, this will 
certainly lead to the ambiguity of finite renormalization. 

The vacuum polarization tensor in the scalar case is a little complicated since there is derivative on the 
vertex, but the calculation is straightforward. It reads as 

U(scalar)(~) =e2[f?,D(--x)&B(X) - D(n)J,&D(--x) - D(-x)~~&D(x) +~,D(x)&D(-x)] IUV 

=& ~~~(~+~)e-2nir-x~x~(~+~)e-2mx] 

= & (a,&, - 8,,a2) -&e-2mr + Fe-2mr + 2m2 Ei( -2mx) 
> 

. 

Its Fourier transformation is read as 

fl/yl@ (p) = g(p28,, - p,pv) 
( 

s - & arctan i - $ arctan & 
> 

. 

(10) 

(11) 
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The other one-loop two-point functions are self-energy of matter fields. The amplitude for the self-energy of 
electron is 

+ -f- ( 4(m + n) -4mn - 2n2 2mi-G 
x5 + x4 -7 e 

> 

-_(m+n)x 2imA 
-7e 

-_(m+n)x 

I>. 

With similar operations as above, we write ( 12) as the differential regulated form 

(12) 

-Ei[-(m+n)x] 

Ei[-(m+n)*]] +& [a2(&eCmx(l-e-nx~) 

(13) 

Using the short-distance expansion (8)) we obtain the electron self-energy in momentum space as 

XP) = -$Y,p, {& [G+ (~+$)arctan~- (i+$G$)arctan&] 

As for the self-energy of the scalar field, since there are derivatives in the interaction vertex, usually it is 
very confusing to decide the derivative acting on external or internal lines when writing the amplitude in the 
coordinate space. The key technique is directly writing the amplitude in the Fourier transformed form and this 
can clearly show the action of the derivative in the vertex on external legs or internal lines, 

0(p) =e2 
J’ 

d3xeiP’x [ip,&D(x)G,,(x) +P~P~D(~)G,,(~) 

- ~,W(~~G,,(x) + itw$JVx)Gpv(x)] . (15) 
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Expanding each term in Eq. (15) and writing them in the derivative form, we obtain the scalar self-energy 

e2 A 
L?(p) = ~- 

167~~ n* J d3xeip”ip,d, 

+ 
m2+n2 (m - n)2(m + n, 
-yT-- 2x 1 e-(m+n)x + m3e-, + ~ Ei(_mx) 

2x 2 

3 5m-3n 
8x2 + --%- - 

x(m + n) (m - n)2 -- 
16 > 

e_cnz+njx 

+( 
m* -n*)* 

8 
Eil-(m “:)x1] > + &$pxeip’X {a2 [a* (-&e-‘ZX + &eV(m+‘)X> 

m* 
+ ZT;Ze-fi’X m2 +n2 

--&re 
-(nr+n)x 

1 
m2n2 _ 
-TFe 

-_(m+n)x (16) 

After performing the Fourier transformation through the short distance expansion, we have 

e* A 
fin(P) = z-- 

mn(m+n) 3 
- $_ +np2 - 9m5 5m7 mg 

2 8(p* + m*) 
+ 

4(p2 + m2)* - 2(p2 + m2)3 

+9(m - n)*(m + n>3 5(m - n)2(m+ n)’ (m - n)*(m + n)7 
8[~*+(m+n)~l - 4[p*+(m+n)*l* + 2[p* + (m + n)*13 

+ -““-$-- 
( 

31&p 6m6p 

8~ p* + m2 + (p* + m2)2 - 
(p:y;2)J arctan~ + (; 

+[(m-n)2+5(m2+n2)]p + (m*-n2)*+2(m4+n4) + 3(m2-n2)*p 
8 8~ 8[p* + (m + n)*l 

P - 3(m - n)2(m + n)4p + (m - n)2(m + n)6p 
4[p* + (m + n>*12 2[p2 + (m + n)2]3 > arctan 1 m+n ’ 

(17) 

Since the complete one-loop amplitude is already given, the finite renormalization can be easily performed 
by choosing a renormalization point (for example, one typical choice is p = 0), as usual, we can define various 
renormalization constants and the radiative corrections. 

In summary, we have shown how differential regularization can be used to investigate the one-loop two-point 
functions of three-dimensional Chern-Simons-Maxwell spinor and scalar electrodynamics. For the scalar case, 
where there is derivative on the vertex, we develop the technique to distinguish how the derivatives act on an 
external or an internal line properly when writing the amplitude in coordinate space. In particular, using the 
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short-distance expansion technique, we show how a renormalization ambiguity can be generated for a finite 
theory. For example, in the Fourier transform of the term a2 [ ( 1 - e-“lx) /x2], if we consider the surface term 
through the short-distance expansion 

a non-vanishing surface term 47rm appears. However, if we perform the Fourier transform according to the 
original idea of differential regularization [ 11, this surface term is usually discarded. So we see that the surface 

terms are very important in Chern-Simons type theories since they are usually finite [ 17-191 at least at the 
one-loop level [ 201, and thus the non-vanishing surface term would result in an ambiguity in defining the 
finite renormalization. As we know, in a finite theory, the p-function and anomalous dimensions of each field 
vanish, the renormalization group equation is trivial and the only criterion for the equivalence among different 
renormalization conditions is that all the regularization schemes preserving the fundamental symmetry such as 
gauge invariance should give the same gauge invariant radiative corrections, so that the finite renormalization 
ambiguity is a serious problem. Therefore, we believe that in this respect differential regularization, thanks to 
its nature, provides with a better understanding of the renormalization ambiguity in Chern-Simons type theories. 
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