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The (E1, E1) doubly radiative np capture cross section is calculated using several methods. Upper and lower limits
are obtained. Significant discrepancies in the results obtained using respectively the correct dipole operator and the

approximate operator ev’e are critically analyzed.

A great deal of attention has been given to the pro-
cess of doubly radiative np capture,n+p—>d+y+7,
after the reported measurement of a very large (350
ub) cross section by Dress et al. [1]. Although subse-
quent measurements [2, 3] and Monte Carlo calcula-
tions [4] have shown the earlier measurements to be
instrumental*l, it is still important that the cross sec-
tion for two photon emission, 05+, be correctly calcu-
lated. Several calculations for o,, have been reported
[6--9, 16] . Other than the so-called non-orthogonality
term proposed by Adler [6], which will not be con-
sidered here, the results can be represented*2 by those
of Blomgqvist and Ericson [8] (BE) and Hyuga and
Gari [9] (HG). BE showed that the leading process is
the emission of two E1 photons and reported a value
of 0.12 ub for 03, HG reported a value of 8.3
X 10~2 ub. The close agreement between these two re-
sults appear to be even more significant since BE used
the “gradient operator” ev-& as the electric dipole in-
teraction whereas HG used the long wavelength ap-
proximated dipole operator e[H, - €] , where ¢ is the
polarization vector of the photon. Here we point out
that this agreement is misleading. We show, by various
calculations, that the result of HG is an upper limit,
that the correct dipole operator (without the long
wavelength approximation) gives results which are
significantly smaller than that of BE, and that the dif-
ference is due to the fact that the gradient operator is

*1 Alburger [5] first suggested that the observed events could
be due to annihilation of positron in flight.

*2 The calculation by Grechukhin [7] is similar to that by BE,
except that a factor of 8 was missing in the result, as was
pointed out by the latter authors.
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biased toward high-energy contributions from the in-
termediate states.

The gradient operator suffers from two related de-
fects: it is not gauge invariant and e vrepresents a non-
conserved current. For the emission (or absorption) of
low energy photons from (or by) a bound state, the
difficulty associated with specifying a conserved cur-
rent, J, is removed by the well-known Siegert theorem
[10, 11]. This theorem was extended to photons of any
energy and for unbound states by Sachs and Austern
[12] and by Foldy [13] . Suffice it to say that in this
theorem, by making use of the continuity equation,
the operator J- € (to which the gradient operator is an
approximation) is replaced by the gauge invariant di-
pole operator which, in relative coordinates, is¥3

E1(w)=%)e—[11,j1(921) f-s}, (1)

where 7 = F/r and w is the photon energy (we use the
units 2 =c¢ =M =1, where M is the nucleon mass). We
make a final remark before computing g, using this
operator. Grechukhin [14] and HG have shown that
the matrix element for the emission of two electric
photons (with energies w; and w,) is proportional to
wq w9y rather than to (wy — w,, )(w,, — w;) as one
would naively expect from (1). The indices f, 7, and i
subscribe respectively to the final, intermediate and
initial states. Therefore effectively the dipole operator
becomes 3e j; (wr/2) r-€, which is the form we shall
use.

The differential cross section for two photon emis-
sion is

#3 Later we show contribution from terms proportional to
(1/w) ja(wr/2), A > 1, can be neglected.
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doy, /a2 =3/(161%v,) [ dwjwiw, 27 1GDI2
0 qi92 (2)

where g4, g, are the polarizations of the two photons,
u,, is the neutron velocity, w = 2.2 MeV is the deu-
teron binding energy, w; + Wy = w, and

<t// nl (W)Y

M) = E{<wd|E1(w1)|w o
3

+(122)

where ¥4, ¥, and ¢, are the relative wavefunctions
of the np system in the deuteron, intermediate and un-
bound triplet (381) states. In the following we will do
three types of calculations using both the dipole and
gradient operators: (i) a calculation where the interme-
diate states are taken to be plane waves; (ii) where

(M) is expressed in terms of various empirical energy
weighted sum rules of the deuteron photo-disintegra-
tion cross section, 0,4, and (iii) where the closure ap-
proximation is used. For vy and ¥; we adopt the
wavefunctions used by BE: ¢ 4(r) = VK27 e=*"/r and
Y(r) =sin(kr + 8,)/kr, where k =+/w and tan §,

—ka,,a, (=54 fm) being the triplet scattering length.

(i) Plane wave intermediate states. In this case
V() = exp(ipn), 5, > (20)~3 [ d3p and w, = p?,
in eq. (3). The result for the gradient operator was
given by BE,

0py = 02,(20+7—321n2)=0.12 ub, (gradient)  (4)

where 0,, = %azv; 1a?‘ws/z. The result for the dipole
operator is

1
O, =0 dvy 73(1 _7)3 _2.i
o of [(1 NN

2+y/1 o 3 1 7
C TP Visy am(l—v)] ®

=6.9 X 10=2 ub. (dipole)

The latter result is smaller by a factor of 16. In the fol-
lowing we show that this result is not due to acciden-
tal cancellation but is due to real physical effects.

(ii) Sum rule. We may relate the dipole matrix ele-
ments in (3) to that of the photodisintegration of the
deuteron. For the dipole operator
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Ogy = (2705“ f wjwiw fdw R(w)

(6

x( Lo, 1 )m,d(ca7
(.LJ,y - (4)1 (.O,y - (4)2 w7
where w, = p? + w is the photon energy in vy + d

- n +pand¥ R=w, W/ (wr/2)FlY,)
wWgljy(wyr/2) #1,). For the gradient operator, we
have

27 (2»”)51) f dwlwlwz f dw R(CO)

Q)

2
(gradient)

1 1
X ( W, — W) * w, — wz) Wy 0ya(Wy)
where R' = (Y 1|y, (Y4lvl ¥, ). The two expressions
(6) and (7) are qualitatively different. The high-energy
region contributes more strongly in the case of the gra-
dient operator. To evaluate these equations, we use
the inequalities

LT . - ®)
W) Wy W, W Wy —wWy W,
Since for any reasonable intermediate wavefunctions
R and R’ are positive definite, this inequality can be
used outside the integral sign. If we now evaluate the
averages Ry = f“me Oyd dw /om, o
={5 w O 4 dw using plane waves approx1mate
bounds for 0y can be expressed in terms of empirical
sum rules. These are [15] *¥5 41 mb-MeV, 3.9 mb and
0.7 mb/MeV for oy, 0_; and o_, respectively.
Putting all pieces together we have, for the dipole

operator
13X 1071 b > 09y > 69 X 10~2 ub. (dipole) (9)

For the gradient operator the upper bound diverges
and we have only a lower bound (10)

0y, >2/(31*a?) 5,, 0% =1.6 X 10~ ! ub. (gradient)

4 5 the region of interest, the dipole matrix element is effec-
tively proportional to w; (or w4), even for the two un-
bound states v, and y,,.

*5 The value of 0.045 mb/MeV for 0 quoted in ref, [15] is
incorrect. The value used here is evaluated from oyd data.
Also for all sum rules the high energy was cut off at the
pion production threshold.
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Table 1
Comparison of results of dipole and gradient operators

Type of calculation Dipole operator

Gradient operator

i) plane wave int. state a) _
Oy =

ii) sum rule
iii) closure

6.9 x 1072

13X 107! > 05, >6.8X 1072
o3y~ 43X 1077

024 =0.12

924> 0.16 b)
diverges 9 atr =0

a) Cross section in units of ub; b) See text for apparent contradiction with (i); ¢) See text for detail.

Note that from (8) the second inequality can in fact
be viewed as a very good approximation. Therefore we
have quantitative agreement between results obtained
here (lower bound in (9)) and those in the last section.
The fact that the result in (10) is greater than the re-
sult of BE is not self-contradictory because the empiri-
cal o is greater than that calculated with plane wave
(~30 mb-MeV).

(iii) Closure approximation. In eq. (3), if we re-
place the energy denominators by an average value
then we have the closure approximation. For the di-
pole operator

1 a2 ¢ 3 3 1 1 \2
== — +
%2y " 1a4n v f dwjwjw) <wn tw) wyt w2>

o
(1)

X KPglr2l g2,

where the long wavelength approximation has been
used because Y 4 is bound. It is here that we justify
ignoring the higher multipoles. Again we can make use
of the inequality 1/(w,, +wq)+1/(w, +wy) Sw/wjw,
to get an estimate

0, ~ 509, (3/a —1)2 = 4.3 X 10-2 pb. (12)

This result is analogous to that of HG, who used slight-
ly different wavefunctions for Y4 and . estimate.
Another estimation is obtained by setting (w,) = ,
a value whigh corresponds to the maximum value of
Oryd- We then have

027 ~ 627(3/atk - 1)2 [184/3(ln 2) - 85/2]
(13)
=34 X 103 ub.

A similar calculation using the gradient operator leads

to difficulties because the integral [ (V¥ ) (VY,) a3r
diverges as r ~ 0, unless short-range correlations be-
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tween nucleons are taken into account. This is not at
all surprising since we have already seen that the gradi-
ent operator is biased towards high-energy components.

The results obtained in this letter are summarized in
table 1. We have shown that the dipole operator,
which implies a conserved current and is therefore
gauge invariant, is not sensitive to properties of the nu-
cleus at very high energies or very short distances,
properties which we know little about. The gradient
operator has the exact opposite characteristic and also
gives a value for 09, Which is too large.

We wish to thank Dr. T. Ericson and Dr. J.
Blomgyist for pointing out an error in our original
manuscript.
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