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Elastic and inelastic electron scattering form factors for the ground (0'1") and first 2 and 47 states are calculated
in the unrestricted, projected, Hartree—Fock approximation and compared with experimental data. A practical meth-
od, applicable to any type of wavefunction, is given for the calculation of thc center-of-mass correction.to the form

factor.

The study of electron scattering form 12€ has been
extensive both experimentally [1—3] and theoretically
[4—6]. Here we report calculations of form factors for
the elastic and inelastic scattering to the ground (07),
first 2* (4.44 MeV) and first 4* (14.1 MeV) states us-
ing wavefunctions obtained in the variational, self-con-
sistent, projected, Hartree—Fock approximation
(HFA). The results are insensitive to the one adjustable
parameter appearing in the calculations. The agree-
ment between theory and experiment is very good for
the square of the momentum-transfer, qz, up to ~4F -2
but begins to deteriorate for larger values of g% We
also point out a practical and straightforward method,
applicable to any type of wavefunction, for calculating
the center-of-mass (CM) correction to the form factors.

We calculate only the Coulomb form factor in the
Born approximation. This will be sufficiently accurate
except at diffraction minima [7]. In the Born approxi-
mation the Coulomb form factor of multipolarity A is
given by [4]

IFy gl @)1= (4n/Z?)
Z
X | 4? <Jf||f>\(qu)Yx(ﬂk)llJi>]2F§r(q2)féM(qz)- m

Here the initial and final states are represented by pro-
jected HF wavefunctions [8]. These wavefunctions are
expanded in a five major-shell *““large” basis. Fpr is the
electric form factor of the proton. Here it is represented
by Stanford three-pole fit [9]. f, is the CM correc-

tion. This factor has most often been assumed to have
the Tassie—Barker (TB) form [10],fCM(q2) =
= exp (14 ~162¢?), where A is the mass number of
the target and b the oscillator length parameter. The
TB form is correct only if (i) the wavefunction is a
product of wavefunctions describing the internal mo-
tion and the CM motion and (i) the CM is in the low-
est harmonic oscillator state. In fact we have already
assumed (7) in eq. (1) as the CM correction is factored
out. In the following we describe a method to calcu-
late f-y in cases when (i) does not necessarily hold.
This method should be useful for any type of wave-
function consistent with (7).

Since fy is a function ofq2 only and f\(0) = 1,
we have

fCM(qz) =1 +Ot2q2 +a4q4 oo (2

To determine the coefficients 0y, &, etc. we need only
consider the elastic Coulomb form factor F, O(qz). If
F is the form factor calculated using internal coordi-
natesr; =r;— Roy, Z; 7 =0, then

F‘E](qz) =1 —30hg? + g het ¢
=Fo@) fon@®)
=(1-LDg? + L5 ahet+ . )
X(l+o¢2q2+a4q4+...), 3

where (") =4~ Z;r". We immediately get
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Fig. 1. Elastic form factor. Lines are projected HF result us-

ing a large basis withb =1.539 fm (—)and b = 1.663 fm

(— « =); and the small basis with the same values for b(— ¢+—
and ——-). Data are from refs. (1], [2] and [3].

oy = %((rz) —~ ()"2)), etc., in terms of the expectation
values (r2), (r'2), etc. Notice that whereas 7 is a one-
body operator, 77 is an n- (or A-, whichever is smaller)
body operator *. This simply reflects the fact that
4" is an A-body operator. However, unless high ac-
curacy at very high momentum transfer is required, in
general only a; is needed. In this case only the expec-
tation value of a simple two-body operator, (r'2), need
be evaluated. This approximation is adopted in this
work.

In fig. 1 the elastic Coulomb form factor for 12C
are shown. In fig. 2 are the inelastic 0] > 2} and
07 — 47 form factors. The only free parameter avail-
able is the size parameter of the oscillator wavefunc-
tion, b. The optium value, which leads to the lowest
projected HF ground state energy, isb = 1.539 fm
(hw = 17.5 MeV). For comparison the following calcu-

* Here by a n-body operator we mean a linear combination of
one- two-, . . . , and n-body.
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Fig. 2. Inelastic form factors for 07 - 2} and 07 - 47 transi-
tions. For legend for lines see caption of fig. 1. Data are from
refs. [1] and [2] (2), and [17] (o, &), respectively.

lations are also carried out: (i) with b = 1.663 fm

(hw = 15.0 MeV) in the large basis, and (ii) with

b =1.539 fm and 1.663 fm in a “small” basis com-
posed of only the first three (N =0, 1, 2) major-shells.
If the basis is sufficiently large, the result should be
independent of b. In figs. 1 and 2 the large basis re-
sults (solid and dot—dash lines) show only a very
weak dependence on b. This contrasts with the b-de-
pendence of the small basis results (dot—dot—dash
and dash lines). The differences in the b-dependence
are also shown in table 1, where some projected HF
results are listed. In the following we restrict our com-
ments to the large basis results only.

The theoretical elastic form factor reproduces the
data well up to the first diffraction minimum. After
the minimum the agreement becomes significantly
worse. It is known that simple [11] as well as more
sophisticated spherical shell-model [12] wavefunc-
tions are capable of producing better fits in this region.
This is not surprising as Vinciguerra and Stovall {5]
have shown that any deformation introduced into the
12C wavefunction will suppress the elastic form fac-
tor in the region of the second maximum, thus wors-
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Table 1
Some Hartree—Fock results.

16 QOctober 1972

Large Basis

Small Basis

1) 2) 1) )
b(fm) 1539 1.663 1.539 1.663
(H> (MeV) ~76.38 ~76.05 ~71.29 ~71.98
E,. (MeV) ~81.46 -81.07 ~75.58 ~76.37
E,. —Eg, (MeV) 2.67 2.69 2.74 2.89
E 4y —E gy (MeV) 11.20 11.10 11.48 11.26
a,(fm*)** 0.0526 0.0544 0.0478 0.0564
b2 /44 (fm?) 0.0493 0.0576 0.0493 0.0576
! charge (fm)T” 2.429 2.460 2.329 2.477
(@, (Cfm™) 1 ~ 8.01 - 821 - 5.33 — 623
Q4 Efm*) 13.9 15.7 0.61 0.90

** See text for definition.

+ rms radius of protons w.r.t. CM and with proton radius folded in. Latest experimental value is [3] 2.46 + 0.025 fm;

1 Op = [4n/A+ D13 Zy proton ri Yau(9).

ening the fit. This situation which seemingly favours
the spherical wavefunction over the deformed wave-
function for 12C is counterbalanced by the situation
in high-energy elastic p—12C scattering. There the in-
troduction of deformation improves the theoretical
fit [13, 14]. The experimental e—12C data, available
up to q2 ~ 16 fm~2, do not show a second minimum.
We predict a minimum at q2 ~17fm™2,

The 01' - 2’1F data are also refroduced very well in
the HF approximation up to g° ~ 4 fm~2 but again
the agreement with experiment becomes progressively
less satisfactory for higher q2 values. The only shell
model calculation for this form factor is the particle—
hole description of Gillet and Melkanoff [4]. In the
random-phase approximation the quality of their fit
is similar to ours. Data beyond q2 ~ 7.5 fm~—2 suggest
the existence of a diffraction minimum, which is not
predicted here. Neither is it predicted in the shell mod-

el [4], the a-cluster model [6] or the hibridized cluster—

shell model [6]. Vinciguerra and Stovall [5] showed
that only a prolate deformation in 12C can produce
such a minimum. However, an oblate deformation is
favored theoretically on ener%etic grounds and experi-
mentally from analysis of a— 2c {1 5], and high-energy
[13, 14} and low-energy [16] p— 2C data.

The data [17] for OI - 4; are rather sparse, and
these are well accounted for by the present calcula-
tion. The small basis results are not shown in fig. 2 as
they are three orders of magnitude smaller than the
data.

Recently Nakada et al. [17] reported an intrinsic
state in the Nilsson-rotational model for the ground
band of 12C which can reproduce the e—12C data as
well as reported here. In their search for the intrinsic
state the rms radius, and the intrinsic quadrupole and
hexadecapole moments for 12C were determined.
Other matrix elements can then be calculated through
the rotational model. In table 2 some such matrix ele-
ments are compared with those obtained in the pro-
jected HFA. The most interesting feature in table 2 is
that the rotational model describes the HF results very
well (up to J = 4, at which point the rotational band
is truncated), except that to produce the same static
moment or transition strength, a significantly larger
(by 20 ~ 40%) intrinsic moment is needed in the rota-
tional model. This feature is quite general in light nu-
clei with “rotational” characteristics [18].

We have shown that the projected HFA accounts
for, in an essentially parameter-free way, the low ener-
gy data of the of, 2; and 41L states in 1“C. It has failed
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Table 2

Hartree—Fock approximation

Rotational model T

b(fm) 1.539
(0, (efm”) - -8.01
Q) (efm»)” 2.66
(@) (efm?) 3.19
Q)¢ (efm?) 2.40
(Q,g+ (efm?) 1.41
B(E2; 0" > 2')(e? fmH ** 35.4
B(E2; 7 - &%) (* fm*) 18.2
(0, efm®) 139
(@), (e fm") 1.02
Q) (e fm*) 2.75
B(E4; 0" — 4) (¢? fm®) 393
B(E4; 7" > 4) (e? tm®) 116

1.663 1.50
_ 821 101 (17)
2.73 2.88
327 3.67
2.32 4.04
1.17 4.25
37.3 40.6
19.1 209

15.7 25.4 [17]
115 1.22
3.13 3.20

503 462
125 120

* (QK)J = (JJ|Q}‘0|JJ)

** B(EX; J—>J') = [(2N + 1)/4n] KNQ5 1% ; measured [2] value is 41.8 + 4eZfm?.
1 In the rotational model <J' (KM@ IIJ(K)) = /(2 + D/(2J" + 1) UAK' — KITK'NQy g'_ k), where K is the projection of J

on the body-fixed Z-axis. In this work K =K' =0.

and indeed is not expected, to account for the high-
energy behaviour of these states. Among the any num-
ber of reasons behind this failure, the lack of two- or
more-body correlations in the HF wavefunction is be-
lieved to be the most important. The effect of correla-
tions on the elastic scattering has been studied [19].
However there are difficulties in its interpretation [20].
The inelastic OI - 21' data seem even more challenging,
as no theory has yet succeeded in reconciling the ap-
parent oblate shape of 12C and the existence of a dif-
fraction minimum in the data.

The author wishes to thank R.Y. Cusson and R.L.
Becker for a stimulating communication and F.C.
Khanna for many helfful discussions.
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