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A practical method for projecting good angular momentum from non-axial deformed HF intrinsic
states involving a large number of particles and j shells, is described. The 22Na example shows good
results for the excitation energies, and E2 and M1 matrix elements.

The use of multi-shell deformed Hartree-Fock
intrinsic states [1] has been recognised to be a
powerful method for providing a microscopic
description of the bulk properties of nuclei [2].
However, one should also project good angular
momentum from these states in order to com-
pute detailed properties such as energies and
spins of excited states. This letter describes a
fast, practical, and general projection method,
applicable to large bases, and gives results for
22Na as an example. A systematic investigation
of all the stable nuclei with 4 < A < 40 will be
reported elsewhere.

Let |x) be a normalised intrinisic-state Slater
determinant defined by N (neutron) and Z (proton)
deformed HF orbitals, each having good parity.
Thus |x ) may violate axial, neutron-proton, and
time-reversal symmetry. We do assume how-
ever that Ix) has the IV group rotational sym-
metry so that it may be expressed in the princi-
pal axis system of the mass quadrupole tensor
[3], where any two K's contained in a |x) differ
by a multiple of 2, Thus we have

Kmax Jmax
x> = z T (KK (1)
K=Kmin’Kmin+2"' J= Kl

where|J(K)M> is the unnormalised projected
component of |x} with good J and J; = M, and
belonging to the Kth band of |x). For any two
|x)'s and any multipole operator of rank A, 0y,
the reduced matrix elements [4](J'(K')||OA|J(I%))

* A.E.C.L, Visiting Scientist, Summer 1971.
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Fig. 1. Low energy spectrum of 22Ny,
are given by a slight generalisation of the well-
known Hill-Wheeler integral of Peierls and

Yoccoz [5]
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where € = (@, 3, y) denotes the three Euler angles,
R(S) is the rotation operator, pY () is a rota-
tion matrix, MN

2n 2m +1

fd3ﬂ= f daf dyf dx, x=cosj3 ,

0 0 -1
and C denotes a Clebsch-Gordan coefficient. In
particular, the overlap and normalisation co-
efficients of the projected states are obtained
from eq. (2) by using the unit operator O, = 1.
Now the @ and y integrations can not be performed
analytically because of the non-axiality of |x>; in
fact, one needs an optimal method to compute the
J d3Q integrals since the integrands are time
consuming to evaluate, especially when Oy is
a two-body operator such as the Hamiltonian
and a large basis is used. One can show that
this may be done through the use of Gaussian
quadrature formulae. Thus the 8 integration is
replaced by the familiar formula

+1 I\g
fl flx)dx = lf(xi)wi , (3)
- l:

where Ng is the number of different J states con-
tained in |x)and [x'), f(x) is the integrand in
eq.(2), and x; and w; are the nodes and weights
of the N -point Gaussian quadratures. The y in-
tegration is replaced by a not so well-known

identity
27 m-1

1 1 mr

g | ey 2 fGE) @
0 -

which can be shown to hold exactly for all the
integrands in eq. (2). A similar equation holds
for the o integral. The above results only make
useof the AK = 2 rule and are thus valid for

both even and odd nuclei. The required number
of independent values of the integrand can be
reduced by the judicious use of symmetries. For
example, if |x") =|x), then from (Oxp)* =

= (-1)A-1+€ Oy -y instead of mzNB only zm(m+1)Ng

evaluations of the integrand need be made. For
even-even nuclei with IV group invariant ground
state configurations, one reduces this last num-
ber by nearly an additional factor of four.
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Although there are several ways [1,6] of cal-
culating the matrix elements(x']éxué(fl) | %) oc-
curring in eq.(2), we have found the cross-
density matrix method of Lowdin 7] to be the
most suitable one for our purpose. Since the
details of the method can be found in ref. [7],
we only remark here that an algorithm can be
found such that the method may still be used
even when |x) and |x') are orthogonal by one or
two particle-hole pairs [8], as is the case in
B-decay transitions.

We now turn to our 22Na example. We use a
five major shell basis [2] with #w = 13.5 MeV,
the Saunier-Pearson No.2 N-N interaction [9],
the two-body Coulomb interaction, and the kine-
tic energy with respect to the center-of-mass.
All twenty-two single-nucleon orbits are different
from each other. The HF intrinsic state is ob-
tained iteratively and the projected energy is
computed. The method of variation after projec-
tion is also used to perturb this intrinsic state
until the lowest projected energy is obtained;
further details of this procedure will be given
elsewhere. As a result, it emerges that the
low-lying positive parity states can be represented
adequately by one non-axial state containing
components with* K =5,3,1, -1 and one axial
K =0 (| xo)) state. The non-axial state is mostly
K =3 and will be called |x3). This state yields
the lowest 3* state at Ey, = 159.93 MeV, which is
identified with the experimental 3* ground state
at Ep,exp = 174.15 MeV. Fig.1 shows a compa-
rison between the calculated and experimental
positive parity excitation spectra [10,11]. The
theoretical excitation energies are all taken
relative to Ey, and the spectrum is separated into
four bands for convenience only, since the K and
T values shown are only approximate due to the
nonaxiality [12] and the Coulomb force [2]. The
K =3, and K = 1 bands are projected from |x3)
while the other two come from |xo). Whereas the
K = 3 band spectrum shows a marked dilation,
the spacings of the other bands are good, with
the possible exception of the missing Coriolis
inversion of the 23,33 levels inthe K =1, T =0
band. Although Coriolis decoupling is automati-
cally included in the projection method its
strength is being underestimated here. The higher
excitation energy of the K =0, T =0 band head
compared to the K =0, T =1 one is interesting
and may indicate a possible defect in the rela-
tive strengths of the T =0 to T = 1 components

* The number of K's in a given X can be determined by
studying the reduced matrix elements of the zero-
body identity operator,
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Table 1 22
) Electromagnetic decﬂ properties of low lying states in ""Na o
Branching B(E2)(e2 fm4) B(Ml)([.l.g) mixing ratio lifetime
_ratio (0 _ . . U I —
Ji—Jf expa thb exp th exp th exp thb exp thb
4“;—‘31 100 100 98+8 111  54:1.2x10"% 4.07x10™3 -3.19+0.26 -1.23 13.6 +1.0ps  7.87ps
5‘{_. 4’; 5 13 78+42 103 5.5+3.0x10"% 5.99x1073 =2,00£0.15 -0.70 80 +27ps  32.2 ps
+
—3, 95 87 2529 27.1 43 +1.4ps  3.62ps
GI—o 5’; 35+10 37 135+ 61 82.4 6.62x1075 -2.03
h 52 x17fs  60.2 fs
— 4] 65210 63 5721 48.1
+ +
0]~ 1] 100 100 7.91 17.7 ps
+ + -4
2,— 1] 100 100 0.0017 3.12 -2.7x10
. 7.1 fs
-0 0 0 64.7
3, 2, o0 0.4 0.0035 3.33 -1.5x1074
! 1.74+0.34ps  1.82ps
—1] 100  99.6 9018 82.9
45— 35 100 100 0.010 3.36 -9.5x1074
+ 1.9 fs
—2 0 0 92.0
5,— 4y 40 46 0.010 3.37 -g.9x107%
+ 30.0 fs
—3; 60 54 97.1

a) Experimental data are from ref. [10], and references quoted therein. Weighted means are taken if several pieces
of recent data are available for one transition.
b) Empirical energies [10,11] are used to compute branching ratios, mixing ratios and lifetimes.

of the N-N interaction used here [9]. Since this (0.583 MeV) states were computed to be 1.805
effect is a small fraction of the total binding and 0.526 nm, whereas experiment [10] yields
energy it may be that a minor change in the 1.746 + 0.01 and 0.54 + 0.01 respectively. For
force parameters could produce the required comparison, the values 1.578 and 0.721 nm were
shift without appreciably changing the wave- calcu1+ated for the magnetic moments of the 39
functions. and 12, respectively. The cglculated electric
Finally we show, in table 1, some E2 and M1 quadrupole moment of the 3. state was +22.81¢
decay parameters. The EQ (isometric shifts) fm2 and that of the 17 was -11.08 e fm2, To
M3 and E4 matrix elements have also been com- summarise we see thag the present method ap-
puted but will be discussed elsewhere. The agree- pears to account for both bulk [2] and detailed
ment with experiment is generally good except nuclear properties without using any adjustable
for a factor of 10 error in the AT = 0, M1 parameters other than those used in the basic
transitions in the K = 3 band. These are com- nucleon-nucleon two-body effective interac-
puted to be hindered by three orders of magni- tion [9].
tude instead of the measured four orders of
magnitude. This is responsible for the calculated We thank Drs. J. M. Blair, I. S. Towner and
rates of the transitions 4’{ — 3{ and 5{—» 4% pe- M. Harvey for helpful discussions and Prof. E.
ing two or three times faster than the observed Tomusiak for an interesting correspondence
rates. The magnetic moments of the 3; and 1’{ concerning the K -projection method.
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