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The background field quantization procedure for pure YM theories is used in conjunction with non-covariant gauges 
characterized by the gauge fixing term (1/2a)n.  Q~fiaOn . Qb where fib can assume the forms fl = -8ab  (i.e. axial gauge), 
f~l b = (Yl "D(h) )2ab / (n2)2  or f l l l=  D 2 ( a ) a b / n 2  (i.e. planar gauge) where n 2 4= 0. Here A~ and Q~ represent respectively the 
classical background field and the quantum field. It is noted that if fi ~b explicitly depends on the background field, then it is 
necessary to introduce Nielsen-Kallosh ghosts in addition to the expected Faddeev-Popov ghosts. Explicit calculations to 
one-loop order show that for fn  and fnl,  the divergent part of the vacuum polarization is [(i/16~rZ)c28abg2/(2 - ~)]131(p28~ 
- P~PD, while in the axial gauge the vacuum polarization is transverse but a- and n-dependent. The latter result - an apparent 
contradiction of Kallosh's theorem - is shown to arise due to the unconventional asymptotic behaviour of the vector 
propagator in the axial gauge. 

1. Introduction.  Capper and  Leibbrandt  [1] have ex- 
amined  the vacuum polarizat ion tensor in a YM theory  
using Schwinger source term quant iza t ion  wi th  non-  
covariant  gauge fixing terms of  the general form 

Lgf = (1/2or) n .  va f i  n" V a, i = I, II,  III ,  (1) 

where 

n 2 :/=0, 

fI  = --1,  fII = (n" 0 )2 / (n2)  2, f I I I=  02/n2" 

For  the  planar  gauge f i l l ,  they  f ind that  in 260 dimen- 
sions, 

1 Permanent address: Department of Mathematical Physics, 
National University of Ireland, University College, Galway, 
Ireland. 

[II~v b 09)1 div = [(i/16rr2) c26abg2/ (  2 -- 60)] 

X [ ( ~  + 200 (p26uv - pupv ) 

- (4ot/n 2) p2nunv  + 2 otp. npun  v + 2 otp. nPvn u ]. 

(2) 
Even though the vacuum polar izat ion tensor  is non-  
transverse and a- and n-dependent ,  they  f ind that  this 
result is consis tent  wi th  the unusual  form of  the 
Tay lo r -S l avnov  identi t ies in this gauge. For the axial 
gauge f l ,  they find 

ab [IIuv (P)] div = [(i/16~ "2) c26abg2/(2 -- 60)] 

X ( ~  (p26uv - P~Pv) 

+ [4ot/3(n2) 2] ( p .  nP u - pEnu)  (P "nP v - p2nv)  ).  

(3) 

319 



Volume 161B, number 4,5,6 PHYSICS LETTERS 31 October 1985 

The vacuum polarization tensor here is transverse but 
a- and n-dependent. For fll = (n. a)2/(n2) 2, they find 

[IIab (n)] [(i/161r 2) c28abg2/(2 - 6o)] ~uv ,,- -" div = 

X ~ (p26uv - PuPv)" (4) 

Henceforth we will set n 2 = 1 for simplicity. 
In this paper, we use the background field quantiza- 

tion procedure [2,3] to study YM theories in non-co- 
variant gauges similar to those found in eq. (1). If the 
gauge field V~ is broken up into the classical (Au) and 
the quantum (Qu) parts, the gauge fixing term in the 
lagrangian is 

Lgf = (1/2¢x)n. Qaffbn" Qb, i = I, II, III, (5) 

where 

n 2 4: O, fi ab = -- ~ab, 

f~b= [n.D(A)] 2ab, f~b= DZ(A)ab. 

The covariant derivative in the background field is 
defined by 

Duab(A ) = au6ab + gfaPbAP u . (6) 

It is important to note that the gauge fixing term given 
in eq. (5) does not break type I gauge invariance de- 
fined by 

8A~ = D~b (A) A b , /~Q~ = o~vfaCbQCAb,u (7) 

but does break type II gauge invariance defined by 

6A~ = O, 6 Qtaa = D~b(A + Q) A b. (8) 

The Feynman rules for the theory are developed in 
section 2 by use of the path integral quantization pro- 
cedure. In addition to the usual Faddeev-Popov ghost 
fields c and ~, we find that for )eli and fill it is neces- 
sary to introduce Nielsen-Kallosh ghosts - complex 
anticommuting scalar ghost fields co and ~ ,  and a real 
commuting scalar ghost field % Nielsen and Kallosh 
[4] have shown that similar ghost fields arise in super- 
gravity. 

The divergent parts of the one4oop corrections to 
the vacuum polarization tensor for fl,  fII and fin are 
computed in section 3. F o r f  I it is found that the vacu- 
um polarization is identical to Capper and Leibbrandt's 
result in eq. (3). This appears to contradict a theorem 
of Kallosh [5], which states that if the effective 
lagrangian for a pure YM theory is type I gauge invari- 

ant, then the counterterms are independent of the 
gauge timing condition, even off mass shell, in back- 
ground field quantization. On the other hand for fii 
and flIl  our  results are consistent with the predictions 
of Kallosh's theorem. In section 4 we discuss why 
Kallosh's theorem is upheld for the casesfll and fll i ,  
while being apparently contradicted by fl for a 4: 0. 

2. Quantization procedure. First of all we introduce 
the Feynman amplitude 

F [ A J ] = f d Q e x p ( i f d 4 x ( - ¼ I ~ F a U ~ )  ), (9) 

where 

F~uv=au(A +Q~-av(A +Q)a u +gfabe(A +Q)b(A +Q)C. 

If we follow an argument given by 't Hooft [6], eq. (9) 
becomes 

F[Au] = f dQ dc a (n. Qa _ b a) 

X exp i d4x [ -  ~ 

+ ean • D ab (A + Q) cbl),  (10) 

where we use the gauge fixing condition 

n'Qa=O, (11) 

and c and ~ are the standard Faddeev-Popov ghosts 
fields. Eq. (10) is independent of the field b a, so we 
can integrate over all fields b a with an appropriate 
weight factor in order to exponentiate the gauge fixing 
term in eq. (10). We multiply eq. (10) by 

l = k  f db a exp (i f d4x [(1/200 baffbb b] 

X (Oet t:z-Ij~b)l/2), (12) 

leading to the result 

F[A~] = f dQ dc d~ (Det fiab) U2 

X exp i d4x t -  4 "t~v-- 

+ (1/2or) n. Qafiabn" Qb + ~a n . Dab (A + Q) c b]) .  

(1'3) 

The factor of (Detfiab) 1/2, where J~ ab is given in 

320 



Volume 161B, number 4,5,6 PHYSICS LETTERS 31 October 1985 

eq. (5), is an innocuous scale factor except in those 
cases where fi ab explicitly depends on Aau. In such 
cases, it can be exponentiated into the action in the 
following way: 

(Det fiab) 1[2 = (Det fi ab) (Det fiab) - 1/2 

× f d T e x p ( i f d 4 x ½ 7 a ~ a b T b ) ,  (14) 

where w and ~ are complex anticommuting scalars, 
and 3' is a real commuting scalar. The ghost fields co, 

and ~' are the YM counterparts of the Nielsen- 
Kallosh ghosts in supergravity .1. 

Using these results, the generating functional for 
the Green function is defined by 

Z a a = f d Q d c d E  d ~ d 7  [Au, nu ] dco 

(f r±~'ar,"au,, X exp i d4x t-- 4 "~v-- 

+ (1/2a) n" Qafiabn" Qb + ~a n . Dab (A + Q) C b 

--a ab . b . l ~[a fiab.yb ) +co fi to T- i . +rluQ au] , (15) 

where ~ is the source term for the quantum field Qa #" 
In computing the one-loop Green function with two 

external classical gauge fields, A u , we use the Feynman 
rules derived from the effective lagrangian of eq. (15) 
for the appropriate fi ab. 

3. The vacuum polarization tensor to one-loop or- 
der. We now consider the one-particle irreducible (1PI) 
Green function with two external classical gauge fields. 
This Green function has been evaluated to two-loop or- 
der in covariant gauges where tha gauge fixing term is 

Lgf = - (1/2a) [Duab(A) Qub] 2 (16) 

for the specific case t~ = 1 by Abbott [3] and for gen- 
eral ct by Capper and Maclean [7]. They both find 

* 1 The exponentiation of the (Det f )l/2 factor for background 
field quantized YM theory was first discussed by de Witt 
[2]. However his discussion centered on f--I rather than f, 
so that he used real commuting scalar ghost fields x, 
(Det f - l )  -1/2 =/" dx exp[i f d4x (1 xaf- labxb)] .  

ab [I]/~ v (/9)] div = [(i/1 61r 2) C26 abg2/(2 -- ¢o)] 

X ['-~ + (g2C2[167r2) !~] (p28u v _ pupv). (17) 

This result is independent of the gauge parameter a, 
and hence agrees with Kallosh's theorem [5]. 

We now examine the same Green function for the 
gauge fvcing term of eq. (5), computing [II~b]div for 
each of the three cases, fI, fII and fill. For i = I [i.e., 
Lgf = (1/2ct) (n. Qa)2] the Feynman rules pertinent to 
our calculation of the vacuum polarization tensor are 
identical to those used by Capper and Leibbrandt [1] 
in their calculation since in eq. (13) Detf l  ab = 1. Con- 
sequently the result in this case is identical to their re- 
sult given in eq. (3). This result is apparently only con- 
sistent with Kallosh's theorem in the limit t~ --* 0. It was 
just this limit that was used in ref. [8] to calculate 

ab [Iluv ] div for the explicit verification of KaUosh's theo- 
rem in the axial gauge. However Kallosh's theorem 
does not hold in the axial gauge for a 4= 0. 

Now we turn to the case of f i  I [i.e., Lgf 
= (1/2a) n" Qa (n. D(A)) 2 abn" ob] .  To calculate 
[II~bv (P)] div here, we recall that Capper and Leibbrandt 
have evaluated the vacuum polarization tensor for Lgf 
= (1/200 n.  Qa (n.  a) 2 n.  Qa in conventional quantiza- 
tion. Hence we need only evaluate the Nielsen- 
Kallosh bubble diagrams given in fig. 1, and compute 
the contributions of the newAQQ vertices generated 
by the gauge fLxing term in the effective lagrangian. 
The divergent parts of the Nielsen-Kallosh bubble dia- 
grams involve only integrals of the type 

k 

k 

k+p 

Fig. 1. 
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(n .k)  2 

1 n . k n . p  

["ld2t°k(n.k)2 [n.(k +p)]2 .(k +p)n.k  

(n .p)2 

which are zero in dimensional regularization [9]. 
The new AQQ vertices arise from that part of Lgf 

given by 

(1/2a)n . Qa (n .O gfa~b n.A p +n .A p gfapb n'O)n'Qb. 

In the bubble diagram of fig. 2, these vertices give rise 
to integrals of the type 

fd2~°k (n.k) 2 [n. (k +p)]2 , n . p /  

using the techniques of Capper and Leibbrandt [91. 
The Nielsen-Kallosh ghost contributions of fig. 4c give 

I 1 = [(i/161t 2) C2~ abg2/(2 -- 60)] ~ (p26uv - PIzPv)" 

(18) 

The contribution of fig. 2a is given by 

g-'2c26ab[" d2t°k 1 
a ( ~  k2(k + p)2 

(nak# +n#ka) + kak#n2(1 +a) ) 
x ,_xs n .k  (k.n)2 

nx(k +P)o +no(k +P)x 
X 5xa -  n . (k+p)  

(k +p)x(k +p)an2(1 + a)~ 
+ ) [n. (k +p)]2 

which again have vanishing divergent parts. The appro- 
priate tadpole diagrams are also zero [ 101. Since the 
extra terms in [Ilab(p)] div in the background approach 
have been shown to have vanishing divergences, 
[II~b(p)]div is given by the Capper-Leibbrandt result 
of eq. (4), 

[II~ b Idly = [(i/16rt 2) C26 abg2/(2 -- 6o)1 

X 11 (p2rSm, _ pup~,)" 

Clearly this result is consistent with Kallosh's theorem. 
Finally we consider the ease offiii where 

Lgf = (1/2c 0 n . Qa D2(A )ab n . Qb . 

In this case the extra contributions to [IIab(p)]div do 
not all vanish trivially and so detailed calculations are 
required. The relevant Feynman rules are given in fig. 3, 
and the diagrams to be computed are given in fig. 4. 

The tadpole diagrams, in fig. 4 d - f  can be shown to 
be zero [9,10]. The bubble diagram with the Faddeev- 
Popov ghost loop of fig. 4b can be shown to vanish 

k 

k+p 

Fig. 2. 

X [Sux ( -  2p - k)a+ (6ax + or-1 nanx/n 2) (2k +P)u 

+6uc,(-k + P),,] 

X [6 ~ (2p  + k)o + (6~0 + ot -1 neno/n2)(-Zk-p)v 

+ 6 ~ ( k - p ) a l  ] .  (19) 

Explicit calculation of the integrals in (19) shows that 
the ,v. and n-dependences cancel out, giving the result 

12 = [(i/161r 2) c28abg2/(2-6o)] ~ (p28uv- pupv). 
(20) 

Adding (18) and (20), we find 
ab [IIu~ (P)l div = [(i/161r 2) C26 abg2/(2 - 6o)] 

X ~ (p26uv - PuPv)" (21) 

This is obviously independent of a and n, and hence 
consistent with KaUosh's theorem. It is the extra con- 
tribution to the three-point vertex arising from the 
gauge fixing term in the effective lagrangian and the 
Nielsen-Kallosh ghost contributions that are responsi- 
ble for restoring the result of ref. [1] for the vacuum 
polarization in the conventional quanfization proce- 
dure to the simple form given in eq. (21). 

4. Kallosh 's theorem and counterterms. Kallosh's 
theorem [5] states that if the gauge fixing term main- 

322 



Volume 161B, number 4,5,6 PHYSICS LETTERS 31 October 1985 

k 
a,~ ~ b,~ 

-i ~ab 

i(k2+ie) 

16 (p n + p n ) p~p n2(l+a)_] 
~ - p.n + ~p.~)2 ] 

Gauge vector propagator 

k i 6 ab 
a----~ b 

n'k 

Fadeev-Popov ghost propagator 

b i ~ab 
2 

k 

Nielsen-Kallosh ghost propagator 

a~ 

b,v c,% 

gfabc~%(p_r)v + 6v~(r-q) ~ + 60 (q-p) ~ 

I n n~ ~] 
+ ~ ~ (r-q) 

Three point vertex 

a,~ 

b---->- -- -~ _ _ 
c 

-->-- ---- c -igf abc n 

Gauge vector-FP ghost vertex 

b , 

b ,, 

P 
) 
0~ 

P 
> 
Y 

a,~ 

a~ 

pV 
> gfabc(p+p,) 

Gauge vector-NK(anticon~uting ) ghost vertex 

p! 

> c gfabc(p+p,) 
y 

Gauge vector-NK(commuting) ghost vertex 

F i g .  3 .  
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tains explicit type I gauge invariance, then for a pure 
YM gauge theory the counterterms necessary for re- 
normalization are independent of the gauge choice. 
However, the proof of the theorem is only valid if, for 
the gauge fixing term, all diagrams with five or more 
external legs are divergence free. 

To apply this to our evaluation of the vacuum po. 
larization tensor, we first note that for.f/, i = I, II and 
III, explicit type I gauge invariance is maintained. In 
fact in all three cases, the naive Ward identity asso- 
ciated with type I gauge invariance [ 11 ], 

Dub(A ) 6F/6Ab(x) = 0, (22) 

is satisfied since in background field quantization, type 
I gauge invariance is maintained. This is further dis- 
cussed in refs. [11,12]. 

To determine the validity of Kallosh's theorem, we 
look at the form of the vector propagator in all three 
cases [ 1 ] : 

fI: ab 5ab ( (Punv + Pvnu ) 
G~v(P)- i (p2+ie)  ~uv p.n 

+ Pupvn2+et PuPvP!], (22a) 
(p .  n) 2 (p.  n) 2 ] 

fn : ab 6 ab ( (Punv + P"nu) 
Guy(P)": i (p2+ie)  6uv p.n 

+ p.pv n 2 + ot pup.p2 (n 2)2~, 

( P ' n )  2 (P" n)------ ~ / (22b) 

k+p 
A a ,  d / ' ~ ' ~  li ,d 

a,u P 

a) 

b;~ 

b) 

c ) d) 

// 

~) f) 

Fig. 4. 
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fi l l  : ab ~ ab ( 
- 8U~ , Guy(P) i (p  2 + i e )  

+p~Pvn 2 ( I  + 
( P ' n )  2 or)). 

(Puny + Pvnu) 
p.n 

(22c) 

These propagators have the conventional O(1/p 2) be- 
haviour for large p 2 except in the axial gauge case for 
a 4= 0. In this case, the propagator  is of  order ~ O ( 1 )  
for large p2.  Thus diagrams with more than four exter- 
nal legs are not expected to be convergent in general. 
Hence Kallosh's theorem is not  applicable to the back- 
ground field quantization in the axial gauge for a 4= 0, 
and the counterterms are not  expected to be indepen- 
dent of  the gauge condition. For  the other two cases, 
diagrams with more than four external legs are conver- 
gent. Thus Kallosh's theorem is expected to hold in 
these cases. This is exactly what was found in section 3. 

The gauge dependence of  the counterterms and the 
O(1) behaviour of  the gauge propagator  for large p2 
in the axial gauge poses problems for the renormal- 
izability of  a YM theory in background field quantiza- 
t ion in that  gauge because (i) the counterterms involve 
the introduct ion of  new interactions not  present in the 
original lagrangian; (ii) an inf'mite number of  counter- 
terms are required to make the theory f'mite to all or- 
ders. These points are further discussed in ref. [12]. 
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