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The background field quantization procedure for pure YM theories is used in conjunction with non-covariant gauges

characterized by the gauge fixing term (1/2a)n-Q%®n-Q® where f° can assume the forms fi=— 8% (ie. axial gauge),
a8 = (n-D(A)?/(n?)? or fi = D?(A)*®/n? (i.e. planar gauge) where n? # 0. Here A, and Q represent respectively the
classical background field and the quantum field. It is noted that if f2 explicitly depends on the background field, then it is
necessary to introduce Nielsen—Kallosh ghosts in addition to the expected Faddeev—Popov ghosts. Explicit calculations to
one-loop order show that for fi; and fyy;, the divergent part of the vacuum polarization is [(i/1672)C,8°g% /(2 — W) p28p,,
— pup,), while in the axial gauge the vacuum polarization is transverse but «- and n-dependent. The latter result — an apparent
contradiction of Kallosh’s theorem - is shown to arise due to the unconventional asymptotic behaviour of the vector

propagator in the axial gauge.

1. Introduction. Capper and Leibbrandt [1] have ex-
amined the vacuum polarization tensor in a YM theory
using Schwinger source term quantization with non-
covariant gauge fixing terms of the general form

Lg=(1/20)n-Vfin- v, i=LILII, )
where

n? #0,

fi=-1, fII=(n'a)2/(n2)2, fm=az/n2.

For the planar gauge fjy;, they find that in 2w dimen-
sions,

! Permanent address: Department of Mathematical Physics,
National University of Ireland, University College, Galway,
Ireland.

(128 )] 43y = [(/167%) C26%08%/(2 — )]
X [( +20) (p%6,, - p,p,)

— (4a/n2)p2nunv +2ap-np,n,+2ap-np,n,].
()
Even though the vacuum polarization tensor is non-
transverse and a- and n-dependent, they find that this
result is consistent with the unusual form of the
Taylor—Slavnov identities in this gauge. For the axial
gauge fi, they find

(12 (0 g = [(/167%) C26%8%/(2 — w)]
X {131 (pzal,“; - p"pp)

+[40/3:%)%) (p+np, — p*n,) (0 - np, — p?n,)}.
®)
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The vacuum polarization tensor here is transverse but
a- and n-dependent. For fj; = (n* 8)2/(n2)2, they find

M2 )] g3y = [(/167%) C,8°08%/(2 — w)]

X 131 (pzs;w - p“pu)' (4)

Henceforth we will set n2 =1 for simplicity.

In this paper, we use the background field quantiza-
tion procedure [2,3] to study YM theories in non-co-
variant gauges similar to those found in eq. (1). If the
gauge field V: is broken up into the classical (AZ) and
the quantum (QZ) parts, the gauge fixing term in the
lagrangian is

Lg=Q2a)n-Q%Pn-Q> i=11,1I %)
where
n2 :/___0, flab=__5ab’

P =D ?,  fff =D*()*.
The covariant derivative in the background field is
defined by
ab = b b
D2 (4)=9,8% +gf PPAL. (©)

It is important to note that the gauge fixing term given
in eq. (5) does not break type I gauge invariance de-
fined by

= nab b = ofcb e AD
8AS=DP(A)A°, 8Qf =g *PQLA’, Q)
but does break type II gauge invariance defined by
842=0, 807=DP2U+Q)A’. @®)

The Feynman rules for the theory are developed in
section 2 by use of the path integral quantization pro-
cedure. In addition to the usual Faddeev—Popov ghost
fields ¢ and &, we find that for fy; and fyy it is neces-
sary to introduce Nielsen—Kallosh ghosts — complex
anticommuting scalar ghost fields w and @, and a real
commuting scalar ghost field vy. Nielsen and Kallosh
[4] have shown that similar ghost fields arise in super-
gravity.

The divergent parts of the one-loop corrections to
the vacuum polarization tensor for f, fi; and fyy are
computed in section 3. For fj it is found that the vacu-
um polarization is identical to Capper and Leibbrandt’s
result in eq. (3). This appears to contradict a theorem
of Kallosh [5], which states that if the effective
lagrangian for a pure YM theory is type I gauge invari-
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ant, then the counterterms are independent of the
gauge fixing condition, even off mass shell, in back-
ground field quantization. On the other hand for fy;
and fpp our results are consistent with the predictions
of Kallosh’s theorem. In section 4 we discuss why
Kallosh’s theorem is upheld for the cases fj; and fj »
while being apparently contradicted by f; for a # 0.

2. Quantization procedure. First of all we introduce
the Feynman amplitude

FlA]] =fdQ exp (ifd4x (-5 FﬁvFa“”)), ©
where

F&,=0,(4+0)0—3,(A+0)F +2f U+ Qb +0).

If we follow an argument given by ’t Hooft [6], eq. (9)
becomes

FlA%] = [4Q dc 425 (n- Q% — %)

X exp (i [dtx -3 FoFaw

+E%n-D% (4 +Q)cb]), (10)
where we use the gauge fixing condition

n-Q%=0, (11

and ¢ and ¢ are the standard Faddeev—Popov ghosts
fields. Eq. (10) is independent of the field %, so we
can integrate over all fields b% with an appropriate
weight factor in order to exponentiate the gauge fixing
term in eq. (10). We multiply eq. (10) by

1=k f db? exp (i f d*x [(1/20) °£Pb?]

X (Det a~1£20)1/ 2), 12)
leading to the result
FlAL] = [dQ de a2 (Det £72)1/2

X exp (ifd4x [-% ESFow

+(1/2a)n-Q%f%n- Qb +&%n-DFP (4 +Q)cb]).
13)

The factor of (Det f,-"b)l/ 2 where f,-ab is given in
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eq. (5),isan mnocuous scale factor except in those
cases where f; ab oxplicitly depends on Af.In such
cases, it can be exponentiated into the action in the
following way:

(Det £72)1/2 = (Det £,72) (Det £72)~1/2

=fdw di exp (ifd4x (TJ”f,-“bwb)

de'y exp (ifd“x% 'yaf,-ab')'b), (14)

where w and @ are complex anticommuting scalars,
and v is a real commuting scalar. The ghost fields w,
@ and v are the YM counterparts of the Nielsen—
Kallosh ghosts in supergravity *!.

Using these results, the generating functional for
the Green function is defined by

Z[A4%,77] = [dQ de a7 dw d& dy

o My
X exp (ifd“x [——%F"“LF”‘"’
+(1/20)n-Q°f®n-Q® +&%n-D® (4 +Q) b
+(3afiabwb'+';' ’7af,-ab')‘b +ngQau]) , (15)

where nﬁ is the source term for the quantum field QZ.

In computing the one-loop Green function with two
external classical gauge fields, 4, we use the Feynman
rules derived from the effectwe lagrangian of eq. (15)
for the appropriate f

3. The vacuum polarization tensor to one-loop or-
der. We now consider the one-particle irreducible (1PI)
Green function with two external classical gauge fields.
This Green function has been evaluated to two-loop or-
der in covariant gauges where tha gauge fixing term is

Ly =—(1/20) [DZ(4) 0212 (16)

for the specific case & = 1 by Abbott [3] and for gen-
eral a by Capper and Maclean [7]. They both find

*1 The exponentiation of the (Det £)1/2 factor for background
field quantized YM theory was first discussed by de Witt
[2]. However his discussion centered on f~! rather than f,
so that he used real commuting scalar ghost fields x,

(Det f1)7172 = 1 dx expli [ d*x (3 x2 F140xD)].
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lﬂﬁi’(p)] div = [(/167%) C,582 (2 — w)]
[3 +(&£Cy/161) Y%, - p,p,). (A7)

This result is independent of the gauge parameter o,
and hence agrees with Kallosh’s theorem [5].

We now examine the same Green functlon for the
gauge fixing term of eq. (5), computing [H ]le for
each of the three cases, f1, fi; and fi;. Fori =1 [i.e.,
Lyg=(120)(n- 0%)?] the Feynman rules pertinent to
our calculation of the vacuum polarization tensor are
identical to those used by Capper and Lelbbrandt {1]
in their calculation since in eq. (13) Det fI =1. Con-
sequently the result in this case is identical to their re-
sult given in eq. (3). This result is apparently only con-
sistent with Kallosh’s theorem in the limit a = 0. It was
]ust this limit that was used in ref. [8] to calculate
[H ] di for the explicit verification of Kallosh’s theo-
rem in the axial gauge. However Kallosh’s theorem
does not hold in the axial gauge for a # 0.

Now we turn to the case of fy; [ie., L
= (1/2a) n-Q%(n-D(A))2 % n-Q*]. To calculate
[II ® (D)] 4 here, we recall that Capper and Leibbrandt
have evaluated the vacuum polarization tensor for Ly
=(1/26)n+ @%(n+3)% n- Q% in conventional quantiza-
tion. Hence we need only evaluate the Nielsen—
Kallosh bubble diagrams given in fig. 1, and compute
the contributions of the new AQQ vertices generated
by the gauge fixing term in the effective lagrangian.
The divergent parts of the Nielsen—Kallosh bubble dia-
grams involve only integrals of the type

321



Volume 161B, number 4,5,6

(n-k)?

n-kn'p

[k :

(-2 & D)) |nek +p)n-k

. (p)
which are zero in dimensional regularization [9].

The new AQQ vertices arise from that part of Ly
given by
(1/20)n-Q°(n-3f PPn-AP +n-AP gf PP n-3)n-Q°.
In the bubble diagram of fig. 2, these vertices give rise
to integrals of the type

20 1 n-k
Je e

which again have vanishing divergent parts. The appro-
priate tadpole diagrams are also zero [10}]. Since the
extra terms in [HZZ(p)] div in the background approach
have been shown to have vanishing divergences,
[Hﬁf,’(p)]div is given by the Capper—Leibbrandt result
of eq.(4),

(2] 45 = [(/167) C,8 0% (2 — w))

X % (%, - p,p,)

Clearly this result is consistent with Kallosh’s theorem.
Finally we consider the case of fj;; where

Ly =(1/20)n+ Q°D*(4)*Pn- Q.

In this case the extra contributions to [l'[ﬁl;(p)]div do
not all vanish trivially and so detailed calculations are
required. The relevant Feynman rules are given in fig. 3,
and the diagrams to be computed are given in fig. 4.
The tadpole diagrams, in fig. 4d—f can be shown to
be zero [9,10]. The bubble diagram with the Faddeev-
Popov ghost loop of fig. 4b can be shown to vanish

k+p

Fig. 2.
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using the techniques of Capper and Leibbrandt [9].
The Nielsen—Kallosh ghost contributions of fig. 4c give

I = [(i/167%) C38%°g% (2~ w)] § (P26, — P,P,)-
(18)

The contribution of fig. 2a is given by

N 1
(2my?w K2(k +p)?

2
« [(8043 _(”aka +n6ka)+kak3n Qa +a))

nk (k.n)z
(o -

ny(k +p), tn (k +p),
NN +p),n(1 +a))

—3 8208

n:(k+p)
[n- (& +p))?

X [SMA(_ 2p - k)ae+ (800\ + a_l nan}\/nz) (2% +p),,
+6ua(_k +p)a]
X [8,4(20 + k) + (85, + o 1 ngny/n®)(—2k - p),

+8Vﬁ(k—p)c]J. (19)

Explicit calculation of the integrals in (19) shows that
the a- and n-dependences cancel out, giving the result

I = [(i/167%) C25% g2 (2 —w)] § (@%5,,— P,P,)-

(20)
Adding (18) and (20), we find

2 (0)] 43, = [(1/167%) €262 /(2 - w)]
X Y (025,, - p,p,). (21)

This is obviously independent of @ and n, and hence
consistent with Kallosh’s theorem. It is the extra con-
tribution to the three-point vertex arising from the
gauge fixing term in the effective lagrangian and the
Nielsen—Kallosh ghost contributions that are responsi-
ble for restoring the result of ref. [1] for the vacuum
polarization in the conventional quantization proce-
dure to the simple form given in eq. (21).

4. Kallosh’s theorem and counterterms. Kallosh’s
theorem [5] states that if the gauge fixing term main-
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tains explicit type I gauge invariance, then for a pure
YM gauge theory the counterterms necessary for re-
normalization are independent of the gauge choice.
However, the proof of the theorem is only valid if, for
the gauge fixing term, all diagrams with five or more
external legs are divergence free.

To apply this to our evaluation of the vacuum po-
larization tensor, we first note that for f;,i =1, 1 and
11, explicit type I gauge invariance is maintained. In
fact in all three cases, the naive Ward identity asso-
ciated with type I gauge invariance [11],

D2(4)s1/845(x) = 0, (22)

is satisfied since in background field quantization, type
I gauge invariance is maintained. This is further dis-
cussed in refs. [11,12].

- k+p

e)
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To determine the validity of Kallosh’s theorem, we
look at the form of the vector propagator in all three
cases [1]:

5% (p,n,*p,n,)
fI: G:,I,,(P)= (yv_ L rE

i(p2 +ie) pen
2 2
n
Puby . p,p,p ) (220
(p+n) (p-n)?
5ab (o n, tp,n,)
fir GRp)= ‘7*( T
- i(p? +ie) pn
2 2,22
n p.p.p°(n
+pp,pv 2 +a M Vp ( )), (22b)
(pn) (@-n*

O @ e

b)

)

f)

Fig. 4.
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sab (8 (pyn, +po,n,)
i(p2+ieg\ ¥ ptn

+p,,p,,n2 (1+ a))

(p-n)?

These propagators have the conventional O(1 /p2) be-
haviour for large p2 except in the axial gauge case for
a # 0. In this case, the propagator is of order ~0(1)
for large p2. Thus diagrams with more than four exter-
nal legs are not expected to be convergent in general.
Hence Kallosh’s theorem is not applicable to the back-
ground field quantization in the axial gauge for a # 0,
and the counterterms are not expected to be indepen-
dent of the gauge condition. For the other two cases,
diagrams with more than four external legs are conver-
gent. Thus Kallosh’s theorem is expected to hold in

Jur: G:f )=

(22¢)

these cases. This is exactly what was found in section 3.

The gauge dependence of the counterterms and the
0O(1) behaviour of the gauge propagator for large p?
in the axial gauge poses problems for the renormal-
izability of a YM theory in background field quantiza-
tion in that gauge because (i) the counterterms involve
the introduction of new interactions not present in the
original lagrangian; (ii) an infinite number of counter-
terms are required to make the theory finite to all or-
ders. These points are further discussed in ref. [12].
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