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It is shown that the principle of analytic continuation is well suited for regulating the spurious singularity peculiar to 
Feynman integrals in the axial gauges. This new, analytic regularization is much more powerful than the standard regulari- 
zation based on the principal-value prescription, at the same time yielding identical results compared to the latter. An ana- 
lytic representation based on a Meijer G-function is derived for the class of massless, two-point integrals fd 2 tOq [(p _ q)2 ] K 
× (q2)~(q. n)V, where n is the vector defining the axial gauge and to, K, ~t and v are continuous variables. Several important 
aspects of the representation are discussed and examples of its application are given. 

The axial gauge [ 1 ] is useful in the study of  gauge theories and quantum gravity principally because in such a 
gauge Faddeev-Popov  ghosts [2],  required to satisfy Ward identities [3],  are decoupled from other physical 
fields. The price one pays for this convenience is that Feynman integrals, in addition to having the usual ultraviolet 
(UV) and infrared (IR, for massless theories) singularities, may also contain singularities because the factor q • n 
appearing in the propagator for the massless vector boson,  

Auv(q ) cx q -2 [6 Uv -- (q unv + qvnu)/q • n + n2q uqv/( q • n) 2 ] , (1) 

may vanish in the integrand; n is the vector defining the axial gauge condition A .  n = 0. Heretofore,  the method 
that has been widely used to evaluate axial gauge integrals is the principal-value (PV) prescription [4],  where the 
limiting process 

( q . n ) - N  ~½ l i m [ ( q ' n + i r l ) - N + ( q ' n - i r l ) - N ] ,  N > ~ 2 ,  (2) 
~--*0 

is used to regulate the singularity at q • n = 0. Although the PV prescription has been demonstrated [ 1 ] to yield 
consistent results, its implementat ion is notoriously tedious and treacherous. 

In this letter we describe a method that is more elegant and powerful than the PV prescription for regulating 
axial gauge singularities, and which regulates the IR and UV singularities simultaneously. The method is based on 
the principle of  analytic continuation.  It is similar to the rarely used analytic regularization o f  Bollini et al. [5], 
who employed it originally to regulate integrals in covariant gauges. Comparing the new method to the PV prescrip- 
t ion is analogous to comparing dimensional regularizafion [6] to Paul i -Vi l lar ' s  method [7] of  regulating UV di- 
vergences. Our method for regulating the Feynman integral is a hybrid of  dimensional and analytic regularization, 
which has been used, tacit ly,  by  others [ 1,6,8]. The method also enables us to regulate integrals in the light-cone 
gauge, constrained by  n 2 = 0. 

We now describe the method.  First generalize the exponent N in (2) to a continuous variable v and express the 

1 Theoretical Physics Branch. 
2 Applied Mathematics Branch. 

320 0.031-9163/83/$ 03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



Volume 133B, number 5 PHYSICS LETTERS 22 December 1983 

factor (q • n )  v using Euler's representation 

f t - v - 1  exp [ - ( q "  n) t]  t i t .  (3) 
1 

(q " n)V - F ( - v )  0 

The treatment may be extended to all factors in the Feynman integral. The dimensionality of  (euclidean) space-  
time is then generalized to the continuous variable 260,just as in dimensional regularization. The resulting general- 
ized Feynman integral S is a function of  a set o f  continuous variables (co, u, ...). A. regularization o f  S is obtained 
provided that: (i) there exists a finite region in the (60, v, 2.) hyperspace within which S is weU<lefined, (ii) a func- 
tion S(60, v .. . .  ), can be found which is a representation of  S within the region of  (i) and which is well-defined ex- 
terior to the region. By the principle o f  analytic continuation the regulated S in the exterior region is equal to S. 
In other words, S is the representation of  S everywhere, and S in turn is the generalization of  the "primal", but di- 
vergent integrals specified originally only at the point (4 ,N,  L.). Consideration o f  "Feynman integrals" in this 
very general form leads to many other advantages in addition to the regularization of axial gauge singularities, 
these are discussed elsewhere [9]. It suffices to say that in the new method massless tadpole integrals are well-de- 
freed (they vanish), gauge invariance is preserved, there are no spurious 3'5 -anomalies, and derivatives with respect 
to exponents of  the factors can be evaluated. 

To be specific consider the class of  integrals 

S2w(  p,  n ,  60, K, I.t, V) -- f d2,  q [(p - q )2 ]K(q2)u(q . n)2~+s , (4) 

where 60, K, ~t, v are continuous and s = 0 or 1. In the limit co -~ 2 ,(K,/a, u) ~ integers(K, M, N) ,  the primal inte- 
grals S 4 (p, n -K,  M, N, s) are two-point functions in massless theories. The integral (4) is well-defined in the region 
delineated by 

e o + K + / ~ + v < 0 ,  6 0 + K > 0 ,  c o + / 2 + v + s > 0 ,  v + s > - - 1 / 2 ,  (5) 

where all variables are understood to be real. For example, in the vicinity of 60 = 2, the integral with{K,/a, v, s} = 
(--1, --1, - 1 , 1 }  is regular. It can be shown [9] that in a region o f  this point the integral, for lYl = (P"  n )2 / (p2n2) ,  
is represented by 

r r t ° ( P 2 ) a x ( n 2 ) a 2 ( P ' n ) S F ( ° t 2 + s +  X/2) r7_2,3(0,/31;1/2-sl+a0'l+°q'l+a2;) 
S 2 t o ( p , n ; K , t . t , v , S ) = F ( f l l _ O t l ) F ( f l l  _ O q ) F ( _ a o  _Oq  _ s ) F ( _ a 2 )  ,.,3, 3 y , (6) 

where the "indices" are: a 0 = - (60  + g + v + s), a 1 = co + K + g + v, c~ 2 = v, ¢31 = co + K + v. The symbol G stands for a 
Meijer G-function [10] which can be represented as either a contour integral or as a sum of generalized hypergeo- 
metric functions. The G-function in (6) is a welldefmed function for all values of  its arguments. For lYl > 1, it 
has the analytic continuation [10] 

G2,33(yl . . . ) - .yr .3 2 (  1 1 +°t2'  l + a 2 - - / 3 1 ; a 2 + S +  1/2~) 
, "~Y ~J 3',3 0 ,a2  -- 0t0,a2 -- a l  " (7) 

The right-hand side o f  (6) is therefore well-deffmed for all values of  its variables and by the principle of  analytic 
continuation can be used to represent the integral in (4) exterior to (as well as within) the region given in (5). 
Primal integrals are defined by evaluating (5) as{K,/a, v) -+ integers with e - 60 - 2 ffmite, and then allowing e to 
approach zero. We now make several comments concerning (6). 

(a). The principal-value prescription.  It is shown in detail elsewhere [9] that our analytic method and the PV 
prescription yield identical results for the inffmite and regular parts o f  the integral. A brief sketch of  the proof  is 
as follows. With the PV prescription, for v equal to an negative integer - N  - s, the right-hand side of  (4) becomes 

lim R012 a / ~ r l 2 ) f d 2 t ° q  [(p - q)2] ~ (q2)U(q. n)S [(q.  n)2 + r/2] - N - s ,  (8) 
n--,0 
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where 

N-1 
F ( - N +  1/2) l=[Io (l - N +  1/2 - r / 2  a2/ar/2) R(r/2a2/ar/2) - r ( 1 / 2 )  = (9) 

is a polynomial in the operator r/2 02/Or/2 of  orderN.  The integral in (8) can be represented by a contour integral 
which displays a string of  singularities of  leading order  (r/2) - N  +1 ]2, all of  which are precisely removed when the 
integral is operated upon by R.  The result is a regular power series in ~7 which, in the limit ~ -~ 0, becomes exactly 
equal to the right-hand side o f  (6). In short, the PV prescription takes a circuitous path to the same result as the 
analytic method.  

Co) Gauge invariance. It has been argued [ 11 ] that analytic regularization does not preserve gauge invariance. 
This argument actually only applies to the theory of  Speer [12], where the method of  analytic regularization is 
used, but not to the method [5] itself. In Speer's theory it is proposed that exponents of  the denominator of  all 
propagators in the theory,  which normally have values o f  unity, be generalized to continuous variables. In contrast, 
in our method analytic regularization is employed only to regularize divergent integrals. The distinction between 
the two approaches is subtle but  important.  Since only primal integrals occur in perturbation theory, non-integral 
exponents in fact do not appear anywhere in the theory.  Furthermore,  since it is shown(see (a) and ref. [9] } that 
the values of  primal integrals regularized with our method are identical to those with the PV prescription, which 
is known [ 1 ] to preserve gauge invariance, it follows that our method preserves gauge invariance also. 

(c) Covariantgauge. When u = s = 0, (6) gives the known result [8] 

d2tOq [(p _ q)2] K(q2)U - rrC°(P2) c°+u+K r ( w  + t~)r(co + # ) r ( - w  - t~ - / g )  
F ( -U)  V( -K)  V(2c~ +/J + K) (10) 

(d) The case/a = 0. When/a = 0 and co + x is an integer, (6) reduces to the result o f  Konetschny [ 1 ] 

7rw(pZy)w+K(p • n)2u+sp(s + ~, + 1/2)F(-6o - K -- u)P(co + K) (1 1) 
S = F ( - ~ ) P ( - u )  P(1/2 + 6o + K + u - s) 

(e) Light-cone gauge. The light-cone gauge condition, n 2 = 0 +, corresponding to a special limit o f y  ~ +~,  is 
reached by analytic continuation via (7), yielding the result 

,l['d2Wq [(P - q)2]K(q2)U(q, n)7 = 7rt°(P2) w+K+u(p "n)~-C( w +K) I'(co + U +~)  r ( - c o  - K - U) (12) 
P ( - K )  r ( - # ) r ( 2 ~  + K +/~ +~)  

As far as we know, a well-defined, Lorentz-invariant*t regularization such as (12) for this gauge has not been ob- 
tained before. The striking similarity between (12) and (10) bodes well for the simplicity of  this gauge. On the 
other hand, the gauge is also known to possess pathologies [13]. In particular the integral S(p, n; - 1 ,  - I ,  - 1 ,  1), 
but no others, regular in n 2 :/= 0 gauges, now has a (well-defined) double pole in e. This gauge requires special 
scrutiny and will be discussed in detail elsewhere [14]. 

(f)  Poles. As a generalization of  primal integrals, the right-hand side of  (6) has poles o f  O (1/e) necessarily when 
at least one o f  2 + K + M + N, - ( 2  + M + N + s) and --(2 + K) is a non-negative integer. These three cases correspond 
respectively to the original Feynman integral being UV divergent, or IR divergent at either q = 0 or q = p. The rep- 
resentation is a meromorphic function of  v and is free from axial gauge singularities at u = N. It can be shown that, 
excepting the integral S(p,  n; - 1 ,  - 1 ,  - 1 ,  1) mentioned earlier, the infinite and regular parts o f  all primal integrals 
are finite sums in powers o f y  with factors of  lny .  General results covering all primal integrals are given elsewhere 
[9]. 

(g) Tadpole and volume integrals. For a n y M  andN,  the tadpole integral 

V(p, n;M, N)  = f d 2 , O q  (q2)M(q . n ) N ,  (13) 

,1 For a Lorentz-noninvariant regularization and other references to the light-cone gauge see ref. [13]. 
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being either UV or IR divergent for all values o f  co, cannot be regulated by dimensional regularization. However, 
treated as a subclass of  S with K = 0, it is regulated by (6) and is found to be zero, the value usually assigned to it 
without proof in dimensional regularization. In fact, all integrals in the new representation vanish whenever K is a 
non-negative integer. It follows that the volume integral also vanishes: fd2Wq = O. 

(h) Two-loop integrals. Because the new method is comparatively simple, analytical and removes the axial 
gauge singularity completely, we foresee no intrinsic difficulty in applying it to two- or higher-loop calculations 
which are thought to be prohibitively complicated with the PV prescription. 

As a further demonstration of  the power of  (6) consider the subclass o f  integrals encountered in Yang-MiUs 
theories and quantum gravity [1] 

X(M,]) =fd2Wq(q2)M/[(p - q)2(q ,  n y ]  , (14) 

where M and/" ~> 1 are integers. Express/' = 2 N  + s where N - [/']2] is the largest integer not larger than ]]2 and 
s -- Modq,  2). The integral may be classified in four categories: 

( i )  M = i / >  0, 3 + i - ] ~< 0. The integral is regular: 

--rr2y(p2) l+i ~,T [ 3 + i -- ], --i, 1 I ) 
X(i ' i)=Xreg(i '])-(p "n)](1/2-N)(N+s - 1) 312 ~3/2 - N ,  2 - N -  s y ' (15) 

where F T is a truncated hypergeometric function 

T ~ (ap)lY 1 
pFq (~P ly ) - z=o(b~lp  " , (16) 

and L is the least of  the non-negative integers in the set {0, -ap, -bq}. 
(i i)M = i t> 0 , 3  + i - ] t> 0. The integral has an infinite part: 

x ( i , / )  = O(N + s - 2 )Xreg( i , / )  - ~2(p2)I+iyN+~r(1/2 - N )  V(1 + 0 
(p. n) JI'(3 + i - / )  P(N+ s) 

l+i-N-s 
x ~-~ ( - Y ) l P ( 2 + i - N + l )  

/=0 P ( l + l ) F ( 2 + i - N - s - l ) F ( 1 / 2 + s + l )  [1 / e+ ln (p2yn ) -2~ (3+i - ] )  

+ 2qJ(i - N + 2 + l) - 4(1 + l) + ff(N + s + l) - 4(1/2 + s + l)] . (17) 

(iii) M = - i  < 0 ,  3 - i - ]  > 0. The only possibility is i = j = 1,  in which case it is the integral S ( p ,  n; - 1 ,  - 1 ,  

- 1 , 1 )  mentioned earlier, and is equal to a regular infinite series representation. For lY[ <~ 1,  

rr5/2(p • n ) / ~  P(1 +l) l - 
X ( - 1 ,  1) i 

p2n2 p - ~ T I ) Y  [4(1 + 0 -- 4(3/2 +/ )  + l n y ] .  (18) 

(iv) M = - i  < 0, 3 - i -/" ~ 0. The integral has an infinite part: 

71"2(/92) 1 -iyN+sp(1/2 -- N) P(i + ] - 2) 
X(-i , j )=O(N +s - 2)Xreg(-i,j)+ (P'n)IF(i)P(N+s) 

i+N-2 
(_y)l P(i+N +s - 1 + l) [1/e + In (p2n/y) 

X Fo P(l+l)r(i~g-ss¥/-j-P~UN--S i - - l )  

- 2 f f ( i + / - 2 ) - 2 ¢ ( i + N + s -  1 +l)+ ~(N+s +l)+ 4 ( 1 + / ) +  4(1/2 + s + l ) ] .  (19) 
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The O(1/e) termsofsome specific integrals belonging to types (ii) and (iv) have been previously derived by Capper 
and Leibbrandt [1] u~ag the PV prescription and giving results equal to ours. The regular integral of (iii) has been 
reduced by van Neerven [15] and Konetschny [1] to a one-fold integral which has been shown [9] to be equiva- 
lent to the right-hand side of (18). 

Efforts to find useful representations for three- and four-point and massive two-point functions are underway. 

We thank W. Konetschny for a useful communication and G. Leibbrandt for stimulating discussions and com- 
munications. 
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