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It is shown that the principle of analytic continuation is well suited for regulating the spurious singularity peculiar to
Feynman integrals in the axial gauges. This new, analytic regularization is much more powerful than the standard regulari-
zation based on the principal-value prescription, at the same time yielding identical results compared to the latter. An ana-
lytic representation based on a Meijer G-function is derived for the class of massless, two-point integrals [ d2%g[(p — g)?1*
X (qz)“(q »n)Y, where n is the vector defining the axial gauge and w, k, u and v are continuous variables. Several important
aspects of the representation are discussed and examples of its application are given.

The axial gauge [1] is useful in the study of gauge theories and quantum gravity principally because in such a
gauge Faddeev—Popov ghosts [2], required to satisfy Ward identities [3], are decoupled from other physical
fields. The price one pays for this convenience is that Feynman integrals, in addition to having the usual ultraviolet
(UV) and infrared (IR, for massless theories) singularities, may also contain singularities because the factorq * n
appearing in the propagator for the massless vector boson,

A @) =q 2[5, — @yn, +a,n)lq ~n+nq,q,/@q 1?1, (1

may vanish in the integrand;# is the vector defining the axial gauge condition 4 < n = 0. Heretofore, the method
that has been widely used to evaluate axial gauge integrals is the principal-value (PV) prescription [4], where the
limiting process

(q-n)-N»%m[(q-nﬂn)—M(q-n—in)—Nl, N>2, (2)

is used to regulate the singularity at ¢ « n = 0. Although the PV prescription has been demonstrated [1] to yield
consistent results, its implementation is notoriously tedious and treacherous.

In this letter we describe a method that is more elegant and powerful than the PV prescription for regulating
axial gauge singularities, and which regulates the IR and UV singularities simultaneously. The method is based on
the principle of analytic continuation. It is similar to the rarely used analytic regularization of Bollini et al. [S],
who employed it originally to regulate integrals in covariant gauges. Comparing the new method to the PV prescrip-
tion is analogous to comparing dimensional regularization [6] to Pauli—Villar’s method [7] of regulating UV di-
vergences. Our method for regulating the Feynman integral is a hybrid of dimensional and analytic regularization,
which has been used, tacitly, by others [1,6,8]. The method also enables us to regulate integrals in the lightcone
gauge, constrained by n2 = 0.

We now describe the method. First generalize the exponent V in (2) to a continuous variable v and express the
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factor (g - n)” using Euler’s representation

@1y = [ 1 exe =@ e ©)
0

The treatment may be extended to all factors in the Feynman integral. The dimensionality of (euclidean) space—
time is then generalized to the continuous variable 2, just as in dimensional regularization. The resulting general-
ized Feynman integral S is a function of a set of continuous variables (w, v, ...). A. regularization of § is obtained
provided that: (i) there exists a finite region in the (w, v, .) hyperspace within which S is well-defined, (ii) a func-
tion S(cw, v, ...), can be found which is a representation of S within the region of (i) and which is well-deﬁned ex-
terior to the region. By the principle of analytic continuation the regulated S in the exterior region is equal to S.
In other words, S is the representation of S everywhere, and S in turn is the generalization of the “primal”, but di-
vergent integrals specified originally only at the point (4,4, ...). Consideration of ‘“‘Feynman integrals” in this
very general form leads to many other advantages in addition to the regularization of axial gauge singularities,
these are discussed elsewhere [9]. It suffices to say that in the new method massless tadpole integrals are well-de-
fined (they vanish), gauge invariance is preserved, there are no spurious v5-anomalies, and derivatives with respect
to exponents of the factors can be evaluated.

To be specific consider the class of integrals

Sa0 (P, 0,1, 1, 9) = [290[(p — 0)21%(g2)#(q » )P, (4)

where w, k, i, v are continuous and s = 0 or 1. In the limit w - 2 ,{k, u, v} — integers{K, M, N}, the primal inte-
grals S4(p,n-K, M, N, s) are two-point functions in massless theories. The integral (4) is well-defined in the region
delineated by

wHtk+tu+v<0, w+k>0, w+tu+v+s>0, v+s=-1/2, (5)

where all variables are understood to be real. For example, in the vicinity of w = 2, the integral with{x, u, v,s} =
{-1,—1,-1,1} is regular. It can be shown [9] that in a region of this point the integral, for |y| = (p - n)2/(p2n?),
is represented by

(6

ﬂw(pZ)al(nZ)az(p n)sl"(az +s+ 1/2) G2:3 (
S2,@,n3 8,1, 0,8) = @) — )T — o)l (~a —ay - )T (=ap)

1+a0,1+a1,1+a2;)
0,81;1/2—s ’

where the “indices” are: ag = ((w + pu+v+s),0y Tw +tk +u+v,05 =v,; =w +k +v. The symbol G stands for a
Meijer G-function [10] which can be represented as either a contour integral or as a sum of generalized hypergeo-
metric functions. The G-function in (6) is a well-defined function for all values of its arguments. For {y| > 1, it
has the analytic continuation [10]
1[1+ay, 1+ay — By 09 +s+ 1/2L)

0,7 —ag, 25—y
The right-hand side of (6) is therefore well-defined for all values of its variables and by the principle of analytic
continuation can be used to represent the integral in (4) exterior to (as well as within) the region given in (5).
Primal integrals are defined by evaluating (5) as{«, u, v} — integers with € = «o — 2 finite, and then allowing € to
approach zero. We now make several comments concerning (6).

(2). The principal-value prescription. It is shown in detail elsewhere [9] that our analytic method and the PV
prescription yield identical results for the infinite and regular parts of the integral. A brief sketch of the proof is
as follows. With the PV prescription, for » equal to an negative integer —V — s, the right-hand side of (4) becomes

1111'_r)nOR(n2 a/on?) [d2q [(p— )21 * @2(q - ¥ [(g - ) +0?] V-, (8)

G3301-) +y7G63d ( %)
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where
'(—N+1/2) : 9
2y = ” - 2
R(nZaZ/an ) AR (I-N+1/ n2 82/8172) s ®)

is a polynomial in the operator n2 92/dn2 of order N. The integral in (8) can be represented by a contour integral
which displays a string of singularities of leading order (n2)~" *1/2 all of which are precisely removed when the
integral is operated upon by R. The result is a regular power series in 17 which, in the limit > 0, becomes exactly
equal to the right-hand side of (6). In short, the PV prescription takes a circuitous path to the same result as the
analytic method.

(b) Gauge invariance. It has been argued [11] that analytic regularization does not preserve gauge invariance.
This argument actually only applies to the theory of Speer [12], where the method of analytic regularization is
used, but not to the method [5] itself. In Speer’s theory it is proposed that exponents of the denominator of all
propagatorsin the theory, which normally have values of unity, be generalized to continuous variables. In contrast,
in our method analytic regularization is employed only to regularize divergent integrals, The distinction between
the two approaches is subtle but important. Since only primal integrals occur in perturbation theory, non-integral
exponents in fact do not appear anywhere in the theory. Furthermore, since it is shown {see (a) and ref. [9]} that
the values of primal integrals regularized with our method are identical to those with the PV prescription, which
is known [1] to preserve gauge invariance, it follows that our method preserves gauge invariance also.

(c) Covariant gauge. When v = s = 0, (6) gives the known result [8]

w X _ w(pZ)wﬂﬁx [‘(w + K)F(w + /.1)1"(—(.0 —k _IJ)
d? Q[(p _q)2] (q?.)u u F(—[.L)F( K) F(2w+/.1+r<) (10)

(d) The case u = 0. When u = 0 and w + « is an integer, (6) reduces to the result of Konetschny [1]

ﬂw(p2 Ytk (p e n)2vST(s + v + 1/2)N(—w — k — »)D(w + k)

M) (LA +tw+k +v —y3) (11)

(e) Light-cone gauge. The light-cone gauge condition, n* = 07, corresponding to a special limit of y > +eo, is
reached by analytic continuation via (7), yielding the result

d2w — 2142 . F=1Tw(p2)w+x+#(p-n)FF(w+K)F(w+”+T;)[‘(_w_K_H)‘
[a29q1( - 92 14@2a - m) A N L

As far as we know, a well-defined, Lorentz-invariant ¥! regularization such as (12) for this gauge has not been ob-
tained before. The striking similarity between (12) and (10) bodes well for the simplicity of this gauge. On the
other hand, the gauge is also known to possess pathologies [13]. In particular the integral S(p, n; —1, -1, —1, 1),
but no others, regular in n2 # 0 gauges, now has a (well-defined) double pole in e. This gauge requires special
scrutiny and will be discussed in detail elsewhere [14].

(f) Poles. As a generalization of primal integrals, the right-hand side of (6) has poles of O(1/€) necessarily when
at leastone of 2+ K+M+ N, -(2+M + N +5) and —(2 + K) is a non-negative integer. These three cases correspond
respectively to the original Feynman integral being UV divergent, or IR divergent at either ¢ = 0 or g = p. The rep-
resentation is a meromorphic function of » and is free from axial gauge singularities at ¥ = V. It can be shown that,
excepting the integral S(p, n; —1, —1, —1, 1) mentioned earlier, the infinite and regular parts of all primal integrals
are finite sums in powers of y with factors of In y. General results covering all primal integrals are given elsewhere
[9].

(g) Tadpole and volume integrals. For any M and V, the tadpole integral

T(p, n;M, N) = [ d2q (q2M(g - n)V , (13)

*1 por a Lorentz-noninvariant regularization and other references to the light-cone gauge see ref. [13].

(12)
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being either UV or IR divergent for all values of w, cannot be regulated by dimensional regularization. However,
treated as a subclass of § with k = 0, it is regulated by (6) and is found to be zero, the value usually assigned to it
without proof in dimensional regularization. In fact, all integrals in the new representation vanish whenever « is a
non-negative integer. It follows that the volume integral also vanishes: fd2wgq =0,

(h) Two-loop integrals. Because the new method is comparatively simple, analytical and removes the axial
gauge singularity completely, we foresee no intrinsic difficulty in applying it to two- or higher-loop calculations
which are thought to be prohibitively complicated with the PV prescription.

As a further demonstration of the power of (6) consider the subclass of integrals encountered in Yang—Mills
theories and quantum gravity [1]

XM, )= [a20q @M - 0@ Y], (14)

where M and j > 1 are integers. Express j = 2N + s where NV = [j/2] is the largest integer not larger than j/2 and
§ =Mod(f, 2). The integral may be classified in four categories:
(i)M=i>0,3 +i—j<0.The integral is regular:

~n2y(p2)Lti T(3+i—j,—i,1
X( /)= Kggle )= —— Galgs® ). 1s
=Xt D= s — 1) ¥ 2\32-N,2-N 5|7 (1
where FT is a truncated hypergeometric function

L !

a @y
FT( p y) = p , 16
P74 \p, =Y (16)

and L is the least of the non-negative integers in the set {0, —q,,, —bq}.
(ii)M=i>0,3+i—j>0.The integral has an infinite part:
m2(p2)HpNB(1/2 — N)T(1 + 1)

X, /)=00V +s5s—2 7)) —
GN=0 +s )Xieg (. 1) (p*n)/T@B+i—j)I(NV +5)

1+i-N—s
< (—yYrQ+i-N+10)

5 CA+DTQ2+i—-N-s—-DL(12+s+]) [l/e+In(p2ym) —2¢(3 +i—J)

2P —N+2+ D) =Y+ D+ YN +s+ D — Y12 +s+D)] . 17

(iii)M = —i <0,3 — i —j > 0.The only possibility isi =/ = 1, in which case it is the integral S(p, n; —1, —1,
—1, 1) mentioned earlier, and is equal to a regular infinite series representation. For |y| <1,

m512(p +m) 53 T(1+1)

X=1,1)=- a2 19 DGR +D)

YIWA+D = y(3/2+D +1ny]. (18)

(ivyM=-i<0,3 —i—j<0.The integral has an infinite part:
72 (p2) -yNSI(1/2 — NYD(i +] - 2)
(0 - nY TNV +5)

X(—4,))=0(N +s — 2)Xreg(_ir N+

i+N-2
(VD +N+s —1+1)
X ,‘3 TA+DT(/2+s +DIG+N—1=1) [1/e+1n(puly)

—2Y(i+] —2) =2t N+s— 1+ D+ yWN+s+ D+ Y(1+ D+ Y(1/2 +s+1)]. (19)
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The O(1/€) termsof some specific integrals belonging to types (ii) and (iv) have been previously derived by Capper
and Leibbrandt [1] using the PV prescription and giving results equal to ours. The regular integral of (iii) has been
reduced by van Neerven [15] and Konetschny [1] to a one-fold integral which has been shown [9] to be equiva-
lent to the right-hand side of (18).

Efforts to find useful representations for three- and four-point and massive two-point functions are underway.

We thank W. Konetschny for a useful communication and G. Leibbrandt for stimulating discussions and com-
munications.
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