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An analytic technique for regulating the infinities of nonlinear equations of quantum gauge theories is described. The 
technique is ideally suited for dealing with high-order effects characterized by high powers of logarithms. The regulated 
equation, possessing high order poles with nonlogarithmic residues, is renormalizable. 

Dimensional regularization [1 ] has been extremely 
useful for the renormalization program of  gauge theo- 
ries. The principal virtues of  the method are: (i) it 
preserves gauge invariance and (ii) it analytically regu- 
lates the divergences in Feynman integrals so that they 
appear as poles in the w-plane at the point co = 2, 
where 26o is the generalized dimension of  euclidean 
space-t ime.  Although the renormalization program 
[2] for perturbation theories is by now well under- 
stood and conventional, the same is not true for non- 
perturbation theories. These theories are needed when 
perturbation does not work, either because the cou- 
pling is too strong, or the vacuum is nontrivial, or for 
some other reason. In lattice theories [3], the ultra- 
violet divergence is evaded by keeping the lattice 
spacing finite. However, the problem of  the continuum 
limit, where the divergence re-emerges, is unresolved. 
A typical approach to a nontrivial vacuum [4] is the 
semiclassical one, where effects such as the vacuum 
polarization containing ultraviolet divergences are sup- 
pressed. 

Another way of  studying a nonperturbation theory 
is to seek solutions to nonlinear integral equations 
derived from the theory. An example of  considerable 
current interest is the truncated Schwinger-Dyson 
equation [5] for the gluon propagator in quantum 
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chromodynamics. Nonlinear equations, by themselves, 
are not peculiar to field theories since they are en- 
countered in innumerable classical problems. The fea- 
ture that sets the field-theoretical equation apart from 
classical ones is the presence of  ultraviolet and other 
divergences of the integrals in the equation. If  the diver- 
gent integrals could be easily regulated [6] (thereby al- 
lowing the equation to be renormalized), then the 
equation would be reduced to a classical form, to which 
a conventional method of  analysis could be applied. 

In this letter we introduce a method which should 
enable one to regulate analytically a class of  field equa- 
tions. The equations may include effects corresponding 
to any order of  loop-expansion in perturbation theory. 
Furthermore, we demonstrate that the regulated equa- 
tion is renormalizable. 

The field theory we have in mind is the Yang-Mills 
sector of  quantum chromodynamics with massless 
gluons. We work in an axial gauge [7,8], defined by 
the condition A • n = 0, where A is the gauge field and 
n is an arbitrary auxiliary vector. Owing to the "spuri- 
ous" singularity that appears in such a gauge, Feynman 
integrals in an axial gauge are notoriously difficult to 
evaluate [8]. Nevertheless, we will handle this task 
analytically. The motivation for working in an axial 
gauge is that the Faddeev-Popov ghosts [9] are de- 
coupled so that the problem for the gluon may be 
reduced to solving a single equation, rather than a set 
of  coupled ones. 
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To demonstrate the proposal explicitly, consider 
the truncated Schwinger-Dyson equation [5] for the 
reduced gluon propagator - the two-point function Z 
with momentum p, 

z - l ( p ,  n) = 1 +g2 f d4qK(q,p,  n)Z(q, n) 

+ integral with integrand quadratic in Z .  (1) 

Here, n is the auxiliary vector for the axial gauge and 
K is a known kernel [5] which need not be specified 
for now, Other than the ultraviolet divergence, the 
integral in (1) may suffer from infrared divergence, 
resulting from the masslessness of  the gluon, when 
either q = 0 or p = q, and from the spurious axial gauge 
singularity, when the contained factor q • n vanishes. 
If  (1) were an ordinary integral equation, we might be 
able to solve it by expanding Z in independent func- 
tions (or powers) of  the three scalars p2, p .  n and n 2 
thereby reducing (1) to a set of  algebraic equations for 
the coefficients in the expansion. The task at hand is 
more complicated than this for two reasons: (i) the in- 
tegrals in (1) are divergent and must first be regulated, 
and (ii) the divergence of the integral implies that its 
regular part contains factors of  In p2, In p - n and 
inn  2. Since the equation is nonlinear, one must conse- 
quently expand Z in powers of  these logarithms - Z is 
a "polylog" in the scalars. (The fact that Z -1 , but not 
Z, appears on the left-hand side o f ( l )  is a'source of  
complication. The expansion envisaged is at least viable 
for small p2. Otherwise, techniques such as continuous 
fractions might have to be invoked.) Consequently in- 
tegrals with integrands containing polylogs must be 
regulated and evaluated. That physical amplitudes con- 
tain polylogs is well known: divergent N-loop integrals 
generate logarithms of order N. 

These considerations suggest that for a massless m- 
point function (m ~> 2), the generalized Feynman inte- 
gral with external momenta  Pi (i = 1, . . . ,  rn - 1), 

S2to((pi }, n; (Ki}, s) = f d2"°q (q. n)2V+S(q2) u 

m-1 
X rI [(pi - q)2]~i+2 (2) 

i=1 

be studied, where I( i (with ~¢1 - u and g2 ~/d) and co 
are continuous variables and s = 0 or 1. The integral 
is free of  all singularities if the (real parts of  the) ex- 
ponents lie within the region delineated by 

m+l 

al  - - w +  Z )  K ; < 0 ,  v + s  > - } ,  (3a) 
i=1 

¢ o + / ~ + u + s > 0 ,  6o+~¢i<0 ( i = 3 , . . . , m + l l ~ b )  

This region exists, at least in the vicinity of  co = 2, 
~¢i = - 1 ,  s = 1. To regulate S, it is therefore sufficient 
to find a representation of  S in the region defined by 
(3); for variables exterior to the region the integral is 
well-defined by analytic continuation [6]. Integrals 
with logarithmic integrands are evaluated using "expo- 
nent derivatives" defined as: 

m+l 

S ~ ] ( . . . )  = F] (d/dtci)Jis2w(...) 
i=1 

= fd2OJq (q. n)2U+S(q2)U in / l (q ,  n) 2 ln/2(q 2) 

m - 1  

X I-I ( [ (p i  - q)21•i+2 lnJi+2(p i - q)2},  (4) 
i=1 

plus a prescription to be given shortly. 
To evaluate (2), each factor in the integrand is 

replaced by Euler's representation for the gamma func- 
tion 

oo 

aK = 1 f F ( ' K )  - -  t - ,  - l e  -at dt ,  (5) 

0 

after which the q-integral assumes a known form al- 
lowing the integration to be carried out [8]. The next 
step is to apply the transformation 

i -1  

=~kT"l, t¢i=X'r i 1~=1 (1 - - r l )  ( i=2  . . . . .  m ) ,  K 1 

m 

~¢m+l = k I-I (1 - r l ) ,  (6) 
/=1 

with X varying from 0 to 0% and each of  the ri 's varying 
from 0 to 1. The jacobian determinant is xm i iml  (1 

- 7"i)m-i. Of the m + 1 parametric integrations, two 
can be immediately evaluated: the k(scale)-integration 
is trivially performed using (5), thereby isolating the 
factor [ ' ( - a  1) containing the pole for the ultraviolet 
divergence. The z 1-integration can also be carried out, 

398 



Volume 132B, number 4,5,6 PHYSICS LETTERS 1 December 1983 

regulalating the axial gauge singularity. What remains 
is a nontrivial, (m - 1)-fold integral in which reside the 
infrared singularities corresponding to (3b). 

For m = 2, the case relevant to the two-point func- 
tion o f ( I ) ,  a representation is [K -~ K 3 in (2)]: 

S 2 w ( p ,  n; •, p., p, s) 

nC°(p2)Cq(nZ)a2(p • n)SP(a2 + s + 1/2) 

F(/31 --O'O)F(/31 -- a 1 ) F ( - a  0 - a l - s ) P ( - a 2 )  

G 2 3 [  [ l + a 0 '  /3;l+al' 1/2-1+a2s) X 3:3 ~y ]0 ;  , (7) 

where y = ( p  . n)2 / ( p 2 n 2 ) ,  a 0 = - (03  + la + u + s), ot 1 

= co + K +/.t + u, ~2 = P,/31 = 03 + K + u and the symbol 
G stands for a Meijer G-function [lOJ, a well-defined 
function of all its variables and parameters. 

The regularization method used here is different 
from the standard dimensional regularization [I ] in 
two important aspects: (a) In addition to the dimension 
of  space-t ime (203), the exponents K i are generalized 
to continuous variables; this is mandatory in order that 
(2) be meaningful. (b) The axial gauge singularity, off- 
ginating from the factor (q • n)  2~'+s is regulated analy- 
tically rather than by the widely used principal-value 
prescription [11 ]. The power and many advantages of  
this new, hybrid dimensional and analytic [12] method 
over the standard one have been detailed elsewhere 
[13]. 

The right-hand side of  (7) has poles when the in- 
dices a l ,  c~ 0 or ot 2 - / 3 1  are nonnegative integers, corre- 
sponding respectively to the ultraviolet and the in- 
frared divergences - at q2 = 0 and ( p  - q)2 = 0 - o f  
the original integral. Significantly, it does not suffer 
from axial gauge singularities. If the limits K,/a, p 
-+ integers are taken before e --=- w -2 is allowed to ap- 
proach zero, then all poles are o f  O(1/e). It has been 
shown [131 that the standard method [1 1] gives results 
identical to (7), for both the infinite and the regular 
part of  the integral. The properties of  representation 
(7) have been discussed in detail in ref. [13]. 

We now discuss the renormalizability o f  (1), when 
(7) and its exponent derivatives as defined by (4) are 
used to evaluate integrals generated by the expansion 
of  Z in polylogs. As the criterion for renormalizability 
we demand that all infinite parts be a series of  multiple 
(or single) poles in e, with residues free o f  logarithms. 

This criterion ensures that the infinite parts can be 
absorbed into renormalization constants and then be 
cancelled by local counterterms [2]. It is easily seen 
that the poles of  (7) do not have logarithmic residues, 
a characteristic of  all one-loop integrals. Before giving 
a prescription ensuring that exponent derivatives, to all 
orders, do not generate logarithmic infinite parts we 
first give a heuristic argument indicating such a result 
is to be expected. In perturbation theories, logarithmic 
infinite parts are generated by overlapping divergencies 
in multi-loop integrals. They are eliminated, according 
to a prescription o f ' t  Hooft and Veltman [1], by sub- 
tracting (N - 1)-loop integrals inserted with appropriate 
counterterms from N-loop integrals. For example, a 
two-loop integral with its subtraction appears schem- 
atically as 

1 
f d2~°q ( . . . )  f d2~°q f d2~Oq'(...)- e 

= fd2'°q ( . . . ) [ (q2 )e / e  - 1/el , (8) 

where divergent integrands are implicit, In the limit 
e ~ 0 the square bracket is similar to an exponent de- 
rivative: lim~__,0 [d(q2)~/dK] = in q2. Although the 
right-hand side of (8) is not really a derivative because 
the limit e -+ 0 can be taken only after the integration, 
the similarity between (8) and (4) is nevertheless sug- 
gestive. 

Because of  the inherent ambiguities of  generalizing 
a function from a set of  integers, the definition of  the 
exponent derivatives in (4) is incomplete unless a lim- 
iting process is prescribed. Our prescription is based 
on the observation that the poles associated with the 
indices dO, a 1 and a 2 --/31 are of  order l / e 0 , - 1 ] e  1 
and 1/e3, respectively in three independent e variables. 
In the limit (K,/~, u) ~ integer they become equal (to 
l/e); this can be expressed as 

l i e  i = --1/e I + o i / e l e  i , i = 0, 3 . (9) 

The variable o i =- e 1 + e i depends on (K,/a, u) but not 
on 03, and vanishes in the limit (K,/a, u) -+ integers. In 
our prescription, the O(ai)  term in (9) is discarded. 
This term has no bearing on primal integrals (since it 
is equal to zero) but effects exponent derivatives and 
is related to the infrared divergence. Now the expo- 
nent derivatives are uniquely defined [131. They are 
independent of  the order o f  differentiation and gener- 
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ate renormalizable high-order poles and their associat- 
ed logarithms only via the identity 

(d/de) N [(p2)e /e] = (_)N N! /eN + I 

Mascheroni constant and 

ylU(m + l) 
7 
- m  v . .  r ( m  + t / 2 + l )  /=0 

+ [ lnN+l(p2) l / (N+ 1) + O(e ) ,  (10) 

in which poles in e with logarithmic residues are mani- 
festly absent. 

To illustrate the technique consider the integral 

I i=  f d2~O q ( P ' q ) [ P ' ( P - q ) ] [ q ' ( P - q ) ]  (11) 
(p  _ q)2q2(q ,  n ) [ ( p  - q)"  nl 

encountered in the solution of  (2) in the infrared lim- 
it and at the "one-loop" level. The integral is simpli- 
fied by evaluating partial fractions 

1/(q . n ) [ ( p -  q ) -  n] = ( l i p .  n)[1/q . n + 1 / ( p - q ) ' n l  

and changing variable 

q-+ p - q 

when necessary. The numerator in (11) can be re-ex- 
pressed as 

( p ' q ) [ P "  ( P -  q ) ] [q .  ( P -  q)] 

= ~_(p6 _ p4q2 _ p2q4 + q6) + O( (p  - q )2 ) .  (12) 

Terms with at least one positive power of  (p - q)2 
may be ignored because all primal integrals with 
~> 0 are identically zero [ 13 ]. The integral I 1 can now 
be expressed as a sum of  nonzero S-integrals: 

I 1 = [ 1 / 4 ( p ' n ) ]  [ p 6 S ( - 1 , - 1 ,  - 1 ,  +1) 

- p 4 S ( - 1 ,  0 , - 1 ,  1 ) -  p 2 S ( - 1 ,  1 , - 1 ,  1) 

- S ( - 1 ,  2, - 1 ,  1)l, (13 )  

where S(K, I.t, v, s) - S2co(p, n; r,  ~, u, s). These inte- 
grals are found [14] to be 

p 6 S ( - 1 ,  - 1 ,  - l, 1) = SoZ 1/2 , (14a) 

p g s ( - 1 ,  0, - 1 ,  1) = Soa 0 , (14b) 

p 2 S ( - 1 ,  1 , - 1 ,  1 ) = S 0 ( 1 -  2y)a  0 , (14c) 

S ( - 1 , 2 , - 1 ,  1) =S0( [1  - (16/3)y(1 - y ) l a  0 

+ (8 /9)y  (1 - y ) } ,  (14d) 

where S O = - 2 7 r  t°p4(p • n)/n 2, a 0 = 1/e + ln(4p2y) 
+ 3' - 2, e = w - 2, 3' = 0.577 ... is the Eule r -  

X [ i f ( m + / ) -  i f ( m +  1 / 2 + l ) + l n y l  . (15) 

Substitution of (14) into (13) yields 

i1 = (Trtopa /2n2)[(1 + l~y _ !~y2)a  0 

1 - ~y (1  - y ) -  ~Z1]  • (16 )  

The integral happens to have a f ini tey -~ 0 limit (corre- 
sponding to the special gauge [15] p "  n = 0, p2 and n 2 
finite): 

lira I1 = (n2p4/2n2)[1/e + In pZTr + 3  ̀
y--.0 

+ O ( y  lny ,  Y)I (17) 

which is, however, not a general property of  integrals 
obtained from (2). 

Another integral [ 15 ] that happens to be ultraviolet- 
and infrared-finite but is singular at y = 0 is [ 16] 

12 f 2w p2q2 _ (p . q)2 
= d q ( p _ q ) Z q Z ( q . n ) 2 [ ( p _ q ) . n ]  2 

= - ~ - ( p .  n) -2  [p4S( -1 ,  - 1 ,  - 1 , 0 )  

- 2 p 2 S ( - 1 , 0 , - 1 , 0 )  + S ( - 1 ,  1 , - 1 , 0 ) ]  

- ( p .  n) -3 [ p 4 S ( - 1 , - 1 ,  - 1 ,  1) 

- 2 p 2 S ( - 1 , 0 , - 1 ,  1 ) + S ( - I ,  1 , - 1 ,  1)] 

= (TrZ/n4)(4 + Z 2 ) ,  (18) 

where 

lira 12 = (47r2/3n4)(-!~ + In 4y) + O ( y  lny ,  y )  .(19) 
y--,0 

An example of integrals with higher powers of  1 / 

q "n is 

fd2,~q [q2(p _ q)2(q ,  n)4]-1 = (8rr2/3pan 4) 

(20) 
× {(1 - 4y)[1/e +ln(p2rr/4y) + 3`] - 1/4y - 4 + ~y} 

As examples of  exponent derivatives we consider 
those of S ( - 1 , 0 ,  - 1 ,  1). From (4), (9) and (10), the 
results are 
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d s ( - 1  0 , - 1  1 ) = S  l [ a  1 +12rr 2 + 2 1 n ( 4 y p 2 ) - 4 ]  , 
d• ' ' (21 a) 

~ p S ( - 1 , O ,  - 1 ,  1) = S  1 [a l - a 0 - ~ r  2 + 2 1 n p  2 

1 - -  I ln24y + ~yZ] + l n 4 y  +~  

( d  d l n n 2 ) S ( - 1  0 , - 1 , 1 )  
~ dp 

(21b)  

= fd2OOq In [(q" n)2/q2n 2 ] 
~ - - .  ~ - ~  = S  1 [(1 + In 4)a  0 

' l n24y  ~-yZ, } (21c) +~-Tr 2 - 4 + 2 1 n 4 y - ~  - , 

where S 1 = 2rrW(p • n)/n2,al  = 1/e 2 + 7/e  + 3'2/2 
1 -- ~ ln2(4yp  2) and 

2=v~ ~ Ytr(3 + l)r(1 + t) 
/=0F(2+l)P(5/2+l) [~(3+l)+ff(1 +l) 

- 6(2 + 1 ) -  ~(s/2 +1) +lny]  (21d) 

A program has been wri t ten [14],  using 
SCHOONSCHIP [17],  to evaluate all primal integrals 
(7) and their exponen t  derivatives of  any  order [14]. 
Work on solving the Schwi n g e r -Dy s o n  equat ion  using 

techniques described here is under  way. 
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