Volume 132B, number 4,5,6

EXPONENT DERIVATIVES:

PHYSICS LETTERS

1 December 1983

AN ANALYTIC TECHNIQUE FOR REGULATING NONLINEAR FIELD EQUATIONS

H.C. LEE! and M.S. MILGRAM 2

Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada KOJ 1J0

Received 13 June 1983
Revised manuscript received 5 August 1983

An analytic technique for regulating the infinities of nonlinear equations of quantum gauge theories is described. The
technique is ideally suited for dealing with high-order effects characterized by high powers of logarithms. The regulated
equation, possessing high order poles with nonlogarithmic residues, is renormalizable.

Dimensional regularization [1] has been extremely
useful for the renormalization program of gauge theo-
ries. The principal virtues of the method are: (i) it
preserves gauge invariance and (it) it analytically regu-
lates the divergences in Feynman integrals so that they
appear as poles in the w-plane at the point w =2,
where 2c is the generalized dimension of euclidean
space—time. Although the renormalization program
[2] for perturbation theories is by now well under-
stood and conventional, the same is not true for non-
perturbation theories. These theories are needed when
perturbation does not work, either because the cou-
pling is too strong, or the vacuum is nontrivial, or for
some other reason. In lattice theories [3], the ultra-
violet divergence is evaded by keeping the lattice
spacing finite. However, the problem of the continuum
limit, where the divergence re-emerges, is unresolved.
A typical approach to a nontrivial vacuum [4] is the
semiclassical one, where effects such as the vacuum
polarization containing ultraviolet divergences are sup-
pressed.

Another way of studying a nonperturbation theory
is to seek solutions to nonlinear integral equations
derived from the theory. An example of considerable
current interest is the truncated Schwinger—Dyson
equation [5] for the gluon propagator in quantum
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chromodynamics. Nonlinear equations, by themselves,
are not peculiar to field theories since they are en-
countered in innumerable classical problems. The fea-
ture that sets the field-theoretical equation apart from
classical ones is the presence of ultraviolet and other
divergences of the integrals in the equation. If the diver-
gent integrals could be easily regulated [6] (thereby al-
lowing the equation to be renormalized), then the
equation would be reduced to a classical form, to which

a conventional method of analysis could be applied.

In this letter we introduce a method which should
enable one to regulate analytically a class of field equa-
tions. The equations may include effects corresponding
to any order of loop-expansion in perturbation theory.
Furthermore, we demonstrate that the regulated equa-
tion is renormalizable.

The field theory we have in mind is the Yang—Mills
sector of quantum chromodynamics with massless
gluons. We work in an axial gauge [7,8], defined by
the condition 4 * n =0, where A is the gauge field and
n is an arbitrary auxiliary vector. Owing to the “‘spuri-
ous” singularity that appears in such a gauge, Feynman
integrals in an axial gauge are notoriously difficult to
evaluate [8]. Nevertheless, we will handle this task
analytically. The motivation for working in an axial
gauge is that the Faddeev—Popov ghosts [9] are de-
coupled so that the problem for the gluon may be
reduced to solving a single equation, rather than a set
of coupled ones.
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To demonstrate the proposal explicitly, consider
the truncated Schwinger—Dyson equation [5] for the
reduced gluon propagator — the two-point function Z
with momentum p,

Z-Ypn)=1+g} [d*q K p, M)Z( n)

+ integral with integrand quadratic in Z . )

Here, n is the auxiliary vector for the axial gauge and
K is a known kernel [5] which need not be specified
for now. Other than the ultraviolet divergence, the
integral in (1) may suffer from infrared divergence,
resulting from the masslessness of the gluon, when
either ¢ = 0 or p = q, and from the spurious axial gauge
singularity, when the contained factor ¢ * n vanishes.
If (1) were an ordinary integral equation, we might be
able to solve it by expanding Z in independent func-
tions (or powers) of the three scalars p2, p * n and n?
thereby reducing (1) to a set of algebraic equations for
the coefficients in the expansion. The task at hand is
more complicated than this for two reasons: (i) the in-
tegrals in (1) are divergent and must first be regulated,
and (ii) the divergence of the integral implies that its
regular part contains factors of In p2, In p - n and
In n2. Since the equation is nonlinear, one must conse-
quently expand Z in powers of these logarithms — Z is
a “polylog” in the scalars. (The fact that Z-1, but not
Z, appears on the left-hand side of (1) is a'source of
complication. The expansion envisaged is at least viable
for small p2. Otherwise, techniques such as continuous
fractions might have to be invoked.) Consequently in-
tegrals with integrands containing polylogs must be
regulated and evaluated. That physical amplitudes con-
tain polylogs is well known: divergent N-loop integrals
generate logarithms of order V. -

These considerations suggest that for a massless m-
point function (m = 2), the generalized Feynman inte-
gral with external momentap; (i= 1,...,m — 1),

S2,(pid ns (K5}, 5) = [ d29q (g - n)2r¥s(g?y

m—1
X Ul [(p; — q)?]%i*2 @)

be studied, where ; (with k; =vand k, =p)and w
are continuous variables and s =0 or 1. The integral
is free of all singularities if the (real parts of the) ex-
ponents lie within the region delineated by
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m+l1

a15w+§xi<0, vHs >3, (3a)
wtptv+s>0, w+k,<0 (@=3,....m+1).
‘ (3b)
This region exists, at least in the vicinity of w =2,
k; =~1,5=1.To regulate S, it is therefore sufficient
to find a representation of S in the region defined by
(3); for variables exterior to the region the integral is
well-defined by analytic continuation [6]. Integrals
with logarithmic integrands are evaluated using “‘expo-
nent derivatives” defined as:

m+1

s93C0= I @Sy, ()

= [d2wq (g - 2 *5(@2) Infi (g - )2 Inf2(g2)

m-—1

X z'l;ll {[(pi - q)2]"i+2 1nfi+2(pi . q)z} i @)

plus a prescription to be given shortly.

To evaluate (2), each factor in the integrand is
replaced by Euler’s representation for the gamma func-
tion

1 o0

K = —p—lea—at 4 5

a (%) f t e t, (5)
0

after which the g-integral assumes a known form al-

lowing the integration to be carried out [8]. The next

step is to apply the transformation

i—1
K1=)\T1, Kl'=)\Ti II;II (I—Tl) (i=2,...,m),

RKpp+1 = )\ll;ll (-1, (©)

with X varying from 0 to oo, and each of the 7;’s varying
from O to 1. The jacobian determinant is N I17%, (1

— i)m‘i. Of the m + 1 parametric integrations, two
can be immediately evaluated: the A(scale)-integration
is trivially performed using (5), thereby isolating the
factor I'(—a; ) containing the pole for the ultraviolet
divergence. The 7, -integration can also be carried out,
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regulalating the axial gauge singularity. What remains
is a nontrivial, (;m — 1)-fold integral in which reside the
infrared singularities corresponding to (3b).

For m =2, the case relevant to the two-point func-
tion of (1), a representation is {k = k5 in (2)]:

)P nik, p, v, 8)

@@ (p s aPT(e +s+1)2)
T T(B; —ag)D(By — o) (—ag — ) ~ )T (—a,)

(N

1+ay, 1+a, 1+a2)

23 (y
3\ o, B; 12 —s

where y = (p - n)?/(p?n2),0p = ~(w+p +v +s), o
Swtktptv,a,=v § =wtk+vand the symbol
G stands for a Meijer G-function [10], a well-defined
function of all its variables and parameters.

The regularization method used here is different
from the standard dimensional regularization [1] in
two important aspects: (a) In addition to the dimension
of space—time (2w), the exponents k; are generalized
to continuous variables; this is mandatory in order that
(2) be meaningful. (b) The axial gauge singularity, ori-
ginating from the factor (g * n)2¥*S is regulated analy-
tically rather than by the widely used principal-value
prescription [11]. The power and many advantages of
this new, hybrid dimensional and analytic [12] method
over the standard one have been detailed elsewhere
[13].

The right-hand side of (7) has poles when the in-
dices ay, & Or ap — B are nonnegative integers, corre-
sponding respectively to the ultraviolet and the in-
frared divergences — at g2 =0 and (p — q)> =0 — of
the original integral. Significantly, it does not suffer
from axial gauge singularities. If the limits k, g, »
~> integers are taken before € = w2 is allowed to ap-
proach zero, then all poles are of O(1/€). It has been
shown [13] that the standard method [11] gives results
identical to (7), for both the infinite and the regular
part of the integral. The properties of representation
(7) have been discussed in detail in ref. [13].

We now discuss the renormalizability of (1), when
(7) and its exponent derivatives as defined by (4) are
used to evaluate integrals generated by the expansion
of Z in polylogs. As the criterion for renormalizability
we demand that all infinite parts be a series of multiple
(or single) poles in €, with residues free of logarithms.
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This criterion ensures that the infinite parts can be
absorbed into renormalization constants and then be
cancelled by local counterterms [2]. It is easily seen
that the poles of (7) do not have logarithmic residues,
a characteristic of all one-loop integrals. Before giving
a prescription ensuring that exponent derivatives, to all
orders, do not generate logarithmic infinite parts we
first give a heuristic argument indicating such a result
is to be expected. In perturbation theories, logarithmic
infinite parts are generated by overlapping divergencies
in multi-loop integrals. They are eliminated, according
to a prescription of 't Hooft and Veltman [1], by sub-
tracting (N — 1)-loop integrals inserted with appropriate
counterterms from N-loop integrals. For example, a
two-loop integral with its subtraction appears schem-
atically as

NN
[a2eq fdz“’q(...)—; [a20q(.)

= [@2eq (Dl@Dele - 1e) ®)

where divergent integrands are implicit. In the limit
€ ~ 0 the square bracket is similar to an exponent de-
rivative: lim, _, [d{g2)*/dx] = In g2. Although the
right-hand side of (8) is not really a derivative because
the limit € - 0 can be taken only after the integration,
the similarity between (8) and (4) is nevertheless sug-
gestive.

Because of the inherent ambiguities of generalizing
a function from a set of integers, the definition of the
exponent derivatives in (4) is incomplete unless a lim-
iting process is prescribed. Qur prescription is based
on the observation that the poles associated with the
indices &, «; and a; — B are of order 1/¢;, —1/¢;
and 1/ez, respectively in three independent € variables.
In the limit (k, u, v) - integer they become equal (to
1/€); this can be expressed as

Ve =—l/ey +ojleyg, i=0,3. ©)

The variable 0; = €; +¢; depends on (k, u, ») but not
on w, and vanishes in the limit (x, u, v) - integers. In
our prescription, the O(o;) term in (9) is discarded.
This term has no bearing on primal integrals (since it
is equal to zero) but effects exponent derivatives and
is related to the infrared divergence. Now the expo-
nent derivatives are uniquely defined [13]. They are
independent of the order of differentiation and gener-
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ate renormalizable high-order poles and their associat-
ed logarithms only via the identity

(d/de)N [(p?)¢/e] = ()N N1[eN*]

+ [InV*1(p2)]/(V + 1) + O(e) (10)

in which poles in € with logarithmic residues are mani-
festly absent.
To illustrate the technique consider the integral

- (r-lp-(p-Pllg* (p - )]
1= ] q2w 11
e S o
encountered in the solution of (2) in the infrared lim-

it and at the “one-oop” level. The integral is simpli-
fied by evaluating partial fractions

(g -mip—q)-nl=/p-mllg-n+1/(p-q)n]

and changing variable

q=>p—4q
when necessary. The numerator in (11) can be re-ex-
pressed as

(p-)lp(p—- Pl (p—a)l
=1(pb — p*q? - p2q* +q®) + O((p — 9)?) . (12)

Terms with at least one positive power of (p — q)?
may be ignored because all primal integrals with

> 0 are identically zero [13]. The integral /; can now
be expressed as a sum of nonzero S-integrals:

Il = [1/4(p 'l’l)] [p6S(‘l) ‘1’ _1’ +1)
—p*S(~1,0,-1,1) = p2S(-1,1,-1,1)
—8(-1,2,-1, 1], 13)

where S(k, i, v, §) = S, (p,n; K, p,v,s). These inte-
grals are found [14] to be

p8S(—1,-1,-1,1)=5,Z,/2, (14a)
p*S(-1,0,-1,1)=S4qa, , (14b)
p2S (-1, 1, -1, 1) =Sy(1 — 2¥)aq , (14c)
S(~1,2,-1,1)=Sp{[1 - (16/3)y(1 = »)]ag

+ @9y -1}, (14d)

where So = —21%p4(p - n)/n?, ay = 1/e +In(4p2y)
+y-2,€e=w—2,y=0577 ...1s the Euler—
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Mascheroni constant and

__ Sy +D)
Zm _\/7—',:2%) T(m + 12 +1)

X[ym+D—ym+12+D+Iny]. (15)

Substitution of (14) into (13) yields
Iy = (@op* /20D [(1 + Ty — $yHag
- -»-3Z]. (16)

The integral happens to have a finite y > 0 limit (corre-
sponding to the special gauge [15] p *n =0, p? and n?
finite):

lim f;= (n2p*/2n?){l/e +Inplm+y
y=0
+0(yIny, y)] (17

which is, however, not a general property of integrals
obtained from (2).
Another integral [15] that happens to be ultraviolet-
and infrared-finite but is singular at y =0 is [16]
p*a* —(p-a)*

heJ R S P T R
= 3(p-m)2p*s(-1,-1,-1,0)
—2p28(-1,0,-1,0)+8(-1,1,-1,0)]
—(p-m) 3 [p*S(-1,-1,-1,1)
—2p28(-1,0, -1, 1) +8(-1,1,-1,1)]
=@ /@ +2,), (18)

where

lim I, = (472/3n%)(—¢ +Indy)+O(yIny, ) (19)
y=0

An example of integrals with higher powers of 1/
g nis
[ a2q[g2(p - @)2q -1~ = (8n2[3p*n*)
(20)
X {(1 — 4y)[1/e +In(p2n/ay) + 7] — 1/dy — 4 + Ay}

As examples of exponent derivatives we consider
those of S(—1, 0, —1, 1). From (4), (9) and (10), the
results are
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L 51,0, 1,178, g, + &2 +21n@pp?) - 4]
¢ (21a)

%S(rl,O, ~1,1)=8la; —q — 7t +21Inp?

+1n 4y +% In24y +%yZ] , (21b)
4 d 2)

—_—— — -1,1
(dV M Inn?)S(=1,0,-1,1)

_ In[(q * n)?/q*n?] _
= [dlog 2 PR T 1 =8 [(1+In4)a
f ‘ TR L °

+i72 —4+21n4y - n24y —3yZ}, (21¢)

where §; = 21@(p - n)/n?,a; =1/ + /e + v2 /2
-3 In?(4pp?) and

Z=r i yIr@ +Hrd +n

1=0TQ +DI(5/2 +1) W@E+H+y( +1)

—yQR+D— YR+ +ny]. 21d)

A program has been written [14], using
SCHOONSCHIP [17], to evaluate all primal integrals
(7) and their exponent derivatives of any order [14].
Work on solving the Schwinger—Dyson equation using
techniques described here is under way.
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