
Nuclear Physics A305 (1978) 349-356 ; ~ North-HolbttdPnbllihinp Co., .ltttaterdant

Not to be roproduoed by Dhotoprlnt o~r miaofllm without written peamiwion Srom the publiil>ee

QUENCHING OF AXIAIrVECTOR COUPLING CONSTANT
IN THE ß-DECAY OF FINITE NUCLEI

F. C . KHANNA, I . S. TOWNER and H . C . LEE

Atomic EöergyofCanadaLimited, ChalkRkerNuclear Laboratories, Chalk Ricer, Orttmio, CanadaROJ 1.10

Received 7 March 1978

Abatraà : The meson-exchango-current contributions to the Gamow-Teller matrix elw~ent in cloaed-
shell-plus- (or minus) one nuclei are calculated and expressed in terms of effective coupling
constants multiplying standard rank-one spherical tensors. The dependence ofthe quenching of g,,
on the orbit and mass of the nucleus is determined.

1. Inh~odac8on

Recent analyses 1 ) of the Gamow-Teller (GT) transitions in light nuclei suggest
that the axial-vector coupling constant, g~, may be quenched in these nuclei . The
quenching of gA is believed to arise from two sources : (a) core",polarization and
configuration-mixing effects and (b) from the meson-exchange-durent effects 2 ~ 3) .
The configuration effects can be minimised by studying only nuclei with one particle
or one hole outside a closed shell (N = ~ core . For these same nuclei, first order
core-polarüation effects are zero . Higher order effects may be expected to be small
except for the results of Shimizu et al. a) who claim that the tensor component of
the two-body force can give sizeable contributions in second-order of perturbation
theory . However it has been conjectured by Rho s) that these tensor force contri-
butions may be cancelled by those second-order terms with a nucleon and a
d-particle in the intermediate state. This conjecture of Rho still needs to be proved .

In this note we calculate the quenching of g,, in finite nuclei due to the meson
exchange currents . It should be emphasized that the change of the GT matrix Ele-
ments with nuclear mass A dueto the meson-exchange currents has been calculated
previously s) and the magnitudes have been found to vary violently with A. It has
been suggested a) that the quenching of g,, due to the meson-exchange current is
uncertain in magnitude and sign implying that the natural connection ofthe Lorentz-
Lorenz force z) in n-nucleus scattering and the quenching ofgA in nuclear matter is
lost in the case offinite nuclei where the surface-dependent of%cts play an important
role . The present work is an attempt to re-express these CrT matrix elements in such
a manner that the quenching of gA due to explicit surface-dependent effects can be
displayed . Then it is possible to establish a connection between the quenching ofge
and the Lorenz-Lorenz force in ~-scattering from finite nuclei.

349



35 0

	

F. C. KHANNA et al.

The i?CAC (partially conserved axial-vector current) hypothesis has been used to
relate 2), the quenching of ge in nuclear matter to the Lorenz-Lorenz force in
~-nucleus scattering . In the case of nuclear matter, i.e. constant matter density, the
quenching is estimated 2) to be ~ 22~ implying that g°°~ = 0.96 as compared to a
value of g,, = 1 .23 for the decay of a free neutron. In fact the quenching is a non-
linear function ofthenuclea~matter density, p, and in magnitude is given as(1 +cp)-1 .
The constant c is related to g', the constant that gives the spin-isospin component of
the quasi-particle interaction in Migdal's theory e) of (mite nuclei, which has been
obtained by fitting experimental data on magnetic moments and M1 transitions.
Rho Z) has used an estimate of ~ for g' while the phenomenological estimates of
Migdal e) give a value of 0.5 . More realistic estimates') suggest a value of 0.4-0.5
for g' . Choosing a value for g' of 0.5, the estimated quenching of g~ in nuclear
matter will be x 35 ~. With this background it appears of paramount interest to
study the quenching ofg~ in (mitenuclei by explicitly including the surface-dependent
of%cts. The point is that the valence nucleons, which actually undergo ß-decay;
have a large probability ofoccupyinga region where the matter density is not constant
but is a rapidly varying function of the radial distance r.

In order to calculate the change (Sg,~ in the axial-vector coupling constant in
finite nuclei, we choose several odd-A nuclei with a single-valence particle or a hole
outside LS closed shells . The contribution to the GT matrix element of the valence
particle or hole from the exchange currents is calculated by summing over the core .
Then the three matrix elements between the single-particle states j = 1f ~, apin-
orbit partners, are re-expressed in terms of all tensors ofrank-1 with positive parity ;
i.e . the effective GT transition operator is written s) as

where the upper sign refers to ß - decay and the lower sign to ß+ decay. The isospin
raising and lowering operators are defined as Tf = T=fn y. This effective operator
is to be compared with the definition of the one-body GT transition operator
~~gx a-r t . The three constants âg,,, bg t and Tr are determined from the three
matrix elements between the single-particle state j = 1f}. Then bgx directly gives
ameasure of the change~n g,,.

In sect . 2 the expression for the two-body GT operator as derived by Chemtob
and Rho ~ is given. The various constants are defined for completeness . In sect . 3
the results of our calculation .are presented along with the conclusions that can be
drawm with respect to the quenching ofge .

The reduced matrix element of the ~,-pole two-body operator, 0~2~, between the
single-particle states jl andh is given as (with isospin factors understood) :

Vl~~V~x~~U1~ a f~i 1~11
UVl~o""1 ; .~/L%1.)~Llo+J1~~~2~~UL%~JI~~

	

(2)
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where .% =

	

2J+ 1, and the reduced matrix eleménts are defined according to the
conventions of Brink and Satchler'~. The two-body meson-exchange operator for
GT transitions (~i = 1) is given ~ by

where

Where

~xZl= -~~{(i(1)x={2))t~(atx°z~t+Tiil9n]

+ ~~1)- s(2)]t~(at =°zxht+lt,°~z)+ ~Z I(hn +hô~ z)]
+ [s(1)+T(2)]t~(Qt +ez)jt+ Tiiljtt+ Et z1m] +HNL},

Etz = si~(Qt ' Pxazx P)+(at x Pxaz ~ P)],

Tiz = ~(Qt O az)~ PP-3ot O az],

	

O = f, x,
~z = 2(1+et ~ a~.

Here H~ is the non-local part of the two-body exchange operator that is ignored
in the present calculation . The upper (lower) sign refers to ß- (ß+.) decay.
Theform for the radial functions forthe non-Born term and thepair-exchange term

are given ~ as follows :
(a) Non-Born term : Qne-pion exchange (fig. 1a)

9~ = 3~a(U)Yo(x*),

	

9u = -~ad0)Yz(x,~),
ht =jt = -6~Y(0)Yo(x,~

	

~= jn = -z~Y(0)Yz(xR),
h,°= hû=jm=0,

Fig . 1 . Some of the diagrams for the meson-exchange-current contribution to the weak decay (solid
line a nucleons, dotted line = mesons and wiggly lines s weak current) : (a) non-Born ; (b) pair-

exçhange, and (c) mesonic exchange .
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with g~ (qz = 0) being the pion-nucleon coupling constant off-the-energy-shell where
qz is the four-momentum transferred. The on-shell pion-nucleon coupling constant,
g~(q z = -m~), has amagnitude of 13.6 and g~ = 1 .23. Here m,~ and M are the mass
of the pion and nucleon respectively . We use h = c = 1 .

The_ PCAC implies that the constants a(0), ß(0) and y(0) are related to the non-
Born n-nucleon scattering amplitudes . Themagnitude of these constants have been
estimated by Adler 11 ) by extrapolating the on-shell ~-nucleon scattering amplitude
and are given as (in units of m~)

a(0) = 0.72,

	

ß(0) _ -0.79,

	

y(0) = 3.2 .

	

(4)
These constants have also been estimated by postulating a phenomenological
Lagrangian 9) to describe the effective coupling for the vertices nNN and ANN,
where A is the axial-vector current. In this model the magnitude of the constants are

a(0) = 1.158,

	

ß(0) _ -1 .021,

	

y(0) = 2.519.

	

(5)
It may be interesting to recall that the constants a(0) and ß(0) are related by Adler-
Weisberger 1 z) relation

(b) Pair-excitation term : One-pion exchange 9) (fig . 1b),

where

2m
9t = yh° = 3 MfNNYo(xx~

m
9n = ~û = -~m = -Mfzivx YZ(xx) ,

ht = h� =
jt

.= 1n = 0.

z
~,, =

4n Cgr ~~ ~ 0.08.

It should be remarked that
(i) One-pion exchange current (fig . lc) does not contribute due to conservation of

G-parity ;
(ü) Contributions due to recoil (fig . 2a) andwave-function renormalisation graphs

(fig. 2b) are neglected . It has been shown by Gari and Hyuga ") that these contri-
butions cancel each other to the degree of approximation used here ;

(iii) Heavymeson-exchangegraphs obtained by replacing the pion line by the heavy
mesons (p, m, . . ., etc.) are also neglected because these will lead to operators that
are much shorter ranged and hence are damped out by the presence of short-range
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Fig . 2 . Examples of Feynman diagrams, (a) for wave-function renormalisation and (b) for recoil
corrections .

correlations in the nuclear wave functions arising from the strongly repulsive core
in the twabody nuclear force .

3. Results and summary

Antisymmetrised two-body matrix elements of the exchange-current operator
Otl have been calculated in a harmonic-oscillator basis with flue = 41A - } MeV.
In practice we found it easier to calculate the two-body matrix elements in the LS
coupling scheme. The short-range correlations are simply dealt with by cutting off
the integral at r = 0.4 fm. In the cases of orbitals for which the two-body matrix
elements are convergent, such a cut-off introduces a very small change in the value
of the matrix element. We have chosen to look at the decay rate of one particle or
one hole N = Z closed-shell nuclei with A = 4, 16, 40, 80, 140 and 224. The last
three nuclei are not realised in nature. In addition we look at the decay of a nucleon
in one of the inner orbits. This way we can learn about the variation of g~ with 1 of
the single-particle orbit and with A of the nucleus.
The results of the analysis of the one-body matrix elements are shown in table 1 .

Several valence-particle orbitals and all orbitals with one hole in the LS closed core
are considered . Several comments should be made about the results :

(a) The pair term is much smaller (

	

X10~of the total contribution shown in
table 1) than the non-Born term in all cases considered . In the non-Born terms, the
results obtained with constants a(0) and y(0) derived from the 1?CAC prescription
are larger in magnitude than those obtained with constants derived from the phe-
nomenological Lagrangian by about a factor of two (table 1) .

(b) In all cases Sg, __ 0. This arises from the fact that the two-body exchange
operator (neglecting HN~ is Galilean invariant . It should be recalled that in the
case of th~exchange-current contributions to the M1 operator the one-pion exchange
contribution (fig . lc) is not zero and the resultant two-body operator is Galilean
noninvariant . This is the cause for the non-zero contribution of fig. loto Sg, in the
case of M1 transitions.
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Twet.e 1
Variation of dgA and TP with the single-particle orbït and with .! ')

First line : PCAC; second line : phenomenological Lagrangian .
') The PCAC results quoted in ref. °) have an opposite sign (due to the definition of the efïective

operator) and are smaller in magnitude (due to a smaller value for tKU and for the pion-Compton wave-
length) than the results quoted here .

(c) The terms h;, h � andj� , in the operator 0~~h mil. (3), are non-hermitian and
give zero contribution in the present calculation .

(d) For s-orbitals l'p =_ 0. In the case of the lowest s-orbital, bg~ increases in
magnitude as A is increased and may saturate for heavy nuclei (A > > 224). It
appears that for s-orbitals gA is quenched by Z 25 ~ for very large nuclei . (For
realistic closed-shell nuclei with N~ Z, such as 2°aPb, there are orbitals like lh~.
for protons and l i�~z for neutrons that are unfilled while their spin orbit partners
are filled . These have the problem of inducing first-order core-polarization effects
that are large. For the cases that we have considered core-polarization effects are
zero in first order of perturbatïon theory .)

(e) For non s-state orbitals both 8gß and l'p are non-zero . In all cases while bg~
increases in magnitude, l'p dxreases in magnitude as A is increased. In fig. 3, we
show the variation of 3g,, and I'P for the Os and Op states as the mass number of the
N = Z closed-shell nucleus is varied .

A=4

aPA rP

A=16

WA rP

A=40

bBA rP

A=80

a8A rP ~

A=140

~bA rP

A=224

`7JA rP

Os 0.007 -0.068 -0.143 -0.206 -0.256 -0.294
0.046 -0.001 -0.054 -0.100 -0.136 -0.165

Op -0.044 0.181 -0.071 0.116 -0.124 0.074 -0.176 0.049 -0.222 0.034 -0.260 0.025
-0.023 0.114 -0.023 0.068 -0.053 0.039 -11.088 0.023 -0.119 0.013 -0.146 0.008

Od -0.080 0.139 -0.112 0.096 -0.154 0.066 -0.194 0.047 -0.229 0:035
-0.047 0.085 -0.058 0.054 -0.081 0.033 -0.106 0.020 -0.130 0.012

ls -0.101 -0.129 -0.165 -0.202 0.235
-0.066 -0.072 -0.091 -0.l13 -0.135

Of -0.106 0.110 -0.137 0.080 -0.171 0.058 -0.203 0.043
-0.065 0.065 -0.079 0.042 -0.097 0.026 -0.117 0.016

lp -0.131 0.105 -0.156 0.080 -0.185 0.060 -0.213 0.045
-0.087 0.057 -0.095 0.040 -0.109 0.026 -0.125 0.017

Og -0.123 0.090 -0.151 0.068 -0.180 0.052
-0.077 0.050 -0.091 0.033 -0.107 0.021

ld -0.150 0.088 -0.172 0.069 -0.195 0.054
-0.100 0.045 -0.108 0.032 -0.119 0.021

2s -0.161 -0.180 -0.202
-0.109 -0.115 -0.125

Oh -0.134 0.075 -0.160 0.058
-0.086 0.039 -0.098 0.026

lf -0.161 0.079 -0.180 0.060
-0.107 0.036 -0.116 0.025
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Fig. 3 . Variation of I'r for the lowest p-stau aqd variation ofbg~ for the lowest s- and p-statea .with mass

number A.

(fj Even though the magnitude of the one-body matrix elements for the various
cases studied do not show any definite trend with the mass number or with the
orbital of the single particle or the single hole, a parametrisation of the results in
terms of the effective GT operator given in eq . (1) leads to a smooth variation of
Sg,, and l'P with mass number and with the orbital of the single-particle state .

(g) For the valence-particle orbitals Sg,, is smaller than for the deep-lying states.
We fmd that g~ is quenched by about 15 % for the valence orbitals for A > 16 .
This suggests that quenching of g~ depends on the density of the nuclear system .

It is the averaging ofthe two-body operator OI2~ by the probability distribution of
the single particle in its orbit andwith the density ofthe remaining core nucleus that
leads to this variation in Sg~. Certainly the density of the core nucleus is nearly
constant for an inner-lying single-particle orbital ; this is not so for an orbital of a
valence nucleon . The magnitude of quenching of gx for a ß-decaying nucleon in an
inner-orbit can be compared closely to the quenching of g~ calculated for nuclear
matter . For example, fig. 3 suggests that a reduction of z 25 ~ in gw for a Os orbital
in heavy nuclei, a little larger than the x 22 ~ estimate of Rho s) but less than the
later estimates of x 35 ~ using Migdal's theory . Ofcourse, the nuclear density in a
finite nucleus near the origin is only on the average the same as that for nuclear
matter . There is as well a fluctuating component implying regions exist where the
density is greater than that of nuclear matter . This may be the reason that Sg� does
not appear to saturate for a very heavy nucleus.
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In summary the meson-exchange-current contributions expressed by an effective
one-body operator [eq. (1)] indicate that the axial-vector coupling constant is
quenched to a varying extent depending on the orbit, mass of the nucleus and the
prescription for calculating the non-Born contributions.
The surface-dependent effects are taken into account explicitly andthe magnitude

of Sg~ given in table 1 indicates the quenching ofg~ in (mite nuclei . The results give
a natural extensiôn of the results of Rho 2) that the quenching of g~ in nuclear
matter is related to the Lorentz-Lorenz force in the n-nuclear matter scattering . The
quenching ofg~ is a smooth function of A and of the density of nuclei in the region
of the decaying nucleon.

The authors would like to express thanks to Dr . Manoque Rho for some very
useful discussions about the quenching of the axial-vector coupling constant.
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