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Abstract: The meson-cxchange-current contributions to the Gamow-Teller matrix element in closed-
shell-plus- (or minus) one nuclei are calculated and expressed in terms of effective coupling
constants multiplying standard rank-one spherical tensors. The dependence of the quenching of g,
on the orbit and mass of the nucleus is determined.

1. Introduction

Recent analyses ') of the Gamow-Teller (GT) transitions in light nuclei suggest
that the axial-vector coupling constant, g,, may be quenched in these nuclei. The
quenching of g, is believed to arise from two sources: (a) core-polarization and
configuration-mixing effects and (b) from the meson-exchange-current effects 2 3).
The configuration effects can be minimised by studying only nuclei with one particle
or one hole outside a closed shell (N = Z) core. For these same nuclei, first order
core-polarization effects are zero. Higher order effects may be expected to be small
except for the results of Shimizu et al. 4) who claim that the tensor component of
the two-body force can give sizeable contributions in second-order of perturbation
theory. However it has been conjectured by Rho 2) that these tensor force contri-
butions may be cancelled by those second-order terms with a nucleon and a
A-particle in the intermediate state. This conjecture of Rho still needs to be proved.

In this note we calculate the quenching of g, in finite nuclei due to the meson
exchange currents. It should be emphasized that the change of the GT matrix ele-
ments with nuclear mass A due to the meson-exchange currents has been calculated
previously %) and the magnitudes have been found to vary violently with 4. It has
been suggested 3) that the quenching of g, due to the meson-exchange current is
uncertain in magnitude and sign implying that the natural connection of the Lorentz-
Lorenz force 2) in n-nucleus scattering and the quenching of g, in nuclear matter is
lost in the case of finite nuclei where the surface-dependent effects play an important
role. The present work is an attempt to re-express these GT matrix elements in such
a manner that the quenching of g, due to explicit surface-dependent effects can be
displayed. Then it is possible to establish a connection between the quenching of g,
and the Lorentz-Lorenz force in n-scattering from finite nuclei.
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The PCAC (partially conserved axial-vector current) hypothesis has been used to
relate %), the quenching of g, in nuclear matter to the Lorentz-Lorenz force in
n-nucleus scattering. In the case of nuclear matter, i.e. constant matter density, the
quenching is estimated ) to be &~ 22 % implying that g% = 0.96 as compared to a
value of g, = 1.23 for the decay of a free neutron. In fact the quenching is a non-
linear function of the nuclear-matter density, p, and in magnitude is given as (1 +cp) ~ ..
The constant c is related to g’, the constant that gives the spin-isospin component of
the quasi-particle interaction in Migdal’s theory ®) of finite nuclei, which has been
obtained by fitting experimental data on magnetic moments and M1 transitions.
Rho ?) has used an estimate of 4 for g’ while the phenomenological estimates of
Migdal °) give a value of 0.5. More realistic estimates 7) suggest a value of 0.4-0.5
for g’. Choosing a value for g’ of 0.5, the estimated quenching of g, in nuclear
matter will be ~ 35 9. With this background it appears of paramount interest to
study the quenching of g , in finite nuclei by explicitly including the surface-dependent
effects. The point is that the valence nucleons, which actually undergo f-decay;
have a large probability of occupying a region where the matter density is not constant
but is a rapidly varying function of the radial distance r.

In order to calculate the change (dg,) in the axial-vector coupling constant in
finite nuclei, we choose several odd-A4 nuclei with a single-valence particle or a hole
outside LS closed shells. The contribution to the GT matrix element of the valence
particle or hole from the exchange currents is calculated by summing over the core.
Then the three matrix elements between the single-particle states j = /+4, spin-
orbit partners, are re-expressed in terms of all tensors of rank-1 with positive parity;
i.e. the effective GT transition operator is written ®) as

F4[0g,0 +8g1+ /8l (Y, x 6)']r, (1)

where the upper sign refers to f~ decay and the lower sign to 8* decay. The isospin
raising and lowering operators are defined as t, = 7,+it,. This effective operator
is to be compared with the definition of the one-body GT transition operator
Fig,o01.. The three constants dg,, dg, and I', are determined from the three
matrix elements between the single-particle state j = I+ 4. Then dg, directly gives
a measure of the change.ing,.

In sect. 2 the expression for the two-body GT operator as derived by Chemtob
and Rho °) is given. The various constants are defined for completeness. In sect. 3
the results of our calculation are presented along with the conclusions that can be
drawn with respect to the quenching of g,.

2. Theory
The reduced matrix element of the A-pole two-body operator, 03], between the
single-particle states j, and j is given as (with isospin factors understood):
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where J = \/2J+1, and the reduwd matrix elements are defined according to the
conventions of Brink and Satchler *°). The two-body meson-exchange operator for
GT transitions (A = 1) is g1ven %) by

0P = ~1g,{(x(1) x o(2),[(6, X 0,)g,+ T} 9]
+[H) -~ )], [0, =0 )b+ EP) + T8 (g +hPE)]
+[d(V)+2)] . [(0, +0,)j;+ S Jll+zlz-’|]l]+HNL}’ 3)

where

Z,= '%i[(¢1 Mo, xH)+(e, x e, #)),

T12=[("1 Odz>'”"%‘1®¢;]» O =14, x
Pi, =é(1+°'1"z)- |

Here Hy, is the non-local part of the two-body exchange operator that is ignored
in the present calculation. The upper (lower) sign refers to §~ (8*) decay.

The form for the radial functions for the non-Born term and the pair-exchange term
are given °) as follows:

(a) Non-Born term: One-pion exchange (fig. 1a)

9 =RoOYo(x), gy = —EO)Y,(x,),
ho=ji= —&H0Yo(x) by =jy = —1ENO)Y,(x,),
bt = hg = j, =0,

(a) {b) (¢c)

Fig. 1. Some of the diagrams for the meson-cxchange-current contribution to the weak decay (solid
line = nucleons, dotted line = mesons and wiggly lines = weak current): (a) non-Born; (b) pair-
exchange, and (c) mesonic exchange.

where

1 g(0) m? e ”
=7 _= Y. =—,
¢ 8 g, M’ o) x

Y (x) = (1 + ; + %) Yy(x), X, =m7g,
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w1th g: (¢* = 0) being the pion-nucleon coupling constant off-the—energy-shell where
q* is the four-momentum transferred. The on-shell pion-nucleon coupling constant,
9.(¢> = —m}), has a magnitude of 13.6 and g, = 1.23. Here m, and M are the mass
of the pion and nucleon respectively. We use & = ¢ = 1.

The PCAC implies that the constants a(0), (0) and y(0) are related to the non-
Born zn-nucleon scattering amplitudes. The magnitude of these constants have been
estimated by Adler '') by extrapolating the on-shell n-nucleon scattering amplitude
and are given as (in units of m?)

«(0) =072, BO)=-079, $0) =32 4
These constants have also been estimated by postulating a phenomenological

Lagrangian °) to describe the effective coupling for the vertices zNN and ANN,
where A is the axial-vector current. In this model the magnitude of the constants are

o0) = 1.158,  B0) = —1.021,  %0) = 2.519. 5
It may be interesting to recall that the constants «(0) and S(0) are related by Adler-
Weisberger !2) relation
1
0)+p0)]) =1- — ' 6
(%[ pON =1~ 5. ©

(b) Pair-excitation term : One-pion cxchange %) (fig. 1b),

Zhlc = 3 A; t%NYO(xx)’

. mg
=2y = _:?Um = M :ZNNYZ(xu)’

hl=hn=j|'=jn=0-

where
1 m_\?
2 — %] ~ 0.08.
N (g' 2M>
It should be remarked that
(i) One-pion exchange current (fig. 1¢) does not contribute due to corservation of
G-parity;

(ii) Contributions due to recoil (fig. 2a) and wave-function renormalisation graphs
(fig. 2b) are neglected. It has been shown by Gari and Hyuga '3) that these contri-
butions cancel each other to the degree of approximation used here;

(iii) Heavy meson-exchangegraphs obtained by replacing the pion line by the heavy
mesons (p, @, . . ., etc.) are also neglected because these will lead to operators that
are much shorter ranged and hence are damped out by the presence of short-range
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{a) (b)

Fig. 2. Examples of Feynman diagrams, (a) for wave-function renormalisation and (b) for recoil
corrections.

correlations in the nuclear wave functions arising from the strongly repulsive core
in the two-body nuclear force.

3. Results and summary

Antisymmetrised two-body matrix elements of the exchange-current operator
0 have been calculated in a harmonic-oscillator basis with ko = 41473 MeV.
In practice we found it easier to calculate the two-body matrix elements in the LS
coupling scheme. The short-range correlations are simply dealt with by cutting off
the integral at r = 0.4 fm. In the cases of orbitals for which the two-body matrix
elements are convergent, such a cut-off introduces a very small change in the value
of the matrix element. We have chosen to look at the decay rate of one particle or
one hole N = Z closed-shell nuclei with 4 = 4, 16, 40, 80, 140 and 224. The last
three nuclei are not realised in nature. In addition we look at the decay of a nucleon
in one of the inner orbits. This way we can learn about the variation of g, with / of
the single-particle orbit and with 4 of the nucleus.

The results of the analysis of the one-body matrix elements are shown in table 1.
Several valence-particle orbitals and all orbitals with one hole in the LS closed core
are considered. Several comments should be made about the results:

(a) The pair term is much smaller (~ 5-10 % of the total contribution shown in
table 1) than the non-Born term in all cases considered. In the non-Born terms, the
results obtained with constants «(0) and y(0) derived from the PCAC prescription
are larger in magnitude than those obtained with constants derived from the phe-
nomenological Lagrangian by about a factor of two (table 1).

(b) In all cases dg, = 0. This arises from the fact that the two-body exchange
operator (neglecting Hy,;) is Galilean invariant. It should be recalled that in the
case of theexchange-current contributions to the M1 operator the one-pion exchange
contribution (fig. 1c) is not zero and the resultant two-body operator is Galilean
noninvariant. This is the cause for the non-zero contribution of fig. 1cto dg, in the
case of M1 transitions.
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TABLE 1
Variation of ég, and I, with the single-particle orbit and with 4 D]

A=4 A=16 A =40 A =280 A =140 A =224
ogn I Sgn I da I g L o0 I oga I
0s 0.007 —0.068 - =0.143 —0.206 —0.256 —0.294
0.046 —-0.001 -0.054 —-0.100 -0.136 -0.165
Op —0.044 0.181 —0.071 0.116 —0.124 0.074 —0.176 0.049 —0.222 0.034 —0.260 0.025
—0.023 0.114 —0.023 0.068 —0.053 0.039 —0.088 0.023 —0.119 0.013 —0.146 0.008
od —0.080 0.139 —0.112 0.096 —0.154 0.066 —0.194 0.047 —0.229 0.035
—0.047 0.085 —0.058 0.054 —0.081 0.033 —0.106 0.020 —0.130 0.012
1s -0.101 —0.129 —0.165 -0.202 ~0.235
—0.066 . —=0.072 -0.091 -0.113 -0.135
of —-0.106 0.110 —0.137 0.080 —0.171 0.058 —0.203 0.043
—0.065 0.065 —0.079 0.042 —0.097 0.026 —0.117 0.016
Ip —0.131 0.105 —0.156 0.080 —0.185 0.060 —0.213 0.045
—0.087 0.057  —0.095 0.040 —0.109 0.026 —0.125 0.017
Og —0.123 0.090 —0.151 0.068 —0.180 0.052
—-0.077 0.050 -0.091 0.033 —0.107 0.021
1d —0.150 0.088 —0.172 0.069 —0.195 0.054
) —0.100 0.045 —0.108 0.032 -0.119 0.021
2s —-0.161 —0.180 —0.202
-0.109 =0.115 -0.125
Oh —0.134 0.075 -0.160 0.058
—0.086 0.039 —0.098 0.026
1f —0.161 0.079 -0.180 0.060
—0.107 0.036 —0.116 0.025

First line: PCAC; second line: phenomenological Lag;rangian.

*) The PCAC results quoted in ref. ®) have an opposite sign (due to the definition of the effective
operator) and are smaller in magnitude (due to a smaller value for Aw and for the plon-Compton wave-
length) than the results quoted here.

(c) The terms A3, h,5 and j,,, in the operator 02, eq. (3), are non-hermitian and
give zero contribution in the present calculation. '

(d) For s-orbitals I', = 0. In the case of the lowest s-orbital, dg, increases in
magnitude as A is increased and may saturate for heavy nuclei (4 > > 224). It
appears that for s-orbitals g, is quenched by = 259, for very large nuclei. (For
realistic closed-shell nuclei with N # Z, such as 2°°Pb, there are orbitals like 1h,
for protons and 1i,,,, for neutrons that are unfilled while their spin-orbit partners
are filled. These have the problem of inducing first-order core-polarization effects
that are large. For the cases that we have considered core-polarization effects are
zero in first order of perturbation theory.)

(¢) For non s-state orbitals both dg, and I'p are non-zero. In all cases while dg,
increases in magnitude, I', decreases in magnitude as A4 is increased. In fig. 3, we
show the variation of g, and I';, for the Os and Op states as the mass number of the
N = Z closed-shell nucleus is varied.
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Fig. 3. Variation of I, for the lowest p-state and variation of g, for the lowest s- and p-states with mass
number A.

(f) Even though the magnitude of the one-body matrix elements for the various
cases studied do not show any definite trend with the mass number or with the
orbital of the single particle or the single hole, a parametrisation of the results in
terms of the effective GT operator given in eq. (1) leads to a smooth variation of
6g, and I', with mass number and with the orbital of the single-particle state.

(g) For the valence-particle orbitals dg, is smaller than for the deep-lying states.
We find that g, is quenched by about 15 9 for the valence orbitals for 4 > 16.
This suggests that quenching of g, depends on the density of the nuclear system.

It is the averaging of the two-body operator ®2) by the probability distribution of
the single particle in its orbit and with the density of the remaining core nucleus that
leads to this variation in dg,. Certainly the density of the core nucleus is nearly
constant for an inner-lying single-particle orbital; this is not so for an orbital of a
valence nucleon. The magnitude of quenching of g, for a p-decaying nucleon in an
inner-orbit can be compared closely to the quenching of g, calculated for nuclear
matter. For example, fig. 3 suggests that a reduction of = 25 % in g, for a 0s orbital
in heavy nuclei, a little larger than the &~ 22 %, estimate of Rho ?) but less than the
later estimates of & 35 % using Migdal’s theory. Of course, the nuclear density in a
finite nucleus near the origin is only on the average the same as that for nuclear
matter. There is as well a fluctuating component implying regions exist where the
density is greater than that of nuclear matter. This may be the reason that dg, does
not appear to saturate for a very heavy nucleus.
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In summary the meson-exchange-current contributions expressed by an effective
one-body operator [eq. (1)] indicate that the axial-vector coupling constant is
quenched to a varying extent depending on the orbit, mass of the nucleus and the
prescription for calculating the non-Born contributions.

The surface-dependent effects are taken into account explicitly and the magnitude
of g, given in table 1 indicates the quenching of g, in finite nuclei. The results give
a natural extensibn of the results of Rho 2) that the quenching of g, in nuclear
matter is related to the Lorentz-Lorenz force in the n-nuclear matter scattering. The
quenching of g, is a smooth function of 4 and of the density of nuclei in the region
of the decaying nucleon.

The authors would like to express thanks to Dr. Mannque Rho for some very
useful discussions about the quenching of the axial-vector coupling constant.
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