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Abstract: A self-consistent, unified, microscopic theory of particle-phonon coupling is applied to the
Sb and In isotopes, which are treated as proton-particle and proton-hole states respectively
coupled to the ground and low-lying vibrational states of Sn. The particle-phonon coupling
interaction is derived from the same realistic two-body interaction which gives rise to the
vibrational excitations in Sn. Spectroscopic factors, level schemes and B(E2) values calculated
with no adjustable parameters are shown to be in good agreement with experimental data.

1. Introduaction

The coupling of single-particle and collective degrees of freedom has long been
known to exist in the nucleus. Specifically, the coupling of single-particle to nuclear
vibrations, or phonons, is a well-known phenomenon. Foldy and Milford !) pointed
out the effect of this coupling on the magnetic moments of odd-mass auclei. Bohr and
Mottelson ?) made a comprehensive study of the coupling in the liquid-drop model.
More recently Castel et al. 3) studied this phenomenon in the 2s-1d shell, and
Hamamoto *) did an extensive study of this phenomenon in the Pb region. For the
nuclei that will be studied in this work, the Sb isotopes have been investigated by
Vanden Berghe and Heyde *) and *!°In by Dietrich et al. %).

In the microscopic description of nuclear phenomena the surface vibration is
described as coherent excitations of hole-particle pairs interacting through the residual
nuclear two-body interaction 7). The same interaction should also provide a coupling
between the single-particle and the vibrational motions. However, such a unified,
or self-consistent treatment of the particle-phonon coupling has not so far been
attempted. Compared to the simple phenomenological treatment3~%) a self-
consistent calculation is many-fold more complicated. For example, as a prerequisite
the structure of the vibration must be calculated. In many cases such a calculation
is quite lengthy. On the other hand, in a phenomenological calculation no knowledge
of the vibration more than its excitation energy and multipolarity, which is obtained
‘experimentally, need be known. Furthermore, such simple calculations have in most
cases been reasonably successful. It is therefore not surprising that a unified treatment
has been avoided.
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In this paper we investigate the unified treatment of particle-phonon coupling.
‘We show that a unified theory of particle-vibration coupling works very well indeed,
at least in the Sn region. Here Sb is considered to be a proton-particle state coupled
to the ground state and vibrations of Sn, and In is considered to be a proton-hole
state coupled to Sn. We show that even though there is quite good agreement between
theory and empirical data when no parameters are adjusted in the unified calculation,
significantly better agreement is achieved when one or two collective properties of Sn
are altered in the composite system in a reasonable manner,

In sect. 2 the formalism for the unified theory particle-phonon coupling is given.
In sects. 3 and 4 results for the Sb isotopes and for !!5In, respectively, are discussed
and compared with experimental data. These results are obtained using a realistic
interaction which had previously been shown to account for the important properties
of the low vibrational states in the even Sn isotopes. Sect. 5 is a summary.

2. Formalism

For a system of interacting quasiparticles (qp) and phonons, the Hamiltonian with
a two-body interaction can be written as

H = Hy+ ¥ Eala,+ ; 0010, + 7g;»Dm(Qﬁa}a,,+h-~=-), (1)

where a! (a,) is & qp creation (annihilation) operator; Q] is a phonon creation
operator, H, is a constant; E, is the qp energy; m, is the excitation energy of the pho-
non, and D,,, is particle-phonon coupling matrix element. The subscript a stands for
all the quantum numbers of a single-particle (s.p.) orbital except the magnetic
quantum number m,, the Greek subscript « = (a, m,), and & = (a, —m,); [ is the
angular momentum of the phonon, 4 = (/, m;) and i = (I, —m,). The qp operators
are related to the s.p. operators (c" and c,) by the Bogoljubov-Valatin ®) trans-
formation,

a} = ucl—sv.cn @)
where s, = (—)*™ and u and v are the qp occupational amplitudes satisfying
u2+0v2 = 1. The phonon operators can be expressed in terms of qp operators %)

1 a I—-m !
01 = %, S (b~ () A ®
(4a)t = _.ZnC.pa.ap . @

where C2, = {am,bm,|Im;) is a Clebsch-Gordan coefficient. The amplitudes x and y
satisfy the orthonormal conditions:

. Gl =) = b ®
; (x:‘x;' "'J’:‘ yb = 0y, . (6)
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where ¢ labels all phonons with the same /; i, j represent pairs of qp subscripts and
in (5) only ordered qp (; = b;) pairs are summed over. The 4, x and y all have the
symmetry property
Ho = —(YeI, )
The last term in (1) provides the coupling between quasiparticles and phonons.
It can be derived from the same residual interaction that gives rise to the interaction
between phonons. If the two-body residual interaction is ¥, gucliclcsc,, then the
reduced particle-phonon interaction matrix element, D.y4 = D,s,/Cj, is given by

2]+1

2+ (F asctiticta+ (=) 4 o))

X (XesuoOp+ Yaslats),  (8)

where the F-matrix clements are defined by
Ve = 2‘: Cf,S,Cf,S,F acddl- (9)

The creation operator b! for a particle-phonon coupled state | 7,> = b!| 0>
can be written as

b} = z°a}+ ; z5[aloN), +V3 ?:r: zin[al[0}0812], (10)

where [ ], means angular-momentum coupled to y; 2, z, and z,,. are, respectively,
the qp, gp-phonon and gp-two-phonon amplitudes. In the actual computation only
the phonons / = 2], 37 and 4] were considered and for the two-phonon term only
the 2] phonon was considered, because w;,+ = 1.2 MeV = $w, - ~ 3w, + in the
even Sn isotopes.

Eq. (1), which implies a linear equation of motion for b; | 0) is derived by assuming
that (i) @ t and Q obey boson commutation relations; (ii) the qp and phonon operators
commute; (iii) | 0) is a phonon vacuum as well as a qp vacuum. These conditions are
satisfied to a good degree of approximation when the physical state represented by a
phonon operator does indeed arise from the collective motion of many (quasi)
particles. The properties of the phonon will then be little affected by changes in any
constituent single particle. The number of particles involved in the phonon Q} | 0)
is roughly equal to the strength of the @} | 0> — | 0) transition, B(E!), in single-
particle, or Weisskopf units (W.u.). In the even Sa isotopes !°) B(E2) is about
10 ~ 15 W.u. and B(E3) is about 25-30 W.u., suggesting that the number of particles
involved in these phonons is indeed large. As the collectivity of the phonon decreases,
effects of the neglected antisymmetrization terms (note that the coherent anti-
symmetrization terms are already included in the matrix element D,,;) become more
important, and the accuracy of the linear approximation worsens. In this context the
problem of antisymmetrization in a two-level system has been solved by Bés et al. 22).
In general, in the limiting case when the particle strengths are completely fragmented,
the linear approximation breaks down and one must resort to the usual shell-model
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diagonalization procedure. Returning to the derivation of the equation of motion,
we have, from the three assumptions stated above, the.following commutators:

[H, a}}i0)> = E.a}l0>+ §Ddﬂctu.1|0>, (11a)
[H, a}, 10> = (Es+ay,a},,i0) +D4all0)
+ .Z‘: 012Da2U(J25:2; Jal'Yalap, 410D, (11b)
[H, a2, ,]I0) = (E;+2wm5)al;p, 10>
+2XDunU02)2; JJala 0, (11¢)

where afy , = [a}0}), alur,, = 1a}[Q}Q1):), and U(abed;ef) = V(2e+1)(2f+1)
x W(abed; ef) is the normalized Racah coefficient. From (11) and the equation of
motion '

[H, b}1I0> = &.b}I0), (12)
we obtain the secular equation for the amplitudes z, in block-matrix form
Ed—ﬂe Dca l 0 oo z°
5:2.\/- 2Dg,2
Dy E;+an—s,  xU(J2j2;jd) || za | =0. (13)
612\/_ 2Dda2 . .

0 xU(2j2; jd') | E,+2w,-8, Zaar

The residual interaction used in the calculations is derived from the nucleon-
nucleon interaction of Kahana, Lee and Scott '!). Pairing correlations for the
neutrons are taken into account for the neutrons !2), but not for the protons, since
the Sn isotopes have a magic (50) proton number. Thus the low-lying states in the
odd Sb (In) isotopes are described as proton particle-(hole) phonon coupled states.
The neutron and proton sp energies, in 16Sn, for the twelve active orbits are given
in table 1, The present calculation is in general not very sensitive to thes.p. energies of

TanLE 1
Single-particle energies for 11°Sn

Orbit Proton (MeV) Neutron (MeV) Orbit Proton (MeV) Neutron (MeV)
2p; 5.5 —5.5 384 1.3 0.7

1y -7.0 -5.0 24, 1.2 1.9

2p; —~52 —4.0 l1hg 1.5 2.5

134 —4.9 —-25 1hg 12 4.0

2dg 0 0 2fz 6.8 5.0

18; 02 0.5 lig 9.5 7.5
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the three highest orbits. However, the experimental level scheme of **5In requires that
the relative energies of the three proton orbits 2p,, 2p, and 1g, be more or less as given
in table 1 and that the 1fy orbit be ~ 1 MeV more bound that the 1p, orbit. The
proton s.p. energy for orbit 2 in the isotope 4Sn, where A is the atomic-mass number,
is given by

E(4) = E,(116)+pu(4)— u,(116), (14)

nd) = szjI O A e (15)

where v2(4) is the occupation probability. for the neutron orbit ¢ in isotope 4Sn.
The phonon states 27, 37 and 4; in the even Sn isotopes are described as two-qp
vibrations. It has previously been shown !3) that experimental systematics of the
level scheme and electromagnetic properties of the 2] and 3 states in these nuclei
are very satisfactorily accounted for by this description. Results obtained in refs. 12 13)
are used for the present calculation, except for the excitation energies for the 2] and
3] states, where the experimental values are used. In all cases spherical harmonic
oscillator functions are used as wave functions for the s.p. orbitals. The oscillator
frequency is taken to be proportional to 4~* and is normalised to Ao = 8.3 MeV
for *16Sn.

3. Results for the odd Sb isotopes

3.1. SYSTEMATICS OF THE LEVEL SCHEME OF LOW-LYING LEVELS

The theoretical (solid line) and experimental *#+-* ) (dashed line) energies measured
from the 47 level of the 3], 41, 31 and 4~ states are shown in fig. 1. As revealed by
stripping reactions '), these states are mainly single-particle states in the 2d,,
1g;, 3s,, 2d, and 1hg proton orbitals, respectively. The most prominent systematic
in fig. 1 is the lowering of the j = /—4 (the 7* and 4*) levels relative to the j = /+4
(the 4%, 3* and 4% ~) levels, as the mass number increases. For example the ground
state is switched from $* in 121Sb to 3* in 123Sb. Theoretically this level crossing is
almost entirely due to changes in the self-energy p,, defined in (15). This is shown in
fig. 2, where E(g;)—E(dy) (solid line) and &;,.—a,,+ (dashed line) are plotted.
Fig. 1 shows that the calculated energy shift between the j = /+4 and j = I—% is
only about 50 %, of the observed energy shift, thus suggesting that the spin dependence
of the monopole F-matrix may be too weak.

3.2. THE AMPLITUDES z°, 2°5 AND 1,

As a typical case, the amplitudes for *23Sb are given in table 2, We note that
(z°) +Y.4(25;)* = 0.95 for the two lowest (3] and 47 ) states and = 0.90 for the next
two lowest (3] and 37 ) states. This implies that the importance of the af , | 0)
(I # 2*) and a},;,,, | 0> components in these states is only marginal. These compo-
nents become more important for the higher states. In particular the components
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Fig. 1. Relative binding energies of low-lying levels in Sb isotopes. Dashed lines connect the experi-
mentel values and solid lines connect the computed values.

(MeV)

Fls- 2. Calculated relative binding energies of the §:* and §,* states. Dashed line: s;—64; solid
line: E(g7)—E(dy).

alyp, .1 0 of the L1* and $; states contribute about 30 % of the respective B(E2)
strengths (see next sectlon).

In table 3 a comparison is made between the theoretical s.p. amplitude 2z°
and spectroscopic amplitude ./, obtained from the stripping reaction %)
4Sn(*He, d)**!Sbfor the 47,3, 31, 4; and 4 states in the isotopes 113~1258b.
In view of the fact that the uncertainty !*)in /& is of the order of 20 %, the agreement
between theory and experiment is surprisingly good. In figs. 3 and 4 more detailed
comparisons are made for all states with /S or | z°| greater than 0.3 in the two
isotopes *12Sb and '23Sb. The agreement between theory and data is slightly better
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in 119Sb. The smaller calculated level spacings for the states at 1.5-2.0 MeV probably
is an indication that the residual interaction may be somewhat too weak. In 123Sb
this small level spacing is also partly due to the fact that the calculated energy separa-
tions between the lowest 4 and 7 states, and the 4 and 3 states are too small. Un-
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Fig. 3. Computed and empirical single-particle amplitudes in 11°Sb.

doubtedly if we adjusted the input parameters, such as the single-particle and the
phonon energies, in the calculation for each nucleus, a better agreement between
theory and experimental data could be achieved.

3.3. E2 TRANSITION S’I‘RENGTHS
The reduced matrix element for the electric transition operator ¢, between two
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Fig. 4. Computed and empirical single-particle amplitudes in 1228b.

particle-phonon coupled states is

Welltlive) = 22*(un,~v0,(clitslla)
+ 3. 2zie[ou (=) "7 10dW (dbea; TT)(u.s~o0m)
%

x (d|[t11BD +8pa(—=)* "2 T AIW (Wea; JA)ILAY]

+ %(0"‘:”.’) {z:,z‘.l.(_)c"l-h'gzcz::

+~/i5.rz g;,, (—)'"dt’[zf,zz:sz(ﬂ'ca s Jd)+ z:zrz:zW(Zl'ac; J d)]} ’ (16)
where {c|| ¢; || @) is the single-particle matrix element; {0 || ¢, || J) is the phonon

transition matrix element; 8 = /2j,+1; and g has been used as a short-hand notation
for j, in the phase factors and the Racah coefficients. For the E2 transition t;,, =
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TABLE 3
Single-particle amplitudes in odd Sb isotopes
i _ it i 3-
A theory® exp® theory exp theory exp theory exp theory exp

113 0.87 0.84 0.86 0.97 060 0.71 0.68 0.76 081 0.63
115 0.89 0.84 0.87 0.92 0.63 0.71 070 0.76 0.83

117 0.89 0.84 0.88 0.90 0.65 0.77 0.70  0.65 084 0.72
119 0.89 0.87 0.88 0.89 0.67 0.67 0.67  0.67 084 0.79
121 0.89 0.85 0.88 0.84 0.62 0.55 0.62 .0.52 085 079
123 0.90 0.89 0.88 0.91 069 0.59 0.58 0.55 086 0.70
125 0.90 0.90 0.89 0.86 0.57 0.50 052  0.57 0.87 0.87

%) The coeflicient z¢ in eq. (10).
®) Spectroscopic amplitude /S, from ref. 13).

r?Y,5(f) and the transition strength is

B(E2; §. - ¥;) = Y Ylly, )12 a7
The static quadrupole moment for the state | y_) is
Qo(Je) = ey/2nCjej 201 je> W lIr* Vol (18)

In the present calculation we ignore the term {2 || £, || 2> which is justified by noting
that the Sn nuclei are basically spherical. Experimentally the quadrupole moment,
which is proportional to {2 || 7, || 2), of the Sn isotopes is consistent with zero !6).
-In the calculation 1) of the B(E2; 0; — 27 ) strengths in the Sn isotopes it was fouad
that a charge enhancement of de = 0.2¢ was needed for both valence protons and
neutrons in order to bring the calculated values into agreement with the measured
values. In the spirit of the unified theory the same charge enhancement should also be
used, as a first order approximation, in the Sb isotopes. However, this value for de
does not give a totally satisfactory result in comparing with data. In figs. 5 and 6
B(E2) values and the static quadrupole moments for the ground states in 21Sb
and !238b, respectively, are calculated as a function of de in the range
0.2¢ < 4e < 0.5¢. The B(E2; 0f — 2{) as a function of 4e is calculated using the
relation

B(E2;0—»2;4e) de 2

where R = 2.8 is the ratio of the quadrupole transition matrix elements for the neutron
and proton densities !?) in the 2] state in Sn. In the present calculation we use the
values 1°) B(E2; 0% — 2;; de = 0.2¢) = 2040 and 2000 ¢? - fm* for 2°Sn and !228n,
respectively. The experimental B(E2) values shown in figs. 5 and 6 are those compiled
in the Nuclear Data Sheets !7* 18), The original data were obtained from (x, x'y)
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reactions, It is seen that although the best 4e is different for each transition the average
value of de = 0.3e gives a very good description of the data. The theoretical fit to the
twelve pieces of data produces a mean x* of 1.56. The mean x2 increases to 4.81 when
4de = 0.20¢e is used. We have thus some evidence that the extra proton in Sb provides
further polarization of the nucleus so as to make the effective charge for the valence
particles in Sty slightly Targer than: that for the patticles in Sn. The predicted (with
de = 0.3¢) anll observed Coulomb excitation schemes for the two nuclei are shown
in figs. 7 and 8. The overall agreement between theory and expenment is very good.
There are very significant differences between the Conlomb excitatjon results of
Barnes et al. *?) and those by Galperin et al. 2°), especiaily concerning the strongest
transitions observed by the former group of investigatofs. ‘Barnes ef al. observedI very
large (= 1000}e? - fm*) steéngths fo the 1037 and 1147 keV levels in 121Sb and to the
1029 and 1087 keV levels in '%*Sb. The only u'amntlon of comparable strength
observed by Galperin ¢t al. in these nuclei is that to, the 1032keV level in' ﬂ!3Sb
In this respect the present calculation supports thé results of Barnes et al. and'is in
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Fig. 7. Level scheme of *31Sb as seen in a (x, x%) reaction. The B(E2) transition strengths are in
units of &2 - fm‘ The ground-state quadrupole moment is in units of ¢ - fm3.
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Fig. 8. Level scheme of 123Sb. See caption of fig. 7.

rather serious disagreement with those of Galperin ez al. Transitions with moderate
strengths (200-400 e? - fm*) are predicted to go to the §; and 4; levels at &~ 1450 keV
in 121Sb and to the §; and 3] levels at ~ 1450 keV in !23Sb. Such transitions were
observed at the 1423 and 1450 keV levels in 121Sb and at the 1502 keV level in 123Sb
but were not analysed °).

The experimental quadrupole moments used in figs. 7 and 8 are those obtained from
the method of optical spectroscopy 2*). These values are in rather serious disagreement
with those obtained using atomic beams 3!), which are —29 and —39¢- fm?,
respectively, for 121Sb and 123Sb (the uncertainties in these results can be as large as
50 %). Due to the large uncertainties in both sets of measurements the calculated
values, which are very close to the respective means of the measured values favor
neither set of experiments.

In figs. 7 and 8, the centroids of the B(E2) strengths are seen to be about 100 to
200 keV below the predicted location in the spectra. This may be due to some de-
ficiency in the particle-phonon interaction. An overall increase in the interaction
strength will not improve the situation, since it will depress the ground state more
than the excited states. However, additional structure, or fluctuation in the D-matrix
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elements would be present if the interactions which are non-collective in nature
between the particle (proton) and the core (Sn) had been taken into account. In terms
of particles and phonons such interactions are of higher order terms 22) than those
considered in eq. (8). These non-collective residual interactions will modify the
calculated spectra slightly but will not alter the distribution of B(E2) strengths in
any significant way. The centroid of the B(E2) strength could also be lowered if we
used quadrupole phonon energies which are, say, 150 keV lower than those observed
in the corresponding Sn isotopes. Because core polarization affects the effective charge
and the effective F-matrix in a similar manner, the fact that the phonon in Sb seems
to be more collective (B(E2;0 — 2; 4de = 0.3) =~ 1.48 B(E2; 0 — 2; Ae = 0.2¢))
than the phonon in Sn strongly suggests that the effective quadrupole F-matrix in Sb
may indeed be stronger and thus resulting in a lower energy for the 2* phonon.

4. Results for '*In

In analogy to the Sb isotope, which was described as a proton coupled to Sn,
here we describe In as a proton-hole coupled to Sn. We shall concentrate our study
on !1%In, which experimentally is the most extensively studied isotope.

The *1%Sn(d, *He) reactions 2*) reveal that only the (bole) orbitals gy, p, and p,
have significant spectroscopic strength in 1%In. This information was in fact used to
determine the relative single-particle energies of these orbitals shown in table 1.
The calculated and measured single-particle strengths and excitation energies of the
$%,3~ and 4" states are shown in table 4. The calculated single-particle strength for
the 4~ state appears to be too large. Due to the fact that there is only one hole state
with positive parity, the present model predicts a quintet of low excited positive-parity
states (3 to 42*) of which the main component is | gg®2*), with smaller two-
phonon components. Because of higher unperturbed energies and very weak couplings
to the term mentioned above, the components | p,®!) and | p, ®I>, where I = 3~ or
4*, can be totally ignored in calculating these positive-parity states. The calculated
amplitudes for the low-lying states are shown in table 5 and the spectrum in fig. 9.
Also shown in the figure are the predicted B(E21), with de = 0.3¢, and those ex-
tracted from Coulomb excitation ¢ 24), The most prominent feature in the observed

TABLE 4
Excitation energies and spectroscopic amplitudes of proton holes in '*°In
Fid . Excitation energy (MeV) VA
exp theory exp theory
hht 0 0 0.86 0.88
" 0.34 0.33 0.83 0.91
§ 0.60 0.62 0.71 0.87

Tt 1.47 1.58 0.42 0.49
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transition scheme is the especially large strength going to the L1* state. As was pointed
out by Dietrich et al. ©) this is a consequence of the mixing of the two-phonon
components into the dominantly one-phonon (plus proton-hole) states at = 1.2 MeV.
The present calculation confirms their findings. However, the coupling matrix
element (derived from the realistic F-matrix) used here is less than two thirds the
matrix element used by Dietrich et al. The major deficiency in the present calculation
is that a B(E2) value of 890 ¢* - fm* is predicted for the transition to the 12+ state,
as compared to the measured value 24) of 500450 ¢* - fm*. The calculation of
Dietrich et al. yields a value of 700 ¢? - fm*, and is in better agreement with experi-
ment.

The dependence of the calculated B(E2) values on the charge enhancement is
shown in fig. 10. As in the case for the Sb isotopes the value de ~ 0.3¢ again gives
the best agreement with experiment. Referring to our analysis in the last section,
we see that the core polarization in Sn induced by an extra proton particle or proton
hole is very nearly the same. Similarly, the predicted centroid of the B(E2) strength
would be in better agreement with experiment if the quadrupole phonon energy in
115In were reduced by ~ 150 keV (see fig. 9). Unlike the Sb isotopes, measure-

TABLE §
Wave functions for low-lying states in *!°In
Je z* Z5n® 2o - Zu,* Zpat (d=gy)
4t 0.876 ~0.434 0.066 © —0.068 0.095
§ 0 0.887 0 —0.436 —0.147
' 0 0.953 0 -—0.020 —0.297
7% 0.420 0.755 —0.236 0.243 —0.340
3+ 0 0.845 0 0.332 —0.418
B+ 0 0.895 0 —0.240 —0.380
j e z* zﬂc zl*!‘
d=)fy P3 P3
' 0.906 0.201 0.334 0

0.868 0.085 —0.220 0.329 —0.287

ments 2!) of the quadrupole moment of !%In using atomic beam and using the
method of optical spectroscopy yield almost identical results: Qo ~ 83 e fm?.
The predicted moment is smaller than, but not in disagreement with, the measured
result.

So far we have not seen the 3~ phonon play any significant role in the low-lying
states in Sb or in In. This is because the energy of this phonon, at ~ 2 MeV, is
comparatively high and the particle-phonon interaction (= 0.7 MeV) is too weak for
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Fig. 9. Level scheme of 113In. See caption of fig. 7.

its presence to be felt in the =~ 1 MeV region. An exception may be found in the
4~ state at 600 keV. :

A B(E3) strength of 1.2x 10* ¢* - fm® is calculated for the transition from the
ground state to the 600 keV state. Since the predicted spectroscopic factor for the 4~
state is rather larger than the experimentally extracted value, which implies that the
amplitude of the (g,®3~) component in this state may be larger than we have cal-
culated, the B(E3) strength given above should be taken as a lower limit. This strength
could be measured, for example, in an (e, ¢’) experiment.

There are several states below & 1 MeV excitation that have been observed ex-
perimentally but not accounted for in the present model. The 828 (1), 864 (3* ?),
934 (3*) and 941 ($*) keV levels have all been observed in the stripping
114Cd(3He, d) reaction 2®) but only the 934 keV state has a significant single-
particle strength. These states, with the exception of the 934 keV level, which is very
weakly populated, have not been observed in the pick-up '1°Sn(d, *He) reaction.
Among these states the only one that is observed in the (d, d’) reaction ©) is the §*
states at 941 keV, which presumably obtains its moderate E2 strength by mixing with
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Fig. 10. Computed B(E2) values in !5In. Experimental data are from refs. 5:21:24),

the §* state at 1078 keV. These four states thus have a structure which is more complex
than can be described by the present model. In the pick-up reaction an / = 3 state
at 1040 keV is weakly populated. Presumably this is a small fragment of the f; orbital,
which in our calculation is centered at & 2 MeV excitation. o

S. Summary

We have shown that in a unified theory the vibrational excitations in the Sn
isotopes and the coupling of the extra proton particle (in Sb) and proton hole in (In)
to these vibrations can be satisfactorily described by one and the same residual
interaction. For the Sb and In isotopes quantitative agreement between theory and
measured data is obtained even though no fine adjustments of parameters were
attempted in order to achieve a “best fit”. However, it is shown that agreement
between calculated and measured B(E2) values is improved significantly when the
charge enhancement, de = 0.3e, for the valence particles in Sb and In, is allowed to
be slightly larger than that in Sn, where de = 0.2¢. This implies an ~ 50 % increase
of the B(E2; 0 — 2] ) value in the Sb or In isotopes over that in the Sn isotopes.
Similarly the theoretical centroids of the B(E2) strengths from the ground states
in Sb and In would agree better with the observed centroid if the quadrupole phonon
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energies in these isotopes were allowed to be reduced by ~ 150 keV compared to
their unperturbed positions of = 1.2 MeV in Sn. Although not easy to calculate,
both of these effects can be understood as core polarizations induced by the extra
proton particle or hole in Sb or In. Indeed, in the Te and Cd isotopes, corresponding
to the Sn isotope plus two proton particles and holes, respectively, the B(E2; 07 —2;)
values are 2 to 3 times larger than, and the quadrupole phonon energies about half
the corresponding values in Sn [ref. 29)].

Because of the relatively high excitation energy of the octopole vibration and the
lack of low-lying single-particle orbitals with negative parity in Sb, the octupole
vibration plays essentially no role in the low-energy spectroscopy in Sb. In 1!*In,
the 4~ state at 600 keV is predicted to have a non-negligible (g;®3~) component
with a predicted B(E3; $* — 37) strength of 2 1.3x10* ¢* - fm®. This, however,
awaits experimental confirmation.
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