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The Mandelstam-Leibbrandt prescriptiorl is used to study the one-loop structures of the 
two-component (LCM2) and four-component (LCM4) formalisms of the same Yang-Mills theory 
in the light-cone gauge. The complete one-loop counter lagrangians are constructed by computing 
the one-loop two-, three- and four-point vertices. LCM2 is renormalizable order-by-order in g 
with 8~oumer = (Z - 1)6, Z = 1 + llg2C2/g8ff2e. For LCM4, both the two- and three-vertices 
generate anomalous counterterms which, however, cancel upon summation so that the total 
8Ecounte r is the same as LCM2. Slavnov-Taylor identities are satisfied in LCM4; they do not exist 
in LCM2. The method of analytic regularization is used in computation; all invariant and tensor 
integrals are evaluated using a single representation for light-cone invadant two-point integrals. 
The calculation is exceedingly simple in LCM2, far less so in LCM4. 

1. Introduction 

The light-cone gauge has long been recognized as potentially a most simple and 
useful gauge [1] for the study of nonabelian gauge theories. It has recently become 
popular in the study of supersymmetric theories [2]. The gauge is a special axial 
ghost-free gauge defined by the constraint 

A .n+-A+=O, (1.1) 

where A_ is the Yang-Mills field and n+ is one of the two independent, null, 
light-cone vectors in Minkowski space (for notation see sect. 2). 

In addition to being ghost-free, the light-cone gauge has special simplifying 
features arising from the properties of the null vectors n÷, and from the elimination 
of the second light-cone component of the Yang-Mills field, A - - A  . n ,  via the 
Euler lagrangian equation, 

a+A - =  + g( a +)-'(A_' x a+.4,), (1.2) 
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thereby reducing the effective theory to one involving a two (instead of four)-compo- 
nent Yang-Mills field. The light-cone gauge with the unphysical A + components 
thus eliminated is sometimes called the physical gauge. 

"On the other hand, the peculiarity of the singular properties of the light-cone 
gauge has prevented it from becoming more widely-used. The difficulty in working 
with the light-cone gauge can be simply put: a practical prescription for regulating 
divergent Feynman integrals was lacking. 

The principal-value prescription, which has been successfully used in dealing with 
the singularities of the closely related axial gauge (A_ • n = 0, n 2 ~ 0) [3], has recently 
been firmly established as being inadequate for the light-cone gauge [4-7]; the 
prescription disobeys the rule of power counting, rendering the gauge unrenormaliz- 
able at the one-loop level. This defect has been brought into even sharper focus by 
the recent demonstration by Mandelstam [8] and by Brink et al. [9] that the N = 4 
supersymmetric Yang-Mills theory would be ultraviolet-finite to all orders in the 
light-cone gauge, and therefore finite in any other gauge, if integrals in the light-cone 
gauge obeyed power counting. 

Happily, Mandelstam [8] also proposed a prescription which possesses the analytic 
property necessary for preserving power counting. Another prescription that appears 
to have the same attribute was later proposed by Leibbrandt [6]. These two 
prescriptions have recently been used by several groups to study the self-energies of 
simple and supersymmetric Yang-Mills theories in the light-cone gauge at the 
one-loop level [5,10,11]. A brief summary follows. 

Capper et al. [5], working with the effective theory in which Yang-Mills fields have 
only two physical components (hereafter referred to as LCM2), showed that with 
Mandelstam's prescription the self-energy has an infinite part that is manifestly 
renormalizable in the simple Yang-Mills theory and is ultraviolet-finite in the N = 4 
supersymmetric model. Leibbrandt and Matsuki [10] calculated the same quantities 
as Capper et al. but worked with versions of the theories in which all four 
components of the Yang-MiUs field are retained (hereafter referred to as LCM4). 
They also used Leibbrandt's prescription instead of Mandelstam's. Their results are 
somewhat surprising: the self-energy has anomalous infinite parts that make the 
simple Yang-Mills theory appear to be unrenormalizable, and the N = 4 model not 
ultraviolet-finite. Lee and Milgram [11] working with both the Mandelstam and the 
Leibbrandt prescriptions computed the Yang-MiUs self-energies in both LCM2 and 
LCM4. They pointed out that the two prescriptions are equivalent and used the joint 
prescription to derive a representation for the complete class of two-point light-cone 
invariant integrals with which they resolved the apparent contradiction in the results 
of Capper et al. and Leibbrandt and Matsuki by showing that the self-energies of 
LCM4 and LCM2, although superficially different, are identical to O(g2) when the 
LCM4 result is translated into LCM2. 

This paper is the sequel to ref. [11] written with two goals in mind. The first is to 
complete the one-loop study of the light-cone gauge for both LCM2 and LCM4. 
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Because of all the surprises and confusion the light-cone gauge has created in the 
past, and because some of the crucial properties of the Mandelstam-Leibbrandt 
prescription are not tested in the calculation of the one-loop self-energy, we feel it is 
important to remove all uncertainties concerning the gauge once and for all by 
computing the complete one-loop counter lagrangian. For LCM2 this is done by 
computing the one-loop corrections to the self-energy and the three- and four-vertices. 
The result is simple: the prescription works well, the counterterm associated with 
each Green function is proportional to the bare Green function and the complete 
counter lagrangian contains a single renormalization constant. The case for LCM4 is 
more complicated: the counterterms associated with the two and three-point Green 
functions are not proportional to the respective bare Green functions. However, 
when the two counterterms are summed, the anomalous terms cancel, so that the 
counter lagrangian is again characterized by one and the same renormalization 
constant as in LCM2. We have omitted computing the one-loop four-vertex in 
LCM4, partly because the calculation would be formidably lengthy, and partly 
because what we have calculated already determines uniquely what the counterterm 
associated with the four-vertex must be. 

Our second goal is to demonstrate the utility of both light-cone invariance and the 
representation that was derived [11] for the class of two-point, light-cone invariant 
integrals. Our calculation is based on the method of analytic regularization described 
elsewhere [12]. We exploit the property of light-cone invariance in such a way that 
all the tensor integrals encountered in our calculation can be evaluated in terms of a 
single representation for a generalized Feynman integral. In pursuing this goal we 
demonstrate that LCM2, notwithstanding its unusual Feynman rules, is an exceed- 
ingly simple and easy gauge to work with, more so in our opinion than the simplest 
covariant gauges, at least at the one-loop level. In contrast, the bizarre renormaliza- 
tion property and the characteristically lengthy calculation dictates that LCM4 
should be avoided. 

For readers wishing to go directly to the results: see tables 4, 6 and 7 for the 
one-loop two, three and four-vertices in LCM2, respectively; for the same in LCM4 
see tables 5, 8 and (5.14). For the representation of light-cone invariant integrals and 
two useful simplifying cases see (3.7) and (A.16) and (A.17). For the reduction of 
tensor integrals in LCM2 see table 2 and for the same in LCM4 see table 3. 

In sect. 2 we present the notation and give the Feynman rules for LCM2 and 
LCM4. Apart from our own conventions, the content of this section is not new. In 
sect. 3 we discuss salient features of the Mandelstam and Leibbrandt prescriptions, 
give the representation f 0 (  light-cone invariant two-point integrals (derived in 
appendix A) and show .how the representation can also be used to evaluate 
light-cone-covariant and Lorentz-covariant tensor integrals. More details on this 
topic are given in appendixiB. The calculation of the one-loop vertex functions is 
described and results are presented in sect. 4. Sect. 5 discusses the counterterms and 
renormalizability of LCM2 and LCM4. In sect. 6 we show that Slavnov-Taylor 
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identities are satisfied in LCM4. These identities do not exist in LCM2 because 
gauge invariance is explicitly broken in the effective LCM2 lagrangian. Sect. 7 is the 
conclusion. 

2. Notation and conventions 

2.1. LIGHT-CONE COORDINATES 

In Minkowski space with metric (1, - 1 ,  - 1 ,  - 1 )  the two light-cone null vectors 
have components 

n +-= ~-~ [1,0,0,  -1-1], (2.1) 

satisfying 

( n + )  2 = (n_)  2 = 0. (2.2) 

The normalizing factor is chosen such that 

n+. n_--- 1. (2.3) 

The light-cone components of any vector a are 

a += a . n + .  (2.4) 

A scalar product appears in light-cone coordinates as 

a . b =  a~b ~ = a ÷ b - +  a-b  +-  a . b ,  (2.5) 

where the caret denotes a two component subvector living on the (1, 2) plane 

= [ 0 ,  a x, a2,0 ] . (2.6) 

By light-cone invariance we mean invariance under rotation confined to the (1, 2) 
plane. Thus the scalar Product of caretted vectors 

4" b = aib i, (2.7) 

where the summation of i over I and 2 is understood, is light-cone invariant. So are 
light-cone components such as a + and b +. All Lorentz invariants are also light-cone 
invariants, whereas the inverse is not true. 

When used as indices, the middle Latin letters i, j , . . .  label the components of 
caretted vectors, the middle Greek letters/~, p . . .  label full Lorentz vectors and early 
latin letters a, b . . . .  label vectors of the gauge group. 
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2.2. FEYNMAN RULES FOR LCM4 

The gauge-fixing lagrangian corresponding to the constraint (1.1) for the light-cone 
gauge is 

1 
~g.f. mm -- limo -~-£a (d  +) 2, (2.8) 

with the limit to be taken after the derivation of Feynman rules. The Faddeev-Popov 
ghosts being decoupled, the effective lagrangian is therefore 

1 
~LCM4 = ~YM "1- ~g.'. "-B'~ ½ [̀ 4/~ ° (02"AP')"4-( oq/~.̀ 4/~)2] : )- lil-n ° -~ (̀ 4 +)2 

-g[(O~,A__,,)o(d~'X`4v)l?)-~g2[(A~,X " ' 2 1 ( 4 , -  A__,)] , (2.9) 

where the brackets are suffixed for later reference; `4 denotes a vector of the gauge 
group; o and x refer to the inner and outer products A o B = AaB " and (A X_B) ~ = 

abc b c f 91 B , respectively. Feynman rules for LCM4 derived from (2.9) are given in 
table 1. 

2.3. FEYNMAN RULES FOR LCM2 

The implementation of the gauge constraint in LCM2 sets it apart from LCM4, 
and indeed from all other axial and covariant R~ gauges. Here the constraint (1.1) 
and the Euler-Lagrange equation (1.2) (derived from (2.9)) are used to eliminate the 
light-cone components `4 ± from Ev~ to give an effective lagrangian 

~LCM2 = -- 1 T(2) q_ g ( _  T(3) --I- T (3))  - g 2 ( 1  T(4) q.. ½ T2(4)) , 

where 

(2.10) 

T ~2) = .4'* (8z.4i), (2.11a) 

o A i T~3)=( OJA i) ( . 4 i X _ ) ,  (2.11b) 

7"2(3! = - (  OiA_i)* [( 0*)-1(.41X 0+AJ)], (2.11c) 

Tx ~4) = (.4'X .4j)2, (2.11d) 

T2 (4)= [( O+)-a(.4iX 0+Ai)] 1. (2.11e) 

For completeness we give the transformation from the terms in E LCM4 to 
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TABLE 1 
Feynman rules for light-cone gauge 

(a) General (a, fl . . . .  stand for t~, ~ .... or i, j .. . .  ) 

Name Diagram Structure 

propagator 

3-vertex 

4-vertex 

Y 
X 

A(O).h t . ~ = iSOhA(O)a( p ) 

ra(O)ahc{ n = grab(. ff~aa3',Pl,/'2, P3)  

[['.~(1).)2.3( P l. P2, P3) + 2 cyclic permutations] 

Fa(O)ala2a3a41 n ,a2a3a 4 ~1~1, P2, P3,  P4) = i g2{[ fa 'a :b f  a3a'd' 

X~(°) [ .  . ala2a3a4~P't, P'2' P3' P4 )] + [2 O 3] + [2 O 4]} 

(b) LCM2 

a < p ( p )  = -p-28 u 

r i ( j O ) ( p , q , r ) = ~ i j [ ( p - - q ) k - - r k ( p - - q ) + / r + ] ,  r=bO 
= 28~jp,, r = 0 

( p - q ) +  ( r - s )  + 
~/~o,)/(p. q. r. s )  = Sit.Sit- 8i, Sjl. + 8ij~kl [~p ~ ~s ) + ] .  

= ~ , , s j ,  - 8 , , 8 j , ,  

r ~ :  - - s  

r ~ - - s  

(c) LCM4 

( 0 )  - 2 + + d~ . (p )  =p  [ g . . -  (p~n+. p.n+~)/p ] 
_F~,~)p (p, q, r) = 8x~(p - q). 
~.(o) . 
r ~ . . .  ( p ,  q, r ,  s )  = 8xoao.  - 8xo8~o 

those  in ~ L C M 2  

[ ]~)= r ~ ) -  r~ 3) + gr~'), 

[ ](4)= T1(4). 

(2.12a) 

(2.12b) 

(2.12c) 

T h e  inverse  t r ans fo rma t ion  is no t  unique.  I t  is s ignif icant  that  these t r ans fo rmat ions  

are  no t  h o m o g e n e o u s  in g. 
N o t e  tha t  on ly  A appears  in (2.10), so LCM2 is an  effective theory  for a 

t w o - c o m p o n e n t  field in the four -d imens ion  Minkowski  space. This  fact  has  a very 

i m p o r t a n t  bea r i ng  on the s impl ic i ty  of  compu ta t i on  in LCM2.  Also,  because  bo th  

cond i t i ons  (1.1) and  (1.2) are real ized in (2.10) so that  no  excess degrees of  f reedom 
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associated with gauge invariance remain, the usual set of Slavnov-Taylor identities 
cannot be derived from LCM2. 

Feynman rules derived from (2.10) are given in table 1. The ominous factor 1/p  + 
has shifted from the propagator in LCM4 to the three- and four-vertices in LCM2, 
distinguishing the latter from all other gauges. Note in particular the rules for 
F ~ ( p , q , r )  when r = 0  and for I'i~t( p, q, r, s ) when r + s = 0 ,  which at the 
one-loop level is tested only in calculations of the three- and four-vertices, but not in 
the self-energy [5,11] and the effective potential [13] calculations. 

3. The generalized two-point integrals 

3.1. THE MANDELSTAM-LEIBBRANDT PRESCRIPTION 

In Minkowski space the n0npositivity of the propagator 1 /q  2 requires the 
prescription limn_.,o+l/(q2+ iT) to make the integrals well defined. The central 
problem in the light-cone gauge has been to find a compatible prescription for the 
factor I / q  +. 

The Mandelstam [8] prescription is defined by 

1 / q +  ~ 1/[q+]M - l i m  (q++ i~lq-) -1 
~-- . ,  0 + 

(3.1) 

and the Leibbrandt [6] prescription is 

1/q  +--, 1/[q+]L-- lim q - / ( q + q - +  iB). 
~./.--. 0 + 

(3.2) 

The reason that these prescriptions obey power counting, but the principal value 
prescription [14] 

1 /q  + ~ 1/[  q+ ]PV -= lim q+/[(q+)2 + ~/2] 
T/--* O 

(3.3) 

does not, can be understood by comparing the poles of + -1 [q ]M,L, PV and those of 
(q2 + ir/)-X in the complex q0 plane. The poles of (q2 + i~/)-1 and [q+]M~L all have 
solutions characterized by 

Im q0 - -*1 sign[Re(q0)], 

whereas the poles of [q+]~v 1 occur at 

(3.4) 

I m q o -  ±*1, (3.5) 

regardless of the sign of Re(qo ). Now power counting is a property of integrals 
that can be defined in euclidean space, which for integrals originally defined in 
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Minkowski space is reached by continuing qo from the real axis to the imaginary 
axis. Since light-cone gauge integrals contain factors of (q+)-x as well as (q2)-t,  
these factors must have the same analytic property in the qo plane insofar as 
continuation to euclidean space is concerned. 

In appendix A it is shown that Leibbrandt's prescription is not distinct from 
Mandelstam's (at least for two-point integrals), and the two prescriptions will be 
referred to jointly as the Mandelstam-Leibbrandt prescription. 

3.2.' REPRESENTATION FOR A GENERALIZED TWO-POINT INTEGRAL 

In appendix A it is shown that the class of generalized "two-point" integrals (so 
called because they involve one external momentum p) 

M - M ( t o ,  x , # , l , , h ; p ) - - f d 2 ' ° q [ ( p - q ) 2 ] ~ ( q 2 ) r ' ( q + ) ' ( q - )  x , (3.6) 

where to, K, ~, ~, and ~'>I 0 are continuous real variables has the closed-form 
representation [11] 

_ F ( I + ~ )  [ -.r=z.3( .1+.,1+~0.1+.~;] ~g ~.,3,3 ~gl0, Bl;02 ], Izl ~ 1 

M =  M o ~ - ~ - ~  | f2~3,2/z_lll+v,l_01+~,;l_fl2+v ] (3.7) 
--3,3~ 10,-~0+. , -~ ,+. ;  l '  Izl >i 1, 

where 

fit---to+ K+ g, fltl'~-'fll"[-pL , a0~'~" - - t o - - ~ - - ~ ,  f l2= l l - - )k ,  (3.8) 

z - 2 p + p - / p  2 , (3.9) 

Mo = - ao) (3.10) 

and the G's are Meijer G-functions [15], which are well-defined analytic functions 
easy to evaluate algebraically, either by hand or by machine. 

The properties of the right-hand side of (3.7) have been described before; see 
appendix A. Suffice it to say here that it has poles and only poles in to reflecting the 
ultraviolet and infrared singularities, that these poles are single and analytically 
separable [16] and that the integral obeys power counting. We emphasize that all 
tensor integrals needed to compute the complete one-loop counter lagrangian are 
reducible to M-integrals, (3.7). 

3.3. TENSOR INTEGRALS 

When computing the one-loop corrections to the two-, three- and four-point 
, functions, it is necessary to evaluate two-point tensor integrals of the form 

l_(p) = f d4qK( p,  q)Q (3.11) 
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TABLE 2 
Expansions  for tensor integrals in LCM2 

551 

Tensor  Expansion 

qi 
qi qj 
qi qj qk 

qi qj qk qt 

YPi 
(X - y2)~28ij + ( - x  + 2 y2)pipj 
y ( x  -y2)p2(SijPk + 2 symmetric  terms) 

+ y ( -  3x + 4y2)pipjpk 
~(x--yE)~4(SijSkl + 2 terms) 

-- l (X - - y 2 ) ( x  -- 4yE)~2(pipjt~kl + 5 terms) 

+ ( x  2 - 8xy 2 + 8y4)piPjPkPl 

The sign " - " means  equivalent under  integration; x --- ~2//32, y -=/3- ~//32. 

where K is a light-cone invariant function and Q is a symmetric rank-n tensor 
having the form 

in LCM2 or the form 

Q = qi~.., qi~ (3.12) 

Q = q~. . .  q~, (3.13) 

in LCM4. It is shown in detail in appendix B that the tensor integral admits the 
substitution 

Q - EA,_S t') , (3.14) 
/ 

A, = E O_O_" (3.15) 
I' 

where _S (t) is a set of symmetric tensors independent of q, and U is a symmetric 
matrix independent of the kernel K. The evaluation of any two-point tensor integral 
is thus reduced to that of a set of invariant integrals having the canonical form (3.6). 

The expansions for tensors of up to rank-4 in LCM2 are exceedingly simple and 
are given in table 2. Corresponding expansions for LCM4, given in table 3 for 
tensors of rank 3 or less are considerably more lengthy; for each tensor the 
expansion is given in terms of the tensor set _S it) and the matrix U. 

The contrast between tables 2 and 3 is a clear indication of the difference in 
complexity that typifies computations in LCM2 and LCM4, respectively. 
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TABLE 3 
Expansions for tensor integrals in LCM4 

O.=q~ 
I S u~ 

1 p~, 

2 r~ 

3 s~ 

- 1  1 z 

__0 = q : p  

1 S q) 1 S m 

1 p2g~p 
2 2(p,r, +ppr~)/z 
3 2( p~s, + p,s~)/z 
4 2(r~s, + r,s~)/z 

1 
u = ~  x t p  -,~ -,~ 

f l =  - ~ ' ( z -  2) Y 

"r = ~z 2, 8 = 1,z(z + 1) 

e = ~ z ( z - 3 ) ,  t k = ~ ( z 2 - 3 z + 3 )  

Lk = '2 - z ( z -  2), X = ~ ( z 2 - 2 z +  2) 

Q_ = qxq~q~ 

P~ P, 
2r, r,/z 
2s~sJz 

fl ~ a a 

1.  t -z -y - ~ .  

- z  - ~ .  - y  

q~ 1 ¢ ¢ 

2 z = 

Y X 
Y 

I _S u) / _S "~ 

1 p2 (gx~, P~ + 2 symmetric terms) 7 
2 2p2(gx~r~ + 2 terms)/z  8 
3 S~2~( r ---. s) 9 
4 2(pxp~r, + 2 terms) /z  10 
5 S m ( r ~ s )  11 
6 S m ( p  --. r --* s) 12 

13 

S~4~(p--, s) 
S~41(p ~ r)  
Sm(r  ~ p  ~ s) 
2(pxr~s ~ + 5 terms)/:  

PxP~,P, 
2rxr~r,/z 
2sxs~s,/z 
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1 2 3 4 5 6 7 8 9 10 11 12 

u=__;3~_6 x _~2 ~ . # # A A -# -# B -3~ /3 
3~ p 

l y C -8 e D E 8 ¢k ¢k ,8 -8 

I~2 [ = ~ 2~ e -8 E O qJ 8 ~b B D 

i z~ - lk zQ F G Ik - zG H 6 z - t k 

I .2~.2 _ I ] "Y= --4" o R -  ~ z ( z -  7) -~k G F - z G  q~ H 6z - 3z 
I 

~__3 2 V =  3 z ( 3 - -  z)  I - 4 z  ~" l J K L M 6 N 
,t,= -5"F I ' c  [ = iz~" ~k = 3z 2 l L K M 6 P 

-1 A = '2(4-  z)l" B = ~ G  - ~  O R -6=  q, 
O = 3 C / ~  

C = ~ ' z ~ 2 ( z - 2 )  F = z ( z - 4 )  ] -~k R - 6 z  3 

3 2 H = ~ z ( z + 5 )  [ E = - 2 ( 1 - z + ~ z  )~" S T V 

G =  - ( z +  2) j ~ ( z . 2 ) ( 5 _ 5 z + 3 z 2 ) / z  I ] - 1 2  6z 
L = 5 -  3z + z 2 I 

- - I  l = - l O + l O z - 3 z  2 p = - 3 ( 3 - 3 z + z  2) M = ~ ( l O _ 5 z + z 2 )  -qJ 

K = z ( 5 - 2 z )  S = ' 2 ( z  2 - 4 z - 3 )  Q = - I - 2 z  
N = 3 z ( z - 2 )  W = 3 ( z - 2 ) ( 1 - z + z 2 ) / z  T = - 3 ( l + z )  

553 

13 

# 

D 

- 8  

- 3 z  

P 

N 

3 

4, 
V 

6z 

W 

r =- p -  n+, s =- p+ n_,  : = 2 p + p - / p  2, ~ =- z - 1, U is symmetric; also gee subsect. 3.3 and appendix B 
for notation. 

4. The one-loop calculation 

4.1. G E N E R A L  REMARKS 

We discuss the calculation of the one-loop, two-, three- and four-point vertices in 
LCM2 and the two- and three-point vertices in LCM4. In order to determine the 
counterterms needed to carry out the renormalization program, it is sufficient to 
examine vertices with one nonvanishing external momentum. 

The general algorithm used in our calculation follows. For an n-point vertex the 
calculation involves tensor integrals of rank n or less. These will be evaluated using 
the method described in subsect. 3.3. The vertex, with one external momentum p, 
has the expansion 

F(p)  G ~_,Ft(z, e)Q('), (4.1) 
I 

where _F is an n-point vertex which is itself a rank-n tensor, Q(t) is the set of L n 
rank-n tensors carrying the symmetry of _F and F t are light-cone invariant functions 
expressible as linear sums of M-integrals or, as explicit functions of z ( -  2p+p-/p2) 
and e -- to - 2 after the integrals are evaluated using (3.7). When n > 2, the tensor set 
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Q(1) is larger than the symmetric set _S (0 of subsect. 3.3, but is constructed from the 
same basis tensor set (see appendix B) that spans _S (t). For LCM2, L 2 = 2, Z 3 = 3 
and L 4 = 10; for LCM4, L2.= 7 and L 3 = 24. 

The only important e-dependent terms in F t are of O(1/e),  which reflect either the 
ultraviolet or the infrared divergence in the vertex function. These divergences are 
easily separated analytically with (3.7). In our calculation, the only infrared diver- 
gence was found in the four-point vertex. Therefore, unless otherwise specified, poles 
of O(1/e)  in our result are of ultraviolet origin. Most of the poles originate from 
M-integrals with v >/0, in which case the representation reduces to a terminating 3F2 
hypergeometric function (see (A,17)). 

Normally it is considerably more difficult to evaluate the finite (i.e., O(e°)) part of 
a Green function than the infinite part. Again because of (3.7), that task is 
straightforward in our computation. When 

K + ~ + v < - 3 ,  v<O, h ) O ,  (4.2) 

the integral becomes an infinite series which, for Izl ~< 1, we write as 

Moo(K, Z, v, X; z) - M(K, tL, ~,, X; p)/[Mor(1 + x ) / r ( -  v)] 

= ( - ) '  +~'z-" Z z'{ I-I [r(t- a , ) / r (1  + l -  Bi)]} 
1 = 0  i 

x{ lnz  + ~ [ e / ( l - a i ) - q J ( 1  + 1 -  fli)]}, 
i 

(4.3) 

where i runs from 0 to 2, ot 2 -= v, to---O, and the other parameters are defined in 
(3.8) and (3.9). In the calculation we have encountered repeatedly three distinct 
series, associated with the Moo integrals thus 

with 

M o o ( - 1 , - 1 , - 1 , 0 ;  z) - - S l ( z  ) , (4.4) 

M o o ( - 1 , - 1 , - 1 , 1 ;  z) = M o o ( - 1 , - 2 , - 1 , 1 ;  z) 

= -Moo(-  2, - 1 ,  -1 ,1 ;  z )  - - S 2 ( z  ) , (4.5) 

M o o ( - 1 , - 3 , - 1 , 2 ;  z) -= M o o ( - 3 , - 1 , - 1 , 2 ;  z) 

= -Moo(-2,  - 2 , - 1 , 2 ;  z )  =- - S 3 ( z  ) , (4.6) 

Sn(z) ,=or+,, ~ z -  (4.7) 
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2 
m - ~ - x  

p -p 

p -p 

(O) (b) 

Fig. 1. Two diagrams for the self-energy. The tadpole, (b), is zero-valued in LCM4, but not in LCM2. 

The relation (4.4) has previously been obtained [5,11]. From (4.7), one finds the 
reductions 

S 2 = 1 - In z + S1 / z ,  (4.8a) 

S 3 m-~-lz- {In z + (1 - In z ) / z  + S l l z  2 (4.8b) 

so only S 1 need appear in the result. The computation was done with the algebraic 
computer code SCHOONSCHIP [17]. 

4.2. THE SELF-ENERGY 

The self-energies (fig. 1) for both LCM2 [5,11] and LCM4 [10,11] have been 
calculated previously, but for completeness we repeat them here. The infinite parts 
are 

( / - /Lcm) a~ ij hnti~ite = iSahgEZ~P28ij, (4.9) 

ab __" ab 2 11 
(/-/LCM4)~J, linfinite - / ~  g Z~[-T(PZg~,,-P~,P,) + 2p+(p~,n-,+P,n_~,) 

+terms dep. on n+] ,  (4.10) 

with 

Z~ -= Cz/16~r 2e, e - to - 2. (4.11) 

The n+ dependent terms in /-/LCM4 are unimportant because they cannot contribute 
to the counterterm - see (1.1). The full expressions for the self-energies are given in 
tables 4 and 5, respectively. 

We make the following remarks. 
(i) All the infinite parts in (4.9,10) are associated with ultraviolet (UV) diver- 

gences. 
(ii) In LCM4 the tadpole diagram, fig. lb, is exactly zero. 
(iii) In LCM2 the tadpole diagram is nonzero and contributes to both the infinite 

and finite parts. 
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TABLE 4 
One-loop self-energy in LCM2 

O (D = p 2 ~ i j  , 

11 
Fl 

3e 1 

H ~ ( p )  " i8 "b g2C2 ~ FrO (') 
16~r2 t={ 

70 
9 4S1, 

0(2) = Pi Pj  
2 

F2 3 ( z -  1) 

Notation: ei - t  = e - t  + ln(p2~r) + V - i~r; z " 2p+p-/p2; 

TABLE 5 
One-loop self-energy in LCM4 

ab g2C2 7 

/I"" - "  ~ 2 . , F ~  Om 
~ , ( p ) - 1 8  16~r2t_l 

0 m / 0 m 

1 p2g~ 5 
2 p~p, 6 
3 p~r,+p,r~ 7 
4 p~,s, + p,s~, 

r.r, 
s.s. 
r~,s~ + r~s~, 

11 70 

/:1 = - 3e-'--~ + T + 4S1 

=&_--, +4zt. ) 
F2 3e 1 9 z - l ~  3 

2 4 -  ~s~ F3=e.__~1_ ~ 5+(8_2z)in z _8 

F4= - - - + 4 -  + 2 z l n z  
el z -  1 

Fs" - z e - ' T + ~  - ~ - z - 1 6 +  ( 1 6 - 8 z ) l n z  +z~S,  

2 

3(z - 1) 

- - - + ~ { ~  + 4 z l n  
F7 - ze 1 z ( z  - 1) ~" 3 

Notation: r ~-p-n+; s ~p+n_; see also table 4. 
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(0) (bl) (b2) lb31 

Fig. 2. Four diagrams for the three-vertex r( p, -p, 0). The “tadpole”, (b3), is algebraically zero. 

(iv) The second term in the square bracket in (4.10) is anomalous, in the sense 
that the counterterm, (a&“). (a’~-), needed to cancel it is not contained in the 
unrenormalized C ,_cM4, suggesting that in LCM4 the two-point Green function by 
itself may not be renormalizable. However, we will see in sect. 5 that C,,,, is 
renormalizable. Note that the LCM2 self-energy does not contain anomalous infinite 
parts. 

4.3. THE THREE-POINT VERTF.X IN LCM2 

We compute only the special case I$‘( p, -p, o) (see fig. 2), since its infinite part 
is sufficient to determine the relevant counterterm. In this calculation the Feynman 
rules given in table 1 for the three- and four-vertices involving the expression ( p’)-’ 

in the limit p + o are tested for the first time. The Mandelstam-Leibbrandt 
prescription for this limit is 

lim (l/P+) + ~~oo/~P+lML) = 09 (4.12) 
p-0 

giving the results in table lb. 
The calculated infinite part of the one-loop three-vertex is 

exactly as required for renormalizability. The complete result is given in table 6. 
Note that the invariant function F, vanishes; in fact the contributions to F2 from 
fig. 2a, b vanish separately. Furthermore, in contrast to the tadpole fig. lb in the case 
of the self-energy, the tadpole fig. 2(b3) is zero. 

4.4. THE FOUR-POINT VERTEX IN LCM2 

Again, to determine the counterterm it is sufficient to calculate the special case 
I$$( p, -p,o, 0). Even for this simplification the vertex is considerably more 
complicated than the three-vertex. The twelve diagrams to be calculated are shown 
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TABLE 6 

O n e - l o o p  th ree -ve r t ex  in  L C M 2  

2 3 
~,,,t,,., -,,t,,. g C2 x--., 
, , :  t t , , -p,o)=gt 1--gg~r,o(') 

0 ~ = 8~/pk, 0 ~z) = 8j, p~ + 8k~pj, 

-- 22 74 8 

Fl = -'~el + ~ - + z _ I z ln z + 8S1 

F 2 = 0 ,  F 3 = - 4 .  

0o~ = pipjpJ~ 2 

N o t a t i o n :  see t ab le  4. 

in fig. 3. There are ten rank-4 tensors (see table 7) and three independent gauge-group 
couplings: 

dl = C21Tr (t~t b t c t d ) , (4.14a) 

d 2 - C 21Tr( t at ct bt d ) ,  (4.14b) 

d 3 -- C21Tr( t~ tb td tc) ,  (4.14C) 

where the matrix t a has elements 

( ta)bc =f~b, . .  (4.15) 

The couplings that appear in the barevertex (see table 1) 

fabefcde =--fl = 2(d3 - d l ) ,  (4.16a) 

facefbde ~f2 ---- 2(d3 - d2), (4.16b) 

p a e f c b e _ f 3  = 2(d2 - d l ) ,  (4.16c) 

can be expressed in terms of the dn's, but the reverse is not true. Taking into account 
all the tensors and group couplings, the four-vertex altogether has 30 invariant 
functions, 

~abcdt 0 ,0 )  = ~_~ Fn,mdnOi(~] (4.17) jkl ~ P ' - - P '  
n ~ lqq 

Because the vertex is symmetric under exchange of any two external lines, all the 
invariant functions are not independent, but satisfy the relations 

FI, m = F3. ,,,', F2, ,,, = F2, m' (4.18) 
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p -r p -r 
(ol) (02) (o3) 

559 

r -p -P 

(bl) -r (b21 -r (b31 r 

-p r -r 

P (b41 P (bS) P (b61 

I 
P r r -P -r -P 

r r 

(cl) (c2) (c3) 

Fig. 3. Twelve diagrams for the four-vertex. In the calculation r = 0, and the diagrams were not 
separately evaluated. 

for the pairs 

(m,  m ' )  = (1,1), (2,3), (4,4), (5,6), (7,8) ,(9,9) ,  (10,10), (4.19) 

resulting in only 17 independent invariant functions. 
The  complete result is given in table 7. The infinite parts are 

I~iabcd[ jkl \ P ,  -- P ,  O, 0) hnfinit e = - - ig2{  4 g2 Z ~f l ( ~ik~j, - ~il~jk ) 

+ ~g2Z~[2f,(Su, Syt-SaSjk) + (f2-fa)SuSkt]}, (4.20) 

where Z" is the same as Z~ except that it originates from IR divergence. Thus only 
those terms in (4.20) proportional to Z~ need be cancelled by eounterterms. 
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TABLE 7 
One-loop four-vertex in LCM2 

2 3 10 

~ o ~ , . . .  • 2 g c2 + r~o~); r~o,= ]~  ~ d.F.'.~O<" l i jkt  tP, -p ,O,O)=tg l - ~ 2 ( F i n f  
n- -1  m- -1  

0 in') m 0 (m) m 0 (m) 

8ijSkt 5 pipkSjt/~ 2 8 
8ikSjt 6 pi ptlSk j /~ 2 9 
8it 8kj 7 Pk Pj 8a/.b2 10 
PiPj~kl/b2 

PlPjSki/.~ 2 
Pk Pl 8ij/P 2 
PiPjPkPJ~ 4 

11 4 
Finf = - T--[2/1(O2 -- 03) + (]'2 -- f3)Ol] -- - - /1 (O2  -- 03); 

Je l  els 
46 8 

F,' = - -  + z In z + 8S l tA=F~t  - 8 z +  3 z - I  

F '  = F '  
3,3 f = T ( ~ +  81nz+ 16S1)+-b- 1,2 16 

F '  F '  1,3 3.2 

Fl ' ,4=F~4=-~, F '  -F, '  - ~ '  = 1 , 6 - -  1 , 7 - -  3,5 F3',8=-V 
E '  - F '  - F '  = ' s F,' - F '  = F '  = 1,5 - -  1,8 - -  3,6 F3,7 = 9~ 1,10 - 2,10 3,10 

116 196 16 
F '  - F '  ~ - - 2  - - z 2 1 n z  

1.9 - -  3,9 3 9 Z - -  1 

52 16 
F '  - -  z In z - 16S 1 2,t 3 z - 1  

F '  - F '  =2F2',. 4 = - F '  = 2.2--  2,3 2,5 - F 1 6  = F2',7 = - F " 1 8 = ~  
184 272 32 

F /  - - z 2 2,9- - - z + - - +  lnz 
3 9 z - 1  

Om ~. 0 (m) 

Notation: see subsect. 4.4 and table 4. 

4.5. THE THREE-POINT VERTEX IN LCM4 

T h e  c o m p u t a t i o n  of  the  ver tex F~,b~(p , - -p ,0 )  which  involves  r ank-3  t enso r  

i n t eg ra l s  r equ i res  the  use  of  the 13 x 13 U-matr ix ,  t ab le  3. 

Because  the  t adpo l e  fig. 2(b3) is zero a lgebra ica l ly  a n d  

F~b~( p ,  - - p ,  0)  [(bl) = F;~b~ ( p ,  - - p ,  0) [(b2), (4 .21)  

o n l y  the  d i a g r a m  fig. 3a a n d  fig. 3 ( b l )  need  b e  eva lua ted .  The  re levan t  in f in i t e  pa r t s  

a re  

F~b~( p , - - p ,  O) = g 3 f a b c z , [ - - ~ ( 2 g x ~ p ~ -  g~,~Px-  g,xP~,) 

+ 2 p  + (2gx~n_  ~ -- g~,~n x -- g,xn_~,)  + t e rms  dep .  o n  n + ] ,  (4 .22)  

w i t h  the  fu l l  expres s ion  g iven  in  tab le  8. Th e  n d e p e n d e n t  i n f in i t e  pa r t  requires  a n  



H.C. Lee, M.S. Milgram / Yang-Mills in fight-cone gauge 

TABLE 8 
One-loop three-vertex in L C M 4  

561 

2 :, 24 
rah,'. ~m" g ~2 . • x~Ap, -p ,o)  = g/ l--~fi~ z (Fi.t + F,-~,), F,¢s=~-'.F{O(1) 

/=I  

1 0 tl) I 0 ~1~ l 0 (I) 

1 gx~,P~ 9,10 o t T ' S ) ( r ~ s )  t 20 O ° 9 ) ( r ~ s ~ p ~ r )  
2 g ~ p x + g v x p ~  11,12 O(7 '81 (p~r )  21 O ( 1 9 ) ( r ~ s ~ - p ~ r )  
3,4  O ° '2 ) (p  ~ r) 13,14 O~7'S)(r ~ p--* s) 22 p x p ~ p J p  2 
5,6  O° '2 ) (p  ~ s) 15,16 O(7"S)(p ~ s) 23 rxr~rJp 2 
7 r x r ~p Jp  2 17,18 O(7'Sl(p ~ r ~ s )  24 sxsps~/p 2 
8 ( rxp  ~ + r~px)r , /p  2 19 (rxs ~ + r#sx )pJp  2 

_'[ Fi.  , = ~ -  - ~ ( 2 0 ,  - 0 2 )  + 204  + 2 (205  - 06)  

1 16 ] 
+ -z ( - 1607 + 8019 - 4020 - 4021 ) + ~-~ 023 ; 

8 F' -- _74+  1 9 z _ l Z l n z + 8 S l  

4 
F ~ = - ~ + - -  lnz  z _ l  z 

4 
FS'= z _ l ( Z + l ) l n z  

2 
F6' = 4 ' -  z l n z  

z - 1  

0 I =- O(I) 

Notation: See tables 4 and 5. Finite parts of other invariant functions are not given here. 
*In all cases the normalization factor p2 is not changed in permutations. 

anomalous counterterm for its cancellation. However, as will be shown shortly, all 
anomalous  counterterms cancel in the total counter lagrangian for LCM4. 

The finite part for the three-vertex is too lengthy to be quoted in full. Instead, in 
table 8 we give only the finite parts of those operators appearing in (4.22). 

5. Counterterms and renormalizability 

5.1. COUNTERTERMS IN LCM2 

The counterterms that will cancel the infinite parts in the self-energy (4.9), the 
three-point vertex (4.13) and the four-point vertex (4.20) respectively are 

co(21 _ . _ ½ ( Z 3  1)T(21, (5.1 t 
LCM2 - -  

c0(3) - ( Z  x - l l g  ( -  T1 ~3) + T~3)), (5.2) "" LCM2 - -  

(0(4) _ _ ( Z  4 1)g2(1T:4)+½T~4)) ( 5 . 3 )  ~" LCM2 - -  - -  
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2 3 = Z 1 = Z 4 = Z -.~ 1 + ~-g2Z~, (5.4) 

where Z, - C2/16rr2e as before. This shows that LCM2 is multiplicatively renormal- 
izable order-by-order in powers of g. The identity of all three renormalizations also 
ensures that the "Ward identity" 

Z? --~ Z3Z 4 

is satisfied. 
From (5.4), the fl-function [18] of the renormalization group is 

(5.5) 

fl(g) = 2g(Z{1Z3/2)[ O( Z1Z;a/2)IO(1/e)] 

= - - ~ Z g 3 + O ( g 5 )  

which, as expected, is identical to that calculated in covariant gauges [9]. 
Summing (5.1)-(5.3) and comparing with (2.10), we find 

(5.6) 

~ L C M 2  "~- ( Z -  1 ) ~ L C M 2  , (5.7) 

which has the characteristic simplicity, typical of ghost-free gauges, of having a 
single renormalization constant. In such gauges the complete (Yang-Mills) counter 
lagrangian and the fl-function can be determined directly by the self-energy. In 
contrast, because of the presence of ghost fields, in covariant gauges the complete 
counter lagrangian contains six renormalization constants [19] (related by one Ward 
identity). Another gauge known to have the property (5.7) is the axial gauge (n 2 ~ 0) 
[3], which however is typified by computations [16] much more complex and lengthy 
than those in LCM2. 

Of course it has long been suspected that the light-cone gauge would have only 
one renormalization constant. As far as we know, until now the technique for 
evaluating light-cone gauge integrals has not been sufficiently mastered for this 
belief to be verified. We now show that the belief is true in an unexpectedly subtle 
way in the case of LCM4. 

5.2. C O U N T E R T E R M S  IN LCM4 

The counterterms required to cancel the (UV) infinite parts in the self-energy 
(4.10) and the three-point vertex (4.22) are respectively 

co(2) = ½(Z_ 1)[ ] f  ) + Y[(O~,A_~') o ( O+A_-)]t2 2), (5.8) "~ LCM4 

~oO) - - - ( Z - 1 ) g [  ]i 3 ) - Y g [ ( o + A ~ ) o ( A - x A ~ ]  (3) (5.9) 
~LCM4 - -  /.12 ' 
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where Z is defined in (5.4) and 

5 6 3  

Y =  - 2 Z ~ g  2. (5.10) 

The anomalous counterterm [ ](9 z) is needed to cancel the term p+(p~,n_, +p,n_~,) 
in (4.10) and [ ](23) is needed to cancel the term p+(2gxF, n ~ - g~,,n_ x - g~xn~,) in 
(4.22). The nonvanishing of the anomalous renormalization constant Y in (5.8) and 
(5.9) means that LCM4 is not renormalizable order-by-order in powers of g. 

At first glance [his appears to counter our proof in the  last section that the 
light-cone gauge is renormalizable. The contradiction is resolved when one notes that 
the two terms [ ](22) and [ ](23) are actually identical in LCM2, although they possess 
different powers in A and g in LCM4. Thus, from (1.1) and (1.2) 

[ g[ l? )= -gr  3) + g2r ') (5.11) 

and the two anomalous terms cancel in the sum 

~ ( 0 ( 2 + 3 ,  __ /" 7 1)(1[ ]~2)_g[ 1~3)) 
L C M 4  - -  ~, ~ - -  (5.12) 

which, upon comparison with (2.9), has the desired form to O(g3). 
Since LCM2 and LCM4 are different versions of the same theory, the difference 

in (5.7) and (5.12) uniquely determines the infinite part of the four-vertex in LCM4. 
For  from (5.7), (5.12), (2.10) and (2.12) 

~ ( o ( 4 )  = RIZ  - -  R f ° ( 2 + 3 )  - -  -~(Z - 1)g2[ ](4) 
~ L C M 4  ~ L C M 2  ~ L C M 4  (5.13) 

and it follows that 

F aboUt r, $)[ in f in i te  1 1 , . . 2 7  l~(O)abcd[ . ~ r, s ) .  (5.14) 

6. Slavnov-Taylor identities 

In LCM4, because the gauge-fixing constraint (1.1) is satisfied by adding a 
gauge-fixing term to the effective lagrangian, the Ward-Takahashi-Slavnov-Taylor 
(Ward for short) identities [20] can be derived as usual, and the two that can be 
verified by quantities we have calculated are 

p ~ H ~ , ( p )  = O, (6.1) 

F'abc[ 
PX" x~,,, P, --p,O) = igfabcI-l~,(p). (6.2) 

From the results given in tables 5 and 8, it is seen that (6.1) is satisfied, as is the 
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infinite part of (6.2). Furthermore, each of the identities give rise to a set of relations 
among invariant functions. With the short-hand notation F, + m +... = F, + F,, + . . . .  
from (6.1) the relations are 

(2Fl+2+zF3+4)n=(2F3+zF~+7)rt=(2F4+zFt+7)n=O (6.3) 

and from (6.2) they are 

- (2F1) n -- ( 2F  2 + zF4+6) r, (6.4a) 

- ' ( 2F2)  n = (2F1+ 2 + zF12+l,+22)F , (6.4b) 

- (2F3) n = (2F3+11 + zFs+2o)r = (2F4+12 + zFv+x9)r, (6.4c) 

- (2F4) / /=  (2F5+13 + zFlo+21) r = (2F6+14 + zF9+19)r , (6.4d) 

- (2F5) n = (2F  s + zF16+23)F, (6.4e) 

- (2F6) n = (2F10 + zFts+24)r, (6.4f) 

- (2F7) n = (zF15+18 + 2F21) F = (zF16+t 7 + 2F2o)r.  (6.4g) 

We have verified that the finite parts as well as the infinite parts of all these 
relations are satisfied. Observe that knowledge of the infinite parts of the self-energy, 
the renormalizability conditions 

l ( F 1 ) F ,  in f ~-~ --  ( F 2 ) F , i n  f = ( F 1 ) H , i n f ,  (6.5a) 

l ( F 5 ) F ,  in f ~-~ ~ ' ( F 6 ) F , i n  f ~-~ - -  ( F 4 ) H , i n f ,  ( 6 . 5 b )  

(F9,1o,13,14,22,24) F, inf = 0 (6.5c) 

and the Ward identities (6.4a)-(6.4g) combined does not determine the infinite parts 
of the three-vertex. 

In LCM2, the gauge-fixing constraint is not satisfied via the usual method of 
lagrangian multiplier. Rather the effective lagrangian is obtained by substituting the 
solutions of the constraints (1.1) and (1.2) into the Yang-Mills lagrangian, thus 
explicitly removing all redundant degrees of freedom associated with gauge invari- 
ance. Consequently Ward identities are lost to LCM2. This can also be understood 
by noting that n+ dependent terms are absent in LCM2 but are crucial to the Ward 
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identities in LCM4, even though such terms are irrelevant in the construction of 

counterterms. 

7. Conclusion 

We have thoroughly studied the two light-cone gauge theories LCM2 and LCM4 
at the one-loop level. We have computed all the one-loop vertex functions of both 
theories except the four-point function in LCM4. We find that in LCM2, the infinite 
parts of all the one-loop vertex functions are proportional to the respective bare 
vertex functions, rendering LCM2 renormalizable order-by-order in the coupling 
constant g. Furthermore the counter lagrangian contains only one renormalization 
constant Z -- 1 + ~g2C2//16¢r2e. 

The situation for LCM4 is more complicated. Both the one-loop self-energy and 
the three-vertex have anomalous infinite parts, requiring anomalous counterterms 
for their cancellation. However, although these counterterms are of O(A 2) and 
O(gA 3) respectively, they become identical and cancel each other exactly when 
transformed into LCM2 operators. The result is that the renormalizability of LCM4 
does not become obvious until both the one-loop self-energy and the three-vertex are 
calculated, at which stage the combined counterterm is proportional to the bare 
lagrangian to O(g3), characterized again by the same single renormalization con- 
stant Z of LCM2. From this it is deduced that the renormalization constant 
associated with the four-vertex must also be Z - there is no freedom left for the 
appearance of any new anomalous counterterm. 

Thus, as far as the renormalization property is concerned, the one-loop structure 
of LCM2 is completely determined by the infinite part of the one-loop self-energy. 
We emphasize that although it is commonly believed that this is generally true for all 
ghost-free gauges (it is true for the axial gauge), we have shown that the rule is 
applicable to LCM4, which is ghost-free and renormalizable, only with the provision 
that anomalous counterterms be ignored. 

In this work we have demonstrated the usefulness of the analytic representation 
(3.7) for the class of generalized light-cone invariant two-point integrals; armed with 
that single representation the entire calculation was reduced to one involving only 
linear algebra. We have presented the finite as well as the infinite parts for most of 
the vertex functions calculated - the full result for the three-vertex in LCM4 is too 
long to be given here - so that they may be verified by anyone who wishes to do so 
by another method. 

The method of analytic regularization preserves gauge invariance; in particular we 
have verified that the two- and three-point Slavnov-Taylor identities in LCM4 are 
satisfied. Because of the way gauge-fixing is implemented in LCM2, vertex functions 
in this theory are not known to satisfy any identities. The analytic method also 
separates IR from UV divergences. Among the vertex functions calculated, only the 
four-vertex in LCM2 has an IR infinite part. 
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This study has been carried out  in greater detail than would be normally deemed 
necessary in order to demonstrate convincingly that the light-cone gauge, which has 
previously caused so much confusion and misunderstanding, is now well understood 
and, technically, completely under control. Because of its outstanding simplicity 
compared with any other gauge, we believe LCM2 is fully justified to be the gauge of 
choice. In comparison, LCM4 is a far less attractive formalism. Its similarity with 
LCM2 ends with the absence of ghosts. Calculations in LCM4 are considerably 
lengthier than corresponding calculations in LCM2. Equally undesirable is the fact 
that radiative corrections to vertex functions of LCM4 have anomalous infinite parts 
that are apt to cause confusion. We do not recommend the use of this version of the 
light-cone gauge. 

We thank George Leibbrandt for useful communications. 

Appendix A 

We prove the equivalence of Mandelstam's and Leibbrandt's prescriptions and 
derive (3.7). The integration is carried out in Minkowski space; all variables are real 
and continuous. 

First consider the integral 

IM(a,b ,c;v ,A)  = lim f~_2 dx f_ ° dy(x+i~y)~(y+i~ l )  x 
rl -"* O + 0o oo 

× exp[2i(ax + by + cxy)], c, X >10. (A.1) 

The connection of this integral to Mandelstam's prescription is recognized when one 
reads ( x +  iTly) ~ as (q+ + i~lq-)L Use Euler's formula 

1 oo 
z V = - - [  dt t -V-le  -zt, R e ( z ) > 0  (m.2) 

r ( - ~ )  ao 

and write 

so that 

x + i ~ y = i ( - i x + ~ i y ) ,  y>~O 

= - i ( i x - * l y ) ,  y < 0 ,  (A.3) 

ih+v 
= lim f °~d t t -~ - l f ° °ds s -X- l e -~s  

I~ r ( - ~ ) r ( - x )  ~0+-o -o 

f f x e - ~ ' d y  d~ (exp[i(Eb + ~)y + i(2a + ~y + t)x] 

+ ( - ) % x p [ - i ( 2 b + s ) y + i ( 2 a - c y - t ) x ] } .  (A.4) 
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The integrations over x, y and s are trivial, yielding 

567 

IM = cFC_v)(-a)X(2ia)-'e-2i~b/cfoldtt-'-t(l-t)Xe 2'~'t/~. (A.5) 

The analog to I M for Leibbrandt's prescription is 

I L ~  lim f[ dx f d y ( x y + i ~ l ) " ( y + i ~ ) X - % x p [ 2 i ( a x + b y + c x y ) ] .  
~ --* 0 + do " - - o o  

(A.6) 

Because the imaginary part in the factor (xy + i~l) no longer depends on y, it is not 
necessary to split the y-integration into two parts as in (A.3). After using (A.2) and 
integrating over x, y and one of the Euler parameters one obtains 

iX~r l ia ~ x-~ do 
IL---- c F ( - v ) ( 2 c ) - ' [ c )  fo d t t -v - l (1  + t)-h+V-le-2iab/[c(l+t)]' (A.7) 

which readily transforms to the form of (A.5) when the integration variable t is 
changed to 

= t/(1 + t).  

This shows that the Mandelstam and Leibbrandt prescriptions are identical. The 
subscripts on I will henceforth be dropped• 

Now consider the M-integral 

M(to,~,g,v,h)= f d 2 ' ~ q [ ( p - q ) 2 ] ' ( q 2 ) " ( q + ) ' ( q - )  x, ~>~0. (A.8) 

Use Mandelstam's (or Leibbrandt's) prescription q + o  q++ i~lq- for the factor q÷; 
use the usual ,/-prescription z ~ z + i~l for the other three factors (p  - q)2, q2 and 
q-; write 

u s e  

and apply (A.2) to obtain 

M =  

f d2"q = f dq+ f% dq-; 

P ' q = P + q - + P - q + - P ' q  

i'+~' fo°°drfo lim do ds r_~_ ls_~_ le_n(r+ s)eiv2 r 

× fd2<O-1)Oe' -O2<r+'+2r OJI( - p - r ,  - p + r ,  r + s; v, ~) .  (A.9) 
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The method of dimensional regularization [21] gives 

f d2(~-'~# e 't ' ]=  [-i~r/(r + s)] ~'-leii'~'2/(r+s). (A.10) 

Use (A.5) for the/-integral,  transform variables 

r -- p(1 - "r), s = p'r (A.11) 

and integrate over p to obtain 

M= i( ~re-i~)'( p2) "-" ( p+ )" ( p- )~z-W(-=,) [ r ( - . ) r ( -~ ) r ( - . ) l  -I 

X(foldm.r&-l(1-m)-l-~°foldtt-"-l(1-t)x 

, X [1 + z t ( 1  - ~')/~] " } ,  (A.12) 

where a o = - t o - / ~ - h ,  a x = 6 0 + • + # + p  , f l l = ~ + r + v ,  z=2p+p-/p 2. The 
double integral has a known G-function representation [12] for Izl < 1, 

1 r ( l+X)  G2,3[z I l + a o ,  l+a, ,  1 + a 2 ;  ) 

(A.13) 

where the parameters or2= lJ and f12 = p - ~  are introduced to expose the full 
symmetry of the G-function. (A.13), when substituted into (A.12), gives the first 
representation of (3.7) in the text. The second representation, for Iz] >/1, results_ 
from a known analytic continuation of the G-function [15]. 

The representation derived here is very similar to but distinct from the G-function 
representation derived in ref. [12] for axial gauge integrals, and can be evaluated 
using the same method described in detail there. A particularly useful expansion for 
the G-function in (A.13) for Iz[ < 1 is 

2,3 F(flx)F(-a°)F(-al)F(-°t2) ( -a° '  -al '  -°t2 ) 
G3,3 ( z t . . . )  F(1 _ f12 ) 3F2 l _ f l l , l _ f l  2 z 

+z~, r ( -  & ) r ( &  - . o ) r ( &  - ~ , ) r ( &  - ~) 
r ( 1  - ao)  

X3F2( f l ' -a°' f l l -a' ' f l l -a21 + i l l , l -  a o z), (A.14) 
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where 3F2 is a hypergeometric function. A similar expansion [15] exists fo r  the 
3 2 -11 G3" 3 (g " ' "  ) in (3.7) for I zl>~ 1. 
When (3.7) is used as a representation of Feynman integrals, the exponents K, g, v 

and X have integer values. The limiting process that preserves gauge invariance and 
facilitates the analytic separation of ultraviolet (UV) and infrared (IR) divergences 
in the Feynman integral is [16] 

- o, g - o, )~, r = integers, o ~ 0, to = 2 + e. (A.15) 

Gauge invariance is preserved only when o = 0, in which case all divergences are of 
O(1/e).  However, because the ultraviolet and infrared poles have different o-depen- 
dence and therefore approach 1/e  differently as o --, 0, the parameter can be used to 
tag and separate the two types of poles. 

F o u r  simplifying special cases of the representation are particularly useful. 
(i) x ~ integer >1 0. M is either identically zero or is a sum of UV and IR poles 

with residues equal in magnitude but opposite in sign. 
( i i )  g --, integer >/0. 

M = Lor(a, - a o ) r ( a ,  - ~ ) r ( -  = , ) r (1  + x)/[r(a + a I - -  =)] 

--/.t, --or1, --Or x + f12 ) 
- 2-1 

×z  ~, ~:3F2 l _oq+Oto , l_oq+a 2 

Z 0 ] i f (~e[i~)  ~( p 2 ) ~l-~( p + ) ~ ( p - )  X / [ r ( - K ) r ( B 1  - ao)]. 

(A.16) 

All the parameters of the 3F2 except # depend on to, therefore according to (A.15) 
the right-hand side of (A.16) is a terminating polynomial in powers of z-  x of at most 
(# + 1) terms. 

(iii) v = integer >/0. 

M = Lor(- o + + - 

- r , - X , B l - a 2  ) 
X3F2 l + a o _ a 2 , 1 + a l _ a 2  g -1  , (A.17) 

which is a polynomial in powers of z-1 of order g or X (recall X is always >/0), 
whichever is less. 

(iv) # ~ integer >/0 and g = integer >/0. M is the same as in case (i). Cases (i) 
and (iv) combined form the generalized class of "tadpole" integrals, which are 
zero-valued when UV and IR divergences are not distinguished, as in dimensional 
regularization. 
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Note added in proof 

We emphasize that the representation (3.7) is only valid for h >1 0. The apparent 
discrepancy between (3.6) (2~ >/0) and (A.2) 0' < 0) indicates that another prescrip- 
tion for q -  along the lines of (3.1) or (3.2) would be necessary for a rigorous 
extension to the case h < 0. This is unnecessary for this work, and the quoted results 
are valid. We thank Q. Ho-Kim for pointing this out to us. 

Appendix B 

We describe the expansion of tensor integrals having the general form 

!(p) - f d2'~qK(p,q)Q, (B,1) 

where K is a function of light-cone invariant quantities such as p .  q,/3. ~, q+ and 
q-, and Q is a symmetric tensor composed of factors of q's; a runs from I to 2 in 
LCM2 and from 0 to 3 in LCM4. For example, the rank-2 Q in LCM2 is qiqj and 
the rank-3 Q in LCM4 is qxq~qp. 

Since _/carries the same indices as Q, it is clear that in LCM2 _/must transform as 
a symmetric tensor constructed from the vector p~ and the tensor 8~j. We shall call 
(p~, 8u) the basis tensor set for LCM2. Similarly, the basis tensor set for LCM4 is 
(p~, r~, s~, g~,p), where for simplicity we define the two vectors 

r - p - n +  , s - p + n _  . (B.2) 

The following discussion applies equally to LCM2 and LCM4. Suppose Q is 
rank-n. Then ! admits the expansion 

_/= At__S (t) , (B.3) 

where summation over 1, an index labelling all the independent rank-n symmetric 
tensors _S (t) that can be constructed from the basis tensor set, is understood. Define 
the inverse matrix U-1 with elements 

( U  -~)  tt, -- _S<O. _S <t') 

and the set of light=cone invariant quantities 

a t = Q.  S_ (t). 

Then 

A t =  f d2'°qKat,Ut,t, ' 

1 = s ' t ' f  d2'°qKat,Ut,t 

(B.4) 

(B.5) 

(B.6) 

(B.7) 
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since _S ~1) does not depend on q. Thus the evaluation of the tensor integral _/ is 
reduced to the evaluation of a set of light-cone invariant integrals, which can be 
further reduced to M-integrals and evaluated using the representation (3.7). 

In (B.7), the quantities a t a n d  Utt, are independent of the kernel K, therefore, by 
comparison with (B.1), one may write 

Q - ai,Ut,tS_ <l) , (B.8) 

which is an equivalence true under the integration f d 2 ~ q  for any light-cone invariant 
kernel. 

The complete expansion (B.8) for tensors up to rank 4 in LCM2 are given in table 
2. Because of the larger basis tensor set, corresponding expansions in LCM4 are 
considerably lengthier. For tensors of rank-3 or less the expansions are given in table 
3 in terms of U and _S ~0. 

The method described here is readily generalized to deal with tensor integrals in 
covariant gauges, where the basis tensor set is (ps, g,,), and axial gauges, where the 
basis tensor set is (p, ,  n~,, g,,). A table of the most commonly used integrals in the 
light-cone gauge is available [22]. 
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