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Abstract: The Baranger formalism for the structure of spherical nuclei is applied to the first 2* and 3~
states in the even Sn isotopes. Reduced electric transition strengths and (e, e”) form factors for these
states are calculated. The results compare satisfactorily with recently measured data.

1. Introduction

Recently, cross sections for (e, ¢’) scattering with some even singly closed-shell
nuclei in the 4 ~ 50, 90 and 120 mass regions as targets were measured !) with 209
MeV incident electrons; (e, e’) form factors, with a range of momentum transfer
from 0.5 fm ™! to 1.7 fm ™!, were deduced !) from these cross sections, for the first
2% and 3~ (and in some cases the 4*) states in the nuclei studied. Moreover, these
form factors were compared ') with theoretical predictions * 2) in which the excited
states are described as two-quasiparticle and particle-hole vibrations.

The results for the isotopes !1© 120-1248q are of particular interest. At the first
diffraction peaks of the quadrupole (e, ¢”) form factors for the ground to 2| transitions
the reported theoretical predictions are ~ 50 times smaller than the measured values.
This is in sharp contrast with the nuclei in the mass 50 and 90 regions, where the
discrepancy is only a factor of 3 to 5, the theoretical predictions again being too small.
On the other hand, the theoretically predicted magnitudes of the octopole form
factors for the ground to 3] transitions more or less agree with experiment at the
first diffraction peaks. Furthermore, for both multipoles the predicted shapes
of the form factors do not agree with those deduced experimentally.

In view of this rather serious failure of the theory, as applied to the Sn isotopes,
it seems desirable that an independent calculation be performed. We report the result
of such a calculation here. We find that for the Sn isotopes the predicted transition
strength is only a factor of 2 to 3 smaller than the measured value. We also find that
the theory is capable of reproducing the shapes of the experimentally deduced form
factors. Furthermore, we show that using one value for the charge enhancement,
Ae = 0.2e, all B(E2; 0" — 27) values and all except one B(E3; 0* — 37) value in the
Sn isotopes, measured by Coulomb excitation, and to a lesser degree in accuracy, all
inelastic electron scattering data, can be reproduced.
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2. Results and discussion

As in ref. 2), the 2] and 3] states are described in terms of particle vibrations, in
the formalism of Baranger ). For both neutrons and protons, twelve orbits from
2p, to liy are taken to be active. Spherical harmonic oscillator wave functions are
used. The oscillator constant #w is taken to be proportional to 4~ *, normalised to
8.3 MeV for 116Sn. Pairing effects are included in the calculations for the neutrons,
but not for the protons, because the proton number for the Sn isotopes is magic.
Thus the 2* and 3~ states are composed of linear combinations of neutron two-
quasiparticle and proton particle-hole components. Approximate values for most
of the single-particle energies of these nuclei can be extracted from the spectra of
neighbouring odd-mass nuclei #). The single-particle energies used here are similar
to those used by previous investigators > ©). The pairing and the multipole residual
interactions are those of the X-matrix derived from the N-N interaction of Kahana,
Lee and Scott 7). For each multipolarity (2% or 37) we allow the overall strength
of the residual interaction to be varied to take into account renormalisation effects,
such that for all isotopes studied the systematics of the excitation energies is best
reproduced (see fig. 1). Briefly, the neutron pairing gap at the Fermi level is =~ 1.5
MeV, and the smallest neutron two-quasiparticle energy is ~ 3.1 MeV. Both of
these decrease slightly as the mass number is increased. The smallest proton par-
ticle-hole energy is &~ 5.0 MeV, which increases slightly with mass. It is a combination
of these two effects that makes the transition strengths of the excited states decrease
slightly with mass, as we will see below.
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Fig. 1. Low-lying levels of even-mass Sn isotopes.
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TABLE 1
Computed occupation amplitudes, or v-factors, for neutron orbits in !'éSn and 12°Sn

v-factor

Orbit Code no. for orbit
1 16Sn 12()Sn
2p, 8 0.9944 0.9950
1f; 9 0.9937 0.9944
2p, 10 0.9920 0.9930
lg, 11 0.9885 0.9903
2d, 12 0.9417 0.9547
lg; 13 0.8969 0.9227
3s, 14 0.8648 0.9016
2d, 15 0.5458 0.6075
1h,, 16 0.5255 0.5939
lh, 17 0.2070 0.2254
2f, 18 0.1128 0.1175
liea 19 0.0818 0.0825

TABLE 2
RPA amplitudes for neutron two-quasiparticle and proton particle-hole pairs of 2] states in !'°Sn
and 12°Sn
ll&Sn lZOSn
X Y X Y

neutron 2gp

18 8% 0.051%) 0.029 0.047 0.027
17 9 0.129 0.083 0.126 0.081
11 11 0.057 0.001 0.052 0.000
12 11 -0.129 —0.024 —0.108 —-0.018
13 11 —0.051 —0.018 —0.042 —-0.016
12 12 0.146 0.026 0.117 0.019
13 12 0.088 0.019 0.070 0.014
14 12 —0.266 —0.053 -0.212 —0.042
15 12 -0.156 -0.051 —-0.142 —0.046
13 13 0.275 0.074 0.218 0.057
15 13 -0.427 —-0.116 —0.384 —0.104
15 14 0.296 0.064 0.277 0.062
15 15 0.216 0.037 0.240 0.042
16 16 0.581 0.124 0.674 0.134
17 16 —0.068 —0.026 —-0.080 —0.034
18 16 —0.158 —0.028 —-0.167 —0.034
17 17 0.094 0.014 0.106 0.017
proton p-h

18 8% 0.068 0.052 0.064 0.058
17 9 0.152 0.119 0.149 0.118
12 11 -0.382 —-0.218 —0.352 —0.203
13 11 -0.129 0.088 -0.123 —0.084

*) Each orbit is represented by its respective code number given in table 1.
®) Amplitudes with [X+ Y] < 0.05 are not given.
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TABLE 3
RPA amplitudes for neutron two-quasiparticle and proton particle-hole pairs of 3] states in '!®Sn
and '?°Sn
116Sn IZOSn
X Y X Y

neutron 2qp

15 8 0.095 0.040 .0.089 0.035
13 9 —-0.084 —0.025 —-0.074 -0.019
15 9 0.053 0.019 0.051 0.016
12 10 —-0.061 —0.012 —0.056 —0.009
13 10 0.090 0.021 0.081 0.016
16 11 —0.230 -0.091 -0.215 -0.079
17 11 0.081 0.036 0.078 0.034
18 11 0.056 0.028 0.055 0.027
16 12 0.638 0.119 0.631 0.103
17 12 —0.089 —-0.020 —0.089 -0.019
18 12 —0.106 —0.043 —0.105 —0.041
16 13 -0.325 —0.059 —0.318 —0.052
17 13 —-0.278 —0.084 —0.281 —-0.079
18 14 0.119 0.043 0.124 0.043
17 15 0.217 0.026 0.266 0.026
18 15 —-0.060 —0.015 —0.069 -0.016
proton p-h

12 8 —-0.114 —0.057 —0.109 —0.053
13 8 —0.095 —0.049 —0.092 —0.045
15 8 0.125 0.070 0.118 0.065
12 9 0.096 0.039 0.090 0.036
13 9 —0.259 -0.107 —0.249 -0.099
14 9 —0.073 —0.038 —0.068 —0.035
15 9 0.093 0.047 0.086 0.043
12 10 —0.211 —0.081 —-0.207 —0.075
13 10 0.264 0.101 0.266 0.094
16 11 —0.283 —0.125 -0.273 —0.116
17 11 0.053 0.038 0.048 0.034
18 1 0.050 0.036 0.047 0.033

The calculated occupation amplitudes, or v-factors, for the neutron orbits in
1168n and !2°Sn are shown in table 1. Amplitudes in the random phase approxi-
mation * 8) (RPA) for the 27 states and 3~ states, in the same isotopes, are shown
respectively in tables 2 and 3. Results for other isotopes are similar but have a
systematic mass-dependence characteristic of the rising of the mean Fermi level
through the neutron orbits, as the mass number increases. Results in the Tamm-
Dancoff approximation ®) (TDA) are similar to those in RPA. But as usual they have
weakened transition strengths, and as will be shown below, they have inferior mass
dependence, compared to RPA results. The transition strength and (e, ¢’) cross
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section depend on the transition charge density, which in our case is given by °)

b

- Ja - .
pIHr) =) = (14 0,0) ™ 3(ua 0y + vau X 5+ Yo )gere(alli (1)l ID), ()
azb E
' i g, A
(@lliv;jip) = —(—)o+a+apiora-s D (Ja o AY g R ) if I+ 1+ 4 even,
,/47!,' 2 —72 0

= 0 if otherwise, 2)

where a and b are labels of orbits; u = ./1—0v%; j, = \/2j,+1; g = Aefe for neutron
orbits, and g, = 1+ Ade/e for proton orbits, Ade being the effective charge enhance-
ment; and R(r) is the harmonic oscillator radial wave function. The transition
strength is given by

B(EA; 0 - 2) = e2(24+1) Ur“ng”(r)dr )2. 3)

The (e, €") Coulomb form factor, when distortion on the electron waves is ignored,
is given by

4 2
IFAg®)I? = i: (24+1) ( j p° A1) jgr)r? dr) ) )

The density, the transition strength and the form factor are calculated using the
computer code MICRODENS °).

Cross sections for (e, ¢’) were also calculated in the distorted-wave Born approxi-
mation, where a modified version of the code DUELS, written by the Yale-Duke-
Ohio group % 11), were used. In this case the “form factor” squared is the cross
section normalized to the Mott cross section

de j(do do [[(Z&)* sin? & :l
232 _ — = 27
F@I = 35 / <dQ)Mm, o) / [ 4p? cos* 19 |’ )

where o & 13, is the fine structure constant, 6 is the scattering angle, and p, is the
initial electron momentum. The momentum transfer is given by

q* = |p;—p|*> = p? +p? —2p;p; cos 6,

where p, is the final electron momentum.

The calculated 0 to 27 and to 3] transition strengths expressed in the appropriate
Weisskopf units [1W.u.(4) = [(24+ 1)/4n][3/(3 + 1)]*(1.24*)** €2 - fm?*] are shown
in fig. 2 and compared with data extracted from Coulomb excitation experi-
ments 12 13). . The solid (dashed) lines represent the RPA (TDA) results, where a
charge enhancement of 4e = 0.2¢ (de = 0.45¢) has been assigned to the active protons
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Fig. 2. Calculated values of B(E2; 0 — 2}) and B(E3; 0] — 3]) in RPA, 4e = 0.20e (solid lines) and in
TDA, de = 0.45¢ (dotted lines). Experimental values for B(E2) are from ref. *2), and those for B(E3) are
from ref. 13).

and neutrons. The RPA results are better as the mass dependence of the data '?) is
well reproduced. We shall discuss only the RPA results in the following. For the
B(E2) values the theoretical results shown in fig. 2 are about 3.1 times larger than
those obtained when no charge enhancement is assigned. This is similar to the results
reported in ref. ') for nuclei in the mass 50 and 90 regions, but very different from
those for the Sn isotopes, where without charge enhancement the theoretical B(E2)
values were reported to be more than twenty times smaller than the corresponding
measured values. Actually it would be more than a little surprising if such a large dis-
crepancy between theory and experiment indeed existed, since the measured E2
strengths for the Sn isotopes are not particularly strong, being only about 10-15
W.u. The computed B(E3) values shown in fig. 2 are about 2.3 times larger than those
obtained with no charge enhancement.

The calculated (e, e’) form factors for the 0F to 2] transitions in *°Sn and '2°Sn
are plotted in fig. 3 and compared with available data. The same (de = 0.2¢) charge
enhancement is used. Without enhancement the predictions are a factor of ~ 3.1
smaller but the shape of the form factors, as a function of the momentum transfer
g does not change. In fig. 3 (as well as in fig. 4) the solid curves are calculated using
distorted waves for the electrons. The dash curves show results obtained in the Born
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Fig. 3. The (e, e’) form factors for the 0] — 2] transitions in % *2°Sn. The curves are calculated using
distorted waves for the electrons (solid line), and using plane waves for the electrons (dotted line). The
dot-dash curve is obtained using a ground-state density obtained in a density-dependent Hartree-Fock
calculation !%). The open triangles are experimental points from ref. !%) and the solid circles are data
from ref. !). The inset shows the calculated 07 — 2} transition density in ''Sn; b = 2.235 fm.

approximation. As expected the latter is not reliable at and beyond the first dif-
fraction minimum. In the distorted wave calculation the ground-state charge density
is represented by a two-parameter Fermi distribution !4). A more sophisticated
ground-state charge density, obtained in a density-dependent Hartree-Fock calcu-
lation '), and giving a better account of the elastic electron scattering data, is
used. This density produces little change (fig. 3, dash-dot-dash curve) in the (e, ')
result, however. The triangles in fig. 3 (and fig. 4) are those of Curtis et al. *®) obtained
with 60 MeV incident electrons. The solid circles are those of Phan-Xuan-Ho
et al. ') with 209 MeV electrons. For *'®Sn the theoretical result reproduces the data
points very well. For 12°Sn the theoretical curve does not fit all the data points as
well. For the latter nucleus it is in fact not possible to fit both sets of data simul-
taneously since there is a significant difference between the two at ¢ ~ 0.55 fm ™1,
The data of Curtis et al. show a slight decrease in the transition strength going from
1168n to 120Sn, in agreement with the direct B(E2) measurements !2) at zero mo-
mentum transfer (see fig. 2). In contrast the data of Phan-Xuan-Ho ez al. show a
slight increase in strength.

The form factors for the 0] to 3; transitions in !¢ '2%Sn are shown in fig. 4.
The theoretical curves are obtained again by setting de = 0.2¢. The results reproduce



EVEN Sn STATES 93

10 SE——
| a
107 3 107*
t 3

= 1078
/3
]
Ji07%
]
3I0‘5
(N IR

2 4 .6 7 1.0 1.2 1.4 1.6 18 2.0
g(fm™")

Fig. 4. The (e, ¢’) form factors for the 0] — 3] transitions in 1% *2°Sn_ (For notation see fig. 3.) Here
curve (a) is obtained using a transition density the same as the one shown in the inset but with the smaller
peak cut off at the dashed line.

the data fairly well. The serious disparity between the theoretically predicted shape
and the observed shape reported in ref. *) is not evident here. We point out that for
1208n again there is a significant difference between the two sets of data at ¢ ~ 0.55
fm~*, suggesting a difference in the normalisation procedures’ used in the two
experiments.

The calculated transition densities for the quadrupole and octupole transitions in
11681 are shown in the insets of figs. 3 and 4, respectively. These have more structure
than that usually adopted for phenomenological analyses, which is proportional to
the derivative of a Fermi density distribution '7). The octopole density in fig. 4 is
particularly interesting as it exhibits a prominent peak in the interior in addition to
the usual one centering near the nuclear surface. In order to examine the effect of
this second peak we repeated the calculation for '®Sn excluding the contribution
from the interior. This procedure reduces the B(E3) value by less than 19;. The new
form factor is shown as curve (a) in fig. 4. We see that beyond the first diffraction
minimum, this latter result is clearly distinct from that obtained with the fult density.
However, in so far as fitting the presently available data is concerned neither result
is distinctly superior to the other.

! For normalization purposes a three-parameter Gaussian model is used for the ground-state charge
density to calculate the elastic form factor in ref. *). In ref. 1) a two-parameter Fermi density is used.
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