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Abstract: The Hartree-Pock method is used to calculate the n-p rms radius differences for eight 
nuclei from ‘Wa to ?Sn. These values are compared with experiment and with those predicted 
from Coulomb displacement energies. The comparison is discussed. 

Recently there has been some controversy over the differences between the rms 
radii of neutron and proton distributions in neutron-rich nuclei. The analysis of 
Auerbach, Quershi and Steinheim “j of the 700 MeV n’-Pb inelastic scattering data 
showed that I, = (0.9&0+0.015)r,; an attempt to fit the data assuming Y, to be more 
than 5 % larger than rp leads to a very peculiar and unreasonable neutron distribution. 
The conclusion of Auerbach et al. contradicted the results obtained by Greenlees 
et al. ‘> in their first optical-model analysis of the proton elastic scattering data, and 
also those obtained by Elton “9 from a fitting of the bound-state energy levels in the 
single-particle Woods-Saxon model “j for Pb; both these analyses gave P, M 1.09~~. 
It was also in disagreement with the work of Nolen, Schiffer and Williams “j, who 
deduced that r, - rp w 0.07 f 0.03 fm for Pb by assuming (i) that the distribution of 
the extra proton in the analogue state is the same as the distribution of the excess 
neutrons in the parent state, (ii) that the Coulomb displacement energy due to this 
proton is equal to the energy difference between the analogue and parent states, and 
(iii) that isobaric spin is a good quantum number. 

More recently Greenlees et al. “> recalculated the p-elastic scattering data and 
concluded that the n-p rms radius differences are much smaller than those they had 
previously deduced, the new results being essentially zero for nuclei with A M 60, 
and z 0.15 fm for 12’Sn and “*Pb. This implies r, M 1.02 rp for Pb. 

Now the radii of the proton and neutron distributions reflect the dynamical equi- 
librium of the nucleons under the influence of the Coulomb and nucleon-nucleon 
interactions, and it is desirable to study this equilibrium in a self-consistent way. We 
have therefore carried out Hartree-Fock (HF) calculations for the nuclei 48Ca, 56Fe, 
58Ni, 5gC~, 6oNi, ‘%i “Zr and lzo Sn. For the N-N interaction in the Hamiltonian 
we use the semi-realistid potential no. 2 of Saunier and Pearson ‘j. This potential has 
a phenomenological short-range part and a one-pion exchange long-range part. It 
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TABLE 1 

Hartree-Fock binding energies and rms charge radii 

Nucleus 

48Ca 
56Fe 

Binding energy (MeV) <r,h’>* (fm) 
Hartree-Fock Experiment “) Hartree-Fock e- scatt. b, 

365.15 416.00 3.284 3.49 
443.05 492.26 3.633 3.67 G 3.85 

58Ni 456.34 506.46 3.695 3.72 % 3.93 
5aco 465.73 517.32 3.671 3.76 w 4.05 
60Ni 476.24 526.85 3.702 3.75 % 3.84 
62Ni 493.23 545.27 3.703 
9oZr “) 696.44 799.74 3.951 

rzoSn 911.03 1020.55 4.653 4.57 M 4.65 

p- X-rays 

3.72 ho.03 ‘) 
3.663 % 3.764 “) 
3.81 Jro.03 “) 
3.81 10.06 “) 
3.85 hO.03 “) 
3.88 ztO.03 “) 
4.27 kO.04 “) 
4.65 kO.01 “) 
4.593-4.672 d, 

“) Ref. 23). 
“) Ref. 24). 
‘) Ref. ‘a), calculated from r. = At/R listed for natural elements. 
d, Ref. 25). 
“) Values calculated with fiiw = 10.5 MeV are shown. With fiiw = 8.0 MeV, Eb = 677.74 MeV, 

<r,s’>* = 4.410 fm. We believe the optimum value for &iw to be between 10.5 and 8.0 MeV. 

TABLE 2 

Difference of rms radii of neutron and proton density distributions, <~~~>t-<(r,~>+ in fm 

Nucleus p-elastic Hartree-Fock Droplet Statist- Coulomb Proton Neutron 
scattering “) this others model “) ical dis- Woods- separation 

work theory ‘) placement Saxon energy 
energy potential”) 

“OSn 

2o*pb i 0.13 &to.25 

0.137 0.24s) o l66 
0.23 “) . 

-O.O4&0.15 0.074 0.063 

0.01 f0.18 0.020 0.023 

-0.0330.16 0.088 0.078 

0.03AO.16 0.065 0.058 

0.114 0.092 

0.150 
0.13 b) 
0.12 “) 

0.111 

0.15f0.19 0.246 0.202 

0.29 b) 
0.23 “) 0.254 
0.25 d) 

0.10 0.06 ‘) 

0.04 ‘) 

0.02~0.01 h) 

0.05*0.02 “) 
0.07 ‘) 

0.07f0.03 P) 
0.11 0.09rt0.01 “) 

0.15 i)* 

0.25 

0.24 !=) 

0.14 k) 

0.23 ‘) 

0.12 

0.25 0.44 k) 

0.65kO.5 ‘) 
0.28 0.62 k, 

“) Ref. 6). b, Ref. lo). “) Ref. II). “) Ref. 12). ‘) Ref. 14). ‘) Ref. 15). 
“) Ref. “). “) Ref. 16). r) Ref. 17). j) Ref. 3). “) Ref. I’). 
* Also, Bethe and Siemen 20) found that the half-density radius of neutrons is 0.2 fm less than that 

of the protons in 208Pb. 
t The value -0.11 *O.OS was obtained in ref. I). 
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accounts for certain aspects of the N-N scattering data and gives correct binding and 
saturation results in nuclear matter calculations ‘). In the HF Hamiltonian the kinetic 
energy due to the c.m. motion is subtracted explicitly and the Coulomb interaction is 
included exactly. The harmonic-oscillator basis for the expansion of the single- 
particle wave functions includes those in the first five major shells as well as the lh+ 
shell. This basis can in principle accommodate 82 protons and 82 neutrons. The single- 
particle orbitals are expanded in terms of harmonic-oscillator wave functions with no 
restrictions except for definite parity and for the prohibition of mixing of proton and 
neutron orbitals. The value of ho is 13.5 MeV for 48Ca, 10.5 for the A w 60 nuclei, 
and 8.0 for lzOSn. Calculations carried out for 9oZr with 10.5 and with 8.0 MeV 
lead to similar results. The trial wave functions required to start the HF iterative pro- 
cedure are generated from the single-particle deformed oscillator code ELMQS 
written by Cusson “). The calculated binding energies and charge radii, relative to the 
c.m. are listed in table 1 and compared with experimental data. The binding energies 
are too small ““) by M 10 % and the rms charge radii too small 24-26) by 3-6 %. 
Since we are only concerned with the n-p rms radius difference within each nucleus 
we feel these discrepancies should not invalidate our results for this difference. 

Table 2 compares various estimates of the n-p radius difference for nuclei from 
48Ca to “‘Pb. Those deduced from p-elastic scattering by Greenlees et al. “) appear 
in the first column. The second and third columns give the present and other HF 
results lo -12). The results in column 4 are those predicted from t&e refined hquid-drop 
(‘“droplet”) model of Myers and Swiatecki 13*14). The values calculated from the 
statistical theory by Brueckner et al. l”) are given in column 5 while column 6 lists 
results deduced from the Coulomb displacement energies of analogue states 5* 16, 17), 
using the method of Nolen et al. “). In column 7 we find the results of Nolen and 
Schiffer, calculated by using Woods-Saxon potentials characterized by the rms radius 
of the relevant proton core “). Finally, co umn 1 8 gives results obtained from single- 
particle potentials determined by the separation energies of the relevant neutrons 
[refs. 3, ‘“)I. The numbers in column 8 are obviously much larger than those obtained 
by any other method and will be excluded from the following discussion +. 

The p-elastic scattering results are in agreement with all those in columns 2-7, but 
cannot distinguish between them. We can group the HF, droplet model, and statis- 
tical calculation into one category because they all involve some form of the varia- 
tional principle. There is excellent agreement among the HF results themselves and 
between the HE and droplet-model results, but they are larger than the results of the 
statistical theory. The proton densities in the latter calculation tend to be much more 
prone to expansion under the influence of the Coulomb force. For example the proton 
rms radius is predicted to be 0.05 fm larger than the neutron rms radius for 4oCa, as 
compared to 0.03 fm in our calculation and 0.01 fm in the droplet model. This seems 
to imply a smaller compressibility coefficient in the statistical model of Brueckner 

t The method itself is also subject to criticism, see ref. “1. 
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et al. The reason for the discrepancy between these models is not well understood. 
Henceforth we shah be content to compare the HF and droplet-model results with 
those obtajned by the two remaining methods. 

There is good agreement between the variational results and those of column 7. 
This is somewhat surprising because, unlike the Woods-Saxon type calculations, the 
variational calculations do not assume the proton and neutron “core” distributions 
to be identical. Yet when we calculate the rms radii of neutron “cores” we find that 
these are only 0.02 to 0.03 fm or 0.6 % less than the proton radii. This may explain 
the similarity between the Woods-Saxon and HF results. 

Comparison of columns 2-4 with column 6 reveals a systematically small but sig- 
nificant difference. The numbers in the latter are 2-3 times smaller than those in the 
former. This discrepancy between the neutron-excess rms radii extracted from Cou- 
lomb displacement energies and those predicted by variational calculations was also 
observed by Nolen and Schiffer 17). The most serious criticism of a HF calculation 
for medium and heavy nuclei is that the single-particle basis may be too small, thereby 
restricting the proton distribution from expanding beyond the distribution of the 
neutrons in corresponding orbitals. Short of doing a proper calculation by enlarging 
the HF basis and as a result greatly increasing the size of the computer program, one 
can try to estimate the increase in rg which could occur if the basis restrictions were 
removed. For nucleides with A up to 40, the effect of the basis restriction is minimal. 
For these nuclei, our HF calculations show, to a very good approximation +, that 

Y~--Y, = 4x 10-3A%p (N=Z). (1) 

This difference is, incidentally, about three times larger than the prediction of the 
droplet model in this mass region. If we extrapolate eq. (1) to heavier nuclei, and 
consider the I, in eq. (1) to be the rms radius of the core neutrons, then for Fe, Ni, Zr, 
Sn, and Pb the rms radius differences between the protons and core neutrons would be 
0.04, 0.04, 0.06, 0.07 and 0.09 fm, respectively. Since as mentioned earlier the rms 
radii of the protons are already M 0.02 fm larger than those of the neutron cores, the 
corrections to yP, or (rch)&, should be 0.02,0.02,0.04, 0.05, and 0.07 fm, respectively, 
for these nuclei. Subtracting these corrections from the corresponding numbers in 
column 2 of table 2 we see that in most cases this only brings our HF results somewhat 
closer to those of the droplet model but does not eliminate the discrepancies between 
the variational results and the Coulomb energy results. 

Although there are indeed other corrections which should be applied to the HF 
predictions we should mention that there are also difficulties in the Coulomb energy 
method. For example, an important step of that method is to identify the differences 
in binding energies of analogue states with the differences in expectation values of the 
Coulomb interaction. Whereas this equality is predicted by Nolen and Schiffer r7) 

t We are not concerned with the absolute optimum value for fiw here. A more elaborate report 
of a systematic HF calculation for light nuclei will be published elsewhere. 
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to be within several keV we have found + that the binding-energy difference is larger 

by w 90 keV for A = 41. Also, the structural relations between analogue states of 
nuclei with large neutron excesses are more complicated and rearrangement energy 
corr~~ons may well be sign~~n~y larger. Indeed, if we take the values (consistent 
with experiment) of the n-p rms radius differences for ‘*Zr, “*Sn and ‘*‘l?b to be 
0.1,0.2 and 0.25 fm, respectively, then, we find that, from the dEcoulomb versus (r__)* 
curves of Friedman and Mendelbaum 16), the analogue energy differences that cannot 
be accounted for by Coulomb energies alone are x 0.9, M 0.6 and w 0.4 MeV, re- 
spectively. These represent 8 %, 4 % and 2 % of the Coulomb ~spla~rn~~t energies, 
or 0.11 ‘A, 0.06 %, and 0.02 % of the total binding energies of the respective nuclei. 
That the energy discrepancies should decrease for heavier nuclei may seem peculiar 
at first but may be in accord with the proposition that the isospin impurity of a nu- 
cleidic state decreases as the neutron excess increases “, ““). 

To summarize the present discrepancy could be due to some unexpected fault of 
the EIF method. 0n the other hand, the first-order Coulomb method may be at fault. 
N. Auerbach et al. I’) recently studied some corrections terms in first-order pertur- 
bation theory, and found that the net correction reduced AECoulomb. However, there 
are corrections that cannot be reliably estimated in perturbation theory. An example is 
the rearrangement energy corrections mentioned above. Moreover, recently Dam- 
gaard et al. “) studied the correction to L_L!Z~~~~,,,~ from mo~opoIe polarization due to 
the isovector part of the Coulomb interaction. They found the correction to be 

100 M 700 keV. For ‘e8Pb the correction is 600 keV, more than enough to erase the 
discrepancy mentioned above. Further detailed studies of these and other possible 
corrections should be made before definite conclusions can be drawn about the neu- 
tron-proton rms radius difference. 

+ See preceding footnote. 
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