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Abstract: The Hartree-Fock method is used to calculate the n-p rms radius differences for eight
nuclei from *8Ca to 12°8n. These values are compared with experiment and with those predicted
from Coulomb displacement energies. The comparison is discussed.

Recently there has been some controversy over the differences between the rms
radii of neutron and proton disiributions in neutron-rich nuclei. The analysis of
Auerbach, Quershi and Steinheim *) of the 700 MeV n™-Pb inelastic scattering data
showed that r, = (0.9804+0.015)r,; an attempt to fit the data assuming r, to be more
than 5 9 larger than r, leads to a very peculiar and unreasonable neutron distribution.
The conclusion of Auerbach er al. contradicted the results obtained by Greenlees
et al. %) in their first optical-model analysis of the proton elastic scattering data, and
also those obtained by Elton *) from a fitting of the bound-state energy levels in the
single-particle Woods-Saxon model #) for Pb; both these analyses gave r, ~ 1.09r,.
It was also in disagreement with the work of Nolen, Schiffer and Williams °), who
deduced that r,—r, &~ 0.07+0.03 fm for Pb by assuming (i) that the distribution of
the extra proton in the analogue state is the same as the distribution of the excess
neutrons in the parent state, (i) that the Coulomb displacement energy due to this
proton is equal to the energy difference between the analogue and parent states, and
(iii) that isobaric spin is a good quantum number.

More recently Greenlees e al. ©) recalculated the p-elastic scattering data and
concluded that the n-p rms radins differences are much smaller than those they had
previously deduced, the new results being essentially zero for nuclei with 4 & 60,
and » 0.15 fm for *2°Sn and °®Pb. This implies r, ~ 1.02 r, for Pb.

Now the radii of the proton and neutron distributions reflect the dynamical equi-
librium of the nucleons under the influence of the Coulomb and nucleon-nucleon
interactions, and it is desirable to study this equilibrium in a self-consistent way. We
have therefore carried out Hartree-Fock (HF) calculations for the nuclei *3Ca, *°Fe,
*¥Ni, **Co, 5°Ni, ®2Ni, °°Zr and '2°Sn. For the N-N interaction in the Hamiltonian
we use the semi-realistic potential no. 2 of Saunier and Pearson 7). This potential has
a phenomenological short-range part and a one-pion exchange long-range part. It

T Present address: Physics Department, Duke University, Durham, North Carolina 27706, USA.
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TaBLE 1
Hartree-Fock binding energies and rms charge radii
Nucleus Binding energy (MeV) {ren®>% (fm)
Hartree-Fock  Experiment ®) Hartree-Fock e~ scatt. ®) p- X-rays
48Ca 365.15 416.00 3.284 3.49
56Fe 443.05 492.26 3.633 3.67 = 3.85 3.72 £0.03 ©)
3.663%3.764 9
S8Ni 456.34 506.46 3.695 3.72 &~ 3.93  3.81 40.03 ©°)
59Co 465.73 517.32 3.671 3.76 =~ 4.05 3.81 +0.06 ©)
SONi 476.24 526.85 3.702 3.75 & 3.84  3.85 40.03 ©)
92Ni 493.23 545.27 3.703 3.88 +0.03 ©)
90Zr©) 696.44 799.74 3.951 427 +0.04 ©)
1208p 911.03 1020.55 4.653 4.57 » 4.65 4.65 £0.01 ©)
4.593~4.672 %)
) Ref. 23),
®) Ref. 24),

¢) Ref. 29), calculated from ro, = A%/R listed for natural elements.

9) Ref. 25).

®) Values calculated with %w = 10.5 MeV are shown. With %w = 8.0 MeV, E, = 677.74 MeV,
{ran2>¥ = 4.410 fm. We believe the optimum value for %w to be between 10.5 and 8.0 MeV.

TABLE 2
Difference of rms radii of meutron and proton density distributions, <r.?>3—<r,2>% in fm

Nucleus p-elastic Hartree-Fock Droplet Statist- Coulomb Proton Neutron
scattering )  this others model®) ical dis- Woods- separation
work theoryf) placement Saxon  energy
energy  potential?)
48Ca 0.137 8;? :)) 0.166 0.10 0.06 1) 0.25
S6Fe —0.044+0.15 0.074 0.063 0.24%)
S8Ni 0.0140.18 0.020 0.023 0.14 %)
59Co —0.0310.16 0.088 0.078
SONi 0.034+0.16 0.065 0.058 0.23 ¥)
62Ni 0.114 0.092 0.04 1) 6.12
907r 0.150 0.13%) 0.111 0.0240.01 )
0.12°)
1208n 0.154+0.19 0.246 0.202 gg;:,t)ooz " 0.25 0.44 &)
0.29 %) 0.07+40.03 8) 0.65+0.59)
208pp T 0.1340.25 0.23°)  0.254 0.11 0.09+0.01%) 0.28 0.62%)
0.25 %) 0.15 1)*
2) Ref. ©). b} Ref. 19), °) Ref. 1), 9) Ref. 12). €} Ref. 14). ) Ref. 15).
) Ref. 5). 1) Ref. 6). Iy Ref. 17), ) Ref. 3). k) Ref. 18).

* Also, Bethe and Siemen 2°) found that the half-density radius of neutrons is 0.2 fm less than that
of the protons in 2°%Pb.
t. The value —0.11--0.08 was obtained in ref. 1).



n-p RADIUS DIFFERENCE 441

accounts for certain aspects of the N-N scattering data and gives correct binding and
saturation results in nuclear matter calculations 7). In the HF Hamiltonian the kinetic
energy due to the c.m. motion is subtracted explicitly and the Coulomb interaction is
included exactly. The harmonic-oscillator basis for the expansion of the single-
particle wave functions includes those in the first five major shells as well as the 1hy
shell, This basis can in principle accommodate 82 protons and 82 neutrons. The single-
particle orbitals are expanded in terms of harmonic-oscillator wave functions with no
restrictions except for definite parity and for the prohibition of mixing of proton and
neutron orbitals. The value of A is 13.5 MeV for #*8Ca, 10.5 for the 4 ~ 60 nuclei,
and 8.0 for *?°Sn. Calculations carried out for °°Zr with 10.5 and with 8.0 MeV
lead to similar results. The trial wave functions required to start the HF iterative pro-
cedure are generated from the single-particle deformed oscillator code ELMOS
written by Cusson ?). The calculated binding energies and charge radii, relative to the
c.m. are listed in table 1 and compared with experimental data. The binding energies
are too small >*) by ~ 10 % and the rms charge radii too small >*72¢) by 3-6 %,
Since we are only concerned with the n-p rms radius difference within each nucleus
we feel these discrepancies should not invalidate our results for this difference.

Table 2 compares various estimates of the n-p radius difference for nuclei from
“8Ca to 2°8Pb. Those deduced from p-elastic scattering by Greenlees et al. ®) appear
in the first column. The second and third columns give the present and other HF
results *9712). The results in column 4 are those predicted from the refined liquid-drop
(“droplet”) model of Myers and Swiatecki ****). The values calculated from the
statistical theory by Brueckner ef al. 1) are given in column 5 while column 6 lists
results deduced from the Coulomb displacement energies of analogue states > 1% 17),
using the method of Nolen ef al. °). In column 7 we find the results of Nolen and
Schiffer, calculated by using Woods-Saxon potentials characterized by the rms radius
of the relevant proton core !7). Finally, column 8 gives results obtained from single-
particle potentials determined by the separation energies of the relevant neutrons
[refs. *18)]. The numbers in column 8§ are obviously much larger than those obtained
by any other method and will be excluded from the following discussion f.

The p-elastic scattering results are in agreement with all those in columns 2-7, but
cannot distinguish between them. We can group the HF, droplet model, and statis-
tical calculation into one category because they all involve some form of the varia-
tional principle. There is excellent agreement among the HF results themselves and
between the HF and droplet-model results, but they are larger than the results of the
statistical theory. The proton densities in the latter calculation tend to be much more
prone to expansion under the influence of the Coulomb force. For example the proton
rms radius is predicted to be 0.05 fm larger than the neutron rms radius for #°Ca, as
compared to 0.03 fm in our calculation and 0.01 fm in the droplet model. This seems
to imply a smaller compressibility coefficient in the statistical model of Brueckner

T The method itself is also subject to criticism, see ref. 29).
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et al. The reason for the discrepancy between these models is not well understood.
Henceforth we shall be content to compare the HF and droplet-model results with
those obtained by the two remaining methods.

There is good agreement between the variational results and those of column 7.
This is somewhat surprising because, unlike the Woods-Saxon type calculations, the
variational calculations do not assume the proton and neutron “core” distributions
to be identical. Yet when we calculate the rms radii of neutron “cores™ we find that
these are only 0.02 to 0.03 fm or 0.6 % less than the proton radii. This may explain
the similarity between the Woods-Saxon and HF results.

Comparison of columns 2-4 with column 6 reveals a systematically small but sig-
nificant difference. The numbers in the latter are 2-3 times smaller than those in the
former. This discrepancy between the neutron-excess rms radii extracted from Cou-
lomb displacement energies and those predicted by variational calculations was also
observed by Nolen and Schiffer *7). The most serious criticism of a HF calculation
for medium and heavy nuclei is that the single-particle basis may be too small, thereby
restricting the proton distribution from expanding beyond the distribution of the
neutrons in corresponding orbitals. Short of doing a proper calculation by enlarging
the HF basis and as a result greatly increasing the size of the computer program, one
can try to estimate the increase in r, which could occur if the basis restrictions were
removed. For nucleides with 4 up to 40, the effect of the basis restriction is minimal.
For these nuclei, our HF calculations show, to a very good approximation ¥, that

ro—r, = 4x1073 4%, (N=2Z). )]

This difference is, incidentally, about three times larger than the prediction of the
droplet model in this mass region. If we extrapolate eq. (1) to heavier nuclei, and
consider the r, in eq. (1) to be the rms radius of the core neutrons, then for Fe, Ni, Zr,
Sn, and Pb the rms radius differences between the protons and core neutrons would be
0.04, 0.04, 0.06, 0.07 and 0.09 fm, respectively. Since as mentioned earlier the rms
radii of the protons are already ~ 0.02 fm larger than those of the neutron cores, the
corrections to r,, or (raD?, should be 0.02, 0.02, 0.04, 0.05, and 0.07 fm, respectively,
for thess nuclei. Subtracting these corrections from the corresponding numbers in
column 2 of table 2 we see that in most cases this only brings our HF results somewhat
closer to those of the droplet model but does not eliminate the discrepancies between
the variational results and the Coulomb energy results.

Although there are indeed other corrections which should be applied to the HF
predictions we should mention that there are also difficulties in the Coulomb energy
method. For example, an important step of that method is to identify the differences
in binding energies of analogue states with the differences in expectation values of the
Coulomb interaction. Whereas this equality is predicted by Nolen and Schiffer *7)

t* We are not concerned with the absolute optimum value for % here. A more elaborate report
of a systematic HF calculation for light nuclei will be published elsewhere.
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to be within several keV we have found ? that the binding-energy difference is larger
by = 90 keV for 4 = 41. Also, the structural relations between analogue states of
nuclei with large neutron excesses are more complicated and rearrangement energy
corrections may well be significantly larger. Indeed, if we take the values (consistent
with experiment) of the n-p rms radius differences for *°Zz, *2%Sn and 2°®Pb to be
0.1, 0.2 and 0.25 fm, respectively, then, we find that, from the 4 Ecyuiomp VErsus (rexp>%
curves of Friedman and Mendelbaum * 6), the analogue energy differences that cannot
be accounted for by Coulomb energies alone are ~ 0.9, &~ 0.6 and ~ 0.4 MeV, re-
spectively. These represent 8 95, 4 % and 2 % of the Coulomb displacement energies,
or 0.11 %, 0.06 %, and 0.02 %, of the total binding energies of the respective nuclei.
That the energy discrepancies should decrease for heavier nuclei may seem peculiar
at first but may be in accord with the proposition that the isospin impurity of a nu-
cleidic state decreases as the neutron excess increases % 2%).

To summarize the present discrepancy could be due to some unexpected fault of
the HF method. On the other hand, the first-order Coulomb method may be at fault.
N. Auerbach et al. *°) recently studied some corrections terms in first-order pertur-
bation theory, and found that the net correction reduced 4FEcyuomp- HOWEVer, there
are corrections that cannot be reliably estimated in perturbation theory. An example is
the rearrangement energy corrections mentioned above. Moreover, recently Dam-
gaard et al. ®) studied the correction to AEc,yoms from monopole polarization due to
the isovector part of the Coulomb interaction. They found the correction to be
100 ~ 700 keV. For 2°Pb the correction is 600 keV, more than enough to erase the
discrepancy mentioned above. Further detailed studies of these and other possible
corrections should be made before definite conclusions can be drawn about the neu-
tron-proton rms radius difference.

1 See preceding footnote.

References

E. H. Auerbach, H. M. Quershi and M. M. Steinheim, Phys. Rev. Lett. 21 (1968) 162
G. W. Greenlees, G. J. Pyle and Y. C. Tang, Phys. Rev. 171 (1968) 1115
L. R. B. Elton, Phys. Lett. 26B (1968) 689
E. Rost, Phys. Lett. 26B (1968) 184
J. A. Nolen, Jr., J. P. Schiffer and N. Williams, Phys. Lett. 27B (1968) 1
G. W. Greenlees, W. Makofske and G. J. Pyle, Phys. Rev. C1 (1970) 1145
G. Saunier and J. M. Pearson, Phys. Rev. C1 (1970) 1353
J. Damgaard, C. K. Scott and E. Osnes, Nucl. Phys. A154 (1970) 12
9) R. Y. Cusson, ELMOS, a CDC-6600 Fortran-IV code to manipulate single-particle wave
functions and solve the ellipsoidal modified oscillator problem, report AECL-3730, 1970
10) R. M, Tarbutton and K. T. R. Davies, Nucl. Phys. A120 (1968) 1
11) D. Vautherin and M. Vénéroni, Phys. Lett. 29B (1969) 203
12) J. W. Negele, Phys. Rev. C1 (1970) 1260
13) W. D. Myers and W. J. Swiatecki, Ann. of Phys. 55 (1969) 395
14) W. D. Myers, Phys. Lett. 30B (1969) 451
15) K. A. Brueckner, J. R. Buchler, R. C, Clark and R. J. Lombard, Phys. Rev. 182 (1969) 1543
16} E. Friedman and B. Mandelbaum, Nucl. Phys. A135 (1969) 472



444 H. C. LEE AND R. Y. CUSSON

17) J. A. Nolen, Jr. and J. P. Schiffer, Ann. Rev. Nucl. Sci. vol. 19 (1969) 471

18) C. J. Batty and G. W. Greenlees, Nucl. Phys. A13 (1969) 673

19) N. Auerbach, J. Hiifner, A. X. Kerman and C. M. Shakin, Phys. Rev. Lett. 23 (1969) 484

20) H. A. Bethe and P. J. Siemens, Phys. Lett. 27B (1968) 549

21) J. M. Soper, in Isospin in nuclear Physics, ed. D, H. Wilkinson (North-Holland, Amsterdam,
1 1969) ch. 6

22) A. Bohr, J. Damgaard and B. R. Mottelson, Nuclear structure, Proc. Int. Seminar on low-energy
nucl. phys., Dacca, 1967 (North-Holland, Amsterdam, 1968)

23) J. H. E. Mattauch, W. Thiele and A. H. Wapstra, Nucl. Phys. 67 (165) 1

24) H.R. Collard, L. R. B. Elton and R. Hofstadter, in Landolt-Bornstein, Numerical and functional
relationships in science and technology, new series, group 1, vol. 2 (Springer-Verlag, 1967)

25) H. L. Acker, G. Backenstoss, C. Daum, J. C. Sens and S. A. de Wit, Nucl. Phys. 87 (1966) 1

26) C. S. Wu and L. Wilets, Ann. Rev. Nucl. Sci. (1969) p. 527



