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Abstract: The structure of effective operators is determined in time-dependent perturbation theory
and compared with the approach using Bloch-Horowitz theory discussed in paper 1. The E2
effective charges in the spherical shell model arising from the core polarisation in the oxygen
and calcium regions are calculated with the G-matrices of Kahana et al.

1. Introduction

In the preceding papers of this series [refs. 1'2), hereafter referred to by I and II]
we have discussed the general theory of effective operators using the formalism of
included and excluded space as given for example by Bloch and Horowitz *), Eden
and Francis *), Feshbach and others *). We used the general approach to discuss the
phenomenology of E2 operators in II. In this paper we consider various perturbation
treatments (sect. 3) of the wave matrix operator (essentially the coupling operator
v,; of [ and IT) using the reaction matrices of Kahana et al. ¢) and estimate (in sect. 4)
the contribution to the E2 effective charge from core-polarisation effects in '°O,
15N, 70, !7F, 3°K, 3°Ca, “'Ca and *'Sc. In the discussion (sect. 5) we consider the
problem of the contribution to the E2 effective charge from renormalization of the
single-particle functions.

The approach of this paper is very similar to that of Shukla and Brown "), Siegel
and Zamick ®) and Dieperink et al. ®). A comparison of our calculations with theirsis
given in the text. A more detailed account of our calculations can be found in ref. 3 9).

2. Perturbation by the nuclear residual interaction
The familiar approach to the nuclear problem is to divide the nuclear Hamiltonian
H into a model nuclear Hamiltonian H, and residual interaction Hy:
H = Hy+H,. (1)

A general perturbation theory for the matrix element of any operator ¢ in powers of H,
can be written in a compact form by using the concept of the wave operator *):
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where

P @O0, o =1k )P,
f 0

H0¢a = Ea¢a’ Hl/’a = 8:1‘//(1’ Na_z = <'l’a|¢a>’

N, and N, will cancel the unlinked parts appearing in the perturbation expansion of
the numerator 1!2). The definition of the effective operator  is quite similar to the
one given in I except that the propagator involves the unperturbed energy E, in eq.
(2) while the exact energy &, is used in the Bloch-Horowitz formulation of the effective
operator. We can define an operator p as

e . (3)

-1 ]

p=H Q" = H+H,

The operator p is in the spirit of the usual Rayleigh-Schrodinger (RS) perturbation
theory while the operator v defined in the Bloch-Horowitz formulation is akin to the
approach of the Brillouin-Wigner (BW) perturbation theory. In practice, the RS
series leads to the linked-cluster theorem. The main difference between BW series and
RS series is the appearance of an energy shift AE, in the energy denominator
(1/E,+AE,— H,). The usual method to deal with such an expression is to expand
AE, from the denominator and then cancel the unlinked diagrams appearing in this
new series against similar diagrams in the normalisation constant (N,). Such a
cancellation of the unlinked diagrams has been proved by Brueckner '#) and Bran-
dow ?) for non-degenerate and degenerate many-particle systems respectively. There-
fore the apparent difference between u [eq. (3)] and v [I eq. (2.6)] disappears in any
practical calculation.

The model Hamiltonian H, is often assumed to have a single-particle shell structure
in which case the effective operators can be expressed in terms of diagrams. To illus-
trate this we note that with Q¥ (= U(0, — 0)) and eq. (2) we can write

o=y @ f T f “dty T - - B(4))

m=0 m!Jo 0

x 0 i (——'i—)"fwdtl e dt" T(Hl(tl) e Hl(tn))' (4)

n=0 N

This expression leads to a diagrammatic representation if we insert the unit operator
Zplgllpxwpl between any two successive operators. For greater details we refer to the
paper of Siegel and Zamick ®) and ref. 3°).

3. Calculation of effective electromagnetic operators

The treatment of the effective operators is as a perturbation expansion in terms of
the residual interaction H; which contains the fundamental two-body potential v; i3
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this will not converge however since v;; has a strong repulsive part at short distances.
We perform a partial resummation of the series & la Brueckner '*) to obtain a
reaction matrix and then the effective operators are viewed as an expansion in terms of
the reaction matrix.

In the present calculation, for v;; we use the non-local separable form suggested by
Kahana e al. ®). This potential contains the two-body tensor as well as spin-orbit
force and thus leads to a j-dependence of the renormalisation effects to the e.m.
operators. We note that the earlier calculations of Siegel and Zamick ®) used the
Kallio-Kolltveit potential which does not have any tensor component and hence leads
to no j-dependence of the effective charge.

Three separate approximation schemes have been used to determine the effect on
the operators through core polarisation.

(a) First-order perturbation in the reaction matrix.

(b) Tamm-Dancoff approximation which includes summation of particle-hole
bubbles such that the intermediate states are two-particle and one-hole states.

(c) Random-phase approximation !*) which includes diagrams of TDA as well as
diagrams with (n+ 1) particle n-hole intermediate states. The position of the electro-
magnetic vertex in this particular resummation of diagrams can appear at all possible
time-orderings. A proof for a resummation of such a series in a closed form is given in
appendix B.

Analytical expressions and the phase convention for the evaluation of the core-
polarisation effects in the three approximation schemes are given in appendix A.

3.1. SINGLE-PARTICLE ENERGIES

The perturbation expansion as developed above indicates that the single-particle
energies (&,) and the single-particle functions ¢, are the eigenfunctions of the single-
particle Hamiltonian H,. In the ideal situation this single-particle operator H,
is chosen to minimise the contribution of the single-particle terms. This implies some
kind of self-consistency calculation e.g. that of Hartree-Fock. In principle any H,
can be chosen but then the correction due to the single-particle orbits must be cal-
culated. We have not performed any self-consistency calculation but rather have
chosen two commonly used sets of single-particle energies and then have determined
the magnitude of the core-polarisation diagrams in the belief that these are relatively
insensitive to the precise structure of the single-particle orbits.

The two sets we have chosen are thus:

(i) Use the spherical harmonic oscillator (h.o.) single-particle functions with the
corresponding degenerate h.o. single-particle energies.

(i) Use the spherical harmonic oscillator functions with the experimentally ob-
served single-particle energies.

The latter approach is adopted in the calculation of the ground state energies and
the low-lying spectra in finite nuclei using reaction matrices. In terms of the per-
turbation expansion this implies that certain classes of diagrams which renormalise
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the single-particle propagator have also been included with the diagrams present in
TDA or in RPA.

The second approach is useful for the case of one particle or one hole in the 160
since the experimental values for the energies of 1sy, 1p;, 1py, 254, 1dg, 1d,, 1f3, 2p;,
If; and 2p, are known quite accurately. However for the case of a particle or a hole in
40Ca, the second approach is not possible since the single-particle energies of the
unfilled shells are not known. This introduces larg: uncertainties in the calculations.

3.2. HARMONIC OSCILLATOR PARAMETER (7w)

The usual way to determine the harmonic oscillator parameter is to fit the rms
radius of the nucleus as given by high-energy electron scattering experiments *°).
Strictly speaking the rms radius should be calculated using a renormalised radius
operator because of the truncation to the shell-model wave function. This renor-
malisation we have ignored here assuming values hw = 15 MeV and 10.5 MeV for
the oxygen and calcium regions respectively.

4. Results

The results and comparison with experiment for E2 transition rates and quadrupole
moments *?) will be given in terms of the effective charge parameter defined in

_ (WalOly)

% 1- -+ af — ’
(=)Fen = o iyag,)

where
0=1 Zl: (1 "Ts(i))"i2 Y,(2:)

73 = -+1 neutron, —1 proton.

Clearly the definition of effective charge depends sensitively on the choice of model
wave function ¢, and ¢,. For simplicity we choose the harmonic oscillator wave
functions of the model Hamiltonian

Ho =Y ho(i).  hofi) = — 2i A2+ 3motr?.
i m

With such a simple Hamiltonian we have no right to expect that the single-particle
renormalisation to the effective operator is negligible. Thus our calculations are to be
treated as calculating only the core-polarisation contribution. The contribution from
single-particle renormalisation we discuss in sect. 5.

In all the calculations we have retained contributions only from particle-hole
pairs with AE = 2hw.

4.1. EFFECTIVE E2 CHARGES IN THE OXYGEN REGION

The extraction from experimental data of the core-polarisation contribution to the
effective E2 charges in 1°0, !°N, 70 and '7F has been discussed in IT and will not
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be repeated here. Apparently the neutron and proton particles carry equal core-
polarisation (additional) effective charges of about 0.5: e,; on neutron and proton
holes differ however being 1.1 and 0.6 respectively.

The calculated values for the E2 effective charges are given in table 1 in the various
approximations (a), (b) and (c) of sect. 3 for both degenerate single-particle energies
and with realistic single-particle energies. These calculations and approximations are
very similar to those of Siegel and Zamick ®) differing only in the specific G-matrix

TABLE 1

Calculated core-polarisation effective charges for neutron and proton, particles and holes on 0O
in the approximations (a), (b) and (c) (see text) are compared to deduced values from experiment
(last column)

Configuration n/p Degenerate orbits Non-degenerate orbits Experiments
(fiw = 15 MeV) [ref. 49)]
a b c a b C
ps™' pit n 0.58 0.96 1.83 0.42 0.57 0.76 1.1
p 0.15 0.62 1.53 0.10 0.31 0.52 0.5
dg ds n 0.39 0.62 1.10 0.29 0.38 0.49 0.43
P 0.11 0.40 0.89 0.08 0.21 0.33
3 dg n 0.32 0.49 0.81 0.24 0.31 0.38 0.47
P 0.14 0.33 0.66 0.10 0.19 0.27 0.68
d; ds n 0.45 0.72 1.32 0.35 0.47 0.62
p 0.21 0.53 1.14 0.18 0.32 0.47
dy 81 n 0.27 0.37 0.54 0.20 0.25 0.29
P 0.06 0.20 0.37 0.05 0.11 0.16
ds d; n 0.38 0.58 0.99 0.29 0.37 0.46
P 0.11 0.36 0.79 0.08 0.19 0.30

used — Siegel and Zamick used those of Kallio-Kottveit and Kuo-Brown poten-
tials 1772%), The results from the two calculations are very similar however. In
approximation (a) the effective charges are too small for the realistic single-particle
energies but, perhaps of greater significance, the neutron charges are larger than the
proton for both particles and holes. This latter fact follows the observed gross feature
for holes but not particles. This is not a surprising result since protons can polarise the
protons of the core (and hence lead to effective charges) only through the 7' = 1
part of the G-matrix. The neutrons on the other hand can polarise the protons of the
core through the T = 0 and T = 1 parts of the G-matrix. Since the T'= 0 matrix
elements tend to be larger than the T = 1 this leads to larger effective charges for
neutrons. This approximation used for the effective charges is equivalent to that for
the core-polarisation correction to the effective residual interaction with a truncated
space as given by Kuo and Brown #). Thus one sees a certain inconsistency in the
shell-model calculations. The usual effective residual interaction includes the core-
polarisation effects to first order only while the effective E2 charges for both protons
and neutrons is taken to be 1 which is quite different from the first-order estimates.



NUCLEAR SHELL MODEL 617

It is possible that better estimates of the core-polarisation effect 2°) could change the
effective charge calculation drastically without a similar change in the effective two-
body interaction: such a fact has to be checked however.

In the Tamm-Dancoff approximation (b) and the RPA (c) the effective charges for
protons is increased more than those for neutrons but still the effective charges are
too small for the realistic single-particle energies.

TABLE 2

Calculated core-polarisation effective charges for neutron and proton, particles and holes on *°Ca
in the approximation (a), (b), and (c) (see text) are compared to deduced values from experiments

Configuration n/p Degenerate orbits Non-degenerate orbits Experiment
(fiw = 13.5 MeV)
a b c a b c
dg=t dg! n 0.53 0.83 1.51 0.64 1.13 3.04
P 0.21 0.57 1.27 0.25 0.82 2.77 1.06
dg=t syt n 0.48 0.72 1.21 0.56 0.96 2.38 0.932
p 0.17 0.47 0.98 0.20 0.67 2.12
f3 fy n 0.40 0.62 1.08 0.46 0.81 2.09
o] 0.15 0.41 0.88 0.17 0.57 0.87
£z Pz n 0.31 0.46 0.72 0.37 0.62 1.40 1.1340.13
P 0.14 0.31 0.58 0.15 0.44 1.23 0.54-0.2
{2 fs n 0.45 0.71 1.26 0.62 1.10 2.90
p 0.23 0.52 1.09 0.37 0.90 2.71 1.07
p3 Pz n 0.27 0.40 0.67 0.31 0.53 1.30
p 0.11 0.27 0.54 0.12 0.37 1.15
Pz fy n 0.27 0.38 0.53 0.31 0.48 0.96
P 0.08 0.22 0.38 0.10 0.31 0.80
P3 Py n 0.28 0.42 0.71 0.33 0.57 1.42
P 0.12 0.28 0.58 0.14 0.41 1.28
fy fy n 0.40 0.60 1.01 0.47 0.80 2.00
P 0.15 0.39 0.82 0.18 0.56 1.78
fi— p3 n 0.28 0.38 0.55 0.31 0.48 0.99
p 0.08 0.22 0.39 0.09 0.30 0.81

Shukla and Brown ) have considered the effective charges in *°0 and !°N as-
suming the structure of the negative parity states to be given by the admixture of the
single-parity states to be given by the admixture of the single-particle orbits and de-
formed 2p-3h states. The E2 transitions are calculated with an effective charge deduced
from the observed B(E2: 2% — 0%) transitions for several excited 2* collective states
in 1°0. As noted by the authors however such an approach suffers from lack of
knowledge of the double counting between the explicit considerations of the deformed
2p-3h state and the use of the effective charge from the collective core 2% states. The
approach however did lead to a larger effective charge for neutron-holes than for
proton-holes. Unfortunately no estimate was given on the effect for particles. In
view of the use of a Q - Q coupling between particles and the collective 27 states of
the core the Shukla-Brown calculation is perhaps to be considered as semi-phenom-
enological and somewhat similar to the philosophy in IT.



618 F. C. KHANNA et al.

4.2. EFFECTIVE CHARGES IN THE CALCIUM REGION
Experimentally the ground state quadrupole moment and the E2 transition from

17 state to the ground state (3%) in 3°Ca and 3°K are known and are substantially
enhanced from the pure shell-model value 2*). As in the case of a hole in *°0, we
expect that the T = 0 and T = 1 vibrations in *°Ca will have a substantial effect on
the observed effective charges in 3°K.

The results of the present calculation in the various approximations discussed
above are given in table 2. As pointed out earlier the calculations with a non-de-
generate set of single-particle energies are not necessarily more realistic than with a
degenerate set of single-particle energies since the experimental information on the
energies of the single-particle states is quite scanty. Some details about the choice of
the non-degenerate set are given in appendix C.

In *'Ca and “!Sc there is experimental information 22) on E2 transition rates of
57 and 37 states to the ground state 27 It is found that all the E2 transition rates are
enhanced and hence require an effective charge. In the calculation of E2 transition
rates, a large uncertainty is introduced by a lack of knowledge of the single-particle
energies of the unfilled shells. We give results for the case of a degenerate model with
how = 13.5 MeV and for a non-degenerate set of single-particle energies (for details
see appendix C).

As was the case in the oxygen region the effective charge in the first-order approx-
imation (a) is very much smaller than is apparently required from experiment.
The Tamm-Dancoff approximation (b) and RPA (c) again have the effect of in-
creasing the proton effective charge more than the neutron. Unfortunately the RPA
approximation is unstable in the sense that very small changes in the single-particle
energies can lead to enormous effects on the effective charge. We return to this point
in the discussion.

5. Discussion

Comparison of the experimental and the calculated numbers for the effective charge
for E2 transitions indicates that agreement is not satisfactory. In particular we note
the following points.

(i) The first-order perturbation theory is quite inadequate to explain the effective
charge of the proton but seems to yield a large fraction of the effective charge for the
neutrons. This may be understood by the fact that protons can polarise the protons
of the “‘core” by T = 1 components of the reaction matrix while the neutron can
polarise both through 7 = 0 and T = 1 components. Combining this fact with the
observation that the 7 = 0 component of the reaction matrix is more strongly at-
tractive than the T = 1 component, the results of the first-order perturbation theory
are understandable (but disappointing).

(ii) There is a larger renormalisation of the proton effective charge than of the
neutron effective charge in going from the first order of perturbation theory to TDA
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and to RPA. The proton charge increases by a factor of 4-7 while the neutron
increases by ~ 2-3 with the result that the proton and neutron effective charge tend
to become equal. This indicates that the proton charge is a more sensitive measure of
the collective features in the system. Unfortunately the effective charges are still
apparently too small in the oxygen region and the instabilities in the RPA summation
in the calcium region make the calculation untrustworthy.

(iii) The final result in any of the three approximations of sect. 3 is quite sensitive
to the single-particle energies of the occupied as well as the unoccupied single-particle
states. With the non-degenerate set of single-particle energies the effective charge in
nuclei with one particle or one hole in 10 is less than with the degenerate single-
particle energies. The situation for nuclei near “°Ca is more confused because the
single-particle energies are not known very well. Clearly it is of importance to consider
calculations in which the single-particle energies are determined self-consistently with
the G-matrix considered in some Brueckner-Hartree-Fock calculations.

(iv) We note that the value of the core-polarisation effective charge deduced from
experiment is model-dependent. For example in *’F the E2 transition from ¥ to 3
requires an effective charge of 0.87 if we use harmonic oscillator single-particle func-
tions (cf. sect. 2). However we do know that the 3+ state is actually bound by less than
100 keV and it will be a poor approximation to use harmonic oscillator functions.
If we choose a finite single-particle potential-well (say Woods-Saxon), then the effec-
tive charge is reduced to = 0.68. Therefore the comparison of the core-polarisation
effective charge with experiment may be ambiguous and the uncertainties in both the
core-polarisation effective charge extracted from experimental and theoretical
estimates may be large and model-dependent. Clearly one would like to include in
the calculation the single-particle renormalisation effects. Such a calculation has not
been done here since it is felt that the full Brueckner-Hartree-Fock determination of
the single-particle energies should first be done.

(v) In order to calculate the transition rates, we have to estimate the wave matrix

Q* (or the operator u) quite accurately. From eq. (3) for u we get

1

p=(E-H) —0nr—— G,
( ) E—H°-GQ

which indicates that if we diagonalise H°+ GQ in the space 2 (total Hilbert space
minus the model space) i.e.

(H°+GQ)W,> = &V,

then the operator u will have poles at £, and can be written as

Q
n= E_HO l‘:ba> . <'//a|G‘
( ) Py
It is well known that in the neighbourhood of any of the poles &, of y, any sort of
perturbation approach is doomed to failure. There are several ways to get around this
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difficulty. One of them, suggested by Weinberg 2*) and considered by McVoy and
Romo 24) for scattering problems, is to assume a separable structure and then obtain
the residues at the poles i.e. the wave functions by a variational type approach. We
follow a different procedure and try to get these states by a partial summation (RPA)
of the perturbation series. The results of the calculation of T=0and T =1 2%
vibration states in *°O and #°Ca are shown in appendix C. The states that come down
the lowest in energy are the ones that contribute the most towards the renormalisation
of the E2 transitions in nuclei with one particle or one hole in 1°0 and *°Ca. In
these closed shell nuclei, the lowest T = 0 and T = 1 27 vibrations have the largest
B(E2) to the ground state. It may be noted here that for 160 these 2* vibrations
are quite high while for *°Ca the lowest 2% vibration (T = 0) has come as low as
7.7 MeV. These low-energy 27 vibrational states in “°Ca are perhaps responsible for
the instability of the RPA solution for the effective charge in “!Ca and **Sc which
has been observed in our calculation as well as in some of the other calculations 8).
It is possible that such low-lying 2* vibrational states should be included in the model
space in order to get reliable numbers for the effective charge in nuclei close to *°Ca.

In the appendix C we have compared our results for the 7 =0 and T =1 27
vibrations in 'O with the results of Shukla and Brown 7). The excitation energies of
the 2* vibrational states obtained by us compare quite well with their numbers.

(vi) In looking for more complicated diagrams the inclusion of which should
stabilise the RPA series one should perhaps be guided by the deformed core model *)
which can reproduce the correct effective charges. Essentially one is seeking the series
of diagrams in the spherical shell model which correspond to the deformation of the
core. In this respect the interpretation in terms of diagrams of the two-body operator
W constructed in II which leads to the same field as a more fundamental operator
(e.g. G) may be of significance.

(vii) The general theory of effective operators considered in this series of papers
has been applied to study the inelastic proton scattering **). In the lowest order of
perturbation theory it is found that the shape of the angular distribution is not altered
but the magnitude of the differential cross section is increased by a factor of 2-10.
No attempt has been made so far to study the effect of a partial summation like TDA
or RPA on the differential cross section for inelastic proton scattering.

To summarise this set of three papers we would like to mention the major conclusions
of the present study of the effective operators:

(a) The effective operator for the electromagnetic transitions is not simply a one-
body operator but has two- and higher-body components. In the phenomenological
analysis of the operator v,,, we found that the matrix elements of the two-body part
of the effective operator can be as large as & 40 % of the one-body part of the effec-
tive operator (II). Some of these large matrix elements add up coherently to enhance
B(E2: 2* > 0%) in '®Ne. However more precise experimental information on
B(E2) for nuclei for two particles or two holes in a closed shell should help to estab-
lish the magnitude of the two-body part of the effective operator.
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(b) A re-summation of a class of diagrams that lead to RPA appears inadequate to
explain the quadrupole vibrations in #°Ca. Perhaps there is another class of diagrams
that give contributions which adds incoherently to that of the RPA diagrams. A
prescription for the choice of this new class of diagrams has not been found. Similar
conclusions regarding the non-convergence of the RPA series for calculating the
effective interaction in finite nuclei have been drawn by Barrett and Kirson *').

(c) The effective operators have been analysed with a phenomenological as well
as a realistic parametrisation of v, . The former is easy to handle though aesthetically
less satisfying while the latter requires enormous effort to get reasonable numbers.
Another disturbing feature of the calculations with realistic interactions is the intrinsic
non-convergence of an arbitrarily chosen infinite sub-set of diagrams out of the com-
plete set. Perhaps a definite prescription for the choice of a particular sub-set of dia-
grams for any specified problem is needed. However accurate experimental data on
B(E2) and B(E3)in the region of the “magic’’ nucleicanprovideincentiveforanalysing
the structure of the effective operators in much greater detail.

It is a pleasure to thank S. Kahana, R. Y. Cusson, E. Halbert and J. McGrory

for discussions and S. Siegel and L. Zamick for discussion and information on their
work.

Appendix A

We define clements of L, 4 and B matrices in terms of particle-particle matrix

elements of an interaction K with the two-particle states antisymmetrized and nor-
malized to unity.

() L, i = <Lf(en)" TIIKINi>
= —V(1+8,)(1+38,,)(— 1)/

I ! 1T ihe J’
1/2 AT =0" W(fpik; 1)

x W(333; T'T) fp; J'T'|K|ih; J'T">
A
22
X {fp; J'[{(K°+3K")o70 ++/3(— KO+ KV, Hih; J'D, (A.1)
where we have used the notations
s VIKT[iks Iy = {fp; J'T'|Klih; J'T');
Dl=27+1; J=vVu+tL
(i) 478 e = (ph)YTIKI(p'H')'T)
=~ ZUITIW (ol hp'js II)W (544 TT)KH'p; I'T'|Klhp's J'T7

= V51 +8,)(~) g; (=) W(fpih; J'J)

=-1 ; LW (ph'hp's J'T)<H p; I'1{(— K® +3K )6 70+(K® + K37 }hp's I').(A2)
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(iil) By pw = <OIKI[(ph) ('R’ T1%>

= (=Y (146, )(1+ 3 X (hp) T IKI (W) (A3)
The phase conventions of the 4 and B matrices are identical to those of Mavromatis
et al. *%).

We also define the column vector
(iv) 1 = Ol NI(ph)*T
COlIE(L +3)r* YAI(ph)*T>
—(=)Y?" 13,871 +670)0 140 Qiip» (A4)

i

i

where
(v) Q% = <alir*Y*ib>

Jb7 lb Al 2

= (ot e g (38 8) < (a9
\/ 4z 6 00

where {r*) is the radial integral. The effective charge ¢* due to particle-hole pair

excitations in the electric A-pole transition can now be written in the general form
e = (<ot =L ki enx L z*u») @

=Z®mﬂm®2kﬂ“““ Lur Lomgeyt). a9
T ph fj, —

We define the quantity in the curly brackets as the isobaric spin multipole effective
charge ¢*”. In obvious matrix notation

T | 1 -
elg‘ = — At ji—Jjr - ('ilT —‘_“’—LAT) Qli 1. (A.7)
=) FZANEY.) fi( 2
We then have
proton 1
e}»?eutron — i_ —_— e)“} +e'ui). (A'8)
f \/3 J f
In (A.6)  can be written in the general form
B = (14 A2, (A.9)
where 447 can be viewed as the effective charge of the particle-hole pair coupled to
AT (fig. A.1). In the lowest order perturbation theory, 4 = 0 and only diagrams ()
and (b) in fig. A.1 contribute to €. In this case from eqs. (A.1), (A.4), (A.6) and (A.8)
we can write explicitly

proton

ineuuon _ p+f 1
,. —_— ; )
Z( ) th _8f+8"_8p«/(1+5,,,)(1+ )

x 2 ](—)J W(pf il; J'A)fp; JIA(K" + KO)lih; I(QE) ™" (A.10)
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(a) {b)

—X

(i) (j)
Fig. A.1. (a) and (b) Diagrams for the lowest order effective charge; (¢), (d) and (e) diagrams
corresponding to the first, second and nth order, respectively, in TDA; (c), (f) and (g) are the dia-
grams for the first-order 4 in RPA; (d), (h), (i) and (j) are the diagrams for the second order in

RPA. The dotted horizontal line indicates the time at which the ph-pair is created by the initial
valence particle (hole).

It is seen that in the lowest-order perturbation expansion the proton effective charge
comes entirely from the isovector component of the K-matrix. This is easy to see since
in this case the core excitation must be a proton particle-hole pair. The neutron
effective charge in the lowest order is the average of the isovector and the isoscalar
contributions.
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The ph effective charge A4 is not zero in higher order perturbation theory. In the
TDA series the nth order 4 is
1 n
tlTAZT(n) — t}.T (__ AlT) . A1l
— (A1)
Thus

B = P71+ 4350 = P(1+ 3 435.(0)

-1
T (1— L A”) : (A.12)
—~AE

Substituting (A.12) into (A.7) we get, in the case when particle-hole energies are
degenerate, i.e. when ¢,—¢&, = AE,

1
i D7 = TG, A.13
T (A.13)
where G*7 is the ph Green function in TDA and in obvious notations
GM =Y |a; AT -—1~7T {a; AT (A-14)
a &— Sf —&

In the non-perturbative Green function approach one assumes (A.14) from the outset
in which case the degenerate assumption is not necessary.

In the RPA series the nth order 4, in the degenerate case, is given by (proof in
appendix B)

PTAM®) — 13T [ 1 (AAT_I_B/IT)] , (A.15)
—AE
which leads to
-1
= [1- o] (A.16)

Here the Pauli principle has been ignored since (A.17) allows the simultaneous
existence of any number of ph pairs at any given instance. It should be mentioned
that although the statement given above is also used exactly to described ph vibrations
in the RPA, the equivalence between the perturbation approach and the Green
function approach which exists in the TDA, as stated in (A.13), does not exist in the
present case. One realizes that in the RPA the amplitudes of the ph vibrations are not
eigenfunctions of the matrix AE+ A+ B.

Appendix B

We prove that in the degenerate case all diagrams in the RPA series (fig. A.1)
containing L, 4 or B matrix elements sum up to

t (— %)N(A+B)N—_}; L, (B.1)
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where we have suppressed all superscripts. We assume ¢ = AFE in this appendix. This
is equivalent to saying that the effective charge of the particle-hole pair « is given by

1 N
N
t, 4, = §t,,(A+B)pa (——) . (B.2)
r Mex x___L}{
1413 |
! !
ng
2 ——
n
bt (a)
. . a
Lo |
Pl Frmgai U
; : 1
p Mo ] n )
np—ll nP—| IU/\I'V\I\a
' (b)
Ndy M
q+) qt2
q+| nq*:I
AL
Mg Mg O,\)'f"
nq-ll nq-l :
. |
E : I AN
) H W
(c)

Fig. B.1. (a) Diagram corresponding to DV. The numbered lines 1, 2, . . . indicate the position of each
interaction line. The subscripted letters represent the denominators. (b) Diagram for D¥*! when
p <r, see (B.9.2). (c) Diagram for DV+! when p > r, see (B.9.3).

We prove by induction. The lowest (zeroth) order diagram D°, indicated in (a)
of fig. A.1, has no A4- or B-interaction.

=1L L (B.3)

—&

The first-order diagrams, depicted in (c), (f) and (g) of fig. A.1, give

tD' = til—a(A+B) 11_.9 L. (B.4)
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We now prove that if £D¥ is any Nth order diagram, then the sum of all N+1 order
diagrams generated from DY by introducing a p-h pair between the last bubble and the
t-vertex in DY is equal to

DV =1t -_1—8 (4+B)D}. (B.5)

Consider diagram D". It contains N+ 2 interaction lines, among which the right-
most is an L-interaction and the left-most a ¢-interaction. The other lines will either be
A- or B-interactions, which collectively we denote by R. Between these lines there are
N+1 energy denominators, which, in units of —¢, from bottom up, we designate by
the set

{n} = {nl s By e ny nzv+1}- (B.6)
Thus in general
N ]- N 1 N 1
¥ =¢t(—) —RY 1L, (B.7)
—¢ w{n} —¢
where
N+1
a{n}=lm=n... ,05:4- (B.8)
i=1

Suppose the 7-vertex in DY lies between the denominator 1, and 7, (i.e. the rth
interaction line), and say the emission of the y-ray creates a p-h pair (see fig. B.1).
An N+1 order diagram is created from DV by replacing the z-vertex either above or
below all interaction lines in DY, or between any pair of successive such lines. The
new R- and ¢-vertices are then connected by a p-h pair. We label the levels at which
the new #-line can be put, from bottom up, by p = 0, 1, ..., N+2. In the present
example (fig. B.1 (a)) if p < r, R must be an A-matrix, and if p > r, a B-matrix.
The energy denominator set {n'}, belonging to the N + 1 order diagram thus generated
depends on the level p at which we put the new f-vertex, in the following manner.

Mio={Ling+1L,...,n+Lnu1,. .0y} (B.9.1)
0} ={ni,. . ompm+l, oo+ nyy .. By+1ls (B.9.2)
nYsr =10y, om,muy 4+, gt ngy s iy} (B.9.3)

(Wiyes = {nysee sty +1, 0y +1, 1% (B.9.4)
The structure of the diagrams corresponding to p < r and g > r are shown in figs.
B.1.(b) and (c) respectively. The sum of all N+1 order diagrams generated from
DY can now be written as

N1 1 r 1 N+2 1 .
D} ' =t— |AY ——+B — | 7{n}D. (B.10)
—¢e L p=on{n'}, a=r+1z{n’},

It can be shown that

N+2
Ly L1 (B.11)

n{n'}, a=r+in{n’}, w{n}

r
)}
p=0
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Thus

tDY*! =t -1—(A+B)D;V. (B.12)
—&

This completes our proof. It then follows that

1 N+1 1
DV = ¥ DN = t(_) (a+By L, (B.13)
o .— &,

TasLe C.1
Excitation energies of 2+ states in 'O from RPA and their B(E2) decays to ground state

This work (fiw = 15 MeV) Shukla and Brown (fiw = 14 MeV)
E (MeV) B(E2) (W.u.) E (MeV) B(E2) (W.u.)
T=90
24.9 6.29 26.8 6.6
32.7 0.73 33.1 1.0
39.3 0.03 39.4 0.0
40.8 0.05 40.9 0.0
42.8 0.05 42.4 0.1
45.8 0.01 45.5 0.0
46.4 0.02 45.7 0.0
54.5 0.00 52.1 0.0
T=1
37.0 0.04 37.1 0.1
38.8 0.01 38.6 0.0
40.2 1.68 40.2 2.0
43.4 0.30 43.2 0.4
45.1 0.60 45.0 0.6
40.9 0.20 46.8 0.2
48.8 1.45 48.0 1.7
52.3 1.12 52.0 1.4

Present results given in columns 1 and 2 are compared with the Shukla-Brown 7) results in columns
3 and 4.

TaBLE C.2
Some assumed single-particle energies in the 4°Ca region

Level (MeV) Level (MeV)
1dg —12 lgs 6
Isy -9 2dg 15
ify 0 3sy 18

2p; 2 2d; 18
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Appendix C

Matrix elements of the L, 4 and B matrices used in the present work are generated
from the nuclear reaction matrix of Kahana et al. ®). The free reaction matrix
Kx(e) (or the reference spectrum matrix Gy with unit effective mass) is actually used.
The state-dependent reference energies ¢ are chosen such that Ki(¢) approximates the

TaBLE C.3

Excitation energies of 2* states in 4°Ca from RPA and their B(E2) to ground state in the two ap-
proximations (A) degenerate single-particle energies (B) non-degenerate single-particle energies of

table C.2
Non-degenerate Degenerate (27w = 27 MeV)
E (MeV) B(E2) (W.u.) E (MeV) B(E2) (W.uw.)
T=0

7.7 17.30 12.7 14.20
19.5 1.81 20.3 1.95
21.1 0.04 24.3 0.44
229 0.20 24.6 0.18
23.1 0.08 25.5 0.07
24.2 0.02 26.0 0.05
25.3 0.07 26.7 0
25.6 0.25 26.8 0.01
27.2 0.04 27.0 0
27.6 0.02 27.2 0
28.2 0.04 27.5 0
29.6 0.04 28.2 0
29.8 0.01 28.3 0
30.8 0 28.8 0
314 0.02 29.2 0
32.6 0.01 30.8 0.01
36.0 0 33.2 0.12

T=1

19.7 1.56 26.2 0.02
22.3 0.08 26.3 0.02
234 1.35 26.8 0.13
24.5 0.05 26.7 0.04
25.1 0.19 27.1 0
25.5 0.39 27.1 0.01
26.3 0.13 271 0
27.4 0.16 27.2 0.02
27.6 0.23 27.2 0
28.6 0.71 274 0.01
29.4 0.07 27.5 0
30.2 0.36 279 0.02
30.9 3.27 28.5 0.0
31.3 0.02 29.1 0.05
319 0.10 30.2 1.39
33.0 1.84 31.1 0.07

34.7 0.30 324 8.26
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two-particle nuclear reaction matrix Ky (with free intermediate states) for an 4+2
nucleus, where A4 is a magic number.

For 1®Othese values were obtained when an oscillation wave function with i = 13.4
MeV was used 27). In the present work fio = 15 MeV is used. For *°Ca how» = 10.5
MeV is used consistently for the wave functions.

The 4 and B matrices generated from the K specified above were used to calculate
1p-1h, 27 states in 190 and #°Ca in the RPA. For 'O the results obtained with
hiw = 15 MeV and when the Jolly 2°) single-particle energies were used are shown in
table C.1. These are compared to those calculated by Shukla and Brown 7). These
authors used Kuo and Brown !8) matrix elements but with Aw = 14 MeV which
mainly explains why they have higher excitation energies but larger B(E2) values than
ours.

In the #°Ca region, 2h particle-hole energies are not well known experimentally.
The only member of the sdg shell tentatively located in energy in the 1g; shell
about 5.9 MeV above the 1f; shell 2°). However the more recent experiment of
Belote et al. *°) observed only one 1g, level in *'Ca below 6.8 MeV at 5.0 MeV
excitation energy with a spectroscopic factor of only 0.07. Using the experimentally
known energies of particle and hole levels with respect to “°Ca [refs. 2°733)], and
guided by the spherical part of the Nilsson potential *#) to estimate the unknown
highly excited levels, the level schemes in table C.2 are obtained. Results for 24
vibrations in “°Ca calculated from these s.p. energies as well as from the degenerate
1p-1h energy 2hw = 27 MeV are shown in table C.3. The lowest 2* vibrations re-
sulting from the two sets of s.p. levels are quite different. The non-degenerate result
depends most critically on the unperturbed energy of the 1g;2d; pair. Since as men-
tioned above the observed 1g, level only has a very small spectroscopic factor, it is
not obvious that the non-degenerate result is more realistic. In both cases the lowest
2* state has large B(E2) values to the ground state. This is not predicted by the co-
existence model calculation of Gerace and Green **). The identification of a strongly
B(E2) enhanced 2% at an energy somewhat above threshold in “°Ca would partly
clarify the situation.
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