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Abstraet: The structure of effective operators is determined in time-dependent perturbation theory 
and compared with the approach using Bloch-Horowitz theory discussed in paper I. The E2 
effective charges in the spherical shell model arising from the core polarisation in the oxygen 
and calcium regions are calculated with the G-matrices of Kahana et al. 

1. Introduction 

In the preceding papers of  this series [refs. 1,2), hereafter referred to by I and II] 
we have discussed the general theory of effective operators using the formalism of 
included and excluded space as given for example by Bloch and Horowitz 3), Eden 
and Francis 4), Feshbach and others 5). We used the general approach to discuss the 
phenomenology of E2 operators in II. In this paper we consider various perturbation 
treatments (sect. 3) of  the wave matrix operator (essentially the coupling operator 
v21 of [ and I[) using the reaction matrices of  Kahana e t  al.  6) and estimate (in sect. 4) 
the contribution to the E2 effective charge from core-polarisation effects in 150, 
15N, 170 ,  17F, 39K, 39Ca, 41Ca and 41Sc. In the discussion (sect. 5) we consider the 

problem of the contribution to the E2 effective charge from renormalization of the 
single-particle functions. 

The approach of this paper is very similar to that of Shukla and Brown 7), Siegel 
and Zamick s) and Dieperink e t  al .  9). A comparison of our calculations with theirs is 
given in the text. A more detailed account of  our calculations can be found in ref. 39). 

2. Perturbation by the nuclear residual interaction 

The familiar approach to the nuclear problem is to divide the nuclear Hamiltonian 
H into a model nuclear Hamiltonian Ho and residual interaction HI: 

H = H o + H  I. (1) 

A general perturbation theory for the matrix element of any operator t in powers of H~ 
can be written in a compact form by using the concept of  the wave operator a). 

( ~ l t l ~ a >  _ (~l~lq~p)lN~Na, (2) 
N~ Na 

612 
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where 

m(-)~,,-,(+) r~+) Q /-/i a~+), = t ~ . ,  j ,~.p , = 1 +  
E B - H o + itl 

Hoqb, = E,•,, He, = e,¢,, N2 2 = <¢,10,5, 

N~ and Np will cancel the unlinked parts appearing in the perturbation expansion of 
the numerator '" '2) .  The definition of the effective operator ~ is quite similar to the 
one given in I except that the propagator involves the unperturbed energy E~ in eq. 
(2) while the exact energy ~ is used in the Bloch-Horowitz formulation of the effective 
operator. We can define an operator p as 

# = Z, f2 (+) = z ,+n,  ~ Q - -  p. (3) 
E , - H  o 

The operator/~ is in the spirit of the usual Rayleigh-Schrodinger (RS) perturbation 
theory while the operator v defined in the Bloch-Horowitz formulation is akin to the 
approach of the Brillouin-Wigner (BW) perturbation theory. In practice, the RS 
series leads to the linked-cluster theorem. The main difference between BW series and 
RS series is the appearance of an energy shift AE~, in the energy denominator 
(1/E~,+AE~-Ho). The usual method to deal with such an expression is to expand 
AE~, from the denominator and then cancel the unlinked diagrams appearing in this 
new series against similar diagrams in the normalisation constant (N,). Such a 
cancellation of the unlinked diagrams has been proved by Brueckner 14) and Bran- 
dow 12) for non-degenerate and degenerate many-particle systems respectively. There- 
fore the apparent difference between p [eq. (3)] and v [I eq. (2.6)] disappears in any 
practical calculation. 

The model Hamiltonian Ho is often assumed to have a single-particle shell structure 
in which case the effective operators can be expressed in terms of diagrams. To illus- 
trate this we note that with f2 (÷) ( -  U(0, - ~ ) )  and eq. (2) we can write 

0 ~--- ~'~ (O----m fO°dt 1 . . .  f o ~ d t m T ( H l ( , Â ) .  . .  Hi(tin) ) 
m=O m!  do  

x O  ~, (--i)n f~d t  1 . . . d tnT(Hi ( t l ) . . .H l ( tn )  ). (4) 
. = 0  n! .10 

This expression leads to a diagrammatic representation if we insert the unit operator 
~plCp><¢,l between any two successive operators. For greater details we refer to the 
paper of Siegel and Zamick s) and ref. 39). 

3. Ca lcu la t ion  o f  effective e l ec tromagnet ic  operators  

The treatment of the effective operators is as a perturbation expansion in terms of 
the residual interaction H1 which contains the fundamental two-body potential vu; 
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this will not converge however since vii has a strong repulsive part at short distances. 
We perform a partial resummation of the series ~ la Brueckner 14) to obtain a 
reaction matrix and then the effective operators are viewed as an expansion in terms ot 
the reaction matrix. 

In the present calculation, for vi~ we use the non-local separable form suggested by 
Kahana et  al. 6). This potential contains the two-body tensor as well as spin-orbit 
force and thus leads to a j-dependence of the renormalisation effects to the e.m. 
operators. We note that the earlier calculations of Siegel and Zamick 8) used the 
Kallio-Kolltveit potential which does not have any tensor component and hence leads 
to no j-dependence of the effective charge. 

Three separate approximation schemes have been used to determine the effect on 
the operators through core polarisation. 

(a) First-order perturbation in the reaction matrix. 
(b) Tamm-Daneoff approximation which includes summation of particle-hole 

bubbles such that the intermediate states are two-particle and one-hole states. 
(c) Random-phase approximation 15) which includes diagrams of TDA as well as 

diagrams with (n + 1) particle n-hole intermediate states. The position of the electro- 
magnetic vertex in this particular resummation of diagrams can appear at all possible 
time-orderings. A proof for a resummation of such a series in a closed form is given in 
appendix B. 

Analytical expressions and the phase convention for the evaluation of the core- 
polarisation effects in the three approximation schemes are given in appendix A. 

3.1. SINGLE-PARTICLE ENERGIES 

The perturbation expansion as developed above indicates that the single-particle 
energies (e~) and the single-particle functions ~ are the eigenfunctions of the single- 
particle Hamiltonian H o. In the ideal situation this single-particle operator Ho 
is chosen to minimise the contribution of the single-particle terms. This implies some 
kind of self-consistency calculation e.g. that of Hartree-Fock. In principle any  H o  

can be chosen but then the correction due to the single-particle orbits must be cal- 
culated. We have not performed any self-consistency calculation but rather have 
chosen two commonly used sets of single-particle energies and then have determined 
the magnitude of the core-polarisation diagrams in the belief that these are relatively 
insensitive to the precise structure of the single-particle orbits. 

The two sets we have chosen are thus: 
(i) Use the spherical harmonic oscillator (h.o.) single-particle functions with the 

corresponding degenerate h.o. single-particle energies. 
(ii) Use the spherical harmonic oscillator functions with the experimentally ob- 

served single-particle energies. 
The latter approach is adopted in the calculation of the ground state energies and 

the low-lying spectra in finite nuclei using reaction matrices. In terms of the per- 
turbation expansion this implies that certain classes of diagrams which renormalise 
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the single-particle propagator  have also been included with the diagrams present in 

T D A  or in RPA. 
The second approach is useful for the case of  one particle or one hole in the a 6 0 

since the experimental values for the energies of ls~, lp=~, lp_~, 2s}, ld~, ldk, lf~_, 2p}, 
lf} and 2p~ are known quite accurately. However for the case of  a particle or a hole in 
4°Ca, the second approach is not possible since the single-particle energies of  the 
unfilled shells are not known. This introduces larg,z uncertainties in the calculations. 

3.2. HARMONIC OSCILLATOR PARAMETER (hm) 

The usual way to determine the harmonic oscillator parameter  is to fit the rms 
radius of the nucleus as given by high-energy electron scattering experiments 16). 
Strictly speaking the rms radius should be calculated using a renormalised radius 
operator because of the truncation to the shell-model wave function. This renor- 
malisation we have ignored here assuming values h~o = 15 MeV and 10.5 MeV for 
the oxygen and calcium regions respectively. 

4. Resul t s  

The results and comparison with experiment for E2 transition rates and quadrupole 
moments  13) will be given in terms of the effective charge parameter  defined in 

_ (O,  IOlOp) 
½(1 -- (z3))  + e,t~ (~b,] r 2 y21q~p) ' 

where 
O = ½ Z ( 1 -  v3(i))r 2 Y=(t2,) 

i 

z a = + 1 neutron, - 1 proton. 

Clearly the definition of  effective charge depends sensitively on the choice of  model 
wave function ~b~ and q~p. For  simplicity we choose the harmonic oscillator wave 
functions of  the model Hamiltonian 

Ho = • ho(i), ho(i ) = _ 1_  A~ +½mco2r 2. 
2m 

With such a simple Hamiltonian we have no right to expect that the single-particle 
renormalisation to the effective operator is negligible. Thus our calculations are to be 
treated as calculating only the core-polarisation contribution. The contribution from 
single-particle renormalisation we discuss in sect. 5. 

In all the calculations we have retained contributions only from particle-hole 
pairs with AE = 2ho~. 

4.1. EFFECTIVE E2 CHARGES IN THE OXYGEN REGION 

The extraction f rom experimental data of  the core-polarisation contribution to the 
effective E2 charges in 1 SO, lSN, 17 0 and lVF has been discussed in I I  and will not 
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be repeated here. Apparently the neutron and proton particles carry equal core- 
polarisation (additional) effective charges of about 0.5: e,a on neutron and proton 
holes differ however being 1.1 and 0.6 respectively. 

The calculated values for the E2 effective charges are given in table 1 in the various 
approximations (a), (b) and (c) of sect. 3 for both degenerate single-particle energies 
and with realistic single-particle energies. These calculations and approximations are 
very similar to those of  Siegel and Zamick s) differing only in the specific G-matrix 

TABLE 1 

Calculated core-polarisation effective charges for neutron and proton,  particles and holes on ~60 
in the approximat ions  (a), (b) and (c) (see text) are compared  to deduced values f rom experiment 

(last column) 

Conf igurat ion  n/p  Degenera te  orbits Non-degenerate  orbits Experiments 
(hco = 15 MeV) [ref. 40)] 

a b c a b c 

P~r-I P~r-t n 0.58 0.96 1.83 0.42 0.57 0.76 
p 0.15 0.62 1.53 0.10 0.31 0.52 

d~r d~_ n 0.39 0.62 1.10 0.29 0.38 0.49 
p 0.11 0.40 0.89 0.08 0.21 0.33 

s~. d½ n 0.32 0.49 0.81 0.24 0.31 0.38 
p 0.14 0.33 0.66 0.10 0.19 0.27 

d~_ d~ n 0.45 0.72 1.32 0.35 0.47 0.62 
p 0.21 0.53 1.14 0.18 0.32 0.47 

d~. sz~ n 0.27 0.37 0.54 0.20 0.25 0.29 
p 0.06 0.20 0.37 0.05 0.I1 0.16 

d~r d k n 0.38 0.58 0.99 0.29 0.37 0.46 
p 0.11 0.36 0.79 0.08 0.19 0.30 

1.1 
0.5 
0.43 

0.47 
0.68 

used-Siegel  and Zamick used those of  Kallio-Kottveit and Kuo-Brown poten- 
tials t7-2o) .  The results from the two calculations are very similar however. In 
approximation (a) the effective charges are too small for the realistic single-particle 
energies but, perhaps of greater significance, the neutron charges are larger than the 
proton for both particles and holes. This latter fact follows the observed gross feature 
for holes but not particles. This is not a surprising result since protons can polarise the 
protons of  the core (and hence lead to effective charges) only through the T = 1 
part of the G-matrix. The neutrons on the other hand can polarise the protons of the 
core through the T = 0 and T = 1 parts of the G-matrix. Since the T = 0 matrix 
elements tend to be larger than the T = 1 this leads to larger effective charges for 
neutrons. This approximation used for the effective charges is equivalent to that for 
the core-polarisation correction to the effective residual interaction with a truncated 
space as given by Kuo and Brown 18). Thus one sees a certain inconsistency in the 
shell-model calculations. The usual effective residual interaction includes the core- 
polarisation effects to first order only while the effective E2 charges for both protons 
and neutrons is taken to be ½ which is quite different from the first-order estimates. 
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It is possible that better estimates of the core-polarisation effect 20) could change the 
effective charge calculation drastically without a similar change in the effective two- 
body interaction: such a fact has to be checked however. 

In the Tamm-Dancoff  approximation (b) and the RPA (c) the effective charges for 
protons is increased more than those for neutrons but still the effective charges are 
too small for the realistic single-particle energies. 

TABLE 2 

Calcula ted  core-polar isa t ion effective charges  for neu t ron  and  pro ton ,  particles and  holes on  4°Ca 
in the  app rox ima t ion  (a), (b), and  (c) (see text) are compared  to deduced values f rom exper iments  

Conf igura t ion  n /p  Degenera te  orbits  Non-degenera te  orbi ts  Exper iment  
(ha) = 13.5 MeV)  

a b c a b c 

d~ - t  dk -1  n 0.53 0.83 1.51 0.64 1.13 3.04 
p 0.21 0.57 1.27 0.25 0.82 2.77 

d~ -1  s~x - l  n 0.48 0.72 1.21 0.56 0.96 2.38 
p 0.17 0.47 0.98 0.20 0.67 2.12 

fk f~- n 0.40 0.62 1.08 0.46 0.81 2.09 
p 0.15 0.41 0.88 0.17 0.57 0.87 

f~_ p~ n 0.31 0.46 0.72 0.37 0.62 1.40 
p 0.14 0.31 0.58 0.15 0.44 1.23 

fk f~r n 0.45 0.71 1.26 0.62 1.10 2.90 
p 0.23 0.52 1.09 0.37 0.90 2,71 

P-t- P~ n 0.27 0.40 0.67 0.31 0.53 1.30 
p 0.11 0.27 0.54 0.12 0.37 1.15 

P~ f~r n 0.27 0.38 0.53 0.31 0.48 0.96 
p 0.08 0.22 0.38 0.10 0.31 0.80 

P-t- P,~ n 0.28 0.42 0.71 0.33 0.57 1.42 
p 0.12 0.28 0.58 0.14 0.41 1.28 

f~r f~: n 0.40 0.60 1.01 0.47 0.80 2.00 
p 0.15 0.39 0.82 0.18 0.56 1.78 

f'l- P4x n 0.28 0.38 0.55 0.31 0.48 0.99 
p 0.08 0.22 0.39 0.09 0.30 0.81 

1.06 
0.932 

1.134-0.13 
0.544-0.2 

1.07 

Shukla and Brown 7) have considered the effective charges in 150 and lSN as- 
suming the structure of the negative parity states to be given by the admixture of  the 
single-parity states to be given by the admixture of the single-particle orbits and de- 
formed 2p-3h states. The E2 transitions are calculated with art effective charge deduced 
from the observed B(E2:2  + --, 0 +) transitions for several excited 2 + collective states 
in 160. As noted by the authors however such an approach suffers from lack of 
knowledge of  the double counting between the explicit considerations of the deformed 
2p-3h state and the use of  the effective charge from the collective core 2 + states. The 
approach however did lead to a larger effective charge for neutron-holes than for 
proton-holes. Unfortunately no estimate was given on the effect for particles. In 
view of  the use of  a Q • Q coupling between particles and the collective 2 + states of  
the core the Shukla-Brown calculation is perhaps to be considered as semi-phenom- 
enological and somewhat similar to the philosophy in II. 
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4.2. EFFECTIVE CHARGES IN THE CALCIUM REGION 

Experimentally the ground state quadrupole moment and the E2 transition from 
1+ 

state to the ground state (3 +) in agCa and agK are known and are substantially 
enhanced from the pure shell-model value 21). As in the case of a hole in 160, we 
expect that the T -- 0 and T = 1 vibrations in 4°Ca will have a substantial effect on 
the observed effective charges in a9K. 

The results of  the present calculation in the various approximations discussed 
above are given in table 2. As pointed out earlier the calculations with a non-de- 
generate set of single-particle energies are not necessarily more realistic than with a 
degenerate set of  single-particle energies since the experimental information on the 
energies of the single-particle states is quite scanty. Some details about the choice of 
the non-degenerate set are given in appendix C. 

In 4iCa and 41Sc there is experimental information 22) on E2 transition rates of 
s - and -~- states to the ground state ½-. It is found that all the E2 transition rates are 
enhanced and hence require an effective charge. In the calculation of E2 transition 
rates, a large uncertainty is introduced by a lack of knowledge of the single-particle 
energies of the unfilled shells. We give results for the case of a degenerate model with 
hco = 13.5 MeV and for a non-degenerate set of single-particle energies (for details 
see appendix C). 

As was the case in the oxygen region the effective charge in the first-order approx- 
imation (a) is very much smaller than is apparently required from experiment. 
The Tamm-Dancoff  approximation (b) and RPA (c) again have the effect of  in- 
creasing the proton effective charge more than the neutron. Unfortunately the RPA 
approximation is unstable in the sense that very small changes in the single-particle 
energies can lead to enormous effects on the effective charge. We return to this point 
in the discussion. 

5. Discussion 

Comparison of the experimental and the calculated numbers for the effective charge 
for E2 transitions indicates that agreement is not satisfactory. In particular we note 
the following points. 

(i) The first-order perturbation theory is quite inadequate to explain the effective 
charge of the proton but seems to yield a large fraction of the effective charge for the 
neutrons. This may be understood by the fact that protons can polarise the protons 
of the "core"  by T = 1 components of the reaction matrix while the neutron can 
polarise both through T = 0 and T = 1 components. Combining this fact with the 
observation that the T = 0 component of the reaction matrix is more strongly at- 
tractive than the T = 1 component, the results of the first-order perturbation theory 
are understandable (but disappointing). 

(ii) There is a larger renormalisation of the proton effective charge than of the 
neutron effective charge in going from the first order of perturbation theory to TDA 
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and to RPA. The proton charge increases by a factor of  4-7 while the neutron 
increases by ~ 2-3 with the result that the proton and neutron effective charge tend 
to become equal. This indicates that theproton charge is a more sensitive measure of 
the collective features in the system. Unfortunately the effective charges are still 
apparently too small in the oxygen region and the instabilities in the RPA summation 
in the calcium region make the calculation untrustworthy. 

(iii) The final result in any of the three approximations of sect. 3 is quite sensitive 
to the single-particle energies of  the occupied as well as the unoccupied single-particle 
states. With the non-degenerate set of single-particle energies the effective charge in 
nuclei with one particle or one hole in 160 is less than with the degenerate single- 
particle energies. The situation for nuclei near 4°Ca is more confused because the 
single-particle energies are not known very well. Clearly it is of importance to consider 
calculations in which the single-particle energies are determined self-consistently with 
the G-matrix considered in some Brueckner-Hartree-Fock calculations. 

(iv) We note that the value of  the core-polarisation effective charge deduced from 
experiment is model-dependent. For example in 17 F the E2 transition from ½+ to ~}+ 
requires an effective charge of 0.87 if we use harmonic oscillator single-particle func- 
tions (cf. sect. 2). However we do know that the ½+ state is actually bound by less than 
100 keV and it will be a poor approximation to use harmonic oscillator functions. 
If  we choose a finite single-particle potential-well (say Woods-Saxon), then the effec- 
tive charge is reduced to ~ 0.68. Therefore the comparison of the core-polarisation 
effective charge with experiment may be ambiguous and the uncertainties in both the 
core-polarisation effective charge extracted from experimental and theoretical 
estimates may be large and model-dependent. Clearly one would like to include in 
the calculation the single-particle renormalisation effects. Such a calculation has not 
been done here since it is felt that the full Brueckner-Hartree-Fock determination of 
the single-particle energies should first be done. 

(v) In order to calculate the transition rates, we have to estimate the wave matrix 
~2 + (or the operator #) quite accurately. From eq. (3) for # we get 

I~ = ( E - H  °) 1 G, 
E - H ° - G Q  

which indicates that if we diagonalise H ° +  GQ in the space 2 (total Hilbert space 
minus the model space) i.e. 

(/_io + GQ)IO~> = ~,r~,>, 

then the operator/~ will have poles at ~ and can be written as 

(2 # = (E-H°) ]O~)  ~ (O,[G. 

It is well known that in the neighbourhood of any of the poles ¢~ of / t ,  any sort of 
perturbation approach is doomed to failure. There are several ways to get around this 
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difficulty. One of  them, suggested by Weinberg 23) and considered by McVoy and 
Romo 24) for scattering problems, is to assume a separable structure and then obtain 
the residues at the poles i.e. the wave functions by a variational type approach. We 
follow a different procedure and try to get these states by a partial summation (RPA) 
of the perturbation series. The results of  the calculation of T = 0 and T = 1 2 + 
vibration states in 16 0 and 4°Ca are shown in appendix C. The states that come down 
the lowest in energy are the ones that contribute the most towards the renormalisation 
of the E2 transitions in nuclei with one particle or one hole in 16 0 and 4°Ca. In 
these closed shell nuclei, the lowest T = 0 and T = 1 2 + vibrations have the largest 
B(E2) to the ground state. It  may be noted here that for 160 these 2 + vibrations 
are quite high while for 4°Ca the lowest 2 + vibration (T = 0) has come as low as 
7.7 MeV. These low-energy 2 + vibrational states in 4°Ca are perhaps responsible for 
the instability of  the RPA solution for the effective charge in 41Ca and 41Sc which 
has been observed in our calculation as well as in some of the other calculations a). 
It  is possible that such low-lying 2 + vibrational states should be included in the model 
space in order to get reliable numbers for the effective charge in nuclei close to 4°Ca. 

In the appendix C we have compared our results for the T = 0 and T = 1 2 + 
vibrations in 160 with the results of  Shukla and Brown 7). The excitation energies of 
the 2 + vibrational states obtained by us compare quite well with their numbers. 

(vi) In looking for more complicated diagrams the inclusion of  which should 
stabilise the RPA series one should perhaps be guided by the deformed core model a) 
which can reproduce the correct effective charges. Essentially one is seeking the series 
of  diagrams in the spherical shell model which correspond to the deformation of the 
core. In this respect the interpretation in terms of diagrams of the two-body operator 
W constructed in I I  which leads to the same field as a more fundamental operator 
(e.g. G) may be of significance. 

(vii) The general theory of effective operators considered in this series of  papers 
has been applied to study the inelastic proton scattering 4a). In the lowest order of 
perturbation theory it is found that the shape of the angular distribution is not altered 
but the magnitude of  the differential cross section is increased by a factor of  2-10. 
No attempt has been made so far to study the effect of  a partial summation like TDA 
or RPA on the differential cross section for inelastic proton scattering. 

To summarise this set of  three papers we would like to mention the major conclusions 
of  the present study of the effective operators: 

(a) The effective operator for the electromagnetic transitions is not simply a one- 
body operator but has two- and higher-body components. In the phenomenological 
analysis of  the operator v21, we found that the matrix elements of  the two-body part  
of  the effective operator can be as large as ,~ 40 ~ of  the one-body part  of  the effec- 
tive operator (II). Some of these large matrix elements add up coherently to enhance 
B(E2: 2 + ~  0 +) in aSNe. However more precise experimental information on 
B(E2) for nuclei for two particles or two holes in a closed shell should help to estab- 
lish the magnitude of the two-body part  of  the effective operator. 
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(b) A re-summation of a class of diagrams that lead to RPA appears inadequate to 
explain the quadrupole vibrations in *°Ca. Perhaps there is another class of diagrams 
that give contributions which adds incoherently to that of the RPA diagrams. A 
prescription for the choice of this new class of diagrams has not been found. Similar 
conclusions regarding the non-convergence of the RPA series for calculating the 
effective interaction in finite nuclei have been drawn by Barrett and Kirson 41). 

(c) The effective operators have been analysed with a phenomenological as well 
as a realistic parametrisation of v2 t.  The former is easy to handle though aesthetically 
less satisfying while the latter requires enormous effort to get reasonable numbers. 
Another disturbing feature of the calculations with realistic interactions is the intrinsic 
non-convergence of an arbitrarily chosen infinite sub-set of diagrams out of the com- 
plete set. Perhaps a definite prescription for the choice of a particular sub-set of dia- 
grams for any specified problem is needed. However accurate experimental data on 
B(E2) and B(E3) in the region of the "magic" nuclei can provide incentive for analysing 
the structure of the effective operators in much greater detail. 

It is a pleasure to thank S. Kahana, R. Y. Cusson, E. Halbert and J. McGrory 
for discussions and S. Siegel and L. Zamick for discussion and information on their 
work. 

Appendix A 

We define elements of L, A and B matrices in terms of particle-particle matrix 
elements of an interaction K with the two-particle states antisymmetrized and nor- 
malized to unity. 

(i) Z~ , s  , = ([f(ph)ar]~llK[li) 

= - 4 ( 1  +6hb)(1 +8av)(-  1) j'+'/h J'~ s~,[S'] [T'](--  1) s'+ r 'w(fp ih ;  S'J) 
~x/2 

x W(½½½½; T ' r ) ( f p ;  J'T'lKlih; J 'T ' )  

,+ J 1 
= 4(1+~.,)(1+,~sp)(-) j J i ~  [J'](-)S'W(fpih; S'S) 2x/2 

x ( fp;  J'I{(K ° + 3K1)6ro + n /3 ( -  K ° + K1)~Srl}lih; J'), (A. 1) 

where we have used the notations 

( fp;  J'lKr'lih; J ')  - ( fp;  J'T'lKlih; J 'T ' )  ; 

[J]  = 2 J + 1 ;  J' = x / 2 J + l .  
(ii) sr Av", v'," ~- ((Ph)~TlKl(p'h')Sr) 

= - ~, [J'J[T'JW(ph'hpT; J'J)W(½½½½; T'T)(h'p; J'T'IKIhp'; J 'T ' )  
J 'T"  

= -½ ~, [J']W(ph'hp'; J'J)(h'p; J'I{(--K°+3K1)~To+(K°+K1)fiT1}hp'; d') .  (A.2) 
d" 
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(iii) iv Bph, v'n" -- <OIK}[(Ph)Sr(P'h')Sr]°> 

= - ( - ) J "  + Jhx/(1 + 6vv,)(1 + 6hh')<(hp)SW[ Kl(p'h')sr). (A.3) 

The phase conventions of the A and B matrices are identical to those of Mavromatis 
et al. 26). 

We also define the column vector 

(iv) t ~  =- <O[Itall(ph)Xr> 

= <011½(1 + za)r ~ Y;'I I(Ph) zr) 

Jp +Jh~ a - - ( - )  2)h(~rl +6ro)6TooQhp, (A.4) 
where 

(v) Q~b = <allr~Y~llb) 

J b 7a lb ~" "~ = (--)J°-~ W(l, jalbjb; ½2) <r~>ab, (A.5) ,/~ 0 

where <r a) is the radial integral. The effective charge e ~ due to particle-hole pair 
excitations in the electric 2-pole transition can now be written in the general form 

_ _ ) :i = <fijta 1 Klli>+(fl[K 1 tajli> (Q},)_, 
- A E  - -  A E  

{(_)a+~,-i, ~ - ~  a L~r r ,~ ~-~[ 

We define the quantity in the curly brackets as the isobaric spin multipole effective 
charge e ar . In obvious matrix notation 

:, :-~ 7 ar _ e ~ :, o~,)-'. 

We then have 

..... 1 ea~ ~o (A.8) 

In (A.6) ? can be written in the general form 

~ = t~0  +A~D, (A.9) 
where A~" can be viewed as the effective charge of the particle-hole pair coupled to 
2T (fig. A.1). Ia  the lowest order perturbation theory, A = 0 and only diagrams (a) 
and (b) in fig. A.1 contribute to e ~. In this case from eqs. (A.1), (A.4), (A.6) artd (A.8) 
we can write explicitly 

e~ ~:0':2" = E (-)'+: ~ i 
,, ~ a~, 40 +a,,)(l +a,s) 

8 i - -  8 f  J r  8 n - -  8 p  

s >(Qf3 • (A.10) x ~ [J'](-)S'W(pfih; J'2)<yp; J'I½(K' +K°)Iih; ' a -i 
j, 
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Ca) (b) -. - ~ .  --× . . _ ?  --X 

(c) (d) 

'~- -- X 
/ 

(e) (f)  

(g) (h) 

(i) (j) 

Fig. A.1. (a) and (b) Diagrams for the lowest order effective charge; (c), (d) and (e) diagrams 
corresponding to the first, second and nth order, respectively, in TDA; (c), (f) and (g) are the dia- 
grams for the first-order A in RPA; (d), (h), (i) and (j) are the diagrams for the second order in 
RPA. The dotted horizontal line indicates the time at which the ph-pair is created by the initial 

valence particle (hole). 

I t  is seen that  in  the lowest-order per tu rba t ion  expansion the p ro ton  effective charge 

comes entirely f rom the isovector componen t  of the K-matrix.  This  is easy to see since 

in  this case the core excitat ion must  be a p ro ton  particle-hole pair.  The neut ron  

effective charge in  the lowest order is the average of  the isovector and  the isoscalar 

contr ibut ions .  
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The ph effective charge A is not zero in higher order perturbation theory. In the 
TDA series the nth order A is 

t ~rA~r~) t~r(  1 Aar) ~ (A.11) 
~ T D A  = - A E  " 

Thus 

aT tar(1 + ~r X~ ~TDA ~-  A T D A )  = t~'T( ~ "3L ~ A ~ T A ( n ) )  
n = l  

- A E  

Substituting (A.12) into (A.7) we get, in the case when particle-hole energies are 
degenerate, i.e. when ep-~h = AE, 

~TDA --  1 L ~'T = tarGxrL at, (A.13) 
- A E  

where G aT is the ph Green function in TDA and in obvious notations 

G ~r = ~ [~; AT> 1 <a; AT[. (A.14) 
~.T 

a Ei - -  8 f  - -  gg 

In the non-perturbative Green function approach one assumes (A. 14) from the outset 
in which case the degenerate assumption is not necessary. 

In the RPA series the nth order A, in the degenerate case, is given by (proof in 
appendix B) 

,ar Axr(,) tar AnT+Bar (A.15) 
t ~ R P A  ~ ~ 

which leads to 

~.r = t a T  (A.16) $aPA 1 - -  (A pT + B at) 

Here the Pauli principle has been ignored since (A.17) allows the simultaneous 
existence of any number of ph pairs at any given instance. It should be mentioned 
that although the statement given above is also used exactly to described ph vibrations 
in the RPA, the equivalence between the perturbation approach and the Green 
function approach which exists in the TDA, as stated in (A.13), does not exist in the 
present case. One realizes that in the RPA the amplitudes of the ph vibrations are not 
eigenfunctions of the matrix A E +  A + B. 

Appendix B 

We prove that in the degenerate case all diagrams in the RPA series (fig. A.1) 
containing L, A or B matrix elements sum up to 

t - -  
- - g  
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where we have suppressed all superscripts. We assume e = 3 E  in this appendix, This 
is equivalent to saying that the effective charge of the particle-hole pair ~ is given by 

= 2 t (A + B)L (B.2) 

i 

n r  I 

I 

n2 
2 . . . . . . . . . .  

J ..... (a)  

no;~ %+2 ~ ' f  

n p' n'p l 
p nV,----n,-p-_- ' ,L A,".",A 

i 

(b)  
i " 

nq+: I n'q'+ 2 
q÷ l  . . . . . . . . . . . .  i i 6 ¥ 1  

nq n q ~ (71 

i Z v - w ' v  

(c) 
Fig. B.1. (a) Diagram corresponding to D N. The numbered lines 1, 2 , . . ,  indicate the position of each 
interaction line. The subscripted letters represent the denominators. (b) Diagram for D T M  when 

p < r, see (B.9.2). (c) Diagram for D N+I when p > r, see (B.9.3). 

We prove by induction. The lowest (zeroth) order diagram D °, indicated in (a) 
of fig. A.1, has no A- or B-interaction. 

tD° = t--1 L. (B.3) 
- -g  

The first-order diagrams, depicted in (c), (f) and (g) of fig. A.1, give 

ID 1 = t 1~ ( A + B ) 1  L. (8 .4 )  
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We now prove that if  t D  N is any Nth order diagram, then the sum of  all N +  1 order 
diagrams generated from D ~ by introducing a p-h pair between the last bubble and the 
t-vertex in D n is equal to 

tD~ +' = t ~ ( A + B ) D ~ .  (B.5)  
- - 8  

Consider diagram D u. I t  contains N +  2 interaction lines, among which the right- 
most is an L-interaction and the left-most a t-interaction. The other lines will either be 
A- or B-interactions, which collectively we denote by R. Between these lines there are 
N +  1 energy denominators, which, in units of  - e ,  f rom bot tom up, we designate by 

the set 
{n) = {n~, n2 . . . . .  nN+,}.  (B.6) 

Thus in general 

where 

( ~ )  N 1 R N l - L ,  (B.7) t D ~ = t  ~("} -~  

N + I  

~z{n} = 1-[ ni = ni . . . .  n,v+~. (B.8) 
i = 1  

Suppose the t-vertex in D N lies between the denominator nr and nr+ 1 (i.e. the rth 
interaction line), and say the emission of the ~-ray creates a p-h pair (see fig. B.1). 
An N +  1 order diagram is created f rom D N by replacing the t-vertex either above or 
below all interaction lines in D N, or between any pair of  successive such lines. The 
new R- and t-vertices are then connected by a p-h pair. We label the levels at which 
the new t-line can be put, f rom bot tom up, b y p  = 0, 1, . . . ,  N + 2 .  In the present 
example (fig. B.1 (a)) if p =< r, R must be an A-matrix, and if p > r, a B-matrix. 
The energy denominator set {n'}p belonging to the N +  1 order diagram thus generated 
depends on the level p at which we put the new t-vertex, in the following manner. 

{n'}o = {1, nl-I-1 . . . .  , n r + l ,  nr+l . . . . .  nN+a}, (B.9.1) 

{n')v<=, = {n~ . . . . .  n , ,  n v + l  . . . .  n r + l ,  n r+l -  • • ns+l) ,  (B.9.2) 

{,,')q>, ; {n ,  . . . . .  nr, n , + ~ + l  . . . .  n q + l ,  nq+~ . . . .  n N + d ,  (B.9.3) 

{n'}s+2 = {nl . . . . .  nr, n,+l + 1 . . . . .  ns+l  + 1, 1}. (B.9.4) 

The structure of  the diagrams corresponding to p < r and q > r are shown in figs. 
B.l . (b)  and (c) respectively. The sum of  all N +  1 order diagrams generated from 

D ~ can now be written as 

= t - -  - -  + B  Z ~{n)D~.  (BA0)  

It can be shown that 
1 N+2 1 1 
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Thus 

tD~+l = t 1.~ (A +B)D~. 
--8 

(B.12) 

T h i s  c o m p l e t e s  o u r  p r o o f .  I t  t h e n  f o l l o w s  t h a t  

tDN+l= g, t O N + l = t (  l l N+a 1 z.,~ . , - ~ /  (A + B) N + x ___8 L. (B.13) 

TABLE C.1 

Excitation energies of  2 + states in 160 from R P A  and their B(E2) decays to ground state 

This work (ho9 = 15 MeV) Shukla and Brown (hco = 14 MeV) 

E (MeV) B(E2) (W.u.) E (MeV) B(E2) (W.u.) 

T = 0  

24.9 6.29 26.8 6.6 
32.7 0.73 33.1 1.0 
39.3 0.03 39.4 0.0 
40.8 0.05 40.9 0.0 
42.8 0.05 42.4 0.1 
45.8 0.01 45.5 0,0 
46.4 0.02 45.7 0.0 
54.5 0.00 52.1 0.0 

T = I  

37.0 0.04 37.1 0.1 
38.8 0.01 38,6 0.0 
40.2 1.68 40.2 2.0 
43.4 0.30 43.2 0.4 
45.1 0.60 45.0 0.6 
40.9 0.20 46.8 0.2 
48.8 1.45 48.0 1.7 
52.3 1.12 52.0 1.4 

Present results given in columns 1 and 2 are compared  with the Shukla-Brown 7) results in columns 
3 and 4. 

TABLE C.2 

Some assumed single-particle energies in the 4°Ca region 

Level (MeV) Level (MoV) 

lp  k --27 lf÷ 6 

1 p~ --  23 2p~ 4 

ld~ -- 12 lg~ 6 

ls~ --  9 2d~ 15 

ld  k - -  7 lg~r 15 
lf~ 0 3s~_ 18 

2P k 2 2d~_ 18 
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Appendix C 

M a t r i x  e l e m e n t s  o f  t h e  L ,  A a n d  B m a t r i c e s  u s e d  in  t h e  p r e s e n t  w o r k  a r e  g e n e r a t e d  

f r o m  t h e  n u c l e a r  r e a c t i o n  m a t r i x  o f  K a h a n a  et al. 6). T h e  f ree  r e a c t i o n  m a t r i x  

Kv(e) ( o r  t h e  r e f e r e n c e  s p e c t r u m  m a t r i x  GR w i t h  u n i t  e f fec t ive  m a s s )  is a c t u a l l y  used .  

T h e  s t a t e - d e p e n d e n t  r e f e r e n c e  e n e r g i e s  8 a r e  c h o s e n  s u c h  t h a t  Kv(e) a p p r o x i m a t e s  t he  

TABLr C.3 

Excitation energies of 2 + states in 4°Ca from RPA and their B(E2) to ground state in the two ap- 
proximations (A) degenerate single-particle energies (B) non-degenerate single-particle energies of 

table C.2 

Non-degenerate Degenerate (2hco = 27 MeV) 

E (MeV) B(E2) (W.u.) E (MeV) B(E2) (W.u.) 

T = 0  

7.7 17.30 12.7 14.20 
19.5 1.81 20.3 1.95 
21.1 0.04 24.3 0.44 
22.9 0.20 24.6 0.18 
23. I 0.08 25.5 0.07 
24.2 0.02 26.0 0.05 
25.3 0.07 26.7 0 
25.6 0.25 26.8 0.01 
27.2 0.04 27.0 0 
27.6 0.02 27.2 0 
28.2 0.04 27.5 0 
29.6 0.04 28.2 0 
29.8 0.01 28.3 0 
30.8 0 28.8 0 
31.4 0.02 29.2 0 
32.6 0.01 30.8 0.01 
36.0 0 33.2 0.12 

T = I  
19.7 1.56 26.2 0.02 
22.3 0.08 26.3 0.02 
23.4 1.35 26.8 0.13 
24.5 0.05 26.7 0.04 
25.1 0.19 27.1 0 
25.5 0.39 27.1 0.01 
26.3 0.13 27.1 0 
27.4 0.16 27.2 0.02 
27.6 0.23 27.2 0 
28.6 0.71 27.4 0.01 
29.4 0.07 27.5 0 
30.2 0.36 27.9 0.02 
30.9 3.27 28.5 0.0 
31.3 0.02 29.1 0.05 
31.9 0.10 30.2 1.39 
33.0 1.84 31.1 0.07 
34.7 0.30 32.4 8.26 
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two-particle nuclear reaction matrix Ku (with free intermediate states) for an A + 2  

nucleus, where A is a magic number. 
For 16 0 these values were obtained when an oscillation wave function with ho~ = 13.4 

MeV was used 6,27). In the present work ha) = 15 MeV is used. For 4°Ca h¢.o = 10.5 

MeV is used consistently for the wave functions. 
The A and B matrices generated from the Kr specified above were used to calculate 

lp- lh ,  2 + states in 160 and 4°Ca in the RPA. For 160 the results obtained with 

ho~ = 15 MeV and when the Jolly z 9) single-particle energies were used are shown in 

table C.1. These are compared to those calculated by Shukla and Brown 7). These 
authors used Kuo and Brown 18) matrix elements but with ho9 = 14 MeV which 

mainly explains why they have higher excitation energies but larger B(E2) values than 

o u r s .  

In the 4°Ca region, 2h particle-hole energies are not well known experimentally. 
The only member of the sdg shell tentatively located in energy in the lg~ shell 
about 5.9 MeV above the lf÷ shell 29). However the more recent experiment of 
Belote et al. 3o) observed only one lg~ level in 41Ca below 6.8 MeV at 5.0 MeV 

excitation energy with a spectroscopic factor of only 0.07. Using the experimentally 
known energies of  particle and hole levels with respect to 4°Ca [refs. z9-33)], and 

guided by the spherical part of the Nilsson potential 34) to estimate the unknown 
highly excited levels, the level schemes in table C.2 are obtained. Results for 24 

vibrations in 4°Ca calculated from these s.p. energies as well as from the degenerate 
lp - lh  energy 2hco = 27 MeV are shown in table C.3. The lowest 2 + vibrations re- 
sulting from the two sets of s.p. levels are quite different. The non-degenerate result 
depends most critically on the unperturbed energy of  the lg~2d~ pair. Since as men- 
tioned above the observed lg~ level only has a very small spectroscopic factor, it is 
not obvious that the non-degenerate result is more realistic. In both cases the lowest 
2 + state has large B(E2) values to the ground state. This is not predicted by the co- 
existence model calculation of Gerace and Green 3 5). The identification of  a strongly 
B(E2) enhanced 2 + at an energy somewhat above threshold in 4°Ca would partly 
clarify the situation. 
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