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The duplication-divergence network model is generally thought to incorporate key ingredients under-

lying the growth and evolution of protein-protein interaction networks. Properties of the model have

been elucidated through numerous simulation studies. However, a comprehensive theoretical study of

the model is lacking. Here, we derived analytic expressions for quantities describing key characteris-

tics of the network—the average degree, the degree distribution, the clustering coefficient, and the

neighbor connectivity—in the mean-field, large-N limit of an extended version of the model,

duplication-divergence complemented with heterodimerization and addition. We carried out exten-

sive simulations and verified excellent agreement between simulation and theory except for one

partial case. All four quantities obeyed power-laws even at moderate network size (N � 104), except

the degree distribution, which had an additional exponential factor observed to obey power-law. It is

shown that our network model can lead to the emergence of scale-free property and hierarchical mod-

ularity simultaneously, reproducing the important topological properties of real protein-protein inter-

action networks. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928212]

Biological processes that make living cells function are

wired by interaction networks of various cellular compo-

nents such as proteins, DNA, RNA, metabolites, and

small molecules. The structures of many such networks,

including networks of protein-protein interactions and

transcription-regulatory networks, have been revealed.

Studies on the topological structure of these complex bio-

logical networks have indicated that they share a number

of characteristic features such as sparseness, small-world

pattern, scale-free connectivity, hierarchical modularity,

and disassortativity. Recently, various network growth

models invoking duplication and divergence (DD) have

been constructed to recapture the topological properties

of real protein-protein interaction networks. However,

those network growth models invoking duplication and

divergence have so far only been elucidated through

numerous simulations; a comprehensive theoretical anal-

ysis is still lacking. The mechanism underlying the evolu-

tion of protein-protein interaction networks is therefore

still not well understood. In this paper, we comprehen-

sively explored the duplication-deletion-heterodimeriza-

tion-addition (DDHA) model, derived from it analytical

solutions for the average degree, the degree distribution,

the clustering coefficient, and the neighbor connectivity

in the mean-field and large-N approximation, and con-

ducted extensive simulations for validation. Our results

indicated that all four quantities obeyed power-laws even

at moderate network size (N � 104), except the degree

distribution, which had an additional exponential factor;

the exponent of this factor also obeyed a power-law.

Particularly, it is shown that our network model can lead

to the emergence of scale-free property and hierarchical

modularity simultaneously, reproducing the important

topological properties of real protein-protein interaction

networks.

I. INTRODUCTION

Biological processes that make living cells function are

wired by interaction networks of various cellular components

such as proteins, DNA, RNA, metabolites, and small mole-

cules.1 The structures of many such networks, including

protein-protein interaction, metabolic, signaling, and

transcription-regulatory networks, were revealed through the

development of high-throughput data-collection methods

and new technology platforms.2 These networks are not in-

dependent; rather they form a “network of networks” that

drive cell function. A major challenge of contemporary biol-

ogy is to understand and model quantitatively the topological

and dynamic properties of these complex biological net-

works by integrating theory with experimental data.2

Protein-protein interactions are central to biological proc-

esses, and the systematic identification of all protein-protein

interactions is key to gain insight into the inner workings of a

cell.3 New developments in experimental and computational

techniques have led to the systematic determination of puta-

tive and actual protein interactions in many model organisms.

The information of protein-protein interaction networks at the

whole-genome level is now available from several organisms,

including Saccharomyces cerevisiae,4–7 Caenorhabditis
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elegans,8 Drosophila melanogaster,9 Homo sapiens,10,11 and

Plasmodium falciparum.12 Studies on the topological structure

of these protein-protein interaction networks and other large-

scale biological networks have revealed that they share a num-

ber of interesting characteristics: (1) They are sparse graphs,

with a small average number of links.2,3,13 (2) They are scale-

free networks;2,13,14 there is no typical number of links per

node, rather the distribution of the number of links (k) per

node (P) decays as a power law: PðkÞ � k�cP . That is, there

are many nodes with few links and a small but still significant

number of nodes (hubs) with many links. (3) They have a

small-world architecture;2,8,9,13 they are highly clustered but

the average shortest path length almost as low as that for

random networks. (4) They exhibit hierarchical modularity

structure,2,3,15,16 with C(k), the average cluster coefficient of

k-degree nodes, obeying a power-law CðkÞ � k�cC ,3,16 indi-

cating that low-degree nodes tend to be more clustered than

high-degree ones. (5) They show a disassortative structure,

in which KnnðkÞ, the average degree among the neighbors of

all k-degree nodes, follows KnnðkÞ � k�cnn .18–20 That is, con-

nections between a hub and a low-degree node are favored,

while those among hubs and among low-degree nodes are

suppressed.18–20

Small world phenomena and power-law degree distribu-

tions have previously been observed in a number of naturally

occurring graphs such as communication networks, web

graphs, research citation networks, neural nets, among

others.21,22 It is possible to generate networks that satisfy

these two properties by an iterative process that adds one

new node to the graph at each step, with the new node prefer-

entially attached to some of the existing high-degree

nodes.21,22 However, such a model of preferential attachment

does not capture the essence of the genome evolution and is

therefore not suitable for modeling biological networks.

Duplication and divergence have been widely recognized

as the two dominant mechanisms driving the evolution of ge-

nome23–28 and cellular network.29 Duplication is the driving

force for creating new genes in genomes: at least 50% of pro-

karyotic genes30,31 and over 90% of eukaryotic genes32 are

products of gene duplication, while divergence generates

function diversity.13,23 Recent work has shown that interaction

networks constructed on the principle of DD tend to exhibit

scale-free and small-world properties.17–19,33–39

Studies have unveiled that biological networks from

protein-protein interactions to metabolic and regulatory net-

works characteristically exhibit hierarchical modularity.2,15,16

Despite networks constructed in DD-based models successfully

predict the scale-free and small-world properties,17–19,33–39 they

failed to exhibit hierarchical modularity.40,41 To overcome this

difficulty, the duplication-divergence-heterodimerization

(DDH) model, that is, duplication and divergence comple-

mented with the heterodimerization process, has been pro-

posed.18,19,41,42 Simulation studies have shown that the DDH

model could generate networks that exhibit hierarchical modu-

larity and scale-free connectivity.18,19,42 Heterodimerization, or

the enhanced linkage of pairs of target and replica nodes, is

essential for generating clustering in protein-protein interaction

networks.41,42

Those network growth models invoking duplication and

divergence do capture the topological properties of real

protein-protein interaction networks that have so far only been

elucidated through numerous simulations;17–19,33–39,42 a com-

prehensive theoretical analysis is still lacking. The mechanism

underlying the evolution of protein-protein interaction net-

works is therefore still not well understood. In this paper, we

comprehensively explored the DDHA model, derived from it

are analytical solutions for the average degree, the degree dis-

tribution, the clustering coefficient, and the neighbor connectiv-

ity in the mean-field and large-N approximation, and conducted

extensive simulations for validation. The new ingredient in our

model, addition, by linking a newly created duplicate to nodes

not connected to its ancestor, reflected the process of mutation

through which the duplicated one could develop a new, inde-

pendent and original interaction pattern and function.33–35 Our

results indicated that all four quantities obeyed power-laws

even at moderate network size (N � 104), except the degree

distribution, which had an additional exponential factor; the

exponent of this factor also obeyed a power-law. It is shown

that our network model can lead to the emergence of scale-free

property and modularity simultaneously, reproducing the im-

portant topological properties of real protein-protein interaction

networks. We hope that the results derived in this study will

provide some insight into the mechanisms underlying various

topological properties of biological networks.

II. THE NETWORK MODEL

The model was a topologically based approximation

intended to capture generic features of proteome evolution.33,34

It translated the evolution of the protein-protein interaction net-

works into a growing network and did not include functionality

or dynamics of the proteins involved. Protein-protein interac-

tion networks in cells do not directly evolve as described in the

model. Rather, they so evolve as a consequence of evolution

of the genome, driven mainly by gene duplication and sub-

functionalization (i.e., diversification).26,27

In the network model, each node was considered as the

protein expressed by a gene, and the duplication of a protein

was meant to represent the consequence of a gene duplication

in the genome. We restricted the duplication to single-protein

in the model because multiple-gene duplication or larger dupli-

cations in the genome are not universal or in any case are rela-

tively rare events.23,33,34 After protein duplication, the ancestor

and its duplicate will have the same interactions.23 In the course

of subsequent evolution, in a majority of cases, one of the

ancestro-duplicate pair will be lost through redundancy. In

other cases, both proteins survive by divergence, in which one

or both of the pair lose some old functions or acquire new

ones.23,33,34 In the model, these phenomena are emulated by let-

ting the duplicate start by having links to all neighbors of the

ancestor, followed by random removal of these links from the

duplicate. When a self-interacting gene is duplicated, the

ancestor-duplicate pair will interact with each other, and the

link between the pair may survive after divergence.13,38,41 In

the model, this was mimicked by establishing a new link

between the pair with some probability, forming a hetero-

dimer.38,41 To account for mutations, the model allowed limited
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random attachments of new links between a newly created

duplicate to nodes not connected to its ancestor.33–35 These

processes were formalized in our model as follows.

A connected network of relative small size (N0) is given

an initial configuration with random connections. At each

subsequent time-step, it is made to evolve and grow through

the following four actions until the network reaches a desired

size (Fig. 1):

(I) Duplication: Randomly select a node A from the net-

work in its current state, duplicate A by adding a new

node A0 to the network such that A0 is connected to all

nodes connected to A.

(II) Deletion: Delete with probability pd each of the edges

connected to A0.
(III) Heterodimerization: Connect with probability ph A0

to A.

(IV) Addition: Connect with probability pc A0 to all nodes

except A and those connect to A.

Duplication is a key mechanism in all biological

growth.23–29 Divergence, actions (ii) and (iv), give rise to com-

plexity in biological systems.18,19,33–39,41–45 Heterodimerization

is essential for clustering.18,19,41,42 After this four-step proce-

dure, if the new node A0 is not connected to any other node, it

is removed. This guarantees the connectedness of the network,

as protein-protein interaction networks must be.18,19,39,41,42

III. MEAN FIELD THEORY

Mean field theory (or mean-field approximation), which

is originated in statistical physics, has been frequently used

in the investigation of complex networks for deriving analyt-

ical expressions of the quantities describing the characteris-

tics of network evolution models, such as degree

distribution, average path length, and clustering coeffi-

cient.46–49 The main idea of mean field theory is to replace

all interactions on any one body with an average or effective

interaction, sometimes called a molecular field.50 In this sec-

tion, we give a mean-field analysis for the DDHA model,

which allows us to derive analytic forms of power-law expo-

nents in the DDHA model for the average degree, degree

distribution, clustering coefficient, and neighbor connectivity

as functions of parameters of the model.

We denote N as the number of nodes in network, or net-

work size; t as the growth “time,” or the number of event

steps (for our purpose, we set Dt � DN¼Nðtþ 1Þ�N(t)
¼ 1, hence N(t) � Nð0Þ þ t). We set nc, but not pc, to be a

constant small compared to N, and let pc¼ nc/(N � kA � 1),

where kA is the degree of A.33–35,43 In order to provide a gen-

eral analytical understanding of the DDHA model, we ana-

lyzed the statistical property of the network generated in the

DDHA model by considering in the mean field theory the

time evolution of the average degree KN, the degree distribu-

tion P(k), clustering coefficient C(k), and neighbor connec-

tivity KnnðkÞ, where the variable k denotes degree. The

derived mean-field approximations of power laws of these

quantities are summarized in Table I.

A. Average degree

Let KN be the average degree of the network when it has

N nodes. After a duplication event N ! N þ 1, the degree of

the network becomes KNN þ ð2KN � 2pdKNÞ þ ð2nc þ 2phÞ,
where the first term indicates the degree of the network with

N nodes, the second term corresponds to the duplication of

one node and the average elimination of pdKN links emanat-

ing from the new node, the last term accounts for the addi-

tion of pcðN � KN � 1Þ � nc new links pointing to the new

node, and the addition of ph new links via heterodimeriza-

tion. Hence, after the duplication event N ! N þ 1, the

change of the average degree is

KNþ1 � KN ¼
KNN þ 2KN � 2pdKNð Þ þ 2nc þ 2phð Þ

N þ 1
� KN

¼ KN � 2pdKN þ 2nc þ 2ph

N þ 1
:

For large N, using the continuous approximation, then the

evolution equation of KN is

dKN

dt
� dKN

dN
� KNþ1 � KN ¼

1

N
KN � 2pdKN þ 2nc þ 2phð Þ:

(1)

The large-N solution for Eq. (1) is

KN ¼
nþ ðK0 � nÞN1�2pd ; pd 6¼ 1=2;

2ðnc þ phÞlnðN=N0Þ þ K0; pd ¼ 1=2;

�
(2)

where n¼ 2ðnc þ phÞ=ð2pd � 1Þ, and K0 and N0 are integra-

tion constants. Therefore, for large N, KN grows with power

law with exponent bK¼ 1–2pd when pd < 1/2, is logarithmic

when pd¼ 1/2, and is a constant, K1 ¼ limN!1 KN ¼ n, in-

dependent of N when pd > 1/2 (Fig. 2(a)). This indicates that

pd¼ 1/2 is a critical value for DDHA networks. A realistic fi-

nite average degree is recovered only when the deletion

probability pd > 1=2. In other words, a DDHA network may

have the biological properties of sparseness and small-

worldness only when more than half of the links on a newly

duplicated node are removed immediately after duplication.

Note that the power-law property of KN does not depend on

ph or pc.

FIG. 1. Schematic representation of the four operations in the DDHA model:

duplication, deletion (removal), heterodimerization, addition.
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B. Degree distribution

The degree distribution, P(k), is an important statistical

property of the characterization of a network, which is

defined as the probability that a randomly selected node has

exactly k links.2 Denote k as the degree of a node and f(k, t)
be the number of nodes with degree k at time t, then the

degree distribution at time t is PðkÞ ¼ f ðk; tÞ=NðtÞ. To

describe the degree distribution of the network model, we

need to establish a basic relationship between the number of

nodes with degree k at successive time-steps. Recall that

duplication starts adding one node per time-step (t! tþ 1)

at t0¼N0 (Fig. 1). Therefore, in the mean-field approxima-

tion, the expected value of the number of nodes with degree

k at time tþ 1, f ðk; tþ 1Þ, satisfies the following iterative

equation for t � t0:

f k; tþ 1ð Þ ¼
�

f k; tð Þ � ph
f k; tð Þ
N tð Þ � 1� pdð Þ kf k; tð Þ

N tð Þ

� 1� kþf k; tð Þ
N tð Þ

� �
ncf k; tð Þ

N tð Þ

�

þ
�

ph
f k�; tð Þ

N tð Þ þ 1� pdð Þ k�f k�; tð Þ
N tð Þ

þ 1� kf k�; tð Þ
N tð Þ

� �
ncf k�; tð Þ

N tð Þ

�

þ 1� phð Þ
X
m�0

X
n�k�m

f n; tð Þ
N tð Þ

� B n; 1� pd; k � mð ÞB N tð Þ; pc; mð Þ

þph

X
m�0

X
n�k��m

f n; tð Þ
N tð Þ B n; 1� pd; k� � mð Þ

� B N tð Þ; pc; mð Þ; (3)

where k6¼ k 6 1 and BðNðtÞ; s; mÞ is given in the expansion

ðs� ð1� sÞÞNðtÞ �
PNðtÞ

m¼0 BðNðtÞ; s; mÞ¼
P

m � � � sm � � �. In

Eq. (3), the first term on the right-hand-side is the expected

number of k-degree nodes at time t remaining so at tþ 1

through actions (i)–(iv); the second term is the expected

number of (k� 1)-degree nodes at t becoming k-degree at

TABLE I. Mean-field estimates of power-law exponents of characteristic network quantities in DDHA model. The variable k is the degree.

Power law Exponent

Average degree KN � NbK bK ¼

1� 2pd; pd <
1

2
;

0 ðlogarithmicÞ; pd ¼
1

2
;

0; pd >
1

2
:

8>>>>><
>>>>>:

Degree distributiona PðkÞ � k�cP cP ¼ 1; pd 	 0:4329

1 < cP 	 2; 0:4329 < pd 	 0:5

2 < cP 	 3; 0:5 < pd 	 0:5858

Clustering coefficient CðkÞ � k�cC cC ¼
1;

1

2
	 pd < 1;

2pd; 0 < pd 	
1

2
:
ðph > 0Þ

8>><
>>:

Degree correlation KnnðkÞ � k�cnn cnn ¼
0; pd �

1

2
;

2pd � 1; pd <
1

2
:

8>><
>>:

aAlso has an exponential factor for finite N; see text and Fig. 5.

FIG. 2. (a) bK for the average degree KN; KN is predicted to be logarithmic

at pd¼ 1/2 (inset). (b) cP for P(k) after correction by an exponential factor

(see Fig. 5); a non-trivial solution exists for pd > 0.4329. (c) cC for C(k). (d)

cnn for KnnðkÞ. Triangles (circles) are obtained in simulations with

ph¼ 0.065 (ph¼ 0) and nc¼ 0.001 for N¼ 2 �106 networks. Lines are theo-

retical large-N mean-field results (see Table I).
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tþ 1 through actions (i)–(iv); the last two terms are the

expected number of n-degree nodes at t becoming k-degree

at tþ 1 through action (iv).

Recall that the degree distribution at t is P(k) ¼
f ðk; tÞ=NðtÞ, and Nðtþ 1Þ � NðtÞ ¼ 1. In the large-t limit,

Eq. (3) can be reduced to the following form:

0¼ ½�1� ph�ð1� pdÞk� nc
PðkÞ

þ ½phþð1� pdÞðk� 1Þþ nc
Pðk� 1Þ

þð1� phÞ
X
m�0

X
n�k�m

PðnÞBðn;1� pd;k�mÞBðNðtÞ;pc;mÞ

þph

X
m�0

X
n�k��m

PðnÞBðn;1� pd;k� �mÞBðNðtÞ;pc;mÞ:

(4)

By assuming P(k) obeys a power law37,43 and writing PðkÞ
/ k�cP , we have

0¼ �1� ph� 1� pdð Þk� nc½ 


þ phþ 1� pdð Þ k� 1ð Þ þ nc

� � kcP

k� 1ð ÞcP

þ 1� phð Þ
X
m�0

X
n�k�m

kcP

ncP
B n;1� pd; k�mð ÞB N tð Þ;pc; mð Þ

þph

X
m�0

X
n�k��m

P nð ÞB n;1� pd; k� �mð ÞB N tð Þ;pc; mð Þ:

(5)

Note that k
k�1

	 
cp ¼ 1þ cp

k þO k�2ð Þ,37,43 so that the first two

terms on the right-hand side of Eq. (5) are �1� ðcp � 1Þ
ð1� pdÞ þ Oðk�1Þ. On the other hand, for any constant

c > 0, and any j, l one has37,43

j
j� l

� �
l

j

� �c

¼ 1þO lþ 1ð Þ�1
� �� �

j� c
j� l

� �
;

thus,

X
n�k�m

kcP

ncP
B n; 1� pd; k � mð Þ

¼
X

n�k�m

n

k � m

 !
1� pdð Þk�m pdð Þn� k�mð Þ k

n

� �cp

¼
X

n�k�m

n

n� k � mð Þ

 !
k � m

n

� �cp

1� pdð Þk�m pdð Þn� k�mð Þ k

k � m

� �cp

¼ 1þO 1

k � mð Þ þ 1

� �� �
k

k � m

� �cp X
n�k�m

n� cp

n� k � mð Þ

 !
1� pdð Þk�m pdð Þn� k�mð Þ

¼ 1þO 1

k � mð Þ þ 1

� �� �
k

k � m

� �cp

1� pdð Þk�m
X
j�0

jþ k � mð Þ � cp

j

 !
pdð Þj

¼ 1þO 1

k � mð Þ þ 1

� �� �
k

k � m

� �cp

1� pdð Þk�m
X
j�0

cp � k � mð Þ � 1

j

 !
�1ð Þj pdð Þj

¼ 1þO 1

k � mð Þ þ 1

� �� �
k

k � m

� �cp

1� pdð Þk�m 1� pdð Þcp� k�mð Þ�1

¼ 1þO 1

k � mð Þ þ 1

� �
þO m

k

� � !
1� pdð Þcp�1 ¼ 1þO 1

k

� �� �
1� pdð Þcp�1: (6)

Since
P

m�0 BðNðtÞ; s; mÞ ¼ 1, the third term on the right-

hand side of Eq. (5) is ð1� phÞð1þOðk�1ÞÞ ð1� pdÞcp�1
.

Similarly, we can derive that the last term on the right-hand

side of Eq. (5) is phð1þOðk�1ÞÞ ð1� pdÞcp�1
. Therefore, we

obtain an equation for cP for large N

ð1� cPÞð1� pdÞ ¼ ð1� pdÞcP�1 � 1: (7)

Once again cP depends only on pd, not on ph or pc.

Similar results have been reported.35,37,43 A numerical solu-

tion of Eq. (7) for cP as a function of pd (Fig. 2(b)) shows that

there is a pd-independent trivial solution giving cP¼ 1 and a

non-trivial solution giving cP > 1 for pd > 0.4329. In particu-

lar, 1 <cP 	 2 when 0.4329 <pd 	 0.5, and 2 	 cP 	 3 when

0.5 	 pd 	 0.5858. The empirical values of cP extracted from

biological networks mostly lie in the range 2 to 3, with a few

between 1 and 2.2,3,7–11,18,19

C. Clustering coefficient

Hierarchical modularity is a feature shared by a large

number of real biological networks.2,3,15,16 The node-specific

clustering coefficient, the cohesiveness of the neighborhood

of a node that has ki links, has been used to examine hier-

archical modularity in scale-free networks.2,3,15,16 The clus-

tering coefficient of ki-degree node is defined as CðkiÞ ¼ 2g
ðkiÞ=½kiðki � 1Þ
, where gðkiÞ is the number of links between

its neighbors.51 This quantity measures how close the local

083106-5 Cai, Liu, and Lee Chaos 25, 083106 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.135.72.33 On: Mon, 26 Oct 2015 02:59:23



neighborhood of a node is to being part of a clique (module)

in which every node is connected to all other nodes. In prac-

tice, the average, C(k), of clustering coefficients of nodes

having the same degree k is used to characterize the network

hierarchical modularity. For many real biological networks,

it has been observed that CðkÞ / k�1, which is an indication

of a network’s hierarchical character.2,15,16

For convenience, we denote the set of all nodes linked to

node A, or its (nearest) neighbors, by SA. In the following, we

derive the analytic expression of clustering coefficient C(k) in

the DDHA model. First, we consider the change in A’s degree,

kA, after a time step (t! tþ 1). From Fig. 1, it is easy to see

that there are three potential sources of change: (i) A is dupli-

cated and heterodimerization does occur; (ii) a neighbors of A
is duplicated, and the link between the new node and A is not

deleted; (iii) a node that is neither A nor one of its neighbors is

duplicated, and a new link between the new node and A is

added. Therefore, the change of the degree kA after a time

step is kAðtþ 1Þ� kAðtÞ ¼ ph

NðtÞ þ
kA

NðtÞ ð1� pdÞþ ð1� kAþ1
NðtÞ Þpc.

For large t, using pc � nc

NðtÞ and the continuous approximation,

we have

dkA

dt
¼ ph

N tð Þ þ
kA

N tð Þ 1� pdð Þ þ 1� kA þ 1

N tð Þ

� �
pc

� 1� pd

N tð Þ kA þ gð Þ; (8)

where g � ðph þ ncÞ=ð1� pdÞ.
Now, we consider the change of gA, the number of links

among the nodes in SA, after a time step (t! tþ 1). Three

events will cause gA to increase in a cycle (i.e., one time

step) of growth triggered by a duplication (Fig. 3): (i) A is

duplicated (call it A0). A triangle (A, A0,B), for any B 2 SA,

will form, provided A and A0 dimerize and the new

link between A0 and B is not deleted (Fig. 3(a)). This

adds phð1� pdÞ to gA; (ii) a neighbor B 2 SA is duplicated

(call it B0). A triangle (A, B, B0) will form, provided B and B0

dimerize and the new link between B0 and A is not deleted,

and a triangle (A, B0; j0), j0 2 SA and not B, will form, pro-

vided B and j0 are linked and both the links between A and B0

and between j0 and B0 are not deleted (Fig. 3(b)). Since the

clustering coefficient of a node is the probability that its two

neighbors are linked,2 the expected number of links between

the neighbor B and other neighbors of node A is given

by ðkA � 1ÞCðkAÞ. This means that event (ii) adds ð1� pdÞ
ðph þ ð1� pdÞðkA � 1ÞCðkAÞÞ to gA; and (iii) a next nearest

neighbor E of A is duplicated (call it E0), namely, E 2 SB;
B 2 SA, and E 62 SA. Then, a triangle (A, B, E0) will form pro-

vided the E0–B link is not deleted and an E0–A link is added

(Fig. 3(c)). This adds mEAð1� pdÞpc to gA, where mEA is the

number of nodes in the intersect SA \ SE. Adding (i), (ii), and

(iii) over all possible participating nodes, and replacing pc by

nc=NðtÞ, leads to a rate of change in gA

dgA

dt
¼ 1� pd

N tð Þ

�
kAph þ kAðph þ 1� pdð Þ kA � 1ð ÞC kAð ÞÞ

þ
X

E 6¼A;E 62SA

mEA
nc

N tð Þ

�
; (9)

where 1=NðtÞ is a weigh factor and the factor ð
P

E 6¼A;E 62SA

mEAÞ is the just the number of unique two-link paths from

node A to all its next nearest neighbors. The nc-dependent

term in Eq. (9) is of order OðN�2Þ, which may not contribute

to the leading term in gA for large N. It is therefore ignored

(Figs. 2(c) and 4).

Noting that CðkAÞ ¼ 2gA=ðkAðkA � 1ÞÞ and using Eq.

(8), we obtain for large N

dgA

dkA
¼ dgA

dt

dt

dkA
� 2 1� pdð Þ

kA þ g
gA �

2phg
kA þ g

þ 2ph: (10)

The solution of Eq. (10) is

gA ¼
2ph

2pd � 1
kA þ a0 kA þ gð Þ2�2pd þ phg

2pd � 1ð Þ 1� pdð Þ ; pd 6¼ 1=2;

2ph kA þ gð Þ � 2phgln kA þ gð Þ þ a0; pd ¼ 1=2;

8><
>:

where a0 is a constant. For large k

C kð Þ � 2g

k k � 1ð Þ � k�cC ;

cC ¼
1;

1

2
	 pd < 1; ph > 0;

2pd; 0 < pd 	
1

2
; ph > 0:

8>><
>>:

(11)

This shows that C(k) decays with a power law, implying that

low-degree nodes tend to be more clustered than high-degree

ones. The power-law exponent depends on the deletion prob-

ability pd and heterodimerization probability ph but not on

the addition probability pc (�nc=N). When ph¼ 0, the model

loses its main mechanism for triangle formation, and a low

value of C(k) is expected.33–35 Our simulations with ph¼ 0

showed that C(k) was of the order of 10�5 to 10�4. It was

concluded in Refs. 13 and 41 that links between recently

duplicated pairs of protein are common, implying that heter-

odimerization of pairs of duplicates regularly occurs in real

biological networks. Therefore, we focused on the more rele-

vant case with ph > 0. Then, pd is again the deciding param-

eter and pd¼ 1/2 is a critical value. If pd > 1/2, then, with

C / k�1, the network will have hierarchical modularity

structure, as seen in many real biological networks.2,15,16

This shows that the deletion of links and heterodimerization

are two key factors for the emergence of hierarchical modu-

larity. Indeed, if the duplicated node is a self-interacting
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protein, it will interact with the newly generated node,13,18,41

leading to heterodimerization.

D. Neighbor connectivity

Degree correlation is the correlation between the

degrees of two connected nodes. When nodes of high degree

preferentially connect with other nodes of high degree, the

network is said to be assortative, whereas when nodes of

high degree preferentially connect with nodes of low degree,

the network is said to be disassortative.52–54 It was reported

that social networks such as coauthorships of scientific

papers and collaborations in the film industry are assortative,

whereas technological and biological networks including

food web, neural network, and protein-protein interaction

networks are disassortative.18–20,52–54

FIG. 3. Three ways, (a), (b), and (c),

corresponding to (i), (ii), and (iii) dis-

cussed in text, a new duplication event

generate triangles contributing to the

change in gA.

FIG. 4. Some simulation results with

ph¼ 0.065 unless otherwise specified.

First row, KN vs. N. Second to fourth

rows, PðkÞ expðk=kcÞ, C(k), and KnnðkÞ
vs. k, with N¼ 2 �106, and pd¼ 0.4,

0.5, and 0.6, nc¼ 0.001, 0.001, and

0.335 for the three columns, left to

right, in the second row, kc¼ 225, 400,

and 600 for pd¼ 0.4, 0.5, and 0.6,

respectively. Lines indicate mean-field

predictions (Table I), and values given

for “slope” are from linear regression

of simulation data.
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The neighbor connectivity of node i, KnnðkiÞ, is the aver-

age of the number of links on its neighbors: KnnðkiÞ¼ k�1
iP

B2Si
kB � TðiÞnn=ki, where TðiÞnn denotes the sum of the degrees

of node i’s neighbors.52 The assortativity of a network is

determined by the k-dependence of KnnðkÞ, the average of all

KnnðkiÞ with ki¼ k: the network is assortative or disassortative

if KnnðkÞ is an increasing or decreasing functions of k, respec-

tively.52,54 When KnnðkÞ is independent of k, there are no

degree correlations. Protein-protein interaction networks have

been reported to be disassortative with KnnðkÞ � k�cnn .11,18–20

In order to derive the analytical solution for the neighbor

connectivity of the DDHA model, we first compute KnnðkAÞ
of node A by considering the change in TðAÞnn after a time

step (t! tþ 1). This can happen in three ways: (i) A is

duplicated (with duplicate A0). This adds ð1� pdÞphkA þ ph

ðð1� pdÞkA þ ph þ ncÞ degrees to TðAÞnn provided A and A0

dimerize, where the first term is the increased degrees coming

from the kA neighbors of A and the second terms coming from

A0 through actions (ii)–(iv); (ii) a neighbor B 2 SA is dupli-

cated (call it B0). This generates (a maximum of) kB neighbors

for B0, among which about CðkAÞðkA � 1Þ are also neighbors

of A. This adds ð1�pdÞðð1�pdÞCðkAÞðkA�1Þ þphÞþð1�pdÞ
ðð1�pdÞðkB�1ÞþphþncÞ degrees to TðAÞnn provided the new

link between B0 and A is preserved; and (iii) a node l that is

neither A nor one of its neighbors is duplicated (call it l̂).
This adds ð1�pdÞmlAnc=NðtÞþðð1�pdÞ klþphþncÞnc=NðtÞ
degrees to TðAÞnn provided a new l̂–A link is added (with proba-

bility �nc=NðtÞ), where mlA is the number of nodes in the

intersect Sl\SA. Therefore, for large N(t) and kA, using the

continuous approximation, the rate of change in TðAÞnn is

dT Að Þ
nn

dt
¼ 1� pd

N tð Þ

 
2phkA þ 1� pdð Þ

X
B2SA

kA � 1ð ÞC kAð Þ þ kB � 1ð Þ þ 2ph þ nc

1� pd

� �
þ ph ph þ ncð Þ

1� pd

þ
X

l 6¼A;l 62SA

mlA þ kl þ
ph þ nc

1� pd

� �
nc

N tð Þ

!

¼ 1� pd

N tð Þ f0 þ f1kA þ f2C0k
2�cC

A þ 1� pdð ÞT Að Þ
nn

� �
;

where we used kl � kA, CðkAÞ � C0k
�cC

A (see Eq. (11)) and

dropped Oð1=N2Þ terms, and f0 ¼ ðph þ ncÞ2=ð1� pdÞ,
f1 ¼ 4ph þ nc þ pd � 1þ nc=ð1� pdÞ, f2 ¼ ð1� pdÞ, and

C0 is a constant. For large N(t) and kA, using (8) and
~kA ¼ kA � g � kA, we obtain

dT Að Þ
nn

d~kA

¼ ~f0
~kA
�1 þ f1 þ f2C0

~kA
1�cC þ 1� pdð ÞT Að Þ

nn
~kA
�1; (12)

where ~f0 ¼ f0 � f1g. The solution is

T Að Þ
nn ¼ �

~f0

1 � pd
þ f1

pd

~kA þ
f2

1 þ pd � cC

C0
~kA

2�cC

þ T0
~kA

1�pd ;

where T0 is a constant depending on the initial condition of

TðAÞnn . We obtain in the large-k approximation

Knn kAð Þ � ~T0 þ
f1

pd
þ f2

1þ pd � cC

C0kA
1�cC þO k�pd

A

	 

;

(13)

where ~T0 is a constant. Substituting the values for cC (Eq.

(11)) for large k, we have

Knn kð Þ � Tnn

k
� k�cnn ; cnn ¼

0; pd �
1

2
;

2pd � 1; pd <
1

2
:

8>><
>>: (14)

This suggests that a DDHA network is associative (cnn > 0)

or neutral (cnn ¼ 0), when pd is < 1
2

or � 1
2
, respectively, but

is never dissociative (cnn < 0).

IV. NUMERICAL EXAMPLES

To verify the power-laws given in Table I, we carried

out extensive in silico network construction following

the four-step procedure stated earlier. Data from protein-

protein interaction networks of yeast, fly, and human suggest

ph 	 0.1.39 Estimates of values for pd and nc from yeast

protein-protein interaction network data give a ratio of

nc=pd 	 1.13 Therefore, we used parameter values in

the ranges 0.30 	 pd 	 0.75, 0.01 	 ph 	 0.1, and 0.001 	 nc

	 1.0 in our numerical simulations. Without loss of general-

ity, a single connected random network containing 100 nodes

with the average degree K100¼3.98 was taken as an initial

network. The sizes of the simulated networks were N¼1

�105, 5 �105, 1 �106, 2 �106, and 3 �106. For each set of

parameters, 20 networks were generated and averaged meas-

urements were taken.

Except for one case, the simulated results demonstrated

clear power-law behavior (Fig. 4) and there was excellent

agreement between the mean-field predictions and measured

(by simulation) values of the power-law exponents (Fig. 2).

The non-power-law case, in which KN was predicted to have

logarithmic dependence on N at pd¼ 1/2, was also borne out

by simulation (mid panel, top row, Fig. 4). The parameter nc

had little effect on the power-law exponent cC, verifying the

effectiveness of the approximation method used to derive

Eq. (10). In addition, our simulations revealed that the P(k),
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besides its power-law dependence on k, had a multiplicative

exponential factor expð�k=kcÞ. The exponential dependence

was effective already when k � 10 (Fig. 5(a)) hence may not

be attributed entirely to finite-size cut-off effect.14,18,19,33

The general trend of the exponential dependence was that kc

increased with N (Fig. 5(b)), was independent of nc (Fig.

5(c)), and increased with pd (Fig. 5(d)). This corroborates the

suggestions that P(k) approaches its large-N asymptotic

power-law slowly.35,39

Although mean-field theory predicted KnnðkÞ to grow

with k when pd < 1/2 (Table I), our simulation showed

KnnðkÞ had no k dependence (Fig. 4), i.e., our result did

not show a DDHA network to be assortative. In our

DDHA model, nodes were randomly selected for duplica-

tion, and hence each node had equal probability of being

duplicated at each time step. Similarly, links selected for

deletion and for addition were both random. As a result,

neither the connections between high-degree nodes and

high-degree nodes nor those between high-degree nodes

and low-degree nodes were favored. It is therefore no sur-

prise that our model created networks that exhibited no

assortativity.

We checked individual cases for further verification.

When pd¼ 0.4, it was measured that CðkÞ � 0:1k�0:8

(Fig. 4). In this case, the third term on the right-hand-side of

Eq. (13) f2=ð1þ pd � cCÞC0kA
1�cC � 0:1k0:2

A 	 0:5731, for

k 	 2000. It was so small that the first two terms on the

right-hand-side of Eq. (13) always dominated. In other cases

for pd < 1/2, the third term on the right-hand-side of Eq.

(13) was also small and had no effect on the values of

KnnðkÞ. Thus, a DDHA network is not assortative.

V. DISCUSSION AND CONCLUSION

We derived mean-field analytic forms of power-law

exponents in the DDHA model for the average degree (bK),

degree distribution (cP), clustering coefficient (cC), and

neighbor connectivity (cnn) as functions of parameters of the

model: the deletion probability pd, the heterodimerization

probability ph, and the addition probability pc. All four expo-

nents depended on the all important parameter pd. Only

when pd is larger than the critical value 1/2 will a realistic fi-

nite average degree is recovered, i.e., networks may have the

biological properties of sparseness and small-worldness.

Only the exponent cC depended on ph and none depended on

pc. Instead of having a constant value, here pc was given for

nc=N, where nc was a constant. As there was no other factors

to help it counter the diminishing effect of the 1=N factor,

terms dependent on pc was destined to be small in the large

N limit. Had pc itself been made a constant, it would have

impacted the role played by ph in the large N behavior of cnn

(Table I). However, a constant pc would not be biological

realistic.

The degree distribution was scale free only in the limit

of large network size. For finite network size, the exponent

cP had an exponential dependence on the degree, a depend-

ence that weakens (as a power-law) with increasing network

size. Except for one case—value of cnn when pd < 1/2 (Fig.

2(d))—power-law exponents extracted from our large-scale

simulations agreed extremely well with the mean-field

results.

It has been reported that the number of links retained af-

ter gene duplication is considerably different between dupli-

cates.55 In the present work, we generated this difference

between the duplicates by adopting the asymmetric diver-

gence model, in which the removal of links might occur only

in newly generated nodes. This allowed us to derive closed-

form expressions for the power-laws. The model was

adopted in several previous studies.18,19,35,37,39,45 The other

extreme is the symmetric divergence model, in which links

are removed from both duplicates with equal probability.19,41

Actual biological networks should lie somewhere between

these two extremes but are expected to be heterogeneous in

this aspect. Recent studies have indicated that the two mod-

els do not yield essential differences in network properties of

the type considered here.19,41

Studies of the topological structure of protein-protein

interaction networks in yeast, worm, fly, human, and malaria

parasite have revealed that they tend to be disassortative

(cnn > 0).10,18–20 However, our model created networks that

were neither assortative nor disassortative: KnnðkÞ was k-in-

dependent (cnn � 0). Theoretically, disassortative networks

can be generated by favoring low-degree nodes in duplica-

tion,19,42 for instance, by making the probability of duplicat-

ing a node inversely proportional to its degree.42

Biologically, this bias is reasonable, because the cost for

duplicating a node should be approximately proportionally

to its degree. Owing to preferential duplication of low-

degree nodes in this asymmetric model, links between a

high-degree nodes and low-degree nodes are preferentially

generated, resulting in a disassortative network. However,

FIG. 5. Log-log plots for P(k); in all cases ph¼ 0.08. (a) (Simulated) P(k)

versus k for different network sizes; pd¼ 0.45 and nc¼ 0.40. (b)

PðkÞ expðk=kcÞ versus k for different network sizes and best kc; pd¼ 0.45.

(c) PðkÞ expðk=kcÞ versus k, with kc¼ 400 for all nc values; N¼ 2� 106 and

pd¼ 0.50. (d) Power-law relation between the parameter kc and N; circles,

pd¼ 0.45; triangles, pd¼ 0.55.
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we were not able to derive a close-form mean-field expres-

sion for KnnðkÞ for this asymmetric model.
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