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The duplication-divergence network model is generally thought to incorporate key ingredients under-
lying the growth and evolution of protein-protein interaction networks. Properties of the model have
been elucidated through numerous simulation studies. However, a comprehensive theoretical study of
the model is lacking. Here, we derived analytic expressions for quantities describing key characteris-
tics of the network—the average degree, the degree distribution, the clustering coefficient, and the
neighbor connectivity—in the mean-field, large-N limit of an extended version of the model,
duplication-divergence complemented with heterodimerization and addition. We carried out exten-
sive simulations and verified excellent agreement between simulation and theory except for one
partial case. All four quantities obeyed power-laws even at moderate network size (N ~ 10%), except
the degree distribution, which had an additional exponential factor observed to obey power-law. It is
shown that our network model can lead to the emergence of scale-free property and hierarchical mod-
ularity simultaneously, reproducing the important topological properties of real protein-protein inter-
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action networks. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928212]

Biological processes that make living cells function are
wired by interaction networks of various cellular compo-
nents such as proteins, DNA, RNA, metabolites, and
small molecules. The structures of many such networks,
including networks of protein-protein interactions and
transcription-regulatory networks, have been revealed.
Studies on the topological structure of these complex bio-
logical networks have indicated that they share a number
of characteristic features such as sparseness, small-world
pattern, scale-free connectivity, hierarchical modularity,
and disassortativity. Recently, various network growth
models invoking duplication and divergence (DD) have
been constructed to recapture the topological properties
of real protein-protein interaction networks. However,
those network growth models invoking duplication and
divergence have so far only been elucidated through
numerous simulations; a comprehensive theoretical anal-
ysis is still lacking. The mechanism underlying the evolu-
tion of protein-protein interaction networks is therefore
still not well understood. In this paper, we comprehen-
sively explored the duplication-deletion-heterodimeriza-
tion-addition (DDHA) model, derived from it analytical
solutions for the average degree, the degree distribution,
the clustering coefficient, and the neighbor connectivity
in the mean-field and large-N approximation, and con-
ducted extensive simulations for validation. Our results
indicated that all four quantities obeyed power-laws even
at moderate network size (N ~ 10*), except the degree
distribution, which had an additional exponential factor;
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the exponent of this factor also obeyed a power-law.
Particularly, it is shown that our network model can lead
to the emergence of scale-free property and hierarchical
modularity simultaneously, reproducing the important
topological properties of real protein-protein interaction
networks.

I. INTRODUCTION

Biological processes that make living cells function are
wired by interaction networks of various cellular components
such as proteins, DNA, RNA, metabolites, and small mole-
cules." The structures of many such networks, including
protein-protein  interaction, metabolic, signaling, and
transcription-regulatory networks, were revealed through the
development of high-throughput data-collection methods
and new technology platforms.? These networks are not in-
dependent; rather they form a “network of networks” that
drive cell function. A major challenge of contemporary biol-
ogy is to understand and model quantitatively the topological
and dynamic properties of these complex biological net-
works by integrating theory with experimental data.”

Protein-protein interactions are central to biological proc-
esses, and the systematic identification of all protein-protein
interactions is key to gain insight into the inner workings of a
cell.’> New developments in experimental and computational
techniques have led to the systematic determination of puta-
tive and actual protein interactions in many model organisms.
The information of protein-protein interaction networks at the
whole-genome level is now available from several organisms,
including  Saccharomyces Cerevisiate,ZH Caenorhabditis

© 2015 AIP Publishing LLC
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elegans,® Drosophila melanogaster,” Homo sapiens,"®'" and
Plasmodium falciparum.'* Studies on the topological structure
of these protein-protein interaction networks and other large-
scale biological networks have revealed that they share a num-
ber of interesting characteristics: (1) They are sparse graphs,
with a small average number of links.>>13 (2) They are scale-
free networks;>'*!'* there is no typical number of links per
node, rather the distribution of the number of links (k) per
node (P) decays as a power law: P(k) ~ k~77. That is, there
are many nodes with few links and a small but still significant
number of nodes (hubs) with many links. (3) They have a
small-world architecture;>%%!3 they are highly clustered but
the average shortest path length almost as low as that for
random networks. (4) They exhibit hierarchical modularity
structure,2’3’15’16 with C(k), the average cluster coefficient of
k-degree nodes, obeying a power-law C(k) ~ k=7, !¢ indi-
cating that low-degree nodes tend to be more clustered than
high-degree ones. (5) They show a disassortative structure,
in which K, (k), the average degree among the neighbors of
all k-degree nodes, follows K, (k) ~ k~7m 1820 That is, con-
nections between a hub and a low-degree node are favored,
while those among hubs and among low-degree nodes are
suppressed.'¥2¢

Small world phenomena and power-law degree distribu-
tions have previously been observed in a number of naturally
occurring graphs such as communication networks, web
graphs, research citation networks, neural nets, among
others.?'*? Tt is possible to generate networks that satisfy
these two properties by an iterative process that adds one
new node to the graph at each step, with the new node prefer-
entially attached to some of the existing high-degree
nodes.?"?? However, such a model of preferential attachment
does not capture the essence of the genome evolution and is
therefore not suitable for modeling biological networks.

Duplication and divergence have been widely recognized
as the two dominant mechanisms driving the evolution of ge-
nome>** and cellular network.”® Duplication is the driving
force for creating new genes in genomes: at least 50% of pro-
karyotic genes‘zo’31 and over 90% of eukaryotic genes32 are
products of gene duplication, while divergence generates
function diversity.'>*’ Recent work has shown that interaction
networks constructed on the principle of DD tend to exhibit
scale-free and small-world properties.'” %333

Studies have unveiled that biological networks from
protein-protein interactions to metabolic and regulatory net-
works characteristically exhibit hierarchical modularity.>'>'¢
Despite networks constructed in DD-based models successfully
predict the scale-free and small-world properties,''*** they
failed to exhibit hierarchical modularity.***' To overcome this
difficulty,  the  duplication-divergence-heterodimerization
(DDH) model, that is, duplication and divergence comple-
mented with the heterodimerization process, has been pro-
posed.'®'?*42 Simulation studies have shown that the DDH
model could generate networks that exhibit hierarchical modu-
larity and scale-free connectivity.'®'*** Heterodimerization, or
the enhanced linkage of pairs of target and replica nodes, is
essential for generating clustering in protein-protein interaction
networks.*' 42
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Those network growth models invoking duplication and
divergence do capture the topological properties of real
protein-protein interaction networks that have so far only been
elucidated through numerous simulations;17*19’33*39’42 a com-
prehensive theoretical analysis is still lacking. The mechanism
underlying the evolution of protein-protein interaction net-
works is therefore still not well understood. In this paper, we
comprehensively explored the DDHA model, derived from it
are analytical solutions for the average degree, the degree dis-
tribution, the clustering coefficient, and the neighbor connectiv-
ity in the mean-field and large-N approximation, and conducted
extensive simulations for validation. The new ingredient in our
model, addition, by linking a newly created duplicate to nodes
not connected to its ancestor, reflected the process of mutation
through which the duplicated one could develop a new, inde-
pendent and original interaction pattern and function.*>=> Our
results indicated that all four quantities obeyed power-laws
even at moderate network size (N ~ 10%), except the degree
distribution, which had an additional exponential factor; the
exponent of this factor also obeyed a power-law. It is shown
that our network model can lead to the emergence of scale-free
property and modularity simultaneously, reproducing the im-
portant topological properties of real protein-protein interaction
networks. We hope that the results derived in this study will
provide some insight into the mechanisms underlying various
topological properties of biological networks.

Il. THE NETWORK MODEL

The model was a topologically based approximation
intended to capture generic features of proteome evolution.***
It translated the evolution of the protein-protein interaction net-
works into a growing network and did not include functionality
or dynamics of the proteins involved. Protein-protein interac-
tion networks in cells do not directly evolve as described in the
model. Rather, they so evolve as a consequence of evolution
of the genome, driven mainly by gene duplication and sub-
functionalization (i.e., diversiﬁcal'[ion).26’27

In the network model, each node was considered as the
protein expressed by a gene, and the duplication of a protein
was meant to represent the consequence of a gene duplication
in the genome. We restricted the duplication to single-protein
in the model because multiple-gene duplication or larger dupli-
cations in the genome are not universal or in any case are rela-
tively rare events.”>~>~** After protein duplication, the ancestor
and its duplicate will have the same interactions.?® In the course
of subsequent evolution, in a majority of cases, one of the
ancestro-duplicate pair will be lost through redundancy. In
other cases, both proteins survive by divergence, in which one
or both of the pair lose some old functions or acquire new
ones.”>??2* In the model, these phenomena are emulated by let-
ting the duplicate start by having links to all neighbors of the
ancestor, followed by random removal of these links from the
duplicate. When a self-interacting gene is duplicated, the
ancestor-duplicate pair will interact with each other, and the
link between the pair may survive after divergence.'>*®*' In
the model, this was mimicked by establishing a new link
between the pair with some probability, forming a hetero-
dimer.*®*! To account for mutations, the model allowed limited
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FIG. 1. Schematic representation of the four operations in the DDHA model:
duplication, deletion (removal), heterodimerization, addition.

random attachments of new links between a newly created
duplicate to nodes not connected to its ancestor.”> > These
processes were formalized in our model as follows.

A connected network of relative small size (No) is given
an initial configuration with random connections. At each
subsequent time-step, it is made to evolve and grow through
the following four actions until the network reaches a desired
size (Fig. 1):

@D Duplication: Randomly select a node A from the net-
work in its current state, duplicate A by adding a new
node A’ to the network such that A’ is connected to all
nodes connected to A.

(II)  Deletion: Delete with probability p, each of the edges
connected to A’.

(II)  Heterodimerization: Connect with probability p, A’
to A.

(IV)  Addition: Connect with probability p. A’ to all nodes
except A and those connect to A.

Duplication is a key mechanism in all biological
growth.23 29 Divergence, actions (ii) and (iv), give rise to com-
plexity in biological systems.'®!'?*?=%41=%5 Heterodimerization
is essential for clustering.'®'**'4? After this four-step proce-
dure, if the new node A’ is not connected to any other node, it
is removed. This guarantees the connectedness of the network,
as protein-protein interaction networks must be,'®19-3%4142

lll. MEAN FIELD THEORY

Mean field theory (or mean-field approximation), which
is originated in statistical physics, has been frequently used
in the investigation of complex networks for deriving analyt-
ical expressions of the quantities describing the characteris-
tics of network evolution models, such as degree
distribution, average path length, and clustering coeffi-
cient.***’ The main idea of mean field theory is to replace
all interactions on any one body with an average or effective
interaction, sometimes called a molecular field.’® In this sec-
tion, we give a mean-field analysis for the DDHA model,
which allows us to derive analytic forms of power-law expo-
nents in the DDHA model for the average degree, degree
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distribution, clustering coefficient, and neighbor connectivity
as functions of parameters of the model.

We denote N as the number of nodes in network, or net-
work size; ¢t as the growth “time,” or the number of event
steps (for our purpose, we set Ar~ AN=N(r+ 1) —N()
=1, hence N(r) =~ N(0) + ). We set n,, but not p,, to be a
constant small compared to N, and let p. =n. /(N — k4 — 1),
where k, is the degree of A23735% 1n order to provide a gen-
eral analytical understanding of the DDHA model, we ana-
lyzed the statistical property of the network generated in the
DDHA model by considering in the mean field theory the
time evolution of the average degree Ky, the degree distribu-
tion P(k), clustering coefficient C(k), and neighbor connec-
tivity K,,(k), where the variable k denotes degree. The
derived mean-field approximations of power laws of these
quantities are summarized in Table I.

A. Average degree

Let K, be the average degree of the network when it has
N nodes. After a duplication event N — N + 1, the degree of
the network becomes KyN + (2Ky — 2p.Ky) + (2n. + 2py),
where the first term indicates the degree of the network with
N nodes, the second term corresponds to the duplication of
one node and the average elimination of p,Ky links emanat-
ing from the new node, the last term accounts for the addi-
tion of p.(N — Ky — 1) & n. new links pointing to the new
node, and the addition of p;, new links via heterodimeriza-
tion. Hence, after the duplication event N — N + 1, the
change of the average degree is

KNN + (2KN — ZdeN>
N+1

N KN — ZdeN + Zl’lc + 217;1

B N+1 ‘

+ (2n: +2py)

Ky — Ky = — Ky

For large N, using the continuous approximation, then the
evolution equation of Ky is

% ~ % ~ Ky — Ky = ]l\/ (Kn — 2paKn + 2n. + 2py,).
ey
The large-N solution for Eq. (1) is
K _{i-l-(Ko—f)Nl_zp‘U pa #1/2, @)
2(nc + pa)In(N/No) + Ko, pa =1/2,

where ¢ =2(n. + p;)/(2ps — 1), and Ky and N, are integra-
tion constants. Therefore, for large N, Ky grows with power
law with exponent ffx = 1-2p, when p; < 1/2, is logarithmic
when p,=1/2, and is a constant, K., = limy_., Ky = &, in-
dependent of N when p; > 1/2 (Fig. 2(a)). This indicates that
pa=1/2 is a critical value for DDHA networks. A realistic fi-
nite average degree is recovered only when the deletion
probability p; > 1/2. In other words, a DDHA network may
have the biological properties of sparseness and small-
worldness only when more than half of the links on a newly
duplicated node are removed immediately after duplication.
Note that the power-law property of K, does not depend on

Pn OT Pe.
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TABLE I. Mean-field estimates of power-law exponents of characteristic network quantities in DDHA model. The variable & is the degree.

Power law Exponent
1
1 - 2Pd> Pa 217
Average degree Ky ~ NP Bx = { 0 (logarithmic), p; = o
1
07 Pd > 5

Degree distribution® P (k) ~ k™77

Clustering coefficient C(k) ~ k~7c

Degree correlation K, (k) ~ k= 7m

vp =1, ps <0.4329
1 <yp<2,04329 <p; <0.5
2 <yp <3,0.5<ps <0.5858

1
17 5§pd<17
e = 1 (n>0)
2pa, 0<I’d§§~
1
0, pa=s;
Vom = 2
nn 1
2Pd—1717d<§-

#Also has an exponential factor for finite N; see text and Fig. 5.

B. Degree distribution

The degree distribution, P(k), is an important statistical
property of the characterization of a network, which is
defined as the probability that a randomly selected node has
exactly k links.? Denote k as the degree of a node and f(k, 1)
be the number of nodes with degree k at time ¢, then the
degree distribution at time ¢ is P(k) =f(k,t)/N(t). To
describe the degree distribution of the network model, we
need to establish a basic relationship between the number of

0.5 6 6, ®)
0.4~ j-:hw_)?’wm 5]
0.3/ S 4]
§ 02 « " todo00 200000 & 34
0.1 N N 21
1
0

053702 05 056 07 08 00 02 04 06 08 1.0
Py Pq
167 (o 067 (4
1.2 0.3
0 0.8 £0.0
0.4 -0.3

-0.6+ T : : .
04 05 06 0.7 0.3 04 05 0.6 0.7
Pqd Py

FIG. 2. (a) fk for the average degree Ky; Ky is predicted to be logarithmic
at p;=1/2 (inset). (b) yp for P(k) after correction by an exponential factor
(see Fig. 5); a non-trivial solution exists for p; > 0.4329. (c) y¢ for C(k). (d)
Yun for K,,(k). Triangles (circles) are obtained in simulations with
Prn="0.065 (p,=0) and n.=0.001 for N=2 x10° networks. Lines are theo-

retical large-N mean-field results (see Table I).

nodes with degree k at successive time-steps. Recall that
duplication starts adding one node per time-step ( — ¢+ 1)
at to= N, (Fig. 1). Therefore, in the mean-field approxima-
tion, the expected value of the number of nodes with degree
k at time t+ 1, f(k,t+ 1), satisfies the following iterative
equation for ¢ > ty:

flk1) .0
o PN

fl,t+1) = [f(k,t) — D

k+f<k7 t) n(‘f(kﬂ l)
‘O‘ 0) Mﬂ]
flk.) K k1)
+{ N PTG

+O—”$55‘ﬁ@)]

-y S

m>0 n>k—m (

x B(n, 1 — pa;k —m)B(N(1), pe; m)
n, l
+th Z f l—pd;k,—m)
m>0 n>k_
x B(N(t),pc;m), 3)

where k+ =k = 1 and B(N(r),s;m) is given in the expansion

(s— (1= = SN BN(@), 5;m) =%, ---s" -~ In
Eq. (3), the first term on the right-hand-side is the expected
number of k-degree nodes at time ¢ remaining so at £+ 1
through actions (i)—(iv); the second term is the expected

number of (k— 1)-degree nodes at ¢ becoming k-degree at
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t+ 1 through actions (i)—(iv); the last two terms are the
expected number of n-degree nodes at ¢ becoming k-degree
at 1+ 1 through action (iv).

Recall that the degree distribution at ¢ is P(k) =
flk,t)/N(¢), and N(t+ 1) — N(¢t) = 1. In the large-¢ limit,
Eq. (3) can be reduced to the following form:

0=[-1—py— (1 =py)k—n]P(k)
+lpn+ (1 —=pa)(k—1) +n]P(k—1)
+(1 —ph)z Z P(n)B(n,1—py;k—m)B(N(t),pc;m)

m>0n>k—m

+ph2 Z P(H)B(I’l7 1 _pd§k7 —i’n)B(N(l‘),p(,.;m),

m>0n>k_—m
“)

By assuming P(k) obeys a power law>’*

ox k777, we have

and writing P (k)

k'p
Z 76(}1, 1 — pask —m)

> ("

n>k—m

1= p)f Y (j Hk=m) s, ) ay
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0=[-1—py—(1—pa)k—n]
+ [pn+(1 —Pd)(k—1)+”c}$
)Y Y B - pusk - mBOVG) )

m>0n>k—m

oY ST PB(n 1 —pask- —m)B(N(1). pim).

m>0n>k_—m
(%)

Note that (ﬁ) =14 7’ + O(k’z)fw’“ so that the first two
terms on the right-hand side of Eq. (5) are —1—(y, — 1)

(1 —pa) + C’)(k—l), On the other hand, for any constant
7> 0, and any j, [ one has®”**

(j£l> C) —(1+o(u+n7)) (ﬁ_f)

thus,

Il
=
\%
i\
3
/N
S
|
—~
> 3
I
3
~—
~—
7N
=
SN
3
~__
S
—
—
|
=
QL
S~—
3
)
B
=
|
=
|
2
S
=
|| >
3
-
>

n—(k—m

)) (1 _pd)k7m (pd)ni(ki}’n)

7>0 J

(1 _pd)kmz<yp — (k fm) - 1> (_])j(pd)j

- (o)) ()
- (1o () )
= (o)) ()
= (1 0(imm1) ) ()
) (”O((k;)ﬂ)

Since Y., B(N(t),s;m) = 1, the third term on the right-
hand side of Eq. (5) is (1 —ps)(1+O(k™")) (1 —pa)r~".
Similarly, we can derive that the last term on the right-hand
side of Eq. (5) is pp(1 + O(k™")) (1 — pg)’» . Therefore, we
obtain an equation for yp for large N

(1=9p)(1 =pg) = (1 —pa)" " = 1. )

Once again yp depends only on p, not on p, or p..
Similar results have been reported.””** A numerical solu-
tion of Eq. (7) for yp as a function of p, (Fig. 2(b)) shows that
there is a p,-independent trivial solution giving yp=1 and a
non-trivial solution giving y, > 1 for p; > 0.4329. In particu-
lar, 1 <yp <2 when 0.4329 <p,; <0.5,and 2 < y, < 3 when

+ 0(’:))( pa)r ! = (1 + 0(,1)) (1—pa)"". (6)

0.5 < pg < 0.5858. The empirical values of yp extracted from
biological networks mostly lie in the range 2 to 3, with a few
between 1 and 2.%37-1118.19

C. Clustering coefficient

Hierarchical modularity is a feature shared by a large
number of real biological networks.*>"'>'® The node-specific
clustering coefficient, the cohesiveness of the neighborhood
of a node that has k; links, has been used to examine hier-
archical modularity in scale-free networks.>>'>! The clus-
tering coefficient of k;-degree node is defined as C(k;) = 2g
(k;)/ki(ki — 1)], where g(k;) is the number of links between
its neighbors.”" This quantity measures how close the local
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neighborhood of a node is to being part of a clique (module)
in which every node is connected to all other nodes. In prac-
tice, the average, C(k), of clustering coefficients of nodes
having the same degree k is used to characterize the network
hierarchical modularity. For many real biological networks,
it has been observed that C(k) o< k!, which is an indication
of a network’s hierarchical character.>'>'®

For convenience, we denote the set of all nodes linked to
node A, or its (nearest) neighbors, by S4. In the following, we
derive the analytic expression of clustering coefficient C(k) in
the DDHA model. First, we consider the change in A’s degree,
ka, after a time step (+ — ¢ + 1). From Fig. 1, it is easy to see
that there are three potential sources of change: (i) A is dupli-
cated and heterodimerization does occur; (ii) a neighbors of A
is duplicated, and the link between the new node and A is not
deleted; (iii) a node that is neither A nor one of its neighbors is
duplicated, and a new link between the new node and A is
added. Therefore, the change of the degree k4 after a time

step is ka(t+1) —ka(?) :16’("[) +%(1 —pa)+ (1 — k}@(t)l)pc.
For large ¢, using p.. %1% and the continuous approximation,

we have

dka  pn k ky + 1
& N TR P (1 ~N0 )""
1 —pg
N1

(ka + 1), ®)

where i = (py + 1) /(1 = pa)-

Now, we consider the change of g,, the number of links
among the nodes in Su, after a time step (t — ¢+ 1). Three
events will cause g4 to increase in a cycle (i.e., one time
step) of growth triggered by a duplication (Fig. 3): (i) A is
duplicated (call it A’). A triangle (A, A’,B), for any B € S,
will form, provided A and A’ dimerize and the new
link between A’ and B is not deleted (Fig. 3(a)). This
adds p,(1 — pg) to ga; (ii) a neighbor B € S, is duplicated

2py
Zpd —1

84 =

2pn(ka + 1) — 2punin(ka + 1) + ao,

where ay is a constant. For large k

~_ 28
Cll) ~ k(k—1)

~ k*“/c’

1 <pa<l1, pp>0; an

)

N =

Y= 1
2pq, 0<pd§§, pn > 0.

This shows that C(k) decays with a power law, implying that
low-degree nodes tend to be more clustered than high-degree
ones. The power-law exponent depends on the deletion prob-
ability p,; and heterodimerization probability p, but not on
the addition probability p. (=n./N). When p;, =0, the model

ka + ao(ka +n)* "% +
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(call it B'). A triangle (A, B, B") will form, provided B and B’
dimerize and the new link between B’ and A is not deleted,
and a triangle (A, B', /'), j/ € S4 and not B, will form, pro-
vided B and ;' are linked and both the links between A and B’
and between j/ and B’ are not deleted (Fig. 3(b)). Since the
clustering coefficient of a node is the probability that its two
neighbors are linked,” the expected number of links between
the neighbor B and other neighbors of node A is given
by (ka — 1)C(ka). This means that event (ii) adds (1 — p,)
(pn+ (1 = pa)(ka — 1)C(ka)) to ga; and (iii) a next nearest
neighbor E of A is duplicated (call it E), namely, E € S,
B € Sy, and E & S4. Then, a triangle (A, B, E”) will form pro-
vided the E'-B link is not deleted and an E'-A link is added
(Fig. 3(c)). This adds mgs(1 — pg)p. to ga, where mgy, is the
number of nodes in the intersect Sy N Sg. Adding (i), (ii), and
(iii) over all possible participating nodes, and replacing p. by
n./N(t), leads to a rate of change in g4

d 1-—
o _ ng (kAph +kapn + (1= pa) (ks — 1)Clks))
n.
N m _) ©)
E#AZE%ZSA EAN(I)

where 1/N(1) is a weigh factor and the factor (3 p 4 rus,
mga) is the just the number of unique two-link paths from
node A to all its next nearest neighbors. The 7n.-dependent
term in Eq. (9) is of order O(N~?), which may not contribute
to the leading term in g4 for large N. It is therefore ignored
(Figs. 2(c) and 4).

Noting that C(k4) = 2g4/(ka(ka — 1)) and using Eq.
(8), we obtain for large N

2ppn
- + 2p;. 10
ga 1 D (10)

dga _dga dr 2(1 —pa)
dky dr dky kA+77

The solution of Eq. (10) is

pnl
(2pa — 1)(1 = pa)’

Pd 7é 1/27

Pa = 1/25

loses its main mechanism for triangle formation, and a low
value of C(k) is expected.3 335 Our simulations with pr=0
showed that C(k) was of the order of 107> to 107, It was
concluded in Refs. 13 and 41 that links between recently
duplicated pairs of protein are common, implying that heter-
odimerization of pairs of duplicates regularly occurs in real
biological networks. Therefore, we focused on the more rele-
vant case with p, > 0. Then, p, is again the deciding param-
eter and p,=1/2 is a critical value. If p; > 1/2, then, with
C x k7!, the network will have hierarchical modularity
structure, as seen in many real biological networks.>!>'®
This shows that the deletion of links and heterodimerization
are two key factors for the emergence of hierarchical modu-
larity. Indeed, if the duplicated node is a self-interacting
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/

.‘\’L A’
Hybridize, ~ p,
S

[Hybridize, ~Ph
Keep, ~ (1-p,)
\ A

\d Exist, ~C(k4)
Keep, ~(1-p,)

protein, it will interact with the newly generated node,
leading to heterodimerization.

S

13,18,41

D. Neighbor connectivity

Degree correlation is the correlation between the
degrees of two connected nodes. When nodes of high degree
preferentially connect with other nodes of high degree, the

Hybridize, ~n /N
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FIG. 3. Three ways, (a), (b), and (c),
corresponding to (i), (ii), and (iii) dis-
cussed in text, a new duplication event
generate triangles contributing to the
change in g,.

Keep, ~ (1-p,)

network is said to be assortative, whereas when nodes of
high degree preferentially connect with nodes of low degree,
the network is said to be disassortative.”>* It was reported
that social networks such as coauthorships of scientific
papers and collaborations in the film industry are assortative,
whereas technological and biological networks including
food web, neural network, and protein-protein interaction
networks are disassortative,'® 20227

6
45
% 304 5iope=0.205 5/  slope=0.0
X 15 s s o
. , ¢ . 3 . .
10 10° 1x10°  2x10°  10° 10°
N
4
& 10° 1
Qq1 07'{ slope=-1.05 102 slope=-1.95 10° slope=-3.0
X \ \ \ FIG. 4. Some simulation results with
‘Q 10 3 ] s \ pn=0.065 unless otherwise specified.
X —— 10 10 .
~ First row, Ky vs. N. Second to fourth
Q 3 rows, P(k) exp(k/k.), C(k), and Ko (k)
10° : . 10° : .10 - - vs. k, with N=2 x10%, and py—=0.4,
2x10° 4x10° 2x10° 4x10°  2x10° 4x10° 05, and 0.6, n,=0.001, 0001, and
== 0.335 for the three columns, left to
3 o 2 right, in the second row, k. =225, 400,
10° 10 °:z;gi 10 and 600 for py=0.4, 0.5, and 0.6,
1 _ 1 <h 0 respectively. Lines indicate mean-field
10{ slope=-0.80 10 slope=-0.95 j:;gg L predictions (Table I), and values given
< 10" \ 10" nc=t0 107 for “slope” are from linear regression
Qo g R i of simulation data.
10° 10% 107
10° ~ ~10° ..10°
10 10 107 10°
4
10 - 10°
10°]  slope=-0.05 slope=-0.02 10 slope=0.0
=
= 1
\E 102 ——10’ —=3 10’ !
X
10' 10° 10°
10 100 10° 10' 10° 10° 10’ 10° 10°
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The neighbor connectivity of node i, K, (k;), is the aver-
age of the number of links on its neighbors: K,,(k;) =k;° 1
> es ks = T\ /k;, where T') denotes the sum of the degrees

of node i’s neighbors.’> The assortativity of a network is
determined by the k-dependence of K, (k), the average of all
K,n(k;) with k; = k: the network is assortative or disassortative
if K,;,(k) is an increasing or decreasing functions of &, respec-
tively.”>>* When K, (k) is independent of k, there are no
degree correlations. Protein-protein interaction networks have
been reported to be disassortative with K, (k) ~ k~7m 11820

In order to derive the analytical solution for the neighbor
connectivity of the DDHA model, we first compute K, (k4)
of node A by considering the change in Tlgﬁl‘) after a time
step (t — ¢+ 1). This can happen in three ways: (i) A is
duplicated (with duplicate A’). This adds (1 — py)prka + p

arid  1-py
d N1

BeS,

>

Pa

2+ (1=pa) Y (k4 = DCE) + o = 1) +

+ne\ ne
<mIA + ki +[71h ) N )
I#A ¢S, — Dda (Z)
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(1 = pa)ka +py +n.) degrees to T4 provided A and A’
dimerize, where the first term is the increased degrees coming
from the k4 neighbors of A and the second terms coming from
A’ through actions (ii)—(iv); (ii) a neighbor B € S, is dupli-
cated (call it B"). This generates (a maximum of) kz neighbors
for B’, among which about C(k,) (ks — 1) are also neighbors
of A. This adds (1—pg)((1—pa)C(ka)(ka—1) +py)+(1—py)
(1—pg)(kg—1)+py+n.) degrees to T4 provided the new
link between B’ and A is preserved; and (iii) a node [ that is
neither A nor one of its neighbors is duplicated (call it D).
This adds (1 —pd)mlA l’lc/N(l) +((1 —pd) k]‘l-ph —&-nc)n(,/N(t)
degrees to T,gjj) provided a new [-A link is added (with proba-
bility ~n./N(t)), where m;, is the number of nodes in the
intersect S;NSy. Therefore, for large N(f) and k,, using the

continuous approximation, the rate of change in T is

ph(Ph + nc)
1 —pa

2ph + I’[(;)
L —pa

1— e
= LB (g 4+ OOk + (1= p)TY).

N()

where we used k; & ks, C(ka) ~ Cok, ' (see Eq. (11)) and
dropped O(1/N?) terms, and (o= (py+nc)>/(1 = pa),
G=4pp+n.+ps—1+n/1—-ps), (=(1—ps), and
Co is a constant. For large N(¢#) and k4, using (8) and
IEA = ks — 1 =~ k4, we obtain

ary

T Coka' + {1+ GCokATe + (1 — p)TYki", (12)
A

where Zo = (o — {1n. The solution is

T,(,Z‘) = _ o + C—l/gA + C72C0/€%_yc
L—pa  pa 1+ pa — e

+ TOEA7p47

where T, is a constant depending on the initial condition of

T'4). We obtain in the large-k approximation

Knn(kA) ~ 7:0 + C_l + CZ

———=——Coka' 77 + O(k,"),
pa T4pi—ve " (")

13)

where T is a constant. Substituting the values for yc (Eq.
(11)) for large k, we have

Vv
N =] =

Tnn N Oa Pd
Krm(k) ~ 7 ~ ki/”na ynn = (14)

2pa—1, pa <

This suggests that a DDHA network is associative (y,,, > 0)
or neutral (y,, = 0), when p, is <% or > %, respectively, but
is never dissociative (y,, < 0).

IV. NUMERICAL EXAMPLES

To verify the power-laws given in Table I, we carried
out extensive in silico network construction following
the four-step procedure stated earlier. Data from protein-
protein interaction networks of yeast, fly, and human suggest
pr < 0.1.% Estimates of values for p, and n, from yeast
protein-protein interaction network data give a ratio of
ne/pa < 1.B Therefore, we used parameter values in
the ranges 0.30 < p,; < 0.75, 0.01 <p; < 0.1, and 0.001 < n,
< 1.0 in our numerical simulations. Without loss of general-
ity, a single connected random network containing 100 nodes
with the average degree K oo=3.98 was taken as an initial
network. The sizes of the simulated networks were N=1
x10°,5 x10°, 1 x10° 2 x10°, and 3 x 10°. For each set of
parameters, 20 networks were generated and averaged meas-
urements were taken.

Except for one case, the simulated results demonstrated
clear power-law behavior (Fig. 4) and there was excellent
agreement between the mean-field predictions and measured
(by simulation) values of the power-law exponents (Fig. 2).
The non-power-law case, in which K was predicted to have
logarithmic dependence on N at p, = 1/2, was also borne out
by simulation (mid panel, top row, Fig. 4). The parameter n,
had little effect on the power-law exponent y, verifying the
effectiveness of the approximation method used to derive
Eq. (10). In addition, our simulations revealed that the P(k),
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besides its power-law dependence on k, had a multiplicative
exponential factor exp(—k/k.). The exponential dependence
was effective already when k ~ 10 (Fig. 5(a)) hence may not
be attributed entirely to finite-size cut-off effect.'®!519-3
The general trend of the exponential dependence was that k.
increased with N (Fig. 5(b)), was independent of n. (Fig.
5(c)), and increased with p, (Fig. 5(d)). This corroborates the
suggestions that P(k) approaches its large-N asymptotic
power-law slowly.*>*

Although mean-field theory predicted K,,(k) to grow
with & when p; < 1/2 (Table I), our simulation showed
K,n(k) had no k dependence (Fig. 4), i.e., our result did
not show a DDHA network to be assortative. In our
DDHA model, nodes were randomly selected for duplica-
tion, and hence each node had equal probability of being
duplicated at each time step. Similarly, links selected for
deletion and for addition were both random. As a result,
neither the connections between high-degree nodes and
high-degree nodes nor those between high-degree nodes
and low-degree nodes were favored. It is therefore no sur-
prise that our model created networks that exhibited no
assortativity.

We checked individual cases for further verification.
When p,=0.4, it was measured that C(k) = 0.1k %8
(Fig. 4). In this case, the third term on the right-hand-side of
Eq. (13) (o/(1 + pa — pc)Coka' "¢~ 0.1k$2 < 0.5731, for
k <2000. It was so small that the first two terms on the
right-hand-side of Eq. (13) always dominated. In other cases
for p; < 1/2, the third term on the right-hand-side of Eq.
(13) was also small and had no effect on the values of
K,n (k). Thus, a DDHA network is not assortative.

@ A o N=105 (b} o N=106, kc=175
1075 o N=5*105 . ’
- » N=106 104 N=2*106, kc=200
e nezi0s § - N=3'108, ke=225
= . N=3*106 Q
g 3 10"
10" 21
N
B slope=-1.283
» I AT 10° r T :
10° 10" 10® 10° 10* 150 300 450
k k
(c) (d)
101 nc=0.0 800
nc=0.2 600
& 1 nc=0.4
x 10 nc=0.6 400
< nc=0.8 o slope=0.199
s X
2 200-
N
B slope=-2.0 slope=0.233
107 T T 1 5 6 "7
150 300 450 10 10 10
k N

FIG. 5. Log-log plots for P(k); in all cases p, =0.08. (a) (Simulated) P(k)
versus k for different network sizes; p,=0.45 and n.=0.40. (b)
P(k)exp(k/k.) versus k for different network sizes and best k.; p,=0.45.
(c) P(k)exp(k/k.) versus k, with k. =400 for all n, values; N =2 x 10° and
pa=0.50. (d) Power-law relation between the parameter k. and N; circles,
pa=0.45; triangles, p, = 0.55.
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V. DISCUSSION AND CONCLUSION

We derived mean-field analytic forms of power-law
exponents in the DDHA model for the average degree (fix),
degree distribution (yp), clustering coefficient (yc), and
neighbor connectivity (y,,,) as functions of parameters of the
model: the deletion probability p,, the heterodimerization
probability p;, and the addition probability p.. All four expo-
nents depended on the all important parameter p,. Only
when p,, is larger than the critical value 1/2 will a realistic fi-
nite average degree is recovered, i.e., networks may have the
biological properties of sparseness and small-worldness.
Only the exponent )¢ depended on p,, and none depended on
p.. Instead of having a constant value, here p. was given for
n./N, where n,. was a constant. As there was no other factors
to help it counter the diminishing effect of the 1/N factor,
terms dependent on p. was destined to be small in the large
N limit. Had p,. itself been made a constant, it would have
impacted the role played by pj, in the large N behavior of 7,
(Table I). However, a constant p. would not be biological
realistic.

The degree distribution was scale free only in the limit
of large network size. For finite network size, the exponent
yp had an exponential dependence on the degree, a depend-
ence that weakens (as a power-law) with increasing network
size. Except for one case—value of y,,, when p; < 1/2 (Fig.
2(d))—power-law exponents extracted from our large-scale
simulations agreed extremely well with the mean-field
results.

It has been reported that the number of links retained af-
ter gene duplication is considerably different between dupli-
cates.” In the present work, we generated this difference
between the duplicates by adopting the asymmetric diver-
gence model, in which the removal of links might occur only
in newly generated nodes. This allowed us to derive closed-
form expressions for the power-laws. The model was
adopted in several previous studies.'®'?373%4% The other
extreme is the symmetric divergence model, in which links
are removed from both duplicates with equal probability.'**!
Actual biological networks should lie somewhere between
these two extremes but are expected to be heterogeneous in
this aspect. Recent studies have indicated that the two mod-
els do not yield essential differences in network properties of
the type considered here.'”*!

Studies of the topological structure of protein-protein
interaction networks in yeast, worm, fly, human, and malaria
parasite have revealed that they tend to be disassortative
(Ypm > 0).'%1%29 However, our model created networks that
were neither assortative nor disassortative: K, (k) was k-in-
dependent (y,,, =~ 0). Theoretically, disassortative networks
can be generated by favoring low-degree nodes in duplica-
tion,'”*? for instance, by making the probability of duplicat-
ing a node inversely proportional to its degree.42
Biologically, this bias is reasonable, because the cost for
duplicating a node should be approximately proportionally
to its degree. Owing to preferential duplication of low-
degree nodes in this asymmetric model, links between a
high-degree nodes and low-degree nodes are preferentially
generated, resulting in a disassortative network. However,
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we were not able to derive a close-form mean-field expres-
sion for K,,, (k) for this asymmetric model.
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