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AB S TRACT 

The isotopic singlet S-wave free nucleon reaction matrix 

is used as the residual two-nucleon interaction to calculate the low 

18 42 energy spectra of F and Sc . The free reaction matrix is deterwined 

by the demand that it reproduces the triplet S-wave two-nucleon scattering 

data. 16 40' 
The 0 and Ca cores are assumed to be inert. In the case of 

F18 , the splittings between the excited states and the ground state are 

generally too large as compared with the experimental spectrum. The 

. 42 
possible origin of this discrepancy is discussed. In the case of Sc 

the calculated spectrum more closely resembles the experimental one. 
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1: CHAPTER 1 

INTRODUCTION 

1 The nuclear shell-model was proposed by Mayer and by Haxel, 

2 Jensen, and Suess to explain a large number of measurements of nuclear 

spins and magnetic moments, and the "magic numbers.1! Nucleons in a 

nucleus were treated as single particles moving in an effective potential 

which represents the average effect,on one nuc1eon of aIl the other 

nucleons. The spins and magne tic moments ?f the protons and the neutrons 

were assumed to pair off, respectively. In such a model the nuclei are 

composed of shells of nucleons, each she11 consisting of a number of 

close1y spaced 1eve1s. Between two major she11s there is a sizab1e 

energy gap. A nucleus with a11 its she11s fi11ed has a magic mass number. 

Because of the pairing effect and the gap between shel1s a magic number 

nucleus is quite stable and a nucleus with one or two nuc1eons outside 

a c10sed she11 has properties main1y due to the 1ast unpaired loose 

nuc1eons. This is especially true when the "core" of the nucleus i8 

doub1y closed, that is, both the proton and the neutron numbers of the 

18 nucleus are magic numbers; for examp1e, the nucleus F has one proton 

16 and one neutron outside a doub1y c10sed core, the 0 nucleus. 

If the existence of two extra nucleons does not change' 

the structure of the core radica11y, then the potentia1 in the Hami1tonian 

of the two-nucleon system i8 effectively the average single partic1e 

potentia1 plus the residual interaction between the two nuc1eons. From 

- 1 -



the spectra of core plus one nucleon one can extract the needed 

information on the single particle potential. One is then interested 

in finding out what the residual interaction is. 

In this respect one can do mainly two things. One can either 

do a phenomenological fit to the known nuclear data and thus de termine 

3 the effective residual interaction, such as done by Elliot and Flowers s 

or one can use a realistic residual interaction. By realistic we mean 

the interaction is derived from free nucleon-nucleon interaction data. 

The latter of the two approaches is certainly more interesting in that 

it gives a ~nified picture of nuclear interaction whereas the effective 

interaction determined by the first method generally varies from nucleus 

ta nucleus. 

Dawson, Talmi, and Walecka4, Kahana and Tomusiak5, and more 

·6 recently Kuo and Brown used realistic interactions to calculate energy 

levels of nuclei with core plus two nucleons and the results were 

encouraging. 

The purpose of this work is to investigate the validity of 

using the free nucleon reaction matrix as the residual interaction, in 

the cases of F18 and Sc42 • 

The Hamiltonian of the core plus two-nucleon system is derived 

in Chapter 2 by means of exploring the properties of the one-particle and 

two-particl' Green's functions. The nuclear reaction matrix K is then 
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l 
defined and its relation to the Hamiltonian established. In Chapter 3 

the free nucleon reaction matrix ~ is defined and determined from two 

nucleon scattering data. It is then shown that KF is a first order 

approximation of K, and one expects correction terms to he smali. In 

Chapter 4 the single particie energies and the spectra of Fl8 and Sc42 

are extracted from experimental data. Using ~ as the residual 

interaction in Chapter 5, the calculation of the energy Ieveis of 

F
18 

and Sc42 are discussed and·the results presented. The results are 

discussed in Chapter 6. In Chapter 7 our work ia conciuded. 
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CHAPTER 2 

THE NUCLEAR REACTION MATRIX AND THE RELEVANT SCHROEDINGER EQUATION 

2.1 The Derivation of the Schroedinger Equation 

Our abject is to calculate the zero isotopic spin, positive 

parity energy levels of Fl8 and sc42 • both of which have two nucleons, 

a neutron and a proton, outside a doubly closeà shell. To do this we 

have to solve the appropriate Schroedinger equation, which we der ive by 

introducing the one- and two-particleGreen's functions: 

= (2-1) 

G (tpt , t t ) 
f'6'" , llY t1" J.l Y 

= a +(t )a +(t )] 1 N) 
Y YJ.l,;.c 

(2-2) 

Where are the time dependent creation and 

annihilation operators respectively, for particles in states 

(6"") == ner , J.(f" , mo--' S~ etc. 1 N) is the ground state of a doubly 

closed shell.nucleus. 7 T is the time ordering operator. We shall 

assume that the one particle Green's function is weIl approximateà by 

the single particle Green's function Which describes the motion of 

particle in an effective one particle potential used in the Hartree-Fock* 

calculation to obtain the ground state 1 N) . We denote the energy of 

a HF single partic1e state by 6 . Thus we have from (2-1) 
fi" 

* Hereafter abbreviated by HF 
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G /0 (t -t ) _ G (0) (t-t ) 
) tr fJ ~ pa- f (J" 

Where 

and H is an effective single particle Hartree-Fock Hamiltonian, 
o 

9 (t) is the time step function, 

9(t) = l, 

= 0, 

(2-4) 

(2-5) 

+ a f and a1' are the time independent creation and annihilation operators, 

respectively, and have the following anticommutation relations, 

The states 1 N+l,a) and J N-l,a) form complete sets of eigenstates 

of H with Nfl and N-l particles, which we shall call the HF single­
o 

particle and single-hole states, respectively. Equation (2-3) now becomes 
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l: 
[(I-fp)Q(t)-fp Q(-t)] 

-i6 t 
Gp 6' (t) = -i ôpq- e f (2-6) 

where 
fp = 0, if P is a particle state, 

= 1, if P is a hole state. 

For the two-particle Green's function, since we are not going to 

con si der any particle-hole states, the two creation operators and the 

two annihilation operators will always have the same time. So it is 

sufficient to consider only 

G (t,t,O,O):= G (t) 
pcr ,1lY - Pa-, llY 

(2-7) 

Making use of the relation 

a p (t) aD'- (t) 
iHt 

= e 

and introducing" a set of "two-particle" states 1 N+2,<:x) and "two-hole" 

states 1 N-2,<:x) into (2-2) we get 

-- Q (t) G(+) (t) + Q (-t) G( -) (t) (2-8) 
P&" ,1lY fa" ,1lY 

1 
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We have separated the Green's function into G(+), which 

propagates forward in time, and G(-), which propagates backward in 

time. 

Now define the Fourier transformation 

G(W) == i J d t e
iwt 

G(t) 

and obtain 

where 

and 

G D(f ,1lY(W) = [G (+) (w) + G (-) (W)l 
J rD" ,1lY Pa- ,1lY ~ 

G (+) (w) 
pcr, llY 

G (-) (w) 
PtT' llY 

= z:<Nlapao-1N+2,a) < N+2,a 1 a/ a}l+1 N) 

a W - (E~+2, - E~) + i E 

= ~ <Nlay+a}l+JN-2,a) (N-2,alapaQ" 1 N) 

a W + (E~_2 - E~) - i ~ 

The term E = 0+ in the denominator is inserted to insure that 

(2-9) 

(2-10) 

(2-11a) 

(2-11b) 

G(t)(W) have the appropriate boundary conditions. As a result we see 

that G(+) (w) is analytic in the upper half w-plane and has poles on 
P,.,llY 

the positive real axis which'correspond to the differences E~+2 - E~ 

while G(-) (w) is analytic in the low~r half w-plane and has poles 
Pcr,llY 

on the real axis corresponding to E~ - ~-2. We have now reduced the 

problem of calculating the energy levels of the 1 N+2> and 1 N-2 > 

7 
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nucleon states to that of locating the poles of 

G(-) (w) respectively. 
f>G', JIY 

and 

The two-particle Green's function we are interested in can 

be shown to satisfy an equation of the forro 

G _,(ttjOO) = G (t) G (t) - Gpu (t) G ... 
Il
(t) 

jOtr, JIl f' 11 CI"'1 ,. v 

+ ~ i. J dt1dt2,dtidti GpP1 (t-'l) GO"G'l (t-t1)I
P1

0"1,P2"2 (t1 ti,t2
t i1 

Pz "i 

(2-12) 

, , 
Where Ip~ p ~ (t1t 1,t2t Z) is an interaction operator, forwhich we 

1 l' 2 2 
shall roake the siroplifyi,ng assuroption: 

(2-13) 

where v (1,2) is a two-particle potential and 

The numbers 1 and 2 in the brackets denote the spatial positions. 

Substituting (2-13) into (2-12) we get 

G I:M. (tt,OO) = G.o (t) 
r",11Y ,~cr,}.lY 
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If we again try to separate the forward going and backward going Green's 

function in time, we encounter some complication in dealing with the 

integral term. Consider the contribution from this integral to 

G (+) (t). We have two terms, 
Ptf,llY 

t 

(dtQ(t-t')Ô~.o ô (l-fD.) (l-f ) r ri l crcr 1 ,- u-

-i(~p+é )(t-t') () 
e tf G + (t') 

P2l1"Z ,1lY 
o 

(2-15a) 

for t ' > 0 and 

-i(ép+E~(t-t') (_) 
e G (t') 

p 2CT"2,JlY 

(2-1Sb) 

for t' < O. A third term vanishes when the Fourier transformation is 

tal<en, so wc sha11 drop i t here. 

It is obvious the Fourier transformation of (2-1Sa) is 

(2-16) 

The Fourier transformation of (2-1Sb)has, however, a different form as 

we can see by considering the bounùary condition. It is not very hard 

to see that the Fourier transformation of (2-15b), to the first order 

approximation, is 
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Fig. 2-1. Schematic diagram 

representing (2-16). Two particles 

p and y interact once and go into 

particle states Pl and 0- l' These 

two particles interact any number 

of times and then go into final 

states P and (j. The dotted 

line represents an interaction 

V~G'l'PY • 
The thick solid line 

with legs represents the two-particle 

Green's function 

Fig. 2-2. Two partic1e~ho1e 

pairs P 2'1 and cr 2~l are created 

simu1taneous1y. The two h01es P 1 

and (j 1 are th en annihilated by the 

two partic1es p and y. The two 

partic1es p 2 and (j 2 continue to 

propagate forward in time, interact 

any number of times and finally go 

into two particle states P and 0' 

The exchange diagrams are not shown." 

.11' 
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-i 
'0 

. 1 

v 
P (j , P1

cr
1 W-(;p - ~ 

1 1 

x v 

Graphica11y (2-16) and (2-17) are represented by Figs. 2-1 and 2-2, 

respective1y. 

In our calcu1ation the term in (2-17) will be ignored. The 

Fourier transformation of the forward going part of (2-14) th en becomes 

G (+) (w) 
Pif, llY 

Graphica11y we have 

P P 

p 

(2-18) 

p cr 

,: .~,'~'.~ ';;:" /., 

;-
~ Oj 

(exchange 

----- diagrams) 

J" Y 

Fig. 2-3 
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In.the approximation (2-18) the two-particle Green's function 

is .the sum of all the so-called ladder-diagrams. It is also obvious in 

(2-18) that all subscripts have to denote particle states. The factor 

(l-fp)(l-fr ) can thus be dropped. 

Let us adopt the matrix notation, 

where 1 PO") is the HF two-nucleon state, i.e. 

Equation (2-18) cao then be written as 

G(+)(W) = -i ( 1 ) 
w- H -v 

o 

Suppose ) a> form a set of two-nucleon state in which Ho+V 15 

diagonal, and are re1ated wi th 1 pa) by 

Then 
<P<i"! G(+)(w)I"uY) 

= -i 2:<Pc;lB.. J F\Cf"l) ~*rr X (aJ W_H
1

_ v 1 a) 
Pl cr1 1 l,a l1y,a 0 

0( 

- 12 -
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:::i"- i 
:.\i" ' 

;l''·:~~·'.IJ ':r:.:: 
.1tfJ 

The poles of .G(+)(w) are at 

Ct 
W (2-24) 

Where 1 Ct) are the appropriate two-particle wave functions. Thus, 

the problem of locating the poles of G(+)(W) is further reduced to 

that of the diagonalization of H +v . o 
We can also identify the st.ate 

1 Ct) wi th 1 N+2, Ct> Our object is now clear: to solve the 

Schroedinger equation 

with the eigenstates and eigenvatues of H known. 
o 

(2-25) 

If the two-particleinteraction v is weIl behaved, i.e., the 

matrix elements of v between the unperturbed two particle wave functions 

are small, then one can diagonalize H+v o 
in a finite dimensional 

subspace of unperturbed two-particle states with low unperturbed 

energies, since the high energy unperturbed states will not be affected 

by v. On the oth~r hand, if the matrix elements of v are always 

comparable to the unperturbed energies, H + v must then be diagonalized 
o 

in the complete space of unperturbed wave functions. The matrix H + v o 

which enters the calculation then becomes infini te dimensional and 

cannot be diagonalized in practice. 

Unfortunately, the realistic two-nuc1eon interaction is not well 

behaved. As we know two nucleons repel each other very strongly when 

- 13 -
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they are at very close distances. In fact v must either have a hard 

core or be momentum dependent to fit the N-N free scattering data. 

In either case, the matrix e1ements of v will not be sma11 compared 

to the unperturbed energies é p~. It is thus c1ear that one cannot 

diagonalize H + v in a fini te subspace, and we have to proceed 
o 

otherwise to solve (2-25). 

2.2 The Nuc1ear Reaction Matrix 

Let us make the fo11owing two observations. (a) Since two 

nucleons interact strong1y at short distances' once they are sufficiently 

close to each other they will interact many times before they separate. 

(b) The total effect of this multiple-interaction is fini te. It then 

fo1lows that instead of using v we shou1d use something which describes 

the multiple-scattering between two nuc1eons in our ca1culation. For 

this purpose let us define the nuc1ear reaction matrix K. 

K (w) 
QM 

= v + v w _ li K (w) 
o 

(2-26) 

Where ~ is an operator which exc1udes from the two-nuc1eon intermediate 

states a1l occupied states and those states inc1uded in a subspace M, 

which we shal1 choose at our convenience. Graphica1ly (2-26) describes 

the following processes. 

- 14 -
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p 
p 

p p 

r., + + - -_. 
Q b 

Fig. 2-4 

Where the wavy line represents a K-interaction and the dotted line a 

v-interaction. ab and cd are two-particle intermediate states allowed 

by the operator QM' We have in the present formalism omitted all core 

exci tations. 

Let us also define the wave operator ~ and the model wave 

function 1 a, M> : 

~ -

= la, M) 

Where 1 a) is the actual 

eigenfunction of (2-25). 

two-particle wave function, i.e., the 

- 15 -
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From (2-26), (2-27) and (2-28), we have 

K (w) = v ~ (2-29) 

and 
K (w) la, M) = via) (2-30) 

In the following we shall showthat the eigenvalues of 

H + v when diagonalized in the complete space is the same as the eigen­
o 

values of Ho+ K(W) when diagonalized in the subspace M. Let xp~ 

be the amplitude of 1 a) in the unperturbed two particle state r p~ >, 
then 

(2-31) 

From (2-28) since ~ excludes ail stat~s in M we can write 

la) = 'a, M) + IX) (2-32) 

where 
J a, M) =k X PtT 1 p(J) 

Pff'E M 
(2-32a) 

IX) = ï: X Ptr J p~) 
PtrpM 

(2-32b) 

l,a, M) and 1 X) are orthogonal to each other. 

Equation (2-25) now becomes 

(2-33) 

Looking for the component 1 p u-) we get 

- 16 -
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~ (eptr - W) Xptr+ (pa-l K(w) J JlY} X JlY = 0, . po- ,Jly,M 
"My 

, '..J PO' ,.. M, 

(2-34) 

JlY , M (2-35) 

Equation (2-34) shows that w is obtained by diagonalizing H+ K(W) in 
o 

M. Our effective Schroedinger equation can now be written as 

(H + K(W) )/0:, ~ll = w)o:, M} 
o 

(2-36) 

The eigenfunction of (2-34) is not the actual wave function 

Jo:) but the model wave function 10:, M) . The components of 1 0:) 

not in M, i.e., the components of ))C), can be calculated using (2-35), 

which is just another way of writing (2-32b). It should be pointed out 

that if one were to do an exact calculation of K(w) using (2-26) the 

subspace M one chooses is irrelevant to the final solution of (2-36). 

But in the actual calculation,which will be described below, it is 

necessary that we choose M to be those with low unperturbed energies. 

This will be discussed in more detail later. 

Now we have to calculate K(w). This is non-trivial because 

K(w) depends explicitly on w. In fact K(W) cannot be calculated 

8 exactly. Moszkowski and Scott developed a method to calculate K(W) 

approximately. They first assumed that the behaviour of nucleons in the 

low density region of nuclei is not very different from free nucleons 

with low energies. Then they separated the two-nucleon potentia1, derived 

- 17 -



by fitting two-nucleon scattering data, into a short range potential 

and a long range potential vi' The cut was made such that v 
s 

which includes the strongly repulsive core and part of the attractive 

v 
s 

force, produces no phase shift for low energy free nucleon scattering. 

In this way they can assume the matrix elements of the short range free 

nucleon reaction matrix to be zero, and make the approximation 

Our approach, developed by Kahana and TomusiakS, is to expand K(W) 

directly in terms of the free nucleon reaction matrix, ~*. This 

method has the advantage that no separation distance has to be determined. 

Moreover, the separation distance in the Moszkowski and Scott method is 

usually state dependent, and is capable of causing some ambiguity when 

i t is taken state independently. In our calculation we shall" actually 

use the approximation 

K (w) = ~ (2-37) 

It is the purpose of this work to test this approximation in 

the case of F1S and Sc42 . We mention here that (2-37) also has sorne 

arnbiguity of its own. This ambiguity stems from the fact that K(W) 

should be evaluated at the total energy, W , of the two-particle system 

in the nucleus, while 1). is a function of the relative kinetic energy, E, 

of the free two-particle system, and in the right-hand si de of (2-37) one 

is not certain at what value of E to take ~. 

discussed in detail in Chapter 5. 

* See next chapter. 
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~- CHAPTER 3 

THE FREE REACTION MATRIX 

3.1 The Free Reaction Matrix 

The reaction matrix describing the multiple-scattering of two 

free nucleons is the free reaction matrix ~(E) 

I).(E) 
p 

= v + v E"'=t ~(E) (3-1) 

where t is the energy of an intermediate nucleon pair. 

Here unlike the problem of finite nuclei we are not interested 

in diagonalizing the Harniltonian so the operator P excludes only the 

initial state and actually becomes the principal value operator in the 

integral equation (3-1). The free nucleons have definite momenta so the 

unperturbed Hamiltonian is just the relative kinetic energy of the two 

nucleons. 

The total Hamiltonian is 

H = t + v (3-2) 

Y7i th the wave function '" satisfying the Schroedinger equation: 

H 0/ = (t + v) "" = E '/J (3-3) 

The model wave function now is just the plane wave 0 itself and analogous 

to (2-29) and (2-31) 

.- - 19 -
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1 

and 

p 
0+~v~ 

l).(E) 0 :: V y; 

(3-4) 

(3-5) 

In thu center of mass frame t is the relative kinetic energy of the two 

free nucleons in the intermediate states and E is the 'relative kinetic 

energy of the scattering nucleons. 

For a central interaction, v(E) = v(r), the scattered wave 

~ will be taken to satisfy the boundary condition that it behaves 

asymtotically as a sum of spherical standing waves, 

.1 J'If 
~r Cp sin(kr - 2 +~) Y.lo (~, V 

(3-6) 

where ô.I is 'the phase shift of the partial wave with angular momentum 

J and 

It is shown in Appendix A that the on-the-energy-shell matrix element of 

~ is related to the tangent of the phase shift ô, by 

< ~IIIL(E = !S1t ) 1 ~) 2 2 1 
-l' M l~'f = f~1 

&li - ~ ~ j4'l1 (2/+1) tan ô.l Y/0 (~I ,10 
2'1fkM J. =0 

(3-7) 

where ) k) is the plane wave 0 with relative momentum ~. 

- 20 -
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The matrix elements on the 1eft-hand side of (3-7) can be 

numerically eva1uated when the phase shifts are measured experimentalJ.y. 

3.2 The Free Reaction Matrix as an Approximation to the Nuc1ear 

Reaction Matrix 

The nuc1ear reaction matrix K(w) is related to the free reaction 

matrix ~(E) by the fo11owing equation, 

K(W) = I).<E) + ~(E) (W~o - E:t) KM (3-8) 

This equatiou is simply obtained by solving, (3-1) for v and substituting' 

ülto (2-26). 

As mentioned in the last 'chapter, we actua1ly used in our 

ca1culation the approximation 

K(W) (3-9) 

One would think that K and KF actua11y would differ considerably 

since bound nucleons behave different1y from free nucl€ons. The reason 

the approximation is worth making is because the two nucleons we are 

considering are outside a doub1y c10sed she11 and are quite loose1y bound. 

As a result they spend appreciab1y more time in regions of low density 

than the core nucleons. Fur thermore, the two-partic1e intermediate states 

included in QM in (3-8) are either more loose1y bound or are free states 

and a large part of 'this contribution iB cancelled by the terms included 

- 21 -
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in P. In any case (3-9) is the first step one has to do in our calculation 

and corrections to (3-9) can always be added if they need be. These 

corrections include the second term in (3-8) and those caused by the 

excitation of nucleons in the nucleus core. 

We mentioned in the last chapter that were K(w) calculated 

exactly the solution of (2-36) would have been independent of the model 

space M. Since ~e are using approximation (3-9) instead, it i5 clear 

that our solution will depend on M. Naturally we then want to choosc 

M such that the second term in (3-8) will contribute the least. We thus 

choose M to be a set of unperturbed two-particle states which have the 

lowest energies. The states outside M, i.e., those included in QM will 

be practically free and will mostly cancel with the correspond:i:ng states 

in P in (3-8). 

3.3 The Determination of ~(E) \ 
\. 

We shall write the ~-matrix element in the relative coordinates 

of the scattering nucleons. So in (3-7) the denominator is E-t) where 

E i5 the relative energy parameter, and t the relative kinetic energy 

operator. In (3-9) the matrix element of KF in the momentum space can 

be transformed into coordinate space representation, 

< li'i ~(E) 1 ~) • 

- 22 -
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where 1 -i k·r e 

In our work we are interested in the determination of the 

(3-11) 

isotopie singlet ~. The isotopic triplet ~ was already described by 

Kahana and TomusiakS. We shull find a KF which reproduces the relative 

S-wave phase shift. lt is known that nuclear force has very short range, 

hence the S-wave interaction dominates at law energies. Other relative 

waves may contribute significantly but we will ignore them in this work. 

In this case there can be no spin-orbit force. In_calculating the 

~-matrix we shall also neglect thepurely tensor component. As is know from 

calculations concerning the deuteron ground state, which consists of a 

proton and a neutron with total spin equal to land isotopic spin equal 

to 0, the tensor force is probably as strong as the central force. Thus 

using a pure central force in our calculation is not completely justifiable 

except that it makes the calculation much more transparent. On the other 

hanJ a first order central K matrix includes contributions from a t~sor 

component in the potential. 

As a consequence of the simplifications made above, we shall not 

expect our calculation ta agree with the expprimental data in any detailed 

manner. 

With only a central ~ being taken into account the spin 

triplet S-wave ~-matrix, 
3 
~o ' 

elements can be written as 
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Comparing (3-10) and (3-12) wc get 

::: 

where Ô (3S ) is the spin triplet S-wave phase shift. 
1 

(3-12) 

9 It was pointed out by Kahana that components of Lelative kinetic 

energy up to 100 MeV in free nuc1eon scattering cou1d also enter into the 

interaction between two nuc1eons outside the c10sed shel1 of a finite 

nucleus. Thus contrary to earlier authors who ca1cu1ated effective forces 

by on1y considering the very low energy phase shifts, we sha11 also take 

phase shifts of energies up to 100 MeV into account. 

The numerical ca1cu1ation of 3~o was done by Kahana, Lee 

10 and Scott • It was found to be necessary to use an energy dependent 

forme The resu1t is: 

31).0 (E) ')(31 {r -87f (12,677 .0)'1\ P 2" ô (!.l2) 1 1 J E/& -1 + E/r -1 ô (!.12) o ~o 

= 

r E/MC2 E/MC
2 J} 

- 5.9355 ô (!ol2) E/E. ..1 + E/e. -1 Ô(L12) MeV 

In (3-14) "p is the proton Compton wave 1ength in fermis, 

~ .. .2103 (f) 
p 

(3-14) 

In determining (3-14), E was taken as the relative kinetic energy exp1icitly. 
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The ~e1ative coordinates are denoted exp1icit1y by the subscript 12, 

1 
2 (3 -15) 

P12' when taken as an operator, on the right-hand si de of 5 (E.
12

) 

ope=ates only on the states to its right; 1ikewise when it is on the 

The denominator 
. -1 

(E/Eo -1) 

to account for the infinity which occurs in tan 

in (3-14) is introduced 

3 
5( Sl). It is known 

that if the reaction matrix has a pole at a negative E, which in this case 

corresponds to the deuteron bound state in the 3S1 channel, it will a1so 

have a pole at some positive value of E. In the phase shifts determined 

11 . 3 3 1r by Hamada and Johnston tan 5( Sl) has a pole, Le. 5( Sl) = /2, 

at 8.6 MeV. So we set E at this value. The second term in the cur1y o 

bracket in (3-14) accounts for the vanishing of the phase shift at about 

150 MeV and reflects the existence of a hard core. 
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CHAPTER 4 

THE SINGLE PARTICLE ENERGIES AND 

THE EXPERIMENTAL SPECTRA OF F
18 

AND Sc42 

18 42 In this work we calculated the energy levels of F and Sc . 

The calculations are similar for both nuclei. In the following we shaH 

discus~ the determination of single particle energies and the experiment 

18 spcctrum of F only. Data for Sc
42 

are included in Tables 4-4 and 4-5 

at the end of this chapter. 

4.1 'Data for F
18 

18 
For F we choose the 2s-1d shell to be the model space H., 

The single particle energies of these she11s are taken from the experi-

mental spectra of 017 and F17 (12) In Fig. 4-1 are shovm the relevant 

spectra. 

Notice there is a difference of 2.762 MeV between the ground 

This is presumably caused by the Coulomb force. 

Also the energy differences between the 8
1

/ 2 level and the d3/ 2 level 

and the d3/ 2 and the dS/ 2 ones, differ by 0.4 and 0.3 MeV, respectively, 

in the two nuclei. 

For the eigenvalue8 of our secular equation (2-36), .we take 

arbitrarily the scale correspond to 

€ 5/2,5/2 = 

p n 
E 5/2 + €- 5/2 = 0 
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4.142 

0
16 + n 

7.46 3/2+ 

3.26 1/2+ 

2.762 5/2+ 

F
17 

0.87 1/2+ 

Fig. 4-1 

Spectra of 017 17 and F 
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Physically the eigenvalues of (2-36) correspond then to the 

pairing energies between the proton and neutron. The experimental values· 

can be extracted from the relevant spectra by subtracting the binding 

energies of F17 and 017 from the binding energy of F
18

• The relevant 

spectra are shown in Figs. 4-1 and 4-2. 

The binding energy or deuteron is known to he -2.226 MeV, so 

the binding energy of the ground state of F
18 

is 

-7.514 - 2.226 -9.74 (MeV) (4-1) 

The ground s'tate energy of F
18 is at 

-9.74 + 0.598 + 4.142 -5.00 (MeV) 

In Table 4-1 are 1isted aIl low lying experimental levels of 

If we extract in the same manner the ground state (J~; T ; 0+; 1) 

of 0
18 

from Figs. 4-1 and 4-2, we get 

0+' 1 
~. = -3.92 MeV 

, ,Comparing this to the lowest 0+; 1 18vel of F
18 , there is only a small 

discrepancy of 0.03 MeV. We thus have good evidence for the charge 

independence of the nuclear force. We shall here concern ourselves with 

the T = 0 states, the T = 1 states being essentially those of 018 

The lowest two-particle statewithnegative pa'Ùty has an unperturbed 

energy at about 12 MeV, 'and so .ive do not expect the élctual state to be 

.lower than 7 MeV. 
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Ground States of OlS and F1S 
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Energy (MeV) 

-5.00 

-4.06 

-3.95 

-3.92 

0-3.87 

-3.30 

-2.90 

-2.48 

Cr 

TABLE 4-1 

Experimènta1 energy levels ef F
18 • 

Quantum numbers net speciiied are not yet 
known, those in brackets are unconfirmed. 

J 1i, , T Energy (MeV) J1f , , 

1+' , 0 -1. 94 2+' , 

3+' , 0 -1.87 l' , 

0+' , 1 -1.65 (2) ; 

T 

1 

a 

0 

0 - 0 +1.16 (3+,4+,5+) ; 

5+' , 0 +1.28 (2; 1) 

,+ . (4+) , 0 +2.18 

2 0 +3.09 (1+) 

2+ 
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In any case as mentioned before, solving the secular equation (2-36) 

only in the 2s-ld shell will not give us any negative parity states. 

Because of the crude nature of our calculation, we shall compare 

our result only with the lower five 1;0 positive p,rrity levels in 

Table 4-1, which we list againbelow. 

TABLE 4-2 

Energy J
tJT ;T 

.J.. 

-5.00 l' ;0 

-4.06 3+'0 , 

-3.87 S+·O , 

-3.30 1+'0 , 

-2.48 ~+,O , 

A more subtle point concerns with the difference between the 

"spectra of F
17 and . 0

17 • Consider a HF state with two particles in the 

2Sl / 2 shell, then the unperturbed energy is 

0.87 + 0.50 = 1.37 MeV 

If, hcwever, one of the particles is in the ld
S

/ 2 shell and the other one 

in the 2sl /2 shell, then there is the problem of choosing for the unperturbed 
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energy to be 

0.00 + 0.87 :: 0.87 MeV 

or 0.00 + 0~5 :: 0.50 MeV 

that is, tru<ing the particle in the 2sl /2 shell' to be a proton or a 

neutron. 

To treat this problem properly we should take into aeeount 0 

the differenee between single particle energy of a proton and a neutron 

by writing tàe HF energy 

,V'here 't 3 is the third eomponent of the isotopie spin operator. The 

superseripts p and n denote the single partiele energy taken from F17 and 

017 , respectively. This formalism, however, breaks the symmetry of the 

isotopie spin (charge independence), as can be seen by realizing that 

't'p 3 does not: 'commute with 

i. e. , '\ 0 

In this case the perturbed states should not have T as a good 

quantum n:.mber and everything becomes qui te a hi t more complicated. 
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Wc feel relnctant to accept this complication jüst because of a difference 

of 0.3 l1eV, wh en previous1y vle made approximations which were at least as 

important. 

1 ï 17 Still we have to decide to use the 0 or the F spectra. Now 

the proton in F17 is very loosely bound by only 0.1 MeV. This presQ~ab1y 

is because of the Coulomb repulsio~ exerted on the proto~ by the core. 

In our calculation the Coulomb force is entirely ignored. SO it is most 

reasonable to think that if we had done a proper RF calculation, the . 
017 and F17 spectra wou1d r~semb1e the real 017 spectrum more closely. 

So, if the two particles are in different shells, we shall take the single 

particle energy fromthe 0
17 

spectrunl. In Table 4-3 are listed the 

unperturbed energies of, the tHO particle states. 

the Coulomb force was done by Gillet.
14 

A proper treatment of 

TABLE 4-3 
V

18 
Unperturbed two-particle energies of F 

State Energy State 

(d5/2) 
2 

0.0 dS/ 2d3/ 2 

,dS/25l/2 0.87 sli2d3/2 

(51/ 2) 
2 

1.37 (d3/ 2) 
2 
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4.2 The Single Particle Wave Funct'io:l. 

For the single particle wave iunctions we take the harmonic 

oscillator wave functions. This is the usual praetice in the literature. 

The reason is the harmonie Have functions can be transforûled into wave 

functions in terms of relative and center of mass coordinates readily. ,,< 

He should, however, mention that the harmonie oscillator wave functions 

as approximations to the real 'Nave iunctioI'ts are at their worst for the 

o~tmost nucleons in the nucleus. This is because the effective one 

particle potential dë:creases towards zero as the distance from the 

center of the nucleusincreases, whiV~ the harmonic oscillator potential 

increases quadratically. The wave functions relevant to our calculation 

wiil be given in the next chapter. 

4.3 
42 

Data for Sc 

42 Experieuultal data for Sc relevant.to this work are listed in .. 
Tables 4-4 and 4-5. 

*See Chapter 5, section 5.1. 
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TABLE 4-4 

Unperturbed two-particle energies of sc42 (15) 

State Energy (MeV) 

2 

f 1/ 2 0.0 

f 1/ 2P3/2 2.08 

2 
4.16 P3/ 2 

TABLE 4-5 

Experimental low 1ying 1evels (T=O, posÙive parity) of sc42 (16) 

Jf11 Energy J tJr Energy 

1+ -2.57 3+ -1.68 

7+ -2.48 ? -0.19 

5+ -1.85 ? 0.33 
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CHAPTER 5 

METHODS AND RESULTS OF CALCULATION 

5.1 The Ca1cu1ation of the Matrix Elements 

The secu1ar equation (2-36) can be written as 

where X are the components of the mode1 wave function 1 ex, M) 
~ (J(f,a 

and p denotes the set of quantum numbers which label the harmonie 

osci11ator wave functions 

To solve we have to c~lcu1ate tne,matrix clements 

~ :;;<p~I~(E)1 llY) 
f~,llY , 

(5-1) 

and diagona1ize the matrix 

é ô ô + K 
Pa- Pll a"Y F 

Pa-,llY 
(5-2) 

, a 
The eigenva1ues w are to be compared with those 1isted in Tables 4-1 

and 4-5. The eigenvectors Xf'a",a give the configuration mixing. To 

ca1cu1ate the matrix è1ements, we couple the two partic1es to a state of 

good total spin J and isotopic spin T, using the' j-j coupling scheme. 

18 Since the partic1es are in the 2s-1d she11 (for F ), a11 states have 

positive parity. The unperturbed states' in the j-j coup1ing scheme are 
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1 , . 

1 pa- ;JT) = ~ 
mp ,!!la-

~". 'ra-

(5-3) 

Our KF-matrix is local and central, and spin independent. To evaluate 

the radial integrals we have to transform the j-j coupling to 1-8 coupling 

x (L 1\,sM
s l JM) 1 ( np'ipnft'iv); ~> 1 (tt); SMS) 

(5-4) 

The j-j 1-8 transformation coefficients are related to the X-coefficients
17 

by 

. 1/2 ('pP p" 1) 
[(21.+1) (2S+1) (2j +1) (2j +1) ) . X ~P ~CT 8 

. J J J 

= 
(5-5) 

These coefficients are tabu1ated by Kennedy and C1iff~8 

The ~,-matrix is expressed in terms of re1a~ive coordinates of 

the two nuc1eons, so we have to transform the harmonie wave functions 

to wave functions in terms of relative and center of mass eoordinates of 

the two partic1es. 
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(5-6) 

Where 1 n 1.) and 1 N.l) . are harmonie oscillator wave functions in terms 

of relative and center of mass coordinates, respectively.19 The trans~ 

formation brackets 

are tabulated by Brody and Moshinsky.20 

AU transformations involved are straightfo:cward anè the result 

is 

<Per; J'T' 1 KillY; JT) 

= 2: «}./>1(1') L f
, (t t)S; J' J (jp jcr) JI) 

L,L' ,S,N).e 

~i;n,nf'f 

x <n 1 n 1 ; LIn i N,f,; L> 
11 ].1 Y Y 

, 
x U (~/'JS; L'!) U (,t} JS; LI) <_I.+.I-L-1' 

x (n'.ts;l T 1 KI nl s;1 T) oTT' ÔJJ , 
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. j( is the relative total angular momentum. U is the U- coefficient, 

relat~d to the Racah coefficient
2l 

W by 

U(a p c d; è f) = (2e+l)1/2 (2f+l)1/2 W(a b c d; e f) 

SincE: we are considering only S-wave interaction 1 and J'in (5-7) are 

always equal to zero. In this case the U-coefficients in (5-7) are equal 

to one and also 

LI = L = rl 

Because wc are dealing with t'vlO fermion states, the state vectors have to 

be antisymmetrized. This can be do ne by multiplying Ip,,; JT) by a 

'1 factor of 
'. 

otherwise 

In our work this factor reduces to 

1 

(5-8) 
otherwise 

Another remark we have to make is that the relative coordinate 

used in determining the Moshinsky transformation brackets is different 

from the E.12 used in our K
F

.19 · The two are related by 

- 39 -



Renee, 

!-12 = J2 41 ' 
1 

:2.12 = ,fi ~ (5-9) 

Heneeforth, ~ and 1 with no subscripts will denote the Moshinsky 

coordinate s. 

As mentioned at the end of Chapter 2, we would like to point 

out that there is a possible ambiguity in our tr8atment of the free reaetion 

matrix. Essentially, we will be using the form given in (3-14), i.e. we use 

.-8'JT(12,677)~3 1 ( [B(r) 1 + 1 
p 21 -12 E/&" -1 E/E.-l 

(3-14) 

The ambiguity th en arises because we can treat E as a free 

parameter as equation (3-7) would seem to indieate or else we ean set 
2 

E = 2 ' the relative kinetic .:!.-tergy operator. The physics contained 
1'1 

in this ambiguity is that we are uncertain at what energy E to compare the 

nuclear reaction matrix K(w) to the free reaction matrix KF(E) in 

equation (3-9). For two nucleons in the shell model potential one might 

be inclined to take some average relative kinetic energy determined by the 

depth of the well, or one might allow the relative kinetic energy to be an 

operator and in effect permit the shell model wave functions to perform an 

average over this operator. Another possibility is to take the E in the 

factor (E IE:o -1) -l, which results from the existence of the. deuteron 
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bound state, as a parameter, while taking the relative kinetic energy in 

the repulsion term, v!hich accounts for the repulsive nature between two 

nucleons at high energies, to be an operator. This is to weight the 

repulsive force more for statés with high relative kinetic energies than 

those with low energies. That wc should treat E differently at tHO 

places is subject to some criticism. But ~·;e know that E is equal to 

the ~elative kinetic energy only wnen both of the nucleons are on the 

energy shell, on the other hand nucleons in a nucleus are most of the 
. 

time off the energy shell. So we believe our treatment of E. is 

not inconsistent but is part of the ambiguity. We Hill in fact follow 

all of these prescriptions and compare the results. Since the calculations 

are essentially similar, the preliminary discussion inul1ediately below applies 

to aH. Concerning the evaluation of the radial integrals we do the. term 

(5-10) 

The xunctlon can be taken as a constant, or as a function 

of the relative momentum appropriate to our interpretation of E as a 

constant or as an operator. The factor 1/4 'in (5-10) comes from the 

normu1ization of the o-function, 

= 1 

and the factors 1/,J8 and 1/ 12 from using (5-9). 

(i 
- 41 -
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When E is taken as a constant then (5-10) simply becomes 

= f (M FE) _1_ 

4'lTFs 
R, (0) R (0) 

n 0 no 

Where Rna is a harmonie oscillator radial wave funetion. ~.( 

When E is taken as an operator (5-10) becomes 

where 

", 

1 

41fFs 
Sd3r'd3rlld3k'd3kll <n'a 1 !.,) <!.') Ô(~) 1 !.") 

r 

x ' < !."J ~'> <~' 1 f(}zk) 1 kil) <~" JnO > 

<!.' \ na) (n ) * = Y RnO ([3 r) 
00 r 

<~' 1 na) = y (n
k

) [3-3 Rna (k/[3) 
00 

1 -ik·r 

< ~ I!.) = 
JS1f3 

e 

41T 2: P -{( 
= 

/811"3 
(-i) j/kr) y1m(n!.) Yjm (n~) 

j,m 

(s-ll) 

(5-12) 

(s-13a) 

(s-13b) 

(s-13c) 

The harmonie oscillator radial wave functions Rn/r) are defined as 

3/2 [ J 1/2 i 2 2 1+1/2 2 2 
Rn/r ) = [3 2(n!)/r (n+f+3/2) ([3r) exp( -[3 r /2)L n ([3 r ) 

a 
where L (z) are the Laguerre polynomials generated by 

n 

-zt/ (l-t) e = 
00 

L: 
n=O 
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Following we give the RnOls relevant to our calculation, 

R (A) A3/ 2 ,-z---
00 f-o'r f-o' "J-rtfï2) 

R20(~r) ; A
3

/
2 ~ f-o' ,Jrt=ïï2) 

e 

1 A2 2 -2 f-o' r 

f3 is related to the harmonie oscillator parameter w by 

e 

1 A2 2 
-2 f-o' r 

For the value of wii , we take the one used by Kahana and 

Tomusiak in their calculation of the energy levels of 01S(5): 

w-h ; 14.4 (MeV) 

We will be discussing explicitly the nucleus F1S • The calculation for Sc42 

is similar and only the result need be presented. 

Putting (5-12) into (5-11) we get 
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! 

S~ f(j/l RnO(k/f)k
2

dk 

(5-15) 

The function fez) in (5-15) has the form 

p h(z) 
2 2 

z - a 

where h(z) is a second order polynomial in z and p the principal value 

operator. So essentially we have to perform the integration 

p .(00 2 1 2 g (z), d z 

Jo z - a 
(5-16) 

where in our case g(z)' and g' (z) are analytic in the range (0,00) 

and vanish exponentially as z ~ 00 and are equal to zero at z = O. 

The pole in the integrand is extracted by means of the principal value operator 

and the result is~" 

p (W 2 1 2 g(z) dz = 

Jo z - a 

+ 
1 
2a r(Z -a) Pn (z - a) - (z - a)] 

dz 

g"(z) àz, 

The'calculation of the other radial integrals is straightforward. 

(5-17) 

In the following we shall outline the res~lts obtained from 

treating E by the three aforementioned different prescriptions separately. 

* See Appendix B. 
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We shall call the case when E is a constant method A and the case when. 

E is an operator method B. The prescription in which -1 
E in CE/Eo - 1) 

is taken as a constant and p2/M in the repulsive term is taken as an 

operator will be called method C. We find in fact it is better to set E 

equal to some average value of the relative kinetic energy and we shall 

outline these results first. 

5.2 
18 Results for F 

5.2.1 Method A 

In 3~ E is the relative kinetic energy of the two nucleons. 
o 

In this section E will be taken as a constant representing the average 

relative kineticenergy of the neutron and the proton in the nucleus. 

Before doing the calculation, we will see what is a reasonable 

value for E. The depth of the average potential in the shell model is 

about 50 MeV. The two particles outside a doubly closed shell are loosely 

bound. This ·means the total energy of each particle.in the 2s-ld shell of 

a harmonie oscillator appropriate to F18 is about 50 MeV. Its average kinetie 

energy. is about half this value, sinee in.a harmonic oscillator the average 

kinetic energy is half the total energy. Thus the total kinetie energy of 

the twopartieles can be from zero to 100 MeV and has an average value around 

50 MeV. 'Then the relative kinetie energy should vary in the ~ange, 0-50 MeV. 
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In the actual calculation we varied E from 30 MeV to 60 MeV 

in steps of 0.5 MeV and diagonalize Ho+ KF for each value of E in the 

2s-ld shell. Fig. 5-1 shows the eigenvalues corresponding to the two 

lowest'l+ levels, the lowest 3+, 5+ and 2+ levels, as a function of E. 

At E; 64 MeV we have the following energies for method A. 

TABLE 5-1 

F18 result using method A. 

Energy (MeV) J '1f (T :::: 0) 

-5."55 1+ 

-2.42 3+ 

-2.12 5+ 

-1.41 1+ 

-0.31 2+ 

E :::: 64 MeV is the optimum value of the parameter. The fit to experiment 

is clearly only qualitative ~t this point in our calculation. 

A more complete discussion will be presented in the next chapter. 

5.2.2 Method B 

If we treat E as an operator we will have no parameters in our 

calculation. The low lying levels are shown in Table 5-5. 
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TABLE 5-5 

F18 result using method B. 

Energy (MeV) J1I' (T = 0) 

-17.32 1+ 

-7.76 3+ 

-2.27 5+ 

-3.71 1+ 

-4.39 2+ 

Clearly it is not appropriate to' take E as an operator and 

let the harmonie oscillator wave functions perform the averaging of the 

relative kinetic energy. 

5.2.3 Method C 
'. 

In this method E in the denominator is treated as a constant 

and E in the numerator in the repulsive term is' treated as an operator. 

The low lying levels are listed in Table 5-6 for E = 46 MeV. 

The results of method A and method C are quite similar but the 

latter is definitely an improvement over the former .. Also we see E in 

this method has a value more reasonable than that of method A, where it is 
~', 

.. \ 
i somewhat large. The calculated model wave functions using this method are 

in Table 5-7. 
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TABLE 5-6 

F18 result using method C. 

Energy (MeV) J (T = 0) 

-5.59 1+ 

-3.11 3+ 

-2.86 5+ 

-1.49 1+ 

-0.86 2+ 

5.3 
, 42 

Results for Sc 

The nucleus Sc42 is treated as a proton and a neutron outside the 

40 Ca core, which consists of a doubly closed shell. The Hamiltonian 

Ho+ 1).(E) is diagonalized in the lf7/ 2 and 2P3/2 shell. Method C 

is used. The optimum value of E is 34 MeV. Only the T = 0 levels are 

calculated. The 'T = l levels are the same as those of Ca42 , which were 

calculated by Kahana and Tomusiak. 5 The experiment and calculated levels 

and, the model wave functions are listed in Table 5-8. 

The reduced matrix elements of 1). for F
18 

and Sc
42 

are listeJ in 

Table 5-9. The matrix elementsare given in Tables 5-10 and 5-11. The 

calculated levels of F18 and Sc42 versus E usingmethod C are plotted in 

Figs. 5-1 and 5~2, re~pective1y. 
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TABLE 5-7 

18;'~ 
. Eigenvalues and (model) eigenfunctions of F (T=O) 

J1t Energy 
Exp 

1+ -5.00 

3+ -4.06 

5+ -3.874 

1+ -1.87 

2+ -1.65 

(MeV) 
Cal 

-5.59 

-3.11 

-2.86 

-1.49 

-0.86 

.706 

.702 

1.0 

-.49Q 

0 

0 .450 -.526 

.684 0 -.193 

0 0 0 

0 .864 .061 

.890 0 ~363 

.021 -.148 

0 -.041 

0 0 

-.069 ' .064 

.276 .0 

~'( + + 
w~= 14.4 MeV, E = 46 MeV. The third lowest 1 and the second lowest 2 

experiment 1evels are listed. 
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TABLE 5-8 

Eigenva1ues and (mode1) eigenfunctions of Sc 
42'.;( 

J1F (MeV) 
2 

f7/2P3/2 
2 Energy f 7/ 2 P3/ 2 

Éxp Cal 

1 +' -2.57 -2.58 .982 0 .189 

7+ -2.48 -2.49 7 0 0 

5+ -1.85 -1.83 .858 .514 0 

3+ -1.68 -1.57 .931 .302 .204 

5+ 0.33 0.39 -~514 .858 0 

oJ(w'" n = 11.2 MeV, E = 34 MeV 
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TABLE 5-9 

Reduced matrix e1ement of KF for F
18 and Sc42 . 

. < nO 1 ~(E) 1 nO) lù11 E 

n :;:: 0 n :;:: 1 n :;:: 2 

A -5.652 -8.478 -10.600 

F
l8 

14.4 46 B -6.044 -37.727 24.385 

C -7.634 -9.012 -8.217 

11.2 34 C -7.984 -10.060 -10.179 
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TABLE 5-10 
1 
1 
1 

Matrix e1ements of F18 
1 

(T = .0) 
1 

1 
.l 

J = 1 
2 2 . 

d5/ 2 d3!2 
2 ,1 

d.s/2 sl/2 sl/2d3!2 .d3/ 2 '1 
1 

i 
2 f 

d5/ 2 -2.524 -0.970. 2.732 -0.663 1.860 ! 

.1 
t 

sl/2 -3.553 1.467 0 0.519 

d5/ 2d3/ 2 
'-5.562 0.877 -0.785 

sl/2d3/2 -2.350 1.241 

2 
d3/ 2 -1. 940 

J = 2 d5!2s1 2 d5/ 2d3/ 2 sl/2d3!2 

d5/ 2s1/ 2 
-0.940 -1. 049 -1.152 

d5/ 2d3/ 2 
-2.388 -1. 284 

sl/2d3/2 . -1.411 

J = 3 
2 

dS!2 d5!2s1/2 
2 

d3 2 

2 
d5/ 2 -1.539 -1.303 0.965 0.638 

: 1 

d5/ 2s1/ 2 
-2.351 1.003 0.217 

; \ d5/ 2d3/ 2 -1.315 0.831 

2 
d3/ 2 -2.396 

J = 4 d5!2d3/2 J = 5 2 
d5/ 2 }, 

-2.863 -2.863 
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TABLE 5-11 

Matrix elements of Sc 42 (T=O) 

J = 2 
2 2 

f 7/ 2 Pl/2 

2 
. f7/2 -2.397 -0.938 

2 
Pl/2 -1.859 

J = 3 
2 2 

f 7/ 2 f7/2P3/2 P3/ 2 
1 

2 , '1 

f 7/ 2 -1.187 -0.735 -0.657 : f 

1 

f7/2P3/2 -1.172 -0.304 : ~ 
j . , 

2 ! 

P3/2 -2.273 .1 ., 
1'1 
l 

J = 5 
2 

f 7/ 2 f7/2 P3/2 
:1 :j 

2 
f 7/ 2 -1. 245 -0.979 

f7/2P3/2 -1.881 

J = 7 2 
f 7/ 2 

. i 

-2.495 
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6.1 

CHAPTER 6 

DISCUSSION 

18 Discussion of the F Result 

We shall concentrate our discussion on the result calculated 

using method C. It is seen the result agrees with the experiment only 

~qualitatively. The splittings between the excited states and the ground 

state are about 1 to 2 MeV too large. Since'we have made more than one 

assumption or approximation, it is not easy to say which is mainly 

responsible for the discrepancy between the calculated and the empirical 

levels. It is possible that they are equally responsible. For the purpose 

of separating the sources of these discrepancies, let us recall the 

important assumptions and approximations we have made. 

(a) We assumed the.0
16 

core of F18 was inert. 

6.1.1 

(b) We approximated K(w) by K (E), thus neglecting all F . 

corrections due to the second term in (3-8). 

(c) We included only triplet S-wave interaction in the 

calculation of K
F

" We shall discuss these effects 

separately. 

Let us start by comparing our result with the work done by 

6 18 
Kuo and Brown of: on F . Essentially they used the Hamada-Johnston 

potential and did a Scott-Moszkowski type calculation, including core· 

~1( 

Hereafterreferred to as KB. 
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polarization. We want to compare with their calculated spectrum before 

the core polarization is included, which is shown in Fig. 6-1. The two 

are quite similar. + + But the 3 ,5 levels in ours are higher 

than theirs. After a careful comparison between the matrix elements of 

the two calculations, it is found that the singlet force, which we 

ignored completely, contributed most significantly to the 1+ levels in 

KB. The 2+ and 3+ levels are much less affected,.· the 5+ level )' not 

at all. Thus it seems possible that had we added the triplet D-wave and 

the singlet P-wave interactions, which are mainly repulsive, the 1+ 

levels would have been pushed up relative to the other levels. By using 

a smaller E value the whole spectrum can be pulled down such that it 

matches the KB result. 

6.1.2 It is certainly not satisfactory that our result should depend 

on the free parameter E so sensitively that the spectrum can be shifted 

~p and down at will. This dependence on E probably comes entirely from 

neglecting the s'econd term in (3-8) since K(w) i tself does not depend 

on E at all. One realizes after a closer look at the correction terms 

that the most important part of them come from the term 

P 
- ~(E) E _ t l<P(E) 

with only two-particle intermediate states in the 2s-ld shell included. 

This is because QM did not include these states. Other higher states 

included in both P and Q are practically free so the denominators of 
M 
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( 
the two terms become essentially the same and the DvO terms cancel. 

Now conside~' 

+ 

where psd limits states to 

K (E) 
F 

the.' 2s-1d 

~(E) 

shell. 

(6-1) 

When E is small ~(E) is large and negative but the second 

term is positive. When E is large l).(E) is small and negative and 

the second is also negative. So adding the second term in (6-1) to ~(E) 
, ... 

already reduces the sensitivity of our force on E. Naturally only a 

detailed calculation will reveal to what extent the sensitivity is 

reduced. 

6.1.3 We expect the core polarization effect in our calculation to 

be much the same as that in KB. It is interesting to know that our 

S-wave calculation involves only three reduced matrix elements'. Treating 

these as parameters one can fit any ,three of the levels and predict the 

remaining ones. We fitted the three lowest and the resulting spectrum is 

shown in Table 6-1. 

The phenom~n010gical spectrum is strikingly similar to the final 

KB result including core polarization. 

6.2 Discussion of the sc42 Result 

It is perhaps accidental that our Sc42 result agrees so well 
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with the experiment. Probably this is because we ignored the repulsive 

forces on the one hand, while also throwing away the and 

shells on the other hand.· Some matrix elements between states (like 

f
7

/ 2 f
5

/
2

) coupled to spin lare known to be large and will depre~s 

the lowest state while the repulsive forces we neglected will compensate 

this depression. 
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Exp 

1+ -5.00 

3+ -4.06 

5+ -3.87 

1+ -1.87 

2+ -1.65 

C ~ 
Li 
li.,-
''-}:G;:_: 
i§"j 

l' .'1 
&Fj , .. 
.;.1 

TABLE 6-1 

Phenomeno1ogica1 
fit with S-wave 

force 

-5.00 

-4.04 

-3.84 

-1.37 

-1.65 

60 

Resu1t of KB 

-4.83 

-4.04 

-3.69 

-1.23 

-1.59 
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CHAPTER 7 

CONCLUSIONS 

In this work we used the triplet S-wave free reaction matrix as 

the nuclear reaction matrix to calculate the T=O spectra of F18 and 

Sc42 . The 0
16 

and Ca40 cores were assumed to be inert. In the case 

of F18 the agreement was qualitative. But for Sc42 the predicted spectruI:l 

more closely resembled the experimental one. The splitting, between the 

F18 ground state anq the excited states wa~ generally too large, and the 

spectrum as a whole was somewhat sensitive to the parameter E in the 

free reaction matrix. We argued that the sensitivity of the' spectra on 

E can be reduced by including in our K-matrix the most important correc-

tion term in (3-8), and the calculated results can be brought into a 

closer agreement with experiment when high relative orbital wave inter-

actions and core excitations such as the core polarizations are taken 

into account. 

We are thus led to the conclusion that if one wants to ob tain a 

detailed agreement betweên calculation and experiment, the free reaction 

matrix cannot literally be used as the two-particle nuclear reaction 

matrix, since correction terms had to be added. But the approximatiOn 

(3-9) is certainly a good starting point. The terms not included in 

(3-9) can be added late.r. Calculation along these lines are much needed 

in the future for the understanding of nuclear structure. 
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APPENDIX A 

We had from equation (3-4) 

= l~) + E ~ t v l'Y k) (A-l) 

where E is the relative kinetic energy of the scattering particles and t 

the relative kinetic energy of the intermediate state. 

In the coordinate representation, (A-l) becomes 

..J.J (( ( d3k ll < I 1 r k) = < Il ~) + J) J 

(A-2a) 

or 

1 ik'r 
(21i) 3/2 

·e --

2M 1 
P Sd\I S d3

r 
ik'.(r-r') 1 

v(I') t k (l') + 1,2 8Tt-
e- --

k2 _ k'2 

(A-2b) 

Now define 

l fd3~, ik ' ·(r-r l
) 1 - P e- --

k
2 _ k ,2 

2 
P )'+00 ik ' 1 r -r '1 1 

k ' dk' = il I-E.', 
e --

k
2 _ k'2 

.. r;, . 

27T { ik'ir-r'i e -- k' dk' = 
i)E.-III k '2 _ k2 
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The path C .is shawn in Fig. A-1. Noticing that the integrand 

vanishes in the upper-ha1f k'-p1ane for very large kt, we have 

l :::; 
211' 9 c' 

ik' Ir-r') 
e --
k2 _ k,2 

k' dk' 

- (i7T) il!:. - !:.'I 
21T ~ 

k'="±k 
(A-3) 

The contour C' is shawn in Fig. A-2. The first term on the right-hand 

side of (A-3) vanishes from Cauchy's theorem, sa 

l 
I!:. - :E.'I 

cos (k 1 E. -, E.'I ) 

Substituting (A-4) in ta (A-2b) we have 

ik·r M e-----
41T1, 2 

cos (k l!:. -!:. '1 ) 

I!:. - !:.'l 

Ta see the asymtotic behavior of t k (!:.) we note 

lim I!:.-E.'l :::; lim ' 
2 2 , 1/2 

(r + r - 2r • E. ) 

= lim 
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(r' ) 
k -

(A-5) 

(A-6) 
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c 

\ 

o 

where 

and 

Thus for large r (A-5) becomes 

l ik.r ikr 
e - - - e A (t.l ,10 -

r 

-ikr 
e 

r 

(A-7) 

(A-8) 

Since V(E.) = v(r) is central 1\ (t.l,t.) depends only on 

the a.ngle between t.
l 

and t., i. e., between rand t., we can expand 

J\(t.
1

,10 in the following manner. 

Also 
00 L· 

.- 1 :z- (-1) ,jP""'4-1T-(-2j-+-l) 
(2m

3
/

2 .1 =0 

Using the relations 

and 

ik'r e--

lim 
Z~()(J 

~ 

= z:.. . j 4 'Jf (2J.tl) 
.1 =0 

j..e (Z) 
1 . = - s~n Z 
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and together with (A-9,a) and (A-9b), (A-7) becomes 

z ;.,/ 41'(2J+l) 

j:::O kr 
i.l [sin (kr - ~1f) J 

2 ~~k) k cos (kr - ~~)] Y10 (~,~) (A-IO) 

The phase shift ô~ is defined as follows: 

.l 
~ C sin 
kr ~ 

L'1f' (kr - -2- + ô.l ) Y, 0 (~'!:) 

(A-11) 

where 

Comparing (A-IO) and (A-11) we ~ave 

(A-12) 

Now define the free reaction matrix RF 

RF (E) :: 
p 

v + v ~ KF (E) (A-13) 

~ operated on the free wave· state vector. J!i) gives us 

(A-14) 

In obtaining (A-14), (A-l) has been used. 

Combining (A-8), (A-9) , (A-12) and (A-14), we finally have 

the on-the-energy"shell relation 
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c~ 

where 

Q.E.D. 

• 2 2 
/ k' 1 IL (E = _k -) 1 ! ) ,- -~ ·2M 

~2 

= - 2rkM 

CD 

2. .. j4?f(2 +1) tan ~ '00 (!' ,!). 
~=O 
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k' -plane 

-Q) c +00 
-----~.------~~~- ---~ 

k' = - k k' = k 

Fig. A-l 

A 
kt-plane 

1 

c' 

1 • 
k' = - k k' = ok 1 

1 

1 

Fig. A-2 
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c APPENDIX B 

We had in section 2.2 

l ;:: P (~> ~ g(x) dx 
Jo x -a 

(B-l) 

where g(x) is analytic in (0,00) and g(x) and g'(x) vanish as 

x ~ cD and at x;:: o. 

lntegrating by parts, we get from (B-l) 

l Seo l l 
l ;:: 2a P 0 (x-a - x+a) g(x) dx 

;:: 

l +-2a 

S
eo

.8i.& dx 
x+a 

o 
2
1
a P (0

00 
), ln Jx-al g(x) dx 

(lim [( Pnlx-al g(x)) (CO + (in lx-al g(x)) ja-fJ} l (:~o+ aH: . , 0 

(B-2) 

The terms in the curly bracket in (B-2) vanish at infinity and at x ;:: o. 

The remaining terms in the bracket vanish as well, since 

[-g(aH ) in. + g(a-.) i:' "J. 
;:: lim [-2~g'(a).enG] ;:: 0 
G.~o+ 

The second term on the right-hand side of (B-2) is 
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lim 
e~O+ 

(- 2
1
a) [ {'''' fn (x-a) g' (x) dx 

a+é 

+ r-" I.n(a-x) g' (x) dX] 

= El:~ia if (x -a) in (x-a) - (x-a) J g' (x) L 
+ [(x-aJin (a -x) - (x-a)] g' (x) C" 1 
+ ia rI:) [(x-a) in 1 x-a 1 - (x-a)] g" (x) dx 

o 

The terms in the bracket vanish. SA fina~ly we have 

l = 1 --
2a 

Q.E.D. 

1 
dx +-2a 
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