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ABSTRACT

The isotopic singlet S-wave free nucleon reaction matrix

is used as the residual two-nucleon interaction to calculate the low
18 42 . . .
energy spectra of F° and Sc ~. The free reaction matrix is determined
by the demand that it reproduces the triplet S-wave two-nucleon scattering
16 40 .

data. The 0" and Ca cores are assumed to be inert. In the case of
F18, the splittings between the excited states and the ground state are
generally too large as compared with the experimental spectrum. The

- 42
possible origin of this discrepancy is discussed. In the case of Sc

the calculated spectrum more closely resembles the experimental one.
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CHAPTER 1
INTRODUCTION

The nuclear shell-model was proposed by Mayer1 and by Haxel,
Jensen, and Su‘ess2 to explain a large number of measurements of nuclear
spins and magnetic moments, and the "magic numbers.' Nucleons in a
nucleus were treated as single particles moving in an effective potential
which represents the average effect on one nucleon of all the other
nucleons. The spins and magnetic moments pf the protons and the neutrons
were assumed to pair off, respectively. In such a model the nuclei are
composed of shells of nucleons, each shell consisting of a number of
closely spaced ievels. Between two major shells there is a sizable
energy gap. A nucleus with all its shells filled has a magic mass number,
Because of the pairing effect and the gap between shells a magic number
nucleus is quite stable and a nucleus with one or two nucleons outside
a closed shell has properties mainly due to the last unpaired loose
‘nucleons. This is especially true when the '"core" of the nucleus is
doubly closed, that is, both the proton and the neutron numbers of the
nucleﬁs are magic numbers; for example, the nucleus F18 has one proton

and one neutron outside a doubly closed core, the 016 nucleus,

If the existence of two extra nueleons does not change
the structure of the core radically, then the potential in the Hamiltonian
of the two-nucleon system is effectively the average single particle

potential plus the residual interaction between the two nucleons. From
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the spectra of core plus one nucleon one can extract the needed
information on the single particle potential. One is then interested

in finding out what the residual interactiom is,

In this respect one can do mainly two things. One can either
do a pﬂenomenological fit to the known nuclear data and thus determine
the effective residual interaction, such as done by Elliot and Flowers3,
or one can use a realistic residual interaction. By realistic we mean
the interaction is derived from free nucleon-nucleon interaction data.
The latter of the two approaches is certainly more interesting in that
it gives a unified picture of nuclear interaction whereas the effectiQe
interaction determined by the first method generally varies from nucleus

.

to nucleus.

<
Dawson, Talmi, and Walecka4, Kahana and Tomusiak”, and more
recently Kuo and Browri6 used realistic interactions to calculate energy
levels of nuclei with core plus two nucleons and the results were

encouraging.

The purpose of this work is to investigate the validity of
using the free nucleon reaction matrix as the residual interaction, in

the cases of F18 and Scaz.

The Hamiltonian of the core plus two-nucleon system is derived
in Chapter 2 by means of exploring the properties of the one-particle and

two-particl~ Green's functions. The nuclear reaction matrix K is then

T KU S A
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defined and its relation to the Hamiltonian established. In Chapter 3
the free nucleon reaction matrix KF is defined and determined from two
nucleon scattering data. It is then shown that KF is a first order
approximation of K, and one expects correction terms to be small. In
. . : 18 42
Chapter 4 the single particle energies and the spectra of F  and Sc
are extracted from experimental data. Using KF as the residual
interaction in Chapter 5, the calculétion_of the energy levels of
18 '

F'~ and Sc42 are discussed and the results presented. The results are

discussed in Chapter 6. In Chapter 7 our work is concluded.



CHAPTER 2
THE NUCLEAR REACTION MATRIX AND THE RELEVANT SCHROEDINGER EQUATION
2.1 The Derivation of the Schroedinger Equafion

Qur object is to calculate the zero isotopic spin, positive
parity energy levels of F18 and Sc42. both of which have two nucleons,
a neutron and a proton, outside a doubly closed shell. To do this we

have to solve the appropriate Schroedinger equation, which we derive by

introducing the one- and two-particle Green's functions:

G o (tp-%) - -i<N}T af (cp) aaj' (%)] ] N> (2-1)

2 + +
G tt, tt) = (-1 NT[atatatat“N}
oo my Cplar Bty = CDTCN]T (e 2 (e 2 (e ()
(2-2)
Where a (t ) and a +(t ) are the time dependent creation and
o c g o :
annihilation operators respectively, for particles in states
6) = . ‘ea_ s m0~’ 30' etc. l N) is the ground state of a doubly
closed shell nucleus. T is the time ordering operator7. We shall
assume that the one particle Green's function is well approximated by
the single particle Green's function which describes the motion of
particle in an effective one.particle potential used in the Hartree-Fock*
calculation to obtain the ground state II@) . We denote the energy of

a HF single particle state by ecr . Thus we have from (2-1)

*
Hereafter abbreviated by HF
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Gf’o‘ (tp %) -~ Gpa- (t}i %-)

P &9(tp-g,)<Nla’(,°) (t?)lN+l,a)<N+1,otlag?)+(%.),N>

-i
a,a'

-0(t_-t.) <N!a(6(i)+ (t) [n-1.0) { v1,0 afo°) (cp)] N>) (2-3)
iH t -iH t |
where 39(0) (tp) - el o f a? . Hote | (2-4)

and Ho is an effective single particle Hartree-Fock Hamiltonianm,

' o
BIN) = E [N}
@ (t) is the time step function,

e(t) I, t>0

0, £<0 (2-5)

a P and ap are the time independent creation and annihilation operators,

respectively, and have the following anticommutation relations,
+
CPRE ]+ " %
+ +] _ ] - 0
{ae’aw + [ap’ao\ +

The states lN+1,0t> and ]N-l,a) form complete sets of eigenstates
of Ho with M1 and N-1 particles, which we shall call the HF single-

particle and single-hole states, respectively. Equation (2-3) now becomes
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Gop (D) = =iy, [(l-fP)G(t)-fP 9(-t)J e ¥ (2-6)

where
fo = 0, if P is a particle state,

1, if. P is a hole state.

For the two-particle Green's function, since we are not going to
consider any particle-hole states, the two creation operators and the
two annihilation operators will always have the same time. So it is

sufficient to consider only

-3V = 2"‘7
,uv(t ©0.0= GPo- ,IIY(t) (2-7)

¢ o

Making use of the relation

iHt -iHt
aP (t) a5 (t) = e aP ape

and introducing a set of "two-particle" states ]N+2,a) and "two-hole"

states ]N-Z,a) into (2-2) we get

2
(t) = (-1) Oﬁ'{ o(t) <N]aPa°,’N+2,Ot>< N+?,alaY+a +,N>

G
6,1y n
o o
~i(E -E)t
X e  MZONT oy (NiéYw“ au+ |N-2,0')

LE L, - B c}

AX <N-2,a'l apaa_ ]N) e

‘2 emwe® () + e ) (2-8)
£6 1y ‘ 6" suy -

I
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We have separated the Green's function into G(+), which

propagates forward in time, and G(-), which propagates backward in

time.

Now define the Fourier transformation

G(w) = if dt eiwt G(t) (2-9)
and obtain
= (+ (=) i
Gf’a' :uY(w) {Gft »1y (w) + GPG’ 1y (w)J _ (2-10)

where

Paa..lN+2,Ot>< N+2,ot| at +| N)

G Z<N|a

2-11
90' BY o - (Ec1:+2._ EN) :ie (2-11a)
and
Na+a+N2,a N-2,¢]a.,a_| N
c (-) () < ‘ ) >< j pa > (2-11b)
Po Y a w+(E - N) -i€

The term € = 07 in the denominator is inserted to insure that
(t
(w) have the appropriate boundary conditions. As a result we see

that G;"')pv(w) is amalytic in the upper half w-plane and has poles on
{ 3]

A . . g . 04 o]
the positive real axis which correspond to the differences E - E

N+2 N’
while G;o') Y(w) is analytic in the lower half w-plane and has poles
,
on the real axis corresponding to EQ - B . We have now reduced the

N N-2
problem of calculating the energy levels of the IN+2> and jN-2>

BEURENOP: ..

o e T e
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nucleon states to that of locating the poles of G(+) (w) and
Pony

() .
G w) respectively.
Pu‘,llY( ) P 4

The two-particle Green's function we are interested in can

be shown to satisfy an equation of the form

Geo',u‘?(tt;oo) = Gpu(t) Ga' {t) ~ pr(t:) Gd‘u(t)

y

+ 2. 1 |t de ,de’ael
e 1%%2 2
L ]

t- -t t . tl,t t!
1 GPPI( £) Ga'o'l(t l)Iplo'l,ch-z( 1 2 2
k% '
x Gpg (t.t!,00) (2-12)
2 2,ny 22

'

1 ]
Where IPfTi:PéGE(tltl’tZtZ) is an interaction operator, for -which we
shall make the simplifying assumption:

»

I (e, &)t t!) = v 5(t,-t)) d(t -t) B(t, -t}
P00, 1717272 91"'1’92“‘2 11 12 12

(2-13)

where v (1,2) 1is a two-particle potential and

PSPy (P, @] vw)] P,a o)

The numbers 1 and 2 in the brackets denote the spatial positions.

Substituting (2-13) into (2-12) we get

GPG_’W (6,000 = 6o, (6)

= G0 & () = Gy (6) G (1)

+Zi(dt"

P/ Gfpl(t-t ) Gpoy (85D v 191 Gi"z"'z’w(t )
A, (2-14)

-8 =



If we again try to separate the forward going and backward going Green's
function in time, we encounter some complication in dealing with the
integral term. Consider the contribution from this integrai to

G (+) (t). We have two terms,

Pc uy
t

s ~i(€ +€ )(t-t")
P v dto(e-t")s, .5 (1-£)(1-£)e  © ¢, (e
P10,:P% L ee, 00 P o ’ P o0, s 1Y
(2~15a)
for t'> 0 and

© -i(€ +éq,)(t-t')
: -t ! - e e (<) '
i v’°1"1"’z°‘z Jd‘t@(t £ )6‘"’18“"1(1 £0) (L-5,) e sza-z,uy(t )
-00

(2-15b)
for t"< 0. A third term vanishes when the Fourier transformation is
taken, so we shall drop it here.

It is obvious the Fourier transformation of (2-15a) is i

S G5O @ w 6

———y G w (2-1 :

The Fourier transformation of (2-15b)has, however; a different form as

we can see by considering the boundary condition. It is not very hard s
to see that the Fourier transformation of (2-15b), to the first order

approximation, is
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Fig. 2-1, Schematic diagram
representing (2-16). Two particles
p and y interact once and go into
particle states Pl and 0'1. These
two particles interact any number

of times and then go into final
states P and ¢ . The dotted

line represents an interaction
lﬁiwlqu . The thick solid line
with legs represents the two-particle

Green's function G (+) (1).
ea ’Pla.l

Fig. 2-2, Two particle~hole

- pairs P ¢, and 0,0, are created

propagate forward in time, interact

- 10 -

2’1 l
simultaneously. The two holes Pl '

and ¢ . are then annihilated by the

1
two particles » and y. The two

particles PZ and 0‘2 continue to
any number of times and finally go

into two particle states P and o

The exchange diagrams are not shown.-
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Z« (l-fp)(l-fo.) v Pl 2]
. PG ,P.C
Plo' s ‘w 6P E¢+lé 11 w-epl-eai
©2%
GH-’ (w) (2~17)
X v w -
P10,:0,0, "800y

Graphically (2-16) and (2-17) are represented by Figs. 2-1 and 2-2,
respectively.
In our calculation the term in (2-17) will be ignored. The

Fourier transformation of the forward going part of (2-14) then becomes

ny (L-£,) (1-£,) 5 s &
B 5 =8
GPa‘,uY (@) W-€p-€a+i € Pn @y Py e

)
+ v G (w) (2-18)

Graphically we have

P o
P - e <
otz
s - h
+ ﬁ ’, (exchange
I diagrams)
T .
M Y P '
M 4
Fig. 2-3

- 11 -
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In.the approximation (2-18) the two-particle Green's function
is the sum of all the so-called ladder-diagrams. It is also obvious i.n
(2-18) that all subscripts have to denote particle states. The factor
(1-£p) (1-f,) can thus be dropped.

Let us adopt the matrix notation,

(po s @ |wy =z ¢ P w (2-19)

{Poldm)=8,5 5,5,

where ]PO‘) is the HF two-nucleon state, 1.e.

B [Po) = (€,+€5)|PO) = €ps | PT) (2-20y

Equation (2-18) can then be written as

My = -1 (—-l—) (2-21)

W= Ho-v .

Suppose ] a> form a set of two-nucleon state in which Ho+v is

diagonal, and are related with IPO‘) by
LXDTED I S ¥\ (2-22)
. o ‘

Then +)
{pele™ W |puy)

! Prll |p, e * 'a]-—-L_-—— oz‘ (2-23)
Plzd_l( ' 1 1> xpla-l’axw’a < w-HO vl )

«

- 12 -
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The poles of .G" " (w) are at

@ = (afH +v]a) | (2-28)

Where ]cx) are the appropriate two-particle wave functions. Thus,

the problem of locating the poles of G(+)

(w) 1is further reduced to
that of the diagonalization of Ho+v . We can also identify the state
Ja) with | N2, @) . Our object is now clear: to solve the

Schroedinger equation

(H+ V) Jay = o a) = (Eﬁ+2 - E;) o) (2-25)

with the eigenstates and eigenvalues of Ho known.

If the two-particle interaction v is well behaved; i.e., the
matrix elements of v between the unperturbed two particle wave functions
are small, then one can diagonalize Ho+ v in a finite dimensional
subspace of unperturbed two-particle states with low unperturbed
energies, since the high energy unperturbed states will not be affected
by v . On the other hand, if the matrix elements of v are always
comparable to the unperturbed energies, Ho+ v must then be diagonalized
in the complete space of unperturbed wave functions. The matrix H°+ v
which enters the calculation then becomes infinite dimensional and
cannot be diagonalized in practiée.

| Unfortunately, the realistic two-nucleon interaction is not well

behaved. As we know two nucleons repel each other very strongly when

-13 -
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they are at very close distances. In fact v must either have a hard
core or be momentum dependent to fit the N;N free scattering data.

In either case, the matrix elements of v will not be small compared
to the unperturbed energies &€pgy. It is thus clear that one cannot
diagonalize Ho+ v in a finite subspace, aﬁd we have to proceed

otherwise to solve (2-25),.

2.2 The Nuclear Reaction Matrix

Let us make the following two observations. (a) Since two
nucleons interact strongly at short distances once they are sufficiently
close to each other they will interact many times before they separate.
(b) The total effect of this multiple-interaction is finite. It then
follows that instead of using v we should use something which describes

the multiple-scattering between two nucleons in our calculation, For

this purpose let us define the nuclear reaction matrix K,

K@ = v+v—te— K@ (2-26)

Where QM is an operator which excludes from the two-nucleon intermediate
states all occupied states and those states included in a subspace M,
which we shall choose at our convenience. Graphically (2-26) describes

the following processes.

- 14 -
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p '
e T P -
P 3 /h
P "n
~ A A A L4 T
A id
NAAAY = - e - at dabh 4+ bF---- + -
) 4
1 ® A J\ - T af b
L A
4 4
M Y M Y )
M Y
M Y
Fig. 2-4

Where the wavy line represents a K-interaction and the dotted line a
v-interaction. ab and c¢d are two-particle'intermediate states allowed
by the operator QM. We have in the present formalism omitted all core
excitations.

Let us also define the wave'operator QM and the model wave
function |a, M> : .

Q
Q, = l+: _MHO v (2-27)

o)

1

o, la, M)
Q
w - H
o)

ja, M) o+ v]a) (2-28)

<

Where l(}) is the actual two-particle wave function, i.e., the

eigenfunction of (2-25). .

- 15 -
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From (2-26), (2-27) and (2-28), we have

KW = v Q‘M (2-29)
and .
K (W) |a, ¥) = v]a) (2-30)
In the following we shall show-that the eigenvalues of
H°+ v when diagonalized in the complete space is the same as the eigen-
values of H0+ K(w) when diagonalized in the subspace M. ILet Xpo
be the amplitude of | cx> in the unperturbed two particle state |P0'>’

then

. .
la) = Z xpelPc) (2-31)

From (2-28) since QM excludes all states in M we can write

fa) = la, ) +1X%) (2-32)
where _
low) = Z  XeglPo) (2-324)
= x pe) (2-32b)
1 X7 ,?;—' . e | PO

]cx, M> and f')C) are orthogonal to each other.

Equation (2-25) now becomes

(- w) Jo, M)+ K@) Jo, M) + (- w)[X) =0 (2-33)

Looking for the compoment |P0'> we get

- 16 -
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2 (€ppm ) X+ (Po|K(W) | By ) X py = 0 . PELRYEN (2-34)
MY
,‘Zy,(é,,o,.' ) Xppe +{PTl KW V)X = 0, e,

ny e M (2-35)

Equation (2-34) shows that w is obtained by diagonalizing H6+ K(w) in

M. Our effective Schroedinger equation can now be written as
(H+ K(w) )], My = wa, M) (2-36)

The eigenfunction of (2-34) is not the actual wave function

Ja) but the model wave function |, M) . The components of ) )
not in M, i.e., the components of |X), can be calculated using (2-35),
which is just another way of writing (2-32b). It should be pointed out
that if one were to do an exact calculation of K(w) using (2-26) the
subspace M one chooses is irrelevant to the final solution of (2-36).
But in the actual calculation,which will be described below, it is
necessary that we choose M to be those with low unperturbed energies.
This will be discussed in more detail later.

" Now we have to calculate K(w). This is non-trivial because
K(w) depends explicitly on w. In fact K(w) cannot be calculated
exactly. Moszkowski and Scott8 developed a method to calculate K(w)
approximately. They first assumed that the behaviour of nucleons in the
low density region of nuclei is not very different from free nucleons

with low energies. Then they separated the two-nucleon potential, derived

-17 -
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by fitting two-nucleon scattering déta, into a short range potential vs
and a long range potential Vp . The cut was made such that v,

which includes the strongly repulsive core and part of the attractive
force, produces no phase shift for low energy free nucleon scattering.
In this way they can assume the matrix elements of the short range free

nucleon reaction matrix to be zevo, and make the approximation
w) =
K (w) \/)

Our approach, developed by Kahana and Tomusiaks, is to expand K(w)
directly in terms of the free nucleon reaction matrix, KF*. This

method has the advantage that no separation distance has to be determined.
Moreover, the separation distance in the Moszkow;ki and Scott method is
usually state dependent, and is capable of causing some ambigﬁity when

it is taken state independently. In our calculation we shall actually
use the approximation

K (W = K (2-37)

It is the purpose of this work to test this approximation in
the case of F18 and Sc42. We mention here that (2-37) also has some
ambiguity of its own. This ambiguity stems from the fact that K(w)
should be evaluated at the total energy, w , of the two-particle system
in the nucleus, while KF is a function of‘the relative kinetic energy, E,
of the free two-particle system, and in the right-hand side of (2-37) one
is not certain at what value of E to take KF' This point will be

discussed in detail in Chapter 5.

*
See next chapter.

- 18 =




CHAPTER 3

THE FREE REACTION MATRIX

3.1 The Free Reaction Matrix

The reaction matrix describing the multiple-scattering of two

free nucleons is the free reaction matrix KF(E)

— K (®) (3-1)

KF(E) = V+vy

where t 1is the energy of an intermediate nucleon pair.

Here unlike the prbblem of finite nuclei we are not interested
in diagonalizing the Hamiltonian so the operator P excludes only the
initial state and actually becomes the principal value operator in the
integral equation (3-1). The free nucieons have definite momenta so the
unperturbed Hamiltonian is just the relative kinetic energy of the two -
nucleons.

The total Hamiltonian is
H = t4v (3-2)

with the wave function \¥’ satisfying the Schroedinger equation:

HY = (t+v)Y = EY (3-3)

The model wave function now is just the plane wave @ itself and analogous

to (2-29) and (2-31)

-19 -
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S
R

= ¢+Ef’tv1l) - ‘ (3-4)
and”
K.(E) § = vy (3-5)

In the center of mass frame t is the relative kinetié energy of the two
free nucleons in éhe intermediate states and E is the'relative kinetic
energy of the scattering nucleons.
For a central interaction, v(r) = v(f), the scattered wave
Vb will be taken to satisfy the boundary condition that it behaves

asymtotically as a sum of spherical standing waves,

2 | '
Vi — 1%;0 [amr (2431) T Cp sin(kr - —‘6-271 +8) ¥, (k ;_)(3“5)

where &, is the phase shift of the partial wave with angular momentum

.f and
1

c = —————
£ (ZWDB/ZCOS 5,

It is shown in Appendix A that the on-the-energy-shell matrix element of

KF is related to the tangent of the phase shift ?I by

(K Rg(E = k—zﬁi)l k)

] = k]

12 2 s
s - —=— X 4o (2+1) tan d,Y,, (k',k (3-7)
2P 420 440 (&0

where ] k) is the plane wave § with relative momentum k .

- 20 -
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The matrix elements on the left-hand side of (3-7) can be

numerically evaluated when the phase shifts are measured experimentally.

3.2 The Free Reaction Matrix as an Approximation to the Nuclear

Reaction Matrix

The nuclear reaction matrix K(w) is relafed to the free reaction
matrix KF(E) by the following equation,
i NP ey ;
kW = K® + KO (53 - 57 ) XKW (3-8)

o)

This equation is simply obtained by solving, (3-1) for v and substituting-
i11t0 (2"26) .
As mentioned in the last ‘chapter, we actually used in our

calculation the approximation
K(w) = KF(E) V . (3-9)

One would think that K and KF actually would differ considerably

since bound nucleons behave differently from free nucleons. The reason
the approximation is worth making is because the two nucleons we are
considering are outside a doubly‘closed‘shell and are quite loosely bound.
As a result they spend appreciably more time in regions of low density
than the cdre nucleons. Furthermore, the two-particle intermediate states

included in QM in (3-8) are either more loosely bound or are free states

and a large part of this contribution is cancelled by the terms included

- 21 -




in P. In any case (3-9) is the first step one has to do in our calculation
and corrections to (3-9) can always be added if they need be. These
corrections include the second term in (3-8) and those caused by the
excitation of nucleons in the nucleus core.

We mentioned in the last chapter that were K{w) calculated
exactly the solution of (2-36) would have been independent of the model
space M. Since we are using approximation (3-9) instead, it is clear
that our solution will depend on M. Naturally we then want to choose
M such that the second term in (3-8) will contribute the least. We thus
choose M to be a set of unperturbed two-particle states which have the
lowest energies. The states outside M, i.e., those included in QM will
be practically free and will mostly cancel with the corresponding states

in P in (3-8).

3.3 The Determination of KF(E) \

\
N

We shall write the KF-matrix element in the relétive coordinates
of the scattering nucleons. So in (3-7) the denominator is E-t, where
E is the relative energy parameter, and t the relative kinetic energy
operator. In (3-9) the matrix element of _KF in the momentum space can

be transformed into coordinate space representation,

(KRB | k) = Sg Cr e (R - (2] . (EI8). 1o

-2 -
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where 1 i ker
{klz) = ——-—(27’)3/2 e == (3-11)

In our work we are interested in the determination of the

isotopic singlet KF. The igotopic triplet KF was already described by

-Kahana and Tomusiaks. We shall find a K, which reproduces the relative

F

S-wave phase shift. It is known that_puclear force has very short range,
hence the S-wave interaction dominates at low energies. Other relative
waves may contribute significantly but we will ignore them in this work.
In this case there can be no spin-orbit force. 1Im calculating the
KF—matrix we shall also neglect the purely tensor component. As is know from
calculations concerning the deuteron'grouné state, which consists of a
proton and a neutron with total spin equal to 1 and isotopic spin equal
to 0, the tensor force is probably as strong as the central force. Thus
using a pure central force in our calculation is not complefely justifiable
except that it makes the calculation much more transparent. On the other
hand a first order central X matrix includes contributions from a tégsor
component in the potential,

As a consequence of the simplifica;ions made above, we shall mot
expect our calculation to agree with the experimental data in any detailed

manner.

With only a central KF being taken into account the spin

3

triplet S-wave KF-matrix, KFo » elements can be written as
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(E'I3KF° ®lc) = /4—17;- 3K° (X'hr; B) Yo (&'r)  (3-12)

Comparing (3-10) and (3-12) we get

,%2 w
- —— tan (BS ) = (r‘r)2 3K (x',r; E) d3r d3r'
Mk 1 A o = =
(3-13)
where o (381) is the spin triplet S-wave phase shift.

It was pointed out by Kahana9 that components of relative kinetic
energy up to 100 MeV in free nucleon scattefing could also enter into the
interaction between two nucleons outside the closed shell of a finite
nucleus., Thus contrary to earlier authors who calculated effective forces
by only considering the very low energy phase shifts, we shall also take
phase shifts of energies up to 100 MeV into account.

The numerical calculation of 3KFo was done by Kahana, Lee

10

and Scott™ . It was found to be necegssary to use an energy dependent

form. The result is:

3
Keol®) = BT (12,677.0K | 5 {[6(;12> et TR O®w)

]

E/MC2 E/MC2 |
- 5.9355[5(;_12) i, 1t o, I 5(512)]} MeV (3-14)

In (3~14) ?(p is the proton Compton wave length in fermis,

a(p = ,2103 (f)

In determining (3-14), E was taken as the relative kinetic energy explicitly,

‘

#)
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The relative coordinates are denoted explicitly by the subscript 12,

= r

I12 75
- b
_im (3 2\ L » |
1o T 21 (351 ) 952)‘ 7 (B - Ry (3-15)

Py when taken as an operator, on the right-hand side of '8(512)

operates only on the states to its right; likewise when it is on the

_ left of 8(512). The denominator (E/E, --'1)-1 in (3-14) is iatroduced

to account for the infinity which occurs in tan 6(381). Ittis known

that if the reaction matrix has é pole at a negative E, which in this case
corresponds to the deuteron bound state in the 381 channel, it will alsd
have a pole at some positive value of E. In fhe phase shifts determined
by Hamada and Johnstonll " tan 8(381) has a pole, i.e. 8(381) = 7T/2,

at 8.6 ﬁeV. So we set. Eo at this value. The second term in the curly

bracket in (3-14) accounts for the vanishing of the phase shift at about

150 MeV and reflects the existence of a hard core.
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- mental spectra of O and F

CHAPTER 4

THE SINGLE PARTICLE ENERGIES AND

THE EXPERIMENTAL SPECTRA OF Fls AND Sc42

In this work we calculated the energy levels of F18 and Sc42
The calculations are similar for both nuclei. In the following we shall
discuss the determination of single particle energies and the experiment
spectrum of F18 only. Data for Sc42 are included in Tables 4-4 and 4-5

at the end of this chapter.

4,1 -bata for F*s

For F18 we choose the 2s-1d shell to be the model space M. :
The single particle energies of these shells are taken from the experi-
17 L (12). In Fig. 4-1 are shown the relevant

spectra.
Notice there is a difference of 2.762 MeV between thé ground
states of 017 and F17. This is preéumably caused by the Coulomb force.

Also the energy differences between the s level and the d3/2 level

1/2
and the d3/2 and the d5/2 ones, differ by 0.4 and 0.3 MeV, respectively,

in the two nuclei.

For the eigenvalues of our secular equation (2-36), we take

arbitrarily the scale correspond to

e

» p
5/2,5/2

n
€5,* €5/

= 0
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(MeV)

4.142

7.46 3/27

5,08 3/2%

3.26 1/27

2.762 5/2%
L7

0.87 1727

0.0 5/2%
' 017 —

3.36
+ P

Fig. 4-1

Spectra of O17 and Fl7
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Physically the eigenvalues of (2-36) correspond then to the
pairing energies between the proton and neutron. The experimental values -
can be extracted from the relevant spectra by subtracting the binding

. 17 17 . 18
energies of F and O from the binding energy of F . The relevant
spectra are shown in Figs. 4-1 and 4-2.
The binding energy of deuteron is known to be -2,226 MeV, so

the binding energy of the ground state of F18 is

‘ -7.514 - 2,226 = -9,74 (MeV) (4-1)
‘ 18 |
The ground state energy of F  1is at
-9.74 4+ 0.598 + 4.142 = =5.00 (MeV)

In Table 4~1 are listed all low lying experimental levels of

F18.(13)
If we extract in the same manner the ground state (Jqﬁ T = 0+; 1)
of 018 from Figs..4-l and 4~2, we get
0%t

w = =3,92 MeV

3 - Comparing this to the lowest 0+; 1 1level of F18, there is only a small
discrepancy of 0.03 MeV. We thus have good evidence for the charge
independence of the nuclear force. We shall here concern ourselves with

the T =0 states, the T =1 states being essentially those of 018.

I The lowest two-particle state with negative parity.has an unperturbed

R D)

energy at about 12 MeV, and so we do not expect the actual state to be

.leer than 7 MeV.
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(MeV)

12 ¢

11

10 &

0

12.215

+ 2n

7.514

59 1+
1:.677 1 '20‘ b4

,FlS

0 Mev 0F:1

o18

9,191

016 4+ d

Fig. 4-2

Ground States of O18 and F18
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Energy (MeV)

-5.00
-4,06
-3.95
~3.92
-3.87
-3,30
-2.90

-2.48

Experimental energy levels of Fl .

TABLE 4-1

Quantum numbers not specified are not yet
known, those in brackets are unconfirmed.

Energy (MeV)
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. in the 2s

In any case as mentioned before, solving the secular equation (2-36)

only in the 2s-1d shell will not give us ény negative parity states.
Because of the crude nature of our calculation, we shall compare

our result only with the lower five T=0 positive parity levels in

Table 4-1, which we list again below.

TABLE 4-2

Energy JqT;T
-5.00 1*;0

© 4,06 370
-3.87 st
-3.30 ;0
2,48 250

A more subtle point concerns with the difference between the
17 - 17

“spectra of F ' and 0 . Consider a HF state with two particles in the

2s shell, then the unperturbed energy is

1/2
0.87 + 0.50 = 1,37 MeV

If, hewever, one of the particles is in the 1d5/2 shell and the other one

1/2

- 31 -
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energy to be

d S 0.00 + 0.87 = 0.87 MeV
5/2°71/2

0.00 + 0.5 = 0,50 MeV

or

that is, taking the particle.in the 2s shell to be a protom or a

1/2
neutron,
To treat this problem properly we should take into account o

the difference between single particle energy of a proton and a neutron

by writing the HF energy

pe

where ’C'3 is the third component of the isotopic spin operator. The
superscripts p and n denote the single particle energy taken from F17 and
0 7, respectively, This formalism, however, breaks the symmetry of the

isotopic spin (charge independence), as can be seen by realizing that

QTP3 does not commute with

i.e., [ T, )‘i‘] X 0

In this case the perturbed states should not have T as a good

quantum nvmber and everything becomes quite a bit more complicated.

- 32 -
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We feel reluctant to accept this complication just because of a difference
of 0.3 MeV, when previously we made approximations which were at least as
important.
‘o \ i 17 17

Still we have to decide to use the O or the F© spectra. Now
the proton in F17 is very loosely bound by only 0.1 MeV. This presumably
is because of the Coulomb repulsion exerted on the proton by the core.
In our calculation the Coulomb force is entirely ignored. So it is most
reasonable to think that if we had done a proper HF calculation, the

17 17 17

0" and F~  spectra would resemble the real 07 spectrum wore closely.
So, if the two particles are in different shells, we shall take ihe single
particle energy from the 0”7 spectrum, In Table &-3 are listed the

unperturbed energies of the two particle states. A proper treatment of

the Coulomb force was done by Gillet.14

TABLE 4-3

~.

Unperturbed two-particle energies of ¥

State Energy State Energ}
(d. .y 0.0 d_,.d 5.08
5/2 : 5/273/2 ‘
4d5/231/2 0.87 Slf2d3/2 5.95

2 ' 2
(s1/5) 1.37 | (d3/,) 9.78
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4,2 The Single Particle Wave Function

For the single particle wave functions we take the harmonic
oscillator wave functions. This is the usual practice in the literature.
The reason is the harmonic wave functione can be transformed into wave
functions in terms of relative and center of mass coordinates readily.*
We should, however, mention that the harmonic oscillator wave functions
as approximations to the real wave functions are at their worst for the
outmost nucleons in the nucleus. This is because the effective one
particle potential decreases towards zero as the distance from the
center of the nucleus increases, whiie the harmonic oscillator potential

increases quadratically. The wave functions relevant to our calculation

wiil be given in the next chapter.

4.3 Data for Sc42

. < 2 ' . . .
Experiemmtal data for Sc4 relevant to this work are listed in

Tables 44 and 4-5.

*See Chapter 5, section 5.1.
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TABLE &4-4

Unperturbed two-particle energies of Sc

Energy (MeV)

State
2
- fl/2 0.0
fl/2p3/2 2.08
. . 2
P3/2 4,16
TABLE 4-5

Experimental low lying levels (T=0, positive parity) of Sc

J u Energy
17 -2.57
7t -2.48
5+ -1.85

J./n'

3+
?

? .

- 35 -
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-1.68
-0.19

0.33
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42 (16)




et sy v e e e

CHAPTER 5

METHODS AND RESULTS OF CALCULATION o

5.1 The Calculation of the Matrix Elements

The secular equation (2-36) can be written as

(0
Z[e 5 5 +K E - Fy
0 (04
p oy P PR CY FF@'ﬂlY By, FPos
where X are the components of the ﬁodel wave function | a,bd)

iz o

and P denotes the set of quantum numbers which label the harmonic

.

oscillator wave functions ' : '
P= mplp i)

To solve we have to calculate the matrix elements

g =<pelR®] W) \ (5-1)

PRy

and diagonalize the matrix

. c B K ' ' 5«2
CPo‘Spp oy T FPo'uy (5-2)

The eigenvalues A are to be compared with those listed in Tables 4-1

and 4-5. The eigenvectors give the configuration mixing. To

‘xFO',Ot
calculate the matrix elements, we couple the two particles to a state of
good total spin J and isotopic spin T, using the j-j coupling scheme.

Since the particles are in the 2s-1d shell (for Fls), all states have

positive parity. The unperturbed states in the j-j'coupling scheme are
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I/o6~;.]‘l‘> = > <JO\ (nffp) Jamp (ng ‘pa-) ir ma‘)
mp ;Mg
Tp, T

x {113 C2%) [0 )G D) (53)

Qur KF-matrix is local and central, and spin independent. To evaluate

the radial integrals we have to transform the j-j coupling to L-S coupling

[Goids 1) = 2 (Ut G D s 3] G,305 3)
. L, S
"L
x {L wsig | M) | ¢ onghon £)s ) | (% %); S

(5-4)

. | o 17
The j-j L-8S transformation coefficients -are related to the X-coefficients

by '
Clpdoy o (6,8 85 9| ot o ) 3p 3 3)

jpﬂL

-4

= [(2nan) 2541y (25 +1) (23 1] 1 X 8, 6 5
: i3 30 (5-5)
Theée coefficients are tabulated by Kennedy and Cliff}8
The KF-matrix is expressed in terms of relative coordinates of
the two nucleons, so we have to transform the harmonic wave functions

to wave functions in terms of relative and center of mass coordinates of

the two particles.
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‘ | (np]P,na-]a');.LML> = %N . <an£;Ll npﬂpn¢ﬂ¢; L>

x | il ) (5-6)

Where ln ;?) and lN,f) "are harmonic osciilator wave functions in terms
. . . 1
of relative and center of mass coordinates, respectively, 9 The trans-

formation brackets

{nﬂNof; Linp[', na,f, H L>
are tabulated by Brody and Moshinsky.20
All transformations involved are straightforward and the result
is

{Pa; I'T'] K| uy; JTD

L’L‘ )S3N’£

['ﬂ;n,n',j

11 .. |
x (UL L G s 3]a) 3)

= LAy, GPs; 3] G, a0 1)

™

<npjpno.j’a_; L', n'j'N,(f; L

b

(nplu nY]YS LI adNL; L)

"

U (& 25s; L'f) U (&23s; Lg) (_,?+/-L-L'

b

(a'lis;JTirlals:d T>‘ Bppt Oypr (5-7)
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2{ is the relative total angular momentum. U is the U- coefficient,

related to the Racah coefficient21 W by

/ /2

Ulabcecd; e f) = (2e+l)l 2 (2f+1)1 W(a b c d; e £)

4
Since we are considering only S-wave interaction A and £ in (5-7) are
always equal to zero. 1In this case the U-coefficients in (5-7) are equal
to one and also
Because we are dealing with two fermion states, the state vectors have to
be antisymmetrized, This can be dome by multiplying ]Pc‘; JT) by a

ffactor of

A

S+T+ 4 L if (nP/P j,o) = (na"[c- j,-)

1 - (-1)

2
4&? : otherwise

In our work this factor reduces to

1 if (@ dpds) = (0p A 3)
(5-8)
J?; otherwise

Another remark we have to make is that the relative coordinate

used in determining the Moshinsky transformation brackets is different

from the Lo used in our KF.lg. The two are related by
r, = (r, - ¢.) L T
=M J2 -1 =2 J2 L2
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Hence,

T =ﬁl’

I Ly» Ry T F (5-9)

Henceforth, r and p with no subscripts will denote the Moshinsky
coordinates.
As mentioned at the end of Chapter 2, we would like to point

out that there is a possible ambiguity in our treatment of the free reaction

matrix. Essentially, we will be using the form given in (3-14), i.e. we use

3 3 1 1 1
%o ~ "87[(12’677)%? Eg [8(512) B, -1 ' EE. L 5(z;)]
2 , .
-5.9355 [(E%Q—I 8(x;,) + 5(xp)) (‘éféc 1]3 (3-14) -
4 -4 J

The aﬁbiguity then arises because we can éreat E as a free
parameter as equation (3-7) would seem to indicate or else we can set
E= _Eig_ , the relative kinetic energy operator. The physic; contained
in thi;Mambiguity'is that we are uncertain at what energy E to compare the
nuclear reaction matrix K(w) to the free reaction matrix KF(E) in
equation (3-9). For two nucleons in the shell model potential one might
be inclined to take some average relative kinetic energy determined by the
depth of the well, or onme might allow the relative kinetic energy to be an
operator and in effect permit the shell m&del wave functions to perform an

average over this operator. Another possibility is to take the E in the

factor (fflﬁ, -1)_1, which results from the existence of the. deuteron
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bound state, as & parameter, while taking the relative kinetic energy in

. the repulsion term, which accounts for tlie repulsive nature between two

nucleons at high energies, to be an operator. This is to weight the
repulsive force more for states with high relative kinetic energies than
those with low energies. That we should treat E differently at two
places is subject to some criticism. But we know that F is equal to

the relative kinetic energy only when both of the nucleons are on the
energy shell, on the other hand nucleons in a nucleus are most of the

ti;ne off the energy shell. So we believe our treatment of E 1is

not inconsistent but is part of the ambiguity. We will in féct follow

all of these prescriptions and compare the results. Since the calculations
are essentially similar, the preiiminary discussion immediately below a?plies
to all, Concerning the evaluation of the radial integrals we do the term

{n'o} 5(_1‘_12) f(p_lz)) ney explici;ly.

{r'o]} 5(;_12) f(p_lz)] no) = E;'—-jé—_— {n'o] %%2- f(%) ) no>
: (5-10)
The #function f(Elz) ='f(.;/£§£) can be taken. as a constant, or as a function
of t;he relative momentum appropriate to our interpretation of E as a
constant or as an operator. The factor 1/4 "in (5-10) comes from the

normalization of the d-function,

3
.fa (€p) &5y, =1

and the factors 1/»/—8- and 1/ J2 from using (5-9).




;\_
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o
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When E is taken as a constant then (5-10) simply becomes

l R
{n'0] 8(x,.) £(p,,) [ n0) = £Q14E) . (0) R__(0)
12 12 4,7}.'/5 o} 1no
(5-11)
Where R . is a harmonic oscillator radial wave function.®

pold)

When E is taken as an operator (5-10) becomes

L d3r'd3r”d3k'd3k" <n|0 l£|> <_r_|) a_r(_%ll £u>

48
| x (e wy (K f<“ 1) (k'mo ) (5-12)
where | _
('l a0) = ¥, @) Ry 6w (5-13a) -
(E'1R0y = v @) 87 R &/p) " (5-13b)
1 -ik-r
(ki) i r-a (5-13c)

_ 47w PN *
- 7= %m (07 3y0e) (00 Yo, ()
*The harmonic oscillator radial wave functions an(r) are defined as
3/2 1/2 A+1/2 2 2
R0 = 822 [2a) 17 (naeli3/2)] (ory exp(-87 /201, (67")

where Li(z) are the Laguerre polynomials generated by

= i tn L:(Z) . .

(1_t)a+l n=

e-Zt/(l-t)
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Following we give the Rno's relevant to our calculation,

L 2.2
_3/2 2 7 B
Roo(Pr) = B FGr)  ©

' 32 [/ 2 i
R (PT) Pesray  G/2-8

il
1w

N _3/2 4 A;g 5,22 1 44 °
Ryq(BY) AT G r2PT rgprIe

1
w

Ryo(B0) = 8212 12/ [0y

1 22
22 ZPT
r7) e

B is related to the harmonic oscillator parameter w by

Tomusiak in their calculation of the energy levels of O

PO %@ = 0.024115 wh (£7%)

For the value of wh , we take the one used by Kahana and

wh = 14.4 (Mev)

18(5) .

We will be discussing explicitly the nucleus Fls. The calculation for Sc

is

similar and only the result need be presented.

Putting (5-12) into (5-11) we get

- 43 -

42



3723 R16(0) ,S' f(}%r) R (k/B)k"dk

"0]8(x, ) £(p..)] 00> =
{n'0] 12 12 %)

[o]
(5-15)

The function £(z) in (5-15) has the form

where h(z) 1is a second order polynomial in z and p the principal value
operator. So essentially we have to perform the integration

. . @ 1 ‘
P g -3 & (z) .d z (5-16)
. 02 - a

where in our case g(z) and g'(z) are analytic in the range (0,00 )

and vanish exponentially as .z —» 00 and are equal to zero at z = 0,

The pole in the integrand is extracted by means of the principal wvalue operator
and the result is*

5 =
9z -

o ]
S - - L glz)
PS az g(2) dz P dz

w
+ Elz j. [(z - a) (z -a) - (z - a)] g"(z) dz. (5-17)

0.
The calculation of the other radial integrals is straightforward.
In the following we shall outline the results obtained from

treating E by the three aforementioned different prescriptions separately.

%
See Appendix B.
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We shall call the case when E 1is a constant method A and the case when.

E is an operator method B. The prescription in which E in (E/Eo - l)-1

) 2 . . .
is taken as a constant and p /M in the repulsive term is taken as an
operator will be called method C. We find in fact it is better to set E

equal to some average value of the relative kinetic energy and we shall

outline these results first.

5.2 Results for F18 :

N

5.2.1 Method A

In 3KF E is the relative kinetic energy of the two nucleons.

In this section ; will be taken as a constant representing the average
relative kinetic energy of the neutron and the proton in the nucleus.

Before doing the calculation, we will see what is a réasonable
value for E. The depth of the average potential in the shell model is
about 50 MeV. The twovpartiéles outside a doubly closed shell are loosely
bound. ’This.mean; the total energy of each particle.in the 2s-1d shell of
a harmonic oscillator appropriate to F18 is about 50 MeV, Its average'Kinetic
energy is about half this value, since in .a harmonic oscillator the average
kinetic energy is half the total energy. Thus the totél kinetic energy of

the two particles can be from zero to 100 MeV and has an average value around

50 MeV. ‘Thén the relative kinetic energy should vary in the range, 0-50 MeV.
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In the actual calculation we varied E from 30 MeV to 60 MeV
in steps of 0,5 MeV and diagonalize H°+ KF for each value of E in the
2s-1d shell. Fig. 5-1 shows the eigenvalues corresponding to the twb

-+

lowest'I+ levels, the lowest 3+, 5" and 2+ levels, as a function of E.

At E = 64 MeV we have the following energies‘for method A.

TABLE 5-1

F18 result using method A.

Energy (MeV) JT(T = 0)
-5.55 it
-2.42 » 37
2,12 5t
-1.41 1t
- w031 2+

?

E = 64 MeV is the optimum value of the parameter. The fit to experiment
is clearly only qualitative at this point in our calculation.

A more complete discussion will be presented in the next chapter{

5.2,2 Method B

If we treat E as an operator we will have no parameters in our

calculation. The low lying levels are shown in Table 5-5.




TABLE 5-5

F18 result using method B. |

Energy (MeV) JT(T = 0) !
-17.32 1t
-7.76 3t
-2.27 st ,
-3.71 - 1t :
2+

ot -4.39

Clearly it is not appropriate to take E as an operator and

let the harmonic oscillator wave functions perform the averaging of the

relative kinetic energy.

5.2.3 _Méthod C

In this method E in.the denominator is treated as a constant
and E din the numerator in the repulsive term is- treated as an operator,
The low lying levels are listed in Table 5-6 for ﬁ = 46 MeV.

The results‘of method A and method C are quite similar but the
latter is definitely an improvement over the former. . Also we see E iﬁ
this method has a value more réasonable thaﬁ that of method A, where it is.
somewhat large, The.calculafed'modél wave functions using this method are

in Table 5-7.

- 47 -




TABLE 5-6

F18 result using method C.

Energy (MeV) J (T =0)
-5.59 1+
‘ -3.11 3t
-2.86 st
-1.49 1
-0.86 2t

5.3 Results for Sc42

The nucleus Sc42 is treated as a proton and a neutron outside the
Ca40 core, which consists of a doubly closed shell., The Hamiltonian
H+ KF(E ) is dlagongllzed in the lf7/2 and 2p3/2 shell, Method C

is used. The optimum value of E is 34 MeV. Only the T = 0 levels are

calculated. The T =1 levels are the same as those of Caaz, which wére

calculated by Kahana and Tomusiak.5 The experiment and calculated levels
and the model wave.functions_are listed in Table 5-8.
| The reducgd matrix‘eléments of KF for Fls.and Sc42 are listed in
Table 5-9. The matrix elements are given in Tablés 5-10 and 5-11. The
18

calculated levels of F~ and Sc42 versus E using method C are plotted in

Figs. 5-1 énd 5-2, respectively.
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TABLE 5-7
. ' . . 18%
_Eigenvalues and (model) eigenfunctions of F (T=0)

ot 2 2 ' 2

J© Energy  (MeV)  dgi dgo81, 0 Sisn 555930 Si%3n Y30
Exp Cal

17 -5.00  -5.59 . 706 0 450 =.526 .021 -.148
3t wa06 -3.11 .702 .684 0 . -.193 0 -, 041
st -3.874 -2.86 1.0 0 0 0 0 0
1 41,87 <149 =490 0 864 061 -.069  .064
2F 1,65 -0.86 0 .890 0 1363 .276 .0

“wﬁ== 14.4 MeV, E = 46 MeV. The third lowest l+ and the second lowest 27

experiment levels are listed.

- 51 -




TABLE 5-8

Eigenvalues and (model) eigenfunctions of 3042“

2 2

.
37 Energy (MeV) 102 £7/2P3/2 P3/2

Exp Cal

1t -2.57 -2.58 S .982 0 .189
7+ '-2.484 2.9 7 0 0
st s -1.83 .8458 s 0
3t -1.68 | -1.57 .931 . .302 .20

0.33 0.39 -.514 .858 0

%
wh = 11.2 MeV, E = 34 MeV
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TABLE 5-9

18 42

Reduced matrix element of K.F for F© and Sc

wh B : { 00} KF(E) | n0)
) n=0 n=1 n=2 n=3
A -5.652  -8.478  -10.600
P8 144 46 B -6.044  -37.727 . 24.385
¢ -7.63%  -9.012  -8.217
b2 -9.080

Sc 11.2 34 ¢ -7.984 -10.060  -10.179
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2
ds/a

d5/251/2
4524377

2
d3/2

TABLE 5-10

18

Matrix elements of F~ (T = .0)

4552 Slié 459 9375 Sy/9d3)9 @3?2
~2,524 -0.970 . 2.732 -0.663 1,860
-3.553 1,467 0 0.519
15,562 0.877  -0.785
22.350  1.241
-1.940
4595172 9528370 S1/9%9
~0.940 -1.049 -1.152-
-2.388 -1;284
1.4l
ds?z d5/951 70 Y53y d3?2
-1.539 -1.303 - 0.965 0.638
h -2.351 1.003 0,217
-i.315 0.831
-2.396
4,4 1=5 4>
5/2%/2 5/2
-2.863 2,863
- 5 -




Matrix elements of Sc["2 (T=0)

A 2
112
2

P1/2
2
£02

£1/2P32

2
P3/2

2
£172

£5/9P3/2

TABLE 5-11

;2 2
7/2 P10
-2.397 ~0.938
-1.859
2 2
£7/2 £7/2P3/2 P3/7
-1.187 -0.735 ~0.657
-1.172 ~0.304
~2.273
2 .
£7/2 £1/9P3)2
-1.245 -0.979
-1.881
2
972
-2.495
R 5 s -
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C CHAPTER 6

DISCUSSION

6.1 Discussion of the F18 Result

We shall concentrate our discussion 6n the result calculated

using method C. It is seen the result agrees with the experiment only
“”"‘\«qualitatively. The splittings between the excited stateé and the ground

state are about 1 to 2 MeV too large. >Since'we have made more than one
assumption or approximation, it is not easy to say which is mainly
responéible for the discrepancy between the calculated and the empirical
levels. It is possible that they are equally responsible. For the,purpoée
of separating the sources of these discrepancies, let us recall the
important assumptions and abproximations'we have made.

(a) ﬁe ass;med the-O16 core of F18 was inert,

(b) We approximated K(w) by KF(E), thus neglecting all

corrections due to the second term in (3-8).
(¢) We included only triélet S-wave interaction in the

calculation of KF. We shall discuss these effects

separately.
6.1.1 Let us start by comparing our result with the work dome by
6 .
Kuo and Brown % on F18. Essentially they used the Hamada-Johnston

potential and did a Scott-Moszkowski type calculation, including core

13
Hereafter referred to as KB.
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polarization. We want to compare with their calculated spectrum before

the core polarization is included, which is shown in Fig. 6-1. The two

T and 27 levels in ours are higher

are quite similar. 3But the 3+ s S
than theirs. After a careful comparison between the matrix elements of
the two calculations, it is found that the singlet force, which we
ignored completely, contributed most significantly to the 1t levels in
KB. The 2" and 3% levels are much less affected, ' the 57 level . not
at all, Thus it seems possible that had we added the triplet D-wave and
the singlet P-wave interactions, which are mainly repulsive, the 1+
1éve1s would have been pushed up relative to the other levels. By usiﬁg

a smaller E value the whole spectrum can be pulled down such that it

matches the KB result.

6.1.2 It is certainly not satisfactory that our result should depend

on the free parameter E so sensitively that the spectrum can be shifted

up and down at will, This dependence on E probably comes entirely from

neglecting the second term in (3-8) since K(w) itself does not depend
on E at all. One realizes after a closer look at the correction terms

that the most important part of them come from the term

P

CK® T G
with only two-particle intermediate states in the 2s-l1d shell included.

This is because did not include these states. OQther higher states

%

included in both P and QM_ are practically free so the denominators of
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.

)

the two terms become essentially the same and the two terms cancel.

Now consider

Psd

K (E) . K (E)

where PSd limits states to the.” 2s-1d shell,

When E 1is small KF(E) is large and negative but the second
term is positive. When E is large KF(E) is small and negative and
the second is also negative. So adding the second term in (6-1) to KF(E)
already reduces the sensitivity of our force on E. Naturally only a

detailed calculation will reveal to what extent the sensitivity is

reduced,

6.1.3 We expect the core polarization effect in our calculation to

be much the same as that in KB. It is interesting to know that our

S-wave calculation involves only three reduced matrix elements. Treating

these as parameters one can fit any three of the levels and predict the

remaining ones. ‘We fitted the three lowest and the resulting spectrum is

shown in Table 6-1.

The phenomenelogical spectrum is strikingly similar to the final

KB result including core polarization.

6.2 Discussion of the Sc42 Result

It is perhaps accidental that our Sc42 result agrees so well

-58-

S K(®) (6-1)




with the experiment. Probably this is because we ignored the repulsive
forces on the o;e hand, while also throwing away the p1/2 and f5/2
shells on the other hand.  Some matrix elements between states (like

f7/2 f5/2 ) coupled to spin 1 are known to be large and will depress
the lowest state while the repulsive forces we neglected will compensate

this depression.
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TABLE 6-1
qu(T=0) Exp Phenomenological Result of KB -
fit with S-wave

force
17 -5.00 -5.00 -4.83
+ .
3 -4,06 4,04 -4.04
st -3.87 -3.84 -3.69
it -1.87 -1.37 -1.23
2t -1.65 -1.65 -1.59
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CHAPTER 7

CONCLUSIONS

In this work we used the triplet S-wave free reaction matrix as
. ) . ‘ 18
the nuclear reaction matrix to calculate the T=0 spectra of F~ and

Sc42. The 016 and Ca40 cores were assumed to be inert. In the case

of F18 the agreement was qualitative, But for Sc42 the predicted spectrum
more closely reseﬁbled the experimental one; The splitting between the

F 8 ground state and the‘excited states was geﬁerally too large, and.ﬁhe
spectrum as a whole was somewhat sensitive to the parameter E in the

free reaction matrix. We argued that the sensitivity of the spectra on

E can be reduced by including in Qur K-matrix the most important correc-
tion term in (3-8), and the calculated results can be brought into a

closer agreement with experiment when high relative orbital wave inter-
‘actions and core excitations such as the core polarizations are taken

into account.

We are thus led to the conclusion thatbif one wants to obtain a
detailed agreemeﬁt betweéﬁ calculation and experiment, the free reaction
matrix cannot literally be used as the two-particle nuclear reaction
matrix, since correction terms had to be added. But the approximation °
(3-9) is certainly a good starting point. The terms not included in
(3-9) can bg added later. Célculation along theée liAes are much needed

in the future for the understanding of nuclear structure.
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(_. APPENDIX A

We had from equation (3-4)

B P G e

i " where E is the relative kinetic energy of the scattering particles and t
the relative kinetic energy of the intermediate state.

In the coordinate representation, (A-1) becomes

Celp = (el + {f @ @ e ey

'
P
{
i
i
1

or

' 1 ik-r
@ = —Zgy <E
Vi 2 */?

a1 3.0 | By GiEE) 1
* 5 sﬁngdkjdr et R V(_r_)*f’k(z)

k -k
(A-2b)
Now define
I E P _{d:"k" ik (zr) L
Sy
YO
=R R
- - k - k
277 k! Jzx!
T T ijzer] ‘( 22 k' dk!
== ¢ k -k

[
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The path C.is shown in Fig. A-1. Noticing that the integrand

vanishes in the upper-half k'-plane for very large k', we have

g okt z-rl
e e———— Y et ! '
1=t -z %c' Z oz o

camy 2 2 Res (eik'li'i" k) (A-3)

He -2l o Z 2

The contour C' is shown in Fig. A-2. The first term on the right-hand
side of (A-3) vanishes from Cauchy's theorem, so

2
I = --——:)-ZT,T- cos (k Jr -z'l) (A-4)

Substituting (A~4) into (A-2b) we have

k- cos(k{r-r')
“})k@ - 1'3“'/2 R gd3r' —Tr o vaeh @

- 1]

(2m um |-z
(A-5)

To see the asymtotic behavior of \l—’k(x_-) we note
1/2
lim l;_-_r_'] = lim - (r2+r2-2_x_'_-;_')
ST o T '
£

= lim <r - = ) (A-6)

r—>0
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Thus for large r (A-5) becomes

. \I)k(z) ; 13/2 eik-'f- ) e:'Lkr A(-lf-l’g) . e-ikr A('lil’yl
= (2m) r r
(A-7)
where _lgl = % r
and | .
' M 31 i-lil'E
/\('5 k) = —= j.d r e v(z') (") (A-8)
1 87"%2 . '\Pl.i _ e

Since v(xr) = v(r) 1is central A (_lgl,g_) depends only on

the angle between 51

/\ (gl,@ in the following mannér.

and k, i.e., between r and k, we can expand

<

Ao = (—271—)13—/2 ZO JETCED) Mg ¥, (r)  (4-92)
| 2= |
Also - ‘ . .
| o
A = Tw—al—?”_z > U Samesl A0,

(A-9b)

Using the relations

TH « | | |
R N T 3 (kr) Yg, (D)

and




and together with (A-9a) and (A-9b), (A-7) becomes

co
% (x) —> 1 > A LT (2441) A [ﬁn(h~-!z}'
k en? I kr 2

-2 )\ﬁ(k) k cos (kr 4‘5’1)] ¥y (5,5)' ' (A-10)

The phase shift ?l is defined as follows:

Z
w »
’\!)k(g) —_— % A 4T (24+1) l_kr' Cy sin (kr - ,_[:2_7_1'__{_ 51 ) Ylo (k'x)
= =0 .
. _ : (A-11)
where ,
-3/2 -1
CZ = (2')7) / (COS 51 )
Comparing (A-10) and (A-11l) we have
tan 8, = -z'k)\ﬂ(k) (A-12)
Now define the free reaction matrix KF
) = v+4vo—— K (E) O (a-13)
X = V*VE ¢ % . |
KF operated on the free wave state vector . }}g) givés us
KlE) = vI¥) | (a-14)

In obtaining (A-14), (A-1) has been used.
Combining (A-8), (A-9), (A-12) and (A-14), we finally have

the on-the-energy-shell relation
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4 2 s |
- z;ZkM %o AT 4D tan B, ¥, (kLK) (A-15)
where
[& = |k
Q.E.D.

)
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k'-plane

- Fig. A-l

Y

k'-plane

Y

Fig. A-2
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APPENDIX B

We had in section 2.2

2 2

, ‘ ® o '
I = P S g(x) dx (B-1)

0o X =a

where g(x) is analytic in (o,20) and g(x) and g'(x) vanish as

x —> O and at x = 0,

Integrating by parts, we get from (B-1) -

' )
1 1 1
I = Z;.-ch(x-a-x+a) g(x) dx

% .
L wgﬁﬁ dx - 212 P‘( [n]x-a] g/(x) dx

0

+
ate

The terms in the curly bracket in (B-2) vanish at infinity and at x

The remaining terms in the bracket vanish as well, since

4

Lim [-g<a+e y bne + gla-e) Ln e]
€E—~0 .

- 1im+ [-ze g'(a)fne} =0

G—Po

The second term on the right-hand side of (B-2) is

_68-

i (fn)x-alg(x)) Ioé] (B-2)

= o'




N :
1
- o Pg .en]x-'alg'(x) dx
[+

o
lim 1 '
=é->o+ (— -Z_a) {. g eZn (x~a) g'(x) dx
at+
L a-e
+ S Zn(a-x) g' (x) dx]
)
)
lim 1 1
= -G_,d‘ ?—a 5[(x-a) én (x-a) - (x-a)] g'(x) e
a-e
+ [(x-a) Ln (a-x) - (X-a)] g'(x) }
o
1 (% l
+ o7 , [(x-a) fn ‘x-al -(x-a)] g"(x) dx (B-3)

The terms in the bracket vanish. So finally we have

® a
1=t g EC gy 4 o S (x=a) (Ln(x-2)-1) g"(x) dx
o
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