arXiv:g-alg/9611020 vl 19 Nov 1996

LICKORISH INVARIANT AND QUANTUM OSP(1|2)
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Lickorish’s method for constructing topological invariants of 3 - manifolds is generalized
to the quantum supergroup setting. An invariant is obtained by applying this method
to the Kauffman polynomial arising from the vector representation of U,(osp(1]2)).
A transparent proof is also given showing that this invariant is equivalent to the
U,(0sp(1]2)) invariant obtained in an earlier publication.

Introduction

Since Jones’ seminal workl[[l]], the theories of knots and 3 - manifolds have made
dramatical progress ( See [ for a review). By now several approachs are available for
constructing the so called quantum invariants of 3 - manifolds, notably, the quantum
field theoretical approach([f], the quantum group approach[f], Lickorish’s recoupling
theory[H], the 65 symbol method of Turaev - Viro[ff], and the conformal field theoretical
method|[fg]. All these approachs originated from theoretical physics, but they differ from
one another very significantly in the mathematical formulations, and each method has
its own advantages in addressing specific problems. Therefore, it is important to further
develop the different approaches, even though it is believed that they all give rise to
the same invariants of 3 - manifolds (The Turaev - Viro invariant is known to be the
square of the norm of the Reshetikhin-Turaev invariant).

The recoupling theory was first introduced in [{] by Lickorish, who used the rep-
resentation theory of the Temperley - Lieb algebra to reproduce the Jones - Witten
- Reshetikhin - Turaev invariants. Since then the method has been developed exten-
sively by other people[§][B][10]. In this letter, we aim to extend the recoupling theory
in another direction, namely, to incorporate supersymmetry. We will also investigate



the connection of the recoupling theory with the Reshetikhin - Turaev formalism in
the quantum supergroup setting.

Parallel to the quantum group formulation of topological invariants of links and
3 - manifolds, there exists a supersymmetric version[[LT] based on the theory of Lie
superalgebras and quantum supergroups. Due to the vast difference between the rep-
resentation theory of quantum supergroups and that of the ordinary quantum groups,
the associated topological invariants in both cases also exhibit different features. For
example, there exist infinitely many families of multi - parameter generalizations of
the Alexander - Conway invariant, arising from the so - called typical irreps. Such
invariants can not be obtained within the framework of ordinary quantum groups. In
this letter, we will apply the recoupling theory to the Kauffman polynomial associated
with the vector representation of the quantum supergroup U,(osp(1]2)) to construct
the corresponding topological invariant of 3 - manifolds. We will also provide a trans-
parent proof showing that the resultant invariant is equivalent to that constructed in
[[J]. In doing so, we establish a precise relationship between the recoupling theory and
Reshetikhin - Turaev method within the context of our study.

Although we have limited ourselves to the quantum supergroup U,(osp(1]|2)) here,
the method developed for constructing the Lickorish invariant can be readily applied
to self - dual atypical irreps of any quantum supergroup. It also appears to be possible
to extend the formalism to include typical irreps, which of course are much more inter-
esting due to their connections with the generalized Alexander - Conway polynomials,
and possibly generalized versions of the Casson invariant[[3]. Results on this problem
will be reported in a separate publication.

Ug(osp(1]2))
We will work on the complex field C. Let ¢ be an N - th primitive root of unity
with IV a positive odd integer satisfying

N=2r+1, 0<reZ,.

The quantum supergroup U, (osp(1]2)) is a Z, graded Hopf algebra, with the underlying
algebra generated by {e, f, K*'} subject to the relations

K- K1
ef+fe = ——,
q—4q
KeK™' = ge,
KfK™ = ¢ 'f,
€2N — f2N — 07
K = 1, (1)

where the elements e and f are odd, while K*! are even. The co - multiplication
A Uy(osp(1]2)) — U,(osp(1|2)) @ U,(0sp(1]2)) is given by

A(e) = 6®K+1®€7
A(f) = fR1I+K'®,
A(Ki) — Kil ®Ki1.



It is well known that the U,(osp(1|2)) so defined has the structures of a quasi
triangular Z, graded Hopf algebra. We denote by R its universal R matrix and
set R = Y a;, ® 6;. Then R provides an isomorphism between the two alge-
bras A[U,(osp(1|2))] and A'[U,(osp(1]2))], where A’ is the opposite co - multiplica-
tion. Furthermore, R also satisfies the quantum Yang - Baxter equation. Define
v=K1Y,(~1)1S(5)ay, where S is the antipode of U,(0sp(1|2)). Then v belongs
to the center of U,(osp(1]2)).

Any U,(0osp(1]2)) module W is a Zy graded vector space W = W, @ Wy, where
Wy and Wy are the even and odd subspaces respectively. Let W’ be the Zs graded
vector space with W) = W;, and W] = W,. Then W’ has a natural U,(osp(1|2))
module structure. These two modules are evidently isomorphic, with the isomorphism
given by a homogeneous degree 1 linear mapping. Let f : W — W be any module
homomorphism. Then f gives rise to a module homomorphism f : W/ — W’ in a
natural way. Now the ¢ - superdimensions of f satisfy the following obvious relation

In [[7], we classified all the irreducible representations of this quantum supergroup.
It was shown that there exist only a finite number of irreducible representations,
which are all finite dimensional, and each of them is uniquely characterized by an
integer in Zy = {0,1,...,N —1}. Let V(X)) be an irreducible U,(0sp(1|2)) module,
then it possesses a unique highest weight vector vy(A), which is assumed to be even,
such that evp(\) = 0, Kvug(A) = ¢*vo(\), A € Zy. A basis for V*()) is given by
{vo(A\),v1(A), ..., var(A)}, where v 1(N) = fo;(A), foan(A) = 0. We will denote by
V= (A) the U,(osp(1]2)) module isomorphic to V() but with an odd highest weight
vector.

The ¢ - superdimension of V() is given by

SDq()\) = St?‘v+(>\) (K)
q)\+1 +q—)\
g+1

An important fact is that all the irreps have nonzero ¢ - superdimensions, and for this
reason, all the irreps had to be included in constructing the 3 - manifold invariant of
[[7]. However, the S - matrix arising from the Hopf link is singular, thus U,(osp(1]2))
does not qualify as a Z, graded modular Hopf algebra.

The smallest nontrivial irreducible U,(osp(1|2)) module V(1) will play an impor-
tant role in the remainder of the note. We will denote it by V', and the associated
irrep by 7. It is assumed through out the paper that the highest weight vector of V
is even. It is important to observe that the irrep is self dual, that is, there exists a
homogeneous degree zero isomorphism between V' and the dual module V*. The tensor
product module V' ® V' decomposes into

VeV = VH2)e V- (1)e V*(0).

Thus the braid generator R = P (m ® )R satistfies the following third order polynomial
relation



This in particular implies that the link invariant arises from V' is the Kauffman poly-
nomial.
Consider the central element of U,(osp(1]2)) defined by

C® = Stryec[(m®*A* D @id)(v 'K ®1)R'R], keZ,.
Acting on the irreducible U,(0sp(1]2)) module V*(X), C*) takes the eigenvalue
XACW) = Strye[r® AED (T K1)

Note that XA(CA’(’“)) is a finite sum of powers of ¢, thus it is consistent to first evaluate
xA(C™®)) at generic ¢ then specialize it to the N - th root of unity. This way we obtain

k (k q(j+1)(2>\+1) +q—j(2)\+1)

XA(C(k)) - ij) 1+ g1 1o,

J=0

where bg-k) are a set of complex numbers determined by the following recursion relations

n+1) n) n) n) .
= plm et ) 0
bgn+1) _ bgn)’ (2)

with the initial condition b(()o) =1, bgp) =0, Vy > 0. It is easy to see that

B =1, b =0, Vji>o.

n

Lickorish Invariant

We construct the Lickorish invariant of 3 - manifolds in this section. Although
we only consider the quantum supergroup U,(osp(1|2)), the method developed here is
general, and can be readily applied to self - dual atypical irreps of any other quantum
Supergroups.

We will need some facts about the quantum supergroup approach to invariants of
framed links, which we recall here. The Reshetikhin - Turaev approach to link invari-
ants was generalized to quantum supergroups in [[1], where a functor from the category
of coloured ribbon graphs to the category of representations of Z, graded ribbon Hopf
algebras was constructed. In plain term, this functor associates each coloured ribbon
graph with a homomorphism of Zs graded modules of a quantum supergroup, where the
modules are associated with the ‘colour’ of the graph. In particular, an over crossing is
represented by the universal R matrix, and an under crossing by R~!. The composition
of coloured ribbon graphs corresponds to the composition of homomorphisms of quan-
tum supergroup modules, and the juxtaposition of ribbon graphs to tensor product of
module homomorphisms. The precise definition was given in [[[1] in explicit form, and
we refer to that paper for details. Here we merely discuss a few aspects of the functor,
which will be used extensively later.

Given any oriented (k,[) ribbon graph I', we colour each of its components by the
vector module V' of U,(0osp(1]2)). The Reshetikhin - Turaev functor maps the coloured
ribbon graph to a module homomorphism F(T'y) : V& — V.  Now reversing the
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orientation of any component of the ribbon graph will change the colouring module for
that component to its dual module. As we have already pointed out, V' is self - dual,
thus F'(I'y) is independent of the orientation of I". Also, on any (0,0) ribbon graph,
this module homomorphism yields the Kauffman polynomial for ribbon graphs.
Consider the (k, k) ribbon graphs given in Figure 1 and Figure 2 respectively,

Figure 1 Figure 2

where Fig. 1 has n annuli. We colour the ribbons of Fig. 2 from left to right by the
modules Wy, ..., Wy, respectively. We also colour the ribbons of Fig. 1 in the same way,
but colour each of its annuli by V. Set W = W; ® ... ® Wy, and denote the resultant
coloured coloured ribbon graphs of Fig. 1 and Fig. 2 by gb%;) and (y respectively. Then
the functor F' gives

F(gy) = C™ W —wW,
FlGw) = v:W =W,

where the central elements C™ and v act on the tensor product module W via the co
- multiplication A®*—1.

Let us now construct the Lickorish invariant. Lickorish’s construction uses two
fundamental theorems from the theory of 3 - manifolds. In the earlier 1960s, Lickorish
and Wallace proved that each framed link in S® determines a compact, closed, oriented
3 - manifold, and every such 3 - manifold is obtainable by surgery along a framed link
in S3[[[4]. Further advances along this line were obtained by Kirby, Craggs, and Fenn
and Rourke[IJ][[q], who proved that orientation preserving homeomorphism classes of
compact, closed, oriented 3 - manifolds correspond bijectively to equivalence classes of
framed links in S3, where the equivalence relation is generated by the Kirby moves.

Let L be a framed link in S® with m components Ly, ..., L,,. We arbitrarily assign
an orientation to each of its components. The resultant oriented framed link can be
represented in a unique way by an oriented ribbon graph I'(L) [[I]. Now we consider

replace each L; of L by a cable of [; copies of L; with the same orientation, where

l; € {0,1,..., N — 1}. This leads to an oriented framed link with >7,<;<,, l; compo-
nents, the associated oriented ribbon graph of which is I'(Lta-tm}) We colour each
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Turaev functor F' to it leads to a complex number F(T'(L{-tm})). The self duality
of V implies that this number is independent of the arbitrarily chosen orientation of L.
Construct

20 = 3 TLY FEEtey) (3

where the d) are a set of constants chosen in such a way that $(L) is invariant under
the positive Kirby moves. Needless to say, the critical problem is whether such d)
exist. We will study this problem at great length later. Here let us take as granted
their existence under the further assumption that

N—1
¢ = > dVF(rOY)y) (4)
1=0
# 0,
where O_; represents the unknot with framing number —1, and (’)ﬂ’ the framed link
obtained by extending the framed unknot to [ parallel copies. Then

F(My) = z7Ux(L), ()

is a topological invariant of the 3 - manifold M}, obtained by surgery along the framed
link L. Here Ay is the linking matrix of L, and o(Ay) is the number of nonpositive
eigenvalues of Aj,.

Assuming the properties of d), we can easily show that F(My) is indeed a topo-
logical invariant of My : under the positive Kirby moves, o(Ay) is not changed, thus
F(Mp) is invariant. Let L' denote the split link L U O_;. Then (L") = 2z%(L). Since
o(A}) =0(AL)+1, F(My) is invariant under the special negative Kirby move as well,
and the proof is completed.

Let us now construct the d’s. In Lickorish’s original paper, the Jones polynomial
was used for constructing the Witten - Reshetikhin - Turaev invariant. There the
Jones - Wenzl theory of the Temperley - Lieb algebra played an important role in
the determination of the constants d"). In our case, the Lickorish invariant of 3 -
manifolds is built from the Kauffman polynomial, which has a deep connection with
the Birman - Wenzl algebra. It should be possible to obtain the d® by using only
the representation theory of this algebra. However, such a method will not provide
us with much information on the relationship between the Lickorish approach and the
Reshetikhin - Turaev construction of 3 - manifold invariants. On the other hand, the
representation theory of U,(osp(1]2)) affords a common basis for both approaches, and
also provides a much more powerful tool for determining the d’s.

Consider the module homomorphisms associated with the coloured ribbon graphs
of Figure 1 and Figure 2. Let f : W — W be any U,(0sp(1|2)) module homomorphism.
Then the vanishing of the following ¢ - supertrace

st |17 (X a0 - Fan)| = o Q

=0

for all k, arbitrary W;’s and f, will guarantee the invariance of ¥(L) under the positive
Kirby moves. A sufficient condition for equation () to hold is that the central element
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of U,(0sp(1|2)) defined by
N-1
dVCW —y, (7)
1=0

takes 0 eigenvalue in all irreducible representations of U,(osp(1|2)), that is,

N—

>_A

dOx\(CD) = gDy e Zy, (8)
=0

Therefore, the problem of constructing (L) is now reduced to that of solving
equation (§). To do this, we introduce the N x N matrix B = (by,)h,2, with
the entries given by b,, = b, where b are defined by the relations (f). Write
d=(d®,d", .. d¥-1) and define

b = dB.

Since B is lower triangular with all diagonal elements being 1, there exists a unique d
corresponding to any given b. Now in terms of the components of b, equation (f) can
be rewritten as

(HDEAHD) | (2241
q +4q 1 “A(M+1

S b i = O =01 N L ()

M:

It is precisely this equation which appeared in the Reshetikhin - Turaev construction of
3 - manifold invariants using the quantum supergroup U,(osp(1|2)). The most general
solution of this equation was obtained in [[J], which we quote below
Ni1)?
(1+ )¢5 G_iSD,(p)

b,u, - 2N +~T,LL_'TN*H«*17 M:0717"'7N_17 (10)

where x, are arbitrary complex parameters, G_; = > ez, ¢, and SD, (1) denotes
the ¢ - superdimension of V().
To compute z, we apply the formula

Frothy) = Strv®z (vK)

Z 0 ¢ +q I+
14+g¢q

)

to cast it into the form
N—1
3 by ¢ 2D SD,(N), (11)
A=0

2
which coincides with the quantity also denoted by z in [[J]. Now z = g (G*I) ,
which clearly has norm 1.

Lickorish invariant versus Reshetikhin - Turaev invariant



In the process of constructing the Lickorish invariant F (M), we have already
noticed many similarities between this invariant and that of [[J] obtained following
a modified Reshetikhin - Turaev approach. Now we prove that these two invariants
are actually equivalent, namely, on any compact closed orientable 3 - manifold, both
invariants take the same value.

Consider the oriented ribbon graph corresponding to an oriented framed link L
with m components L;, i = 1,2, ..., m. We colour the annulus associated with L; by the
U,(0sp(1]2)) module W;, for all i = 1,2, ..., m, and denote the resultant coloured ribbon
graph by T'(L,{Wi,...,W,,}). Particularly interesting is the case when W; = V&
where V' is the vector module of U,(0osp(1]2)), and 0 < [; < N — 1. (V¥ = C). As
in the last section, we still denote by I'(Lt4-lm});, the coloured ribbon graph, which
arises from the riented framed link L=} obtained by extending each component
L; of L to a cable of [; strands with the same orientation, and colouring the annulus
associated with each strand by the vector module V' of U,(0sp(1]|2)). Then a moment’s
thinking reveals that

To examine I'(L, {V®1, ..., V®m 1) more closely, we cut open one of its components, say,
that associated with L, to obtain another coloured ribbon graph which we denote by
[(L,{V®:, .. V&=1) Then the module homomorphism F(T'(L, {V&h, ... VEm1)) .
Vel ., yeh gatisfies

F(D(LAVER, . VEmY)) = Stryen [KF(D(LAVE, . VEnY)].

The right hand side can be evaluated by first decomposing the tensor product module
V& into a direct sum of indecomposable U,(0osp(1]2)) modules, then taking the g -
supertrace on each module separately. Since I; < N — 1, V®1 is in fact completely
reducible. Taking into account the parity of each irreducible submodule ( i.e., the
evenness or oddness of the highest weight vector), we have

Stryen [KF(D(L V..., VEn}))]

N-1
= 3" bStryey [KF(D(L AV (), V2, . VI })]

pu=0
= () I I

_ + ® Rlm

- Zobul F(P(L7{V (M)?V 27"'7V }))7
‘u,:

where F(T'(L,{V*(u), V=2, .. V®m1)) represents the coloured ribbon graph arising
from the oriented framed link L with the first component coloured by V*(u), and the
rest by V®2 . V®m respectively. It can be further expanded by decomposing V®'
etc. into direct sums of indecomposables. When 0 < [; < N — 1, forall : =1,2,...,m,
we obtain the following important relation

FOLAVE V) = S T[0Y FOOLAV (). VE )} (12)



Let us apply ([Z) to the definition (§) of X(L). Recalling that b = dB, we immedi-
ately arrive at

S =X Tk FOEAV )V D)

where the right hand side is precisely what appeared in [[J]. Since the z defined by
equation ([l) coincides with the corresponding quantity there as well, we easily see that
F(Mp) and the invariant of [[J] are indeed the same.
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