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Abstract. New braid group representations of the B,, B; and B, types are obtained by
solving the defining relations of Artin’s braid group B, directly; we give their associated
link polynomials. We discuss a procedure (Baxterization) which allows us to construct
their corresponding quantum R matrices.

1. Introduction

The quantum Yang-Baxter equation (QYBE)
Ri2(x)Ri3(xy) Ras(¥) = Ras(y) Rys(xy) Rip(x) (1.1

introduced in [1, 2] plays a central role in the theory of completely integrable classical
and quantum systems and in the theory of exactly solvable models in statistical
mechanics [3-7]. If V is a complex vector space and R(x)e€ End(V® V) then R;(x)e
End(V® V® V) is a matrix that acts as R(x) on the ith and jth spaces and as the
identity on the remaining space; R(x) is referred to as the quantum R matrix and
x € C is the multiplicative spectral parameter. Solutions of the QyBE have been obtained
by solving (1.1) directly [5, 8-10] or by using more systematic algebraic approaches
[3,11-14].

In this paper we construct new solutions of the QYBE by exploiting an interesting
connection between solutions of (1.1) and representations of Artin’s braid group B,,.
This relationship can be seen by considering the following form of the QYBE:

(R(x)® DI ROy RN =(IQR(y))R(xp)®I)(I® R(x)) (1.2a)
with
R(x)= PR(x) (1.2b)

where P e End(V® V) denotes the transposition u®v->v®u and I € End(V) is the
identity matrix. Note that without the spectral parameter (1.2a) is one of the defining
relations of B, ; the matrix S = R(0) constitutes a representation of B, and can be used
to construct represeniations of B, for any n. Given a solution R(x), one can therefore
extract from it braid group representations; this has lead to important developments

0305-4470/90/214765 + 14803.50 © 1990 IOP Publishing Ltd 4765



4766 M Couture, M L Ge and H C Lee

in knot theory [5]. Some time ago [15] we observed that under certain restrictions it
proves relatively easy to solve the defining relations of B, directly. This has lead to a
new infinite family of representations of B, [16]. Exploiting this fact, our strategy for
finding new solutions of the QYBE is the following. First we find new braid group
representations and then proceed to transform them into quantum R matrices. This
transformation is known as Baxterization [17].

Our paper is organized as follows. In section 2 we obtain new braid group representa-
tions of the B,, B; and B, types and construct their associated link polynomials. In
section 3, we proceed to Baxterize the new solutions of the B, and B; types. We
conclude with a few remarks.

2. New braid group representations and their associated link polynomials

2.1. Artin’s braid group and standard representations

B, [18, 19] is generated by a set of (n —1) generators g,, g,,. .., £,—; and their inverses
subject to the following necessary and sufficient defining relations:

88 =88 li—jl=2 (2.1a)
8i8i+18i = 8i+18i8i+1- (2.1b)

Let V be an N-dimensional vector space and S€ End(V® V) be an N?x N? matrix
that has an inverse. The following mapping is a representation of B, :

p:B,->End(V®") p(g)=1®..9I_®S®IL.,.. I, (2.2)

where the subscript i means that the ith vector space in V®" and S acts in the ith and
(i+1)th vector spaces. The form of (2.2) insures the satisfaction of (2.1a); no restriction
needs to be imposed on S. The satisfaction of (2.1b) requires that S be a solution of

(SONDISSHSR®)=(IRS)SRINIDS). (2.3)

Our objective is to find new solutions of (2.3); our reference point will be the solutions
which can be extracted from Bazhanov and Jimbo’s quasi-classical quantum R matrices
[13,14] and which we will refer to as the standard solutions. Reshetikhin [20] has
shown that the underlying mathematical structures behind these standard solutions
are the quantized universal enveloping algebras U, of simple Lie algebras; they can
be generated by restricting the universal &-matrix, which lies in U, ® U,, to funda-
mental representations A of U,. For generic values of the deformation parameter g,
the representation theory of U, is the same as for the classical (g =1) case [21]. It
follows that these standard solutions decompose according to the classical decomposi-
tion rule of direct products of irreducible representations

ARA= z_V[_ b:. (2.4a)

Their spectra decomposition, characteristic polynomial A(A) and minimal polynomial
m(A) are consistent with the decomposition rule (2.4a)

S=‘>L_ AP AA)=(A=A) .. (A=A

(2.4b)
mA)=(A-A)...(A=A)

where the A, are the [ distinct eigenvalues of S, f; is the dimension of the irreducible
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representation ¢; in (2.4a) and the P, are the projectors. We now turn to the problem
of finding new solutions of (2.3) whose main characteristic is that their decomposition
rule does not follow the rule (2.4a) of the classical case; they will be referred to as
non-standard solutions.

2.2. Non-standard solutions of the B, type

Our starting point is the solution of (2.3) which can be extracted from Bazhanov and
Jimbo’s BS" quantum R matrix [13, 14]. This solution is associated with the fundamental
irreducible representation of B, and its block structure is as follows:

S =b100k diag(TIy T2y T3y Tay Tsy T4y T-3, T—2, T—l)

0 0 0 Z4
4
T\ =2, 7'2=<2 22> T3 = 0 Zs 0
2w zg 0 2z
0 0 0 3 0 0 0 0 Zn
0 0 07 O 0 0 Z12 244
T4= 0 % 0 7s=| O 0 214 Zis  Zig z;#0alli
i)s ;9 0 Zi2 Z1s 241 Zys
Y4 z
! 10 Zin 213 Z1e Z13 219 (2.5)
0 0 0 zyp 0 0 z
0 0 0 2
T 4= I T 3= 0 Z3s 0

Za 0 zp

0 2z
T-2= T-1= 229

Zy7 Iy

Solutions with the block structure described in (2.5) will be referred to as solutions of
the B, type. The question we addressed is the following: is the standard solution the
only solution of the B, type? We approached this problem by solving (2.3) directly.
The method used is an extension of the one described in [15] and has already led to
non-standard solutions of the A,, C,, D, and D; types [16, 22, 23]; it consists in
obtaining solutions of (2.3) by solving a minimal subset of these equations and then
verifying, using a symbolic manipulation computer code [24], that all the equations
are satisfied. There exist only two distinct solutions of the B, type, which we denote
S and §. S is the standard solution and is as follows:

S=bIOCk diag(Tl’ T2y T3y Tay Tsy T—ay To3, T-2, T—l)

0 0 1
0 1
TW=T-1=4 T2=T 2= w T3=T-3= qg 0
w
0 0 0 1 0 0 0 0 q—l (2.6a)
01 0 0 0 g =W >
Ta=T_o4= w 0 1o = 1 —g 2w gy
0w -gHw  —g~w
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where w= g — ¢~ ' and all submatrices 7., are symmetric. The spectral decomposition,
characteristic and minimal polynomials of S are

-1 4

A=gq Ay=—q As=gq

3

S=z A,‘Pi
i=1

(2.6b)
AA) = (A =AM (A =222 = A3)
m(/\)= (/\ _/\1)('\ —)tz)()\ ‘1\3)-

S is equal to the solution extracted from Jimbo’s B" quantum R matrix (equation
(3.6) in [14]) within an overall factor g°. Note that the decomposition follows the
classical case (5) % (5)=(14)+(10)+(1). The second solution is as follows [22]:

S=bIOCk diag(‘Fls 7:2’ T3, 714’ ‘;51 7:—49 T-3,T-2, ;’.—1)

0 0 1
=T =T Ty=T_ =T, Ty=T_y= -q7' 0
w
(2.7a)
0 0 0 0 g
0 0 —-q iw
Ty=T 4=T4 Ts= 1 +ig"*w q'?w
(1+q)w —igw
(1-q)w

with w=g—q " and all 7.; are symmetric. $ is a non-standard solution which distin-
guishes itself from S by its different distinct eigenvalues and decomposition rule

Ai=gq Ay=—q"" Ay=1
~ 3 ~

S=1 AP (2.7b)
AAY=(A = A )P (A =) —A3)

m(A) = (A=A (A = A)(A —Ay).

2.3. Non-standard solution of the B; type

For solutions of the B; type, the reference point is the standard solution extracted
from the B{" quantum R matrix [14] and which is associated with the fundamental
irreducible presentation of B;; using the same strategy as for B,, we found that there
exist only four solutions of the B, type. In addition to the standard solution there exist
three non-standard solutions which are related by similarity transformations (they have
the same characteristic and minimal polynomials). The standard solution, which we
denote S, is as follows:

S =block diag (1, Y2, Y3, Ya» Y5> Y& Y75 Y=6> Y55 Y45 Y=35 Y=2, Y1)

where all submatrices are symmetric:

Yi=Ya=4g Y2=EY-2=T2 V3= Y3 Ty Y=Y-4T T4
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SRS SEEES
0O 0 1 o 0 1 0 0
ys(a) =y_s(a)= a 0 O Y6 = Y-6=
w 0 0
w 0 w 0
w
w
0O 0 0 o 0 0 q_1 (2.8a)
0 0 0 0 q! q 'w
0 0 g g 'w —-q 7w
vy = 1 g "w —q 7w g~ *w
-q ' (1-q)w g w —-q7w
(1-g7)w g *w
\ (1-q7%)w

where w=g—-q~', a =g and the ; are given in (2.6a); all y.; are symmetric. Note
that in vy, our choice of signs differs from that of Jimbo. In addition we have that
Ay= q—6

-1

M=g Ary=—q
3
S= Z AP

A= (A =A)7(A =22 (A = Ay)
m(k) = (/\ _/\1)(/\ _)\2)(/\ "/\3)

note that S follows the classical decomposition rule (7) x(7)=(27)+(21)+(1). We
shall give only one of the non-standard solutions:

(2.8b)

S=b10Ck dlag (“).lla iZ’ ‘);3, ‘)74’ ’;51 &6’ 7.’7, &—61 ‘y"—Sa &—4, ‘;/—39 ‘;—Za ‘)7—-1)

Y=Y-1=4 Y2=V_2=1 Y3=Y-3=1; Va=F-4=T4
¥s =‘)~' (a= —1) Yo = Y-6= Ve
0 0 0 0 q! (2.9a)
0 0 0 g g 'w
0 0 -q iw —-ig~'w
1 1q1/2w qx/zw _q-l/zw
(1+q)w  —igw iw
(1-q)w w
(1-¢7Hw
where w = g — ¢~' and where all submatrices ¥.,; are symmetric. In addition we have that
Ar=g A=-q"" A=q7
-~ 3 ~
S=3 AP
= (2.9b)

AA) =(A=2)P(A =202 (A =Ay)
m(A)=(A =)A= A)(A —As).

Note that § does not follow the classical decomposition rule.
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2.4. Non-standard solutions of the B, type

Our reference point is the solution of (2.3), which can be extracted from the B’
quantum R matrix [14] and which is associated with the fundamental irreducible
representation of B,; we refer to this solution as the standard one of the B, type. Our
strategy is the same as in the previous cases and we have looked for new solutions
with the same block structure as the standard one. We have found that there are only
eight solutions; in addition to the standard solutions, there exist seven non-standard
solutions; an eigenvalue analysis reveals that these seven solutions divide into two
equivalence classes (solutions within a class are related by a similarity transformation).
We will give a representative of each class. The standard solution is as follows:

S =block diag (7, 72, 73, 74, Ts, Me, M7, Mg, Mo, M_g, W_7, Tg, T-s,
T_a, T3, T_2, T—1)
M =T-1=4 M=M= T3

T3=T_ 3= T3 Ta=T_4= T4

ms=m_s=ys(a=q) Te=T-6= Y6

o 0 0 0 0 0 1
0 0 0 0 1 0
0O 0 1 0 0
m(B)=m_5(B)= B 0 0 0
w 0 0
w O
w
(2.10a)
0O 0 0 0 0 0 0 1
0 0 0 0 0 1 O
0 0 0 1 0 O
0 1 0 0 O
TeT M T w 0 0 0
w 0 O
w 0
wi
0 0 0 0 0 0 0 0 g7
0 0 0 O 0 0 q”’ -q7'w
0 0 0 0 q7! -q7'w —q7*w
0 0 q”! ~-q7'w -q7%w -q 7w
e = 1 _q—l/ZW _q—s/zw __q—5/2w _q—7/2w
(1-gHw g w —g7w —g 7w
(1-¢g)w —q7%w —-q 7w
(1-¢7w  —g"°w

(1-g)w,
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where w=g—q ', B=gq and v and 7, are given in (2.8a) and (2.6a), respectively.
S has the following properties:

A=g Ar=-q"" As=gq

S= i AP (2.10b)
A = (A=A +g7 (A —g™)

which is in accordance wit~h the classical decomposition rule (9) x (9) = (44) + (36) + (1).
The second solution S is of the non-standard type:

S =block diag (77'19 T2y M3y Way TWs, Moy, W7, Mgy Mo, Mgy, M7, Mg, T-5,

-~

Mgy T3y oz, Toy)

7?'1=7‘7.-_1=q 7‘1:2=7;'_2=Tz 7;3=7;_3=7'3 7';4:7‘7.'_4:74
Ts=7_s=ys(a=q) o= T_6= Vs
R i L. (2.11a)
m=T=m(B=-q ) M= T.g = Ty
0 0 0 0 O 0 0 0 q”!
0O 0 0 O 0 0 q”" q 'w
0 0 O 0 q! q 'w -q 7w
0 0 -q iw —ig™'w ig”?w
o= 1 ig"w PLE g7 g7 *w
(1+q)w  —igw iw —-ig”'w
(1-q)w w —q7'w
(1-g "w q 7w
(1-¢7)w

where w=g—q~' and the 7, and v, are given in (2.6a) and (2.8a), respectively. S has
the following properties:

Ay=gq Ary=—gq As=gq
-~ 3 -~
S= Z AP

(2.11b)
A= (A=A (A =A% (A —Ay)

m(A) = (A=A )(A = A)(A—Ay).
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The third solution is also of the non-standard type

: * * * * * * * * *
S* = block dlag (Tr;k’ 77.3‘9 77'?3 Wi‘, TS, Moy T, Ty Mo, Mg, M7, M6, T—5,

7T>f4,77f3,77>f2,77'fl)
nf=7n%=¢q mi=m* =1 ri=n¥ =1 mi=n¥,=1,
n¥=n¥=y(a=-q") 7E=7%= v
n¥=a¥,=m(B=-q"") my=mliy=ms
0 0 0 0 0 0 0 0 g
0 0 0 O 0 0 qg”! q 'w (2.12a)
0 0 0 0 -q iw —-ig7'w
0 0 -q —qw igw —iw
k= 1 ig"w ig¥?w 7w —q"w
(1+q)w q’*w —ig*w igw

(1+¢>w —ig’w ig*w
1-gYyw  g’w
(1—q)w/

with w=¢g—¢~" and the 7; and v, are given in (2.6a) and (2.8a), respectively. S* has
the following properties:

A=gq Ay==—q"" A=1

3
i=1

(2.12b)
AN =(A =) (A +g™H*(r -1)

mA)=(A-g)A+g (A -1).

Based on the results obtained for B,, B; and B, we expect that for every standard
solution of the B; type there exist an additional (2! — 1) solutions of (2.3) where many
of them are related by similarity transformations and simple changes of variable. We
stress that the non-standard solutions discussed in this section do not follow the
classical decomposition rule.

2.4. Link polynomials

The classification of knots and links constitutes an important problem of topology. As
shown by Reidemeister, two knots (links) are combinatorially equivalent (can be
deformed into each other) if and only if their diagrams can be transformed into one
another by a set of three moves (Reidemeister moves) and planar isotropy [25]. What
one wants is a method of distinguishing inequivalent knots and links. Link polynomials
constitute such a distinguishing mechanism; they are mappings of combinatorially
equivalence classes of knots (links) to the space of polynomials. Examples of such
mappings are the well known Jones and Alexander-Conway link polynomials.

A theorem of Alexander [26] shows that there exist closed braids (opposite ends
of a braid identified) in every combinatorially equivalence class of knots and (links),
thus making braid theory relevant for the study of links and knots; the use of braid
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theory translates the topological problem of classifying equivalence classes of knots
and links into an algebraic problem.

A theorem of Markov [27] states that two closed braids are combinatorially
equivalent if they can be transformed into one another by successive application of
the following moves:

(1) FG- GF VF,GeB,
(I1) Fgr>F VFeB,, Fg:ieB,.,.

Link polynomials must therefore be mappings that are invariant under the above two
moves.
Let H be a matrix such that

H=h®"ec End(V®")

where he End(V) is an N x N diagonal matrix

(h)] = hs. (2.13)
The mapping [28]
L(F)=(x,) "1 o2(y )~ n"1=9)2 trace( HF) FeB, (2.14)

is Markov invariant provided the following two conditions [5, 29] are satisfied:

N
T (S%)Yih. = x.8) (2.15a)

e=1
SY(hh—hhy) =0. (2.15b)

Here o is the sum of the exponents of the generators g; in the braid word F and there
is no summation over repeated indices in (2.15b). For every solution of (2.3) of the
B,, B; and B, types there exists a set (y.,x_,h) for which conditions (2.15) are
satisfied; results are given in table 1.

Table 1

X+ X- A Az As h
B,
S 1 q”* q -¢7t g diag(¢7',97%,¢7%, 9% ¢7")
S 1 1 q -7t 1 diag(¢™', -¢7", 1, -4, 9)
B,
S 1 9 q - a diag(q7, 47, ¢7%,¢7% 977, ¢7% ¢
s 1 q q -7 ¢ diag(g™', 473, -9 97 -¢7 97" 97?)
B,
s 1 q:: q -q”! q‘j diag(¢™,947%,¢7%,¢77,97%97% 47", 97, ¢7")
N 1 q q -7t ¢ diag(¢7, 47, ¢, —-¢%.¢7% -¢% ¢ 9% ¢
s* 1 1 q -¢7' 1 diag(¢g~', 97, -¢7% -¢7", 1, -9, -4, ¢°, @)
Define

L,=L(Fg!) uintegerVF, g, €B,.
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The link polynomials defined by (2.14) and table 1 obey the following skein relation:
Los=(x) (A + Aot A3) Lo+ X-(Asdo+ X343+ A223) Ly = (X-)*A12245 L0 = 0. (2.16)

3. Quantum R matrices associated with solutions of the B, and B; types

3.1. Baxterization

Given a solution S of (2.3) whose spectral decomposition is
!
S=Y AP, (3.1)

where the A; are the ! distinct eigenvalues of S, we seek a quantum R matrix R(x) of
the trigonometric type for which

1

R(x)= T LoP, (3.2)
L(x)=a;+bx+cx’+...x""". The coefficients a;, b;, .. . are constants which are deter-
mined by imposing the following constraints:

R(x=0)=S§

R(x=1)=vI (initial condition) (3.3)

R(x)R(x™ ") =n(x)I (unitarity condition)

where » is a constant and n(x) some polynomial in x. For the case | = 3, substituting
(3.2) into (3.3) we get

a;=A, a,= A, as;=A;
a,+b+cy=a+b,+e=a3% b+ 4
a,0, = a0, = A3C3 by(a,+¢)) = by(ay+ c2) = bs(a;+¢c3) G4
ai+bi+ci=al+bi+ci=ai+bi+cl.
There are many solutions to (3.4); the ones of interest here are those leading to the
following formula [30]:

ﬁ(x):[A,+(A2+'\;)‘3

XA
)x+A3x2]P1+(A2+(A1+,\3)x+ :\ 2 x2>lP2
2

2

AIAS 2
+| A+ )\ + A x+A,x° (P,

2

=A1A3x(x—1)s—l+,\3(1+ﬂ+’ﬁ+ﬁ)x1—(x—1)s (3.5)
Ay Az A,

and to formulae obtained through all possible permutations of the three indices in
(3.5); out of the six possibilities only three are distinct. Before proceeding any further
a point should be made clear. The several cases examined in this paper clearly
demonstrate that the conditions (3.3) are not sufficient to ensure that the construction
(3.5) is a solution of (1.2a). All the new quantum R matrices reported below have
been checked by direct substitution in (1.2a) using a symbolic manipulation computer
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code [24]. Our construction of formula (3.5) says nothing about the ordering of the
eigenvalues. Our experience indicates that not all orderings lead to solutions of (1.2a);
however, in some cases different orderings lead to different quantum R matrices for
a given S matrix. We now illustrate these points by Baxterizing solutions of the B,
and B, types.

3.2. Baxterizing solutions of the B, type

We first Baxterize the standard solution given in (2.6a). Using Jimbo’s [14] formula
(3.6), it may be verified that our formula (3.5) with the eigenvalue ordering A, =g,
A,=—q ' and A,=q"* gives Jimbo’s BY’ quantum R matrix while the ordering
Ai=—q7', A\,=q and A;=q"* leads to the A%’ result. The other distinct ordering,
namely A, =¢, A,=q * and A;=—g"", does not give a solution of (1.2a). The non-
standard solution § given in (2.7a) may also be Baxterized in two distinct ways, each
corresponding to a different ordering of the eigenvalues. Denoting the quantum R
matrix corresponding to the ordering A, = g, A, = —q~ ' and A, = 1 by R(x; q), it follows
from (3.5) that

Ri(x; @) =gx(x—-1)(8) '+ (1-¢q)(qg—g ")xI - (x-1)$. (3.6)

The explicit form of (3.6) was given in [22]. The quantum R matrix R,(x; q) correspond-
ing to the ordering A, =—q~', A,=qg and A;=1 s

Ro(x; 9) = gx(x = 1)(8) "'+ (1+ )1 - ¢*)xI + g*(x~ 1)§
where we have multiplied by an overall factor —q° Explicitly, R,(x; q) is as follows:
}éZ(xs q) =b100k dlag( Tl; TZ’ TS’ T4s TS’ T—4’ T—3a T—Z’ T—l)

where the submatrices T.; are symmetric

L _ o _(*¥(1=g)(x+q) q(x-1)(x+gq)
Tl'_ T—l—(x+q)(x ‘12) T2_ T—2_< (x+q)(1_q2))
x(1-¢)(x+q) 0 g(x=1)(x+q)
L=T;= (x+‘1)(1‘qzx) 0

(x+g)(1-¢)

x(1-¢°)(x+q) 0 0 g(x—1)(x+q)
x(1-¢°)(x+q) q(x—1)(x+q) 0
To=T.,= .
(x+)(1-g%) 0 (37)

(x+q)(1-¢%
w ws [OF Wy Ws

We Wy Wz Wy
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with

w;=x[x(1-g)(g— ¢V +q '~ q’] wy=-i(g—¢q ")x(x-1)
wy=-¢"*(g-q " )x(x—1) ws=ig(g~q Hx(x~1)
ws=q(x—1)(1+gx) we=(1+¢)(1-¢*)x[q ' (x-1)+1]
w,=ig"*(g—g Nx(x-1) ws=(1-x)(x+4°)

ws=ig*(g—q ") (x~1) wio=(gx+1)(x - ¢°)

w1 =ig"*(g-q " N(x~-1) ©1=¢"*(q~q ") x-1)
wp=(1+q)(1-¢*)[-g(x—1)+x] wia=—ig*(g—q N x-1)

ws=(1-g%)[g+q°x—¢°+x].

The other distinct ordering of the eigenvalues (A, =g, A,=¢q %, A;=—¢g"') does not
give a solution of (1.2a).

3.3. Baxterizing solutions of the B; type

There are two distinct ways of Baxterizing the standard solution given in (2.8a). The
formula (3.5) with the ordering A, =¢, A,=~q ' and A, =g~ ° gives the B{" quantum
R matrix (our choice of signs in the centre block differs from that of Jimbo [14]) while
the ordering A, =~¢~', A, =g and A;= ¢~ ° gives Jimbo's AY quantum R matrix. The
non-standard solution § given in (2.9a) may also be Baxterized in two distinct ways.
The quantum R matrix corresponding to the ordering A, =g, A,=—q ' and A, =g s

Ri(x; ¢) = gx(x - 1)(8)'+(1-q)(1 - g*)xI - g*(x - 1)§.
= block diag(l',, I, I3, T4, ['s, T, [7, T, T_s, Ty, T3, T, T)
where the submatrices I',; are symmetric:

Wy 0 w3
w
I‘]=1"_l=w1 r2=r_2=( 2 0)3) F3=F_3= Wy 0

Wy
Wy

Wy 0 0 0 w3

0 0
“2 “s w, 0 w3y 0

0
F4=r_4= @2 @ F5=F_5= Ws 0 0
Wy 0 0
Wy
s s (3.8)

We W7 Wg @9 W W) W)
(5] 0 0 0 0 (35

W3 Wi Wis Wi W2 Wiz

I¢=T_¢= W, w 0 0
6 -6 2 3 _

r,= Wiz W24 W35 W2

Wy 0 0
W37 Wiz Wag

Wy 0
Wi3g W3

Wy
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with

@ =(x-g*)(x~q) w,=x(1-¢*)(x~q)
wy=¢(x—1)(x-9q) ws=(1-¢")(x—¢q)
ws=(1-¢’x)(x—q) ws=(1-¢)(1-¢°)x°
w;=-q(g—q Hx(x-1) ws=ig(g—q x(x—1)
wy=¢"*(g-q Hx(x—1) wio=-ig*(g—gq Hx(x~1)
on=-9¢(g—q )x(x-1) @2 =q(x=1)(gx - 1)
wi3=(1-¢)(1-¢")x[g™'(1 - x)+1] wig=—i(g—g x(x-1)
wis=-q"(g—q x(x~-1) wis=1q(g—q )x(x—1)
wi7=-q(g—q H(x-1) wis=(1-¢")x[x(1+q™ ) ~q—q7"]
wis=ig"?(g—q Nx(x—1) wy=(1-x)(x-¢°)
wn=-ig(g-¢ N(x-1) wyn=iq(g—¢ )(x-1)

wy3 = (gx+1)(x+¢%) —2gx(1+q) wya=—ig"*(g~q ) (x~1)
ws==¢"*(g-q N(x~1) wi=q"*(q—q ") (x-1)
wy=(1-¢)g’x—q—¢*+x) ws=ig*(g—q " )(x~-1)
wye=—ig*(g~g ") (x~-1) w3o=(1=g)(1-g")[g(x~1)+x]
w3 =-q(g—q )x-1) w32 =(1-¢)(1-¢%).

Finally, the ordering A, =—q !, A, =g and A; = g ? gives a different quantum R matrix

Ry(x,q)=—q 'x(x=1)(8) ' +q(g—g ") (g+q )xI - ¢g*(x-1)§.

We stress that all the new quantum R matrices given in section 3 have been verified
by direct substitution in (1.2a) using a symbolic manipulation computer code. In all
cases there were only two distinct ways of Baxterizing the braid group representations.

4. Concluding remarks
The results presented in this paper raise some interesting questions.

Remark 1. The underlying mathematical structure behind the standard solutions of
(2.3) is the quantized universal enveloping algebra of simple Lie algebras. The fact
that the non-standard solutions do not follow the classical decomposition rule hints
at a different underlying mathematical structure. Recently the mathematical structure
behind non-standard solutions of the A, types [31,32] has been identified (twisted
quantum groups).

Remark 2. As yet we have no proof that the Baxterization formula (3.5) is valid in
general; our experience in the many cases examined indicates that it probably is. Even
if it is general our results show that not all orderings of the eigenvalues are permitted.
Our construction of (3.5) clearly indicates that the constraints (3.3) are not sufficient



4778 M Couture, M L Ge and H C Lee

to ensure that (3.5) is a solution. In that respect the work of Bazhanov [13] might shed
some light on this problem. He has shown that a meromorphic function R(8) (x =
yields a solution of (1.1) provided it satisfies, in addition to constraints equivalent to
(3.3), the properties of automorphicity (quasi-periodicity) and crossing symmetry. It
would be interesting to determine under what conditions our formula (3.5) satisfies
that two extra constraints; this might shed some light on the ordering problem.

References

[1] McGuire J B 1964 J. Math. Phys. § 622
[2] Yang C N 1967 Phys. Rev. Lett. 19 1312
[3] Jimbo M 1989 Int. J. Mod. Phys. A 4 3759
[4] Majid S 1990 Int. J. Mod. Phys. A § 1
[5] Wadati M, Deguchi T and Akutsu Y 1989 Phys. Rep. 180 249
[6] De Vega H J 1989 Int. J. Mod. Phys. A 4 2371
{7] Kulish P P and Sklyanin E K 1982 Integrable Quantum Field Theories (Lecture Notes in Physics) 151
ed J Hietarinta and C Montonen (Berlin: Springer) p 61
[8] Zamolodchikov A B and Zamolodchikov A B 1979 Ann. Phys.,, NY 120 253
[9] Sogo K, Uchinami M, Akutsu Y and Wadati M 1982 Prog. Theor. Phys. 68 508
[10] Sogo K, Akutsu Y and Abe T 1983 Prog. Theor. Phys. 70 730
{11] Kulish P P, Reshetikhin N Yu and Shiyanin E K 1981 Letr. Math. Phys. § 393
[12] Drinfel’d V G 1985 Sov. Math. Dokl 32 254
[13] Bazhanov V V 1985 Phys. Lett. 159B 321
[14] Jimbo M 1986 Commun. Math. Phys. 102 537
[15] Lee H C, Ge M L, Couture M and Wu Y S 1989 Int. J. Mod. Phys. A 4 2333
[16] Couture M, Lee H C and Schmeing N C 1990 A new family of N-state representations of the braid
group Proc. NATO Advanced Study Institute on Physics, Geometry and Topology ed H C Lee (New
York: Plenum)
[17] Jones V F R 1989 Proc. Physics and Geometry, NATO Advanced Research Workshop, Lake Tahoe
[18] Artin E 1947 Ann. Math. 48 101
[19] Birman J S 1974 Braids, Links and Mapping Class Groups (Princeton, NJ: Princeton University Press)
{20] Reshetikhin N Yu 1988 Preprint E-4-87 LOMI Leningrad
[21] Lusztig G 1988 Adv. Math. 70 237
Rosso M 1988 Commun. Math. Phys. 117 581
[22] Couture M, Cheng Y, Ge M L and Xue K 1990 New solutions of the Yang-Baxter equation and their
Yang-Baxterization Preprint ITP-SB-90-05 Stony Brook
[23] Couture M, Ge M L, Lee H C and Schmeing N C 1990 J. Phys. A: Math. Gen. 23 4751
[24] Veltman M 1964 SCHOONERMAN University of Michigan, Ann Arbor (revised 1984)
Strubde H 1979 Comput. Phys. Commun. 18 1
[25] Reidemeister K 1948 Knoten Theorie (Chelsea)
[26] Alexander J W 1923 Proc. Natl. Acad. Sci., USA 9 93
[27] Markov A A 1935 Recueil Math. 1 73
[28] Akutsu Y and Wadati M 1987 J. Phys. Soc. Japan §6 839
[29] Turaev V G 1988 Invent. Math. 92 527
[30] Ge M L, Xui K and Wu Y S 1990 Preprint ITP-SB-90-02 Stony Brook
[31] Lee H C 1990 Tangles, links and twisted quantum groups Proc. NATO Advanced Study Institute on
Physics, Geometry and Topology ed H C Lee (New York: Plenum)

[31] Lee H C 1990 Twisted quantum groups of A, and the Alexander-Conway link polynomial Preprint
CRNL



