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Abstract. New braid group (B,) representations of the D, and D; types are obtained by
solving the defining refations of B,, directly. We discuss a procedure (Baxterization) which
allows us to construct their corresponding quantum R matrices.

1. Introduction

The quantum Yang-Baxter equation (QYBE)

Ri2(x)Ry3(xy) Ry5(y) = Ry3(y) Ris(xy) Ria(x) (1.1)

plays a central role in the theory of solvable models in statistical mechanics and
quantum field theory [1-5]. If V is a complex vector space and R(x)e End(V® V)
then R;(x) € End(V® V® V) is a matrix that acts as R(x) on the ith and jth spaces
and as the identity on the remaining space; R(x) is referred to as the quantum R
matrix and x € C is the multiplicative spectral parameter. The QYBE takes various forms.
In two-dimensional solvable statistical models the formulation (1.1) is mostly associated
with vertex models, while the star-triangle form appears in the interaction-round-a-face
models. In (1 +1)-dimensional field theory, the QYBE takes the form of the factorization
equations. Another form of the QvBe which proves useful is

(ROBNUARCyNR(»M®I) =(I®R(Y)R(xy)@I)(IB®R(x)) (12)
with

R(x)= PR(x) (1.3)
where P € End(V® V) denotes the transposition u®@u'-> u'® u and I € End(V) is the
identity map.
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A large number of solutions have been obtained by solving the factorization
equations directly [3, 6-8]. Kulish et al initiated a programme [9] in which one obtains
quantum R matrices whose classical limit are known solutions (r matrices) of the
classical Yang-Baxter equation; quasi-classical solutions of the rational and
trigonometric type have been obtained [10-12]. Artin’s braid group B, provides an
interesting connection between solvable models in two-dimensional statistical
mechanics and field theory and the theory of knots. The matrix S= 15(0) which is in
fact a representation of Artin’s braid group B- and from which representations of B,,
(any n) may be constructed, has been extracted from solvable statistical models at
criticality and used to construct link polynomials {3, 13].

In this paper, we approach the problem of finding new solutions of the QYBE by
first solving for new braid group representations; this is done by solving the defining
relations of B, directly. We then proceed to construct their corresponding quantum R
matrices; this procedure is known as Baxterization [14].

Our paper is organized as follows. In section 2 we briefly introduce Artin’s braid
group and some known representations. In sections 3 and 4 new braid group representa-
tions of the D, and D, types are presented. In section 5 we describe the method by
which we transform a given matrix § into its corresponding quantum R matrix. In
sections 6 and 7 we use this procedure to construct the quantum R matrices correspond-
ing to the solutions of the D, and D, types given in sections 3 and 4. We conclude
with a few remarks.

2. Artin’s braid group and some known representations

B, [15,16] is generated by a set of (n—1) generators g, g-, ..., g,—; and their inverse
subject to the following necessary and sufficient defining relations:

88 = 88 li=jl=2 (2.1a)
8i8i+18i = 8i+18i8i+1- (2.1b)

Let V be an n-dimensional vector space and S<€ End(V® V) be an N?x N? matrix
that has an inverse. The following mapping is a representation of B,:

p:B, > End(V®") plg)=1®..QI_®S®I.,.®..QI, (2.2)

where the subscript i means the ith vector space in V®" and S acts in the ith and
(i+1)th vector spaces. The form of (2.2) ensures the satisfaction of (2.1a); no restriction
need be imposed on S. The satisfaction of (2.1b) requires that S be a solution of

(S®IHNI®SHSRN=(IDS)HS®INIR®S). (2.3)

Our reference point throughout this paper are the solutions of (2.3) which can be
extracted from Bazhanov and Jimbo’s quasi-classical quantum R matrices [11,12].
We shall refer to them as the standard solutions. Reshetikhin [17] has shown how
these standard solutions can be generated from fundamental irreducible representations
of the quantized universal enveloping algebras of simple Lie algebras. The solutions
are assoctated with the direct products

i
A®A= Zl & (2.4)

i=
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where A is the fundamental irreducible representation of some Lie algebra and [ is
the number of irreducible representations in the decomposition. Their spectral
decomposition and characteristic polynomial A(A) follow the decomposition rule (2.4).

!
S= Z )\,‘Pi (2.50)
i=1

AA)=det(AI=S)=(A~A)) ... (A=A) (2.5b)

where the A; are the distinct eigenvalues, the P; the projectors and f; the dimension
of ¢;. In addition

Stk=1)=P (2.5¢)

where k is the deformation parameter. An example of such a standard solution is that
associated with the fundamental irreducible representation of sl(2, C)

S;(k) =block diag(y;, vz, ¥-1)

0 1
yi=k 72=<1 k_k~1) yi=k

AA k)=(A=kYA+k™H
mr k)= —k)(A+k™)

(2.6)

where m(A; k) is the minimal polynomial. S, is connected to the six-vertex model and
the Jones polynomial {7, 18]. S, is the first of an infinite family of solutions correspond-
ing to every irreducible representation of sl(2, C). The question we raised some time
ago and which led to an infinite family of new solutions [19] was the following: is S,
the only distinct solution with the following block structure?

z;#0 for all i.

The answer is no; there are in fact only two distinct solutions, the second one being

S,(k) =block diag(¥1, ¥, ¥-1)

. . 0 1 . -
‘ylzk ‘)/2=<1 k_.k_1> ')/—1=_k 1
A k) =(A —k)P*(A+k7') (2.7)

m(A k)=(A—k)(A+k™H

S, is connected to the free fermion model [7] and to the Alexander-Conway link
polynomial [20-23]. Note that although it has the same minimal polynomial, it does
not follow the decomposition rule of S, and is the k-analogue of a graded permutation
operator P*. We shall refer to such solutions as non-standard solutions. More recently
non-standard solutions related to B, and C, [24] as well as to A, [23, 25, 26] were
reported. In the next two sections, we examine new non-standard solutions of the D,
and D; types.
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3. New braid group representations of the D, type

3.1. S;(k)xS;(q)

Our starting point is the solution of (2.3) extracted from Bazhanov and Jimbo’s D5"
quantum R matrix which we shall refer to as the standard D, solution. Its block
structure is

S =block diag(r;, T2, T3, Ta, T—3, T_25 T—1)

0 0 0 2z
z
=2 Tz=( 2) =10 2z O
2 23
Z4 0 Zg
0 0 zp5
0 215 R
T_1= 2y T = T 3= 0 213 0 Z; #0alli (3.1)
215 Z16
ziz 0z,
0 0 O Z4
0 0 zz 2o

T4 = .
0 Zg 0 Z19

27 Z9g Z10 In

Solutions of (2.3) which have the block structure described in (3.1) will be referred to
as solutions of the D, type. The following direct products are also solutions of this type:

Si(k)xsj(q)=bIOCkdiag(leTZ,TBsT4aT—3,T—2,T—l) ls.’=1’2
0
kq T (0 1 ) g q g
7-1= 2= -1 7'3= {83
k—k
0 0 a
0 k
7= Ba T_z—(k k(q—q'l)) .= 0 Bk 0 |
a 0 alg—q™)
(3.2a)
0 0 0 1
. 0 0 1 (k—k™
““lo 1 0 (g—q7")
1 (k=k™") (qg—q7") (g—q ' Wk—-k7")
_Jk i=1 _Ja j=1
a_{—k" i=2 ﬁ_{—q“ j=2.
Their characteristic and minimal polynomials are
Ak g)=(A—kg)’(A~k7'g7 (A +kg7' )’ (A +k7'g)’ ij=1
ANk @) =(A—kg)® (A —k7 g ) (A + kg )51 + k™ !g)? i=1,j=2
Ak g)=(A—kq)* (A —k7'g" ) (A + kg (A +k™'g)° i=2,j=1 (3.2b)
A k) =(A—kg)*(A —k7'g ) (A + kg ) (A +k'gq)* i=2,j=2

mA k g)=(A—kg)(A—kT'g7)(A+kgT)(A+kT'q) Lj=1,2.
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Since S; has the form (p,, ps, p—,) Where o151 =Y, OF }71.2‘_1 as given in (2.6) or
(2.7), it is easy to establish the identification

1= p1(k) X p2(q) = pa(k) X py(q)

73~ block diag(r;=p_,(k)x p,(q), = pa(k) X p_,(q))

T =p_(k)xp_,(q) 2= pi(k) X p2(q)

7_3 =block diag(7_,=p,(k)x p_i(q), 7_o=p_,(k) X p2(q))
4= p2(k) X p2(q)

there the tilde " means to within rearrangement of rows and columns. Thus the canonical
form of D,-type solutions that are direct products of the S, (i=1,2) is block
diag(7(, 7}, T2, T, T4, T_2, T_2, T-1, 7). The standard D, solution extracted from
Jimbo’s formula (3.6) in [12] corresponds to the case k=g and i,j =1, it is equal to
K*(S,(k)® S,(k)).

The characteristic polynomials in (3.26) indicate that for k = g only S;(k)x S,(k)
follow the classical decomposition rule

(4)x(4)=(9)+(6)+(1). (3.3)

The remaining three solutions do not follow this decomposition rule and are thus of
the non-standard type. We now turn to a two-parameter solution of the D, type which
is not the result of direct products of S, and S.

3.2 §(k, q): a new two-parameter solution

This solution was found by solving (2.3) directly. The method used is an extension of
the one described in [27] and has already led to solutions associated with non-
fundamental irreducible representations [19]; a solution is obtained by solving a
minimal set of equations and then verifying, using a symbolic manipulation computer
code [28~], that the full set of equations (2.3) is satisfied. This new solution which we
denote S(k, g) is as follows:

S(k, q) =block diag(7,, T2, T3, Ta, T3, Ty 7-1)

0 0 kq
. 0 .
7:1=k 7'2=< 1 _1> Ty = 0 _k—l 0
1 k—-k 5
kg 0  k(1-g%)
0 0 1
. . 0 kg .
7=k 7'_2=< ) > F3=|0 —kq° 0
kg k(1-
9 ki-q) 10 k—k
0 0 0 q (3:4)
. _|o 0 ~k [(1 =K1 ~ g1
Ta= 2 247172
0 -k 0 [(1-k)(1-4g%)]

g [A-K)(1-gD]" [(1-k)(1-¢)]"7  (Q2k-k"'-¢%k)
S, 1)#P
AA; k) =(A—Kk)BA+ Kk A+ kg®)*
m(r, k,q)=(A—k)(A+k A +kg?).
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It is easily shown that §(k, g) is not a particular case of S;xS; and that in fact it
cannot be obtained from any direct product L, X L, where both L, and L, have two
distinct eigenvalues. The characteristic polynomial indicates that S(k, g) is of the
non-standard type (it does not follow the decomposition rule (3.3) of the standard D,
solution). Note that for g =i the minimal polynomial of S(k, i) is

m(A; k, g=i)=(A-k)*A+k™)
which indicates that S(k, i) is non-diagonalizable. Non-diagonalizable one-parameter

solutions can also be obtained from the direct products S;(k) x S;(q). We now turn to
new solutions of the D; type.

4. New braid group representations of the D; type

Our reference point is the standard solution of (2.3) extracted from Bazhanov and
Jimbo’s D§" quantum R matrix. By solving (2.3) directly we found that in addition
to the standard solution there are only three other solutions of the D; type. The standard
solution is follows:

S=blOCk diag(ﬂ'l’ T2y W3, T4y My Moy, M55 T4, T3, T_2, 77.—1)

0 1 0 0 1
m=Ta_=k 7Tz=77—2=( w) m(€) =m_5(§) = § 0
w
0O 0 0 0 1
0 0 0 1 0 0 1 0
me=m.=| 010 () = 7_s(x) = x 0 0 (4.1a)
w 0 w 0
w w
0 0 0 0 0 k™!
0 0 0 k! —k7'w
o= 0 k' k7'w k2w
0 k'w k2w
k™ 'w? —k™w
(k™' + k7 )w?

with w=k - k™', £ =k and y = k; all submatrices ., are symmetric. The characteristic
and minimal polynomials of S are

A K)=(A=k)P°A+k™H (A -k

m(A; k) =(A—k)(A+k™HA—k). (4.1b)

Note that S decomposes according to the classical decomposition rule (6)x(6) =
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(20)+(15)+(1). The other three solutions are non-standard solutions and divide in
two equivalence classes; we give a representative of each class. The first non-standard
solution is

-~ ~

S =block dlag(ﬂ-l, T2y W3y T4y Tsy Moy M5, T4y T3, T-2, 77'—1)

m=7=k Ty =T_3= T, 7;3"—'7;—3:77'3(5:_1(_1)
7;4=7?_4=7T4 7‘.;'5‘;-‘)'7-—5_=77'5(A/=-k)
00 0 0 0 Kk (4.2a)
0 0 0 -k iw
. 0 k' iw w
Te =
0 iw w
2w —iw
0

where w=k -k~ and 7, is symmetric. The characteristic and minimal polynomials
of S are

AA K =A-K)BA+k H(A—k™Y

(4.2b)
mA, k)= =k)(A+k YA —=k7Y).
The second non-standard solutions are as follows:
S* =block diag(w¥, w5, ¥, w¥, w¥, of, w¥s, w¥,, w¥;, 7%, 7F)
mi=n* =k m¥=r*=m mf=n¥=m(é=k)
mi=at=m, mé=m¥s=ms(x=-k7")
0 0 0 0 0 k! (4.3a)
0O 0 0 k™! kK'w
¥ 0 -k iw —ik'w
T = ; =1
0 iw —ik™'w
2w -k 'w
k-k7°

with w=k~k ' and 7 is symmetric. The characteristic and minimal polynomial of
S* are
A k) =(A=K)P(A+k )" +k™3)
‘ (4.3b)
mA; K)=(A=k)A+k DA +k73).

Note that all non-standard solutions do not follow the classical decomposition rule.
We now turn to the problem of transforming these solutions into solutions of (1.2).
5. Baxterization

The purpose of this section is mainly to present certain Baxterization formulae which
were introduced in [29]. Jimbo has shown [12] that all quasiclassical quantum R
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matrices derived in [11, 12] have the following form:

!

R(x)=_2 8;(x)P; (5.1a)

where [ is the number of distinct eigenvalues and
S(x)=a,+bx+cx*+...+x', (5.1b)

where a;, b, ...are constants. In addition, these solutions satisfy the unitarity and
initial conditions. Using the quantized universal enveloping algebras associated with
these solutions, Jimbo reduces the QYBE to a set of linear equations for R(x) which

he then uses to determine the eigenvalues §,(x)
In the light of those results the strategy for constructing a quantum R matrix of

the trigonomeric type given a solution S of (2.3) is as follows. Starting with a braid
group representation whose spectral decomposition is

S= )\1P1+A2P2+. . .+/\[|P[

we seek a quantum R matrix of the form (5.1). The coefficients are determined by
imposing the following constraints:

R(x=0)=S
Rix=1)=vI (initial condition) (5.2)
R(x)R(x™ " =n(x)I (unitarity condition).

Before proceeding any further, a point should be made clear. We have examined many
cases other than the ones discussed in this paper and our experience with this procedure
clearly demonstrates that the constraints (5.2) are not sufficient to insure that the matrix
R(x), obtained through such a construction, is a solution of the QvyBe (1.3). Based on
the many cases examined, we suspect that the formulae given in (5.6) and (5.8) to
Baxterize a given braid group representation S with three and four distinct eigenvalues
are quite general; however, at this present stage of development we still must verify
that the matrix R(x) obtained is indeed a solution of the QvBE. This test is most easily
done using a symbolic manipulation computer code such as scHooNsHIP [28].

We begin with the case of two distinct eigenvalues. Substituting (5.1) into (5.2)
we get

a; =X, ay=A;
al+bi=ai+b? (5.3)
alb1=a2b2 a1+b1=a2+b2.

Solving (5.3) we get the following Baxterian formula:
R(x)= (A +A0)P, + (A2 + A, x)Py= S+ A, A,xS 7" (5.4)

By substituting (5.4) into (1.2) it is easily verified that this formula is valid for any S.
Let us now consider the case / = 3. Substituting (5.1) into (5.2) we get

a1=/\] (12:/\2 a3=)\3
a,+b+ey=a,tb,te=as+ b+ ¢y

(5.5)
a,C, = a5, = 0a;0;3 bi(a,+¢,)=bi(ar+ ;) = bs(as+¢3)

ai+bi+ci=as+bi+ci=ai+bi+cl.
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There are many solutions to (5.5); the ones of interest here are those leading to the
following formula:

v AA AA
R(x)= [A,+(A2+———‘)\ 3)X+/\3x2]P1+[z\z+()l1+)\3)x+ ; 2 xz}Pz
2

2

AiA
+[,\3+( ;‘3+)\2>x+/\,x2]P3
2

Ay

3

=MAsx(x—1)S" +,\3(l+)\+ + )xl (x-1)S (5.6)
2 3

and to the formulae obtained through all possible permutations of the three indices
in (5.6); out of the six possibilities only three are distinct.
For the case I =4, conditions (3.2) lead to the following set of equations:

a,=Ai, a= A, as;=A; Ay = A,

a+b+etd =ay+by+e+dy=a;+bytetdi=a,thite,td,
A+bi+ci+di=al+bitcitdi=ai+bitci+di=al+bitcitd;
a;b,+bc,+ ¢ dy = asby+ bycy+ €dy = asby+ bycs + c3ds = agby+ bycy + cad,
a,c,+b,dy=a,c,+ body=asc;+bydy = asc,+ byd,

(5.7

a\d,=a,d,=a;ds=a,d,.

There are several solutions to (5.7); the one of interest leads to the following formula:
R(x)=a5(x)8?+ a1 (x)S+ ao(x) [+ o_,(x)S™" (5.8)

with

o2(x) = (A223) 7 Aa= A1) T (Aad2 = XA x(x = 1)

o1(x) = 1=x=(A223) 7 (A= A1) ' IA2+ A (A2hs = A A3) + 445 = A As]x(x = 1)

o(x) = (AaAs) M Aa= A1) THIA A3+ A da+ AsAs + A4 (Aads— A A5) + AA5(A5 — AY)
F A A A3A = A A)]xX7+F [A3A4(A + As) = A1 AS(As+ A4) ]x}

= - Az— Ay
o (x)=AAx(x 1)[x+<A4—A,):|'

More detailed discussion of this Baxterization procedure is given [29]. We now turn
to the problem of Baxterizing the solutions described in sections 3 and 4.

6. Baxterization of the D, and D, type solutions

6.1. The six-vertex and free-fermion models and their direct products: Baxterizing using
the two distinct eigenvalues formula

We first Baxterize S, and S, given in equations (2.6) and (2.7). Using formula (5.4)
with A, =k and A,=k™' we get:

R,(x; k) = block diag(T',,T,,T_,)

_ k—k™) 1—x
Ii=k—k =<"( ) P
1 S Pl F=k—k™'x

(6.1)
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R,(x; k) = block diag(l",, T2,T-))

~ ~ k_k_1 l_x ~ _
F=k-k"'x r2=<x(1_x ) k_k,1> f=—k"'+kx

(6.2)

It is easily shown that the solvable statistical models associated with R,(x; k) and
R,(x: k) are the 6 V(I) (six-vertex) and 6 V(II) (free-fermion models described by
Sogo et al [7].

The following direct products are also solutions of (1.2):

Ri(x; k) x R(x; g) =block diag(Ts, To, Ty, To, Ty, T_s, T-3) ij=1,2
Lol o tbos 0 s
T, =1tv Tz:(tv tv) ;=1 0 tv; O
3T M Los O 405
T tsv, 0 tsvs
T_, = tsvs T_2=( ) T,={ 0 novs O (6.3)
vy Ly,

tsv; 0 fsv,

LUy 130y Loy B3l
1302 t41)2 t3v3 1403

T, =
vy 1303 Lty I,
t303 t4U3 t3v4 t4v4
with
tlgk'—k—-lx tzEx(k—k_l) t3El_x
ta=k—-k7! ts=a—a 'x
v=q-q 'x r=x(q-q") vy=1-x
va=g~q vs=B—B7'x

and where a and B are as defined in (3.2a). Note that P[k*R,(x; k) x R,(x; k)] is
equal to Jimbo’s DS quantum R matrix [12).

6.2. Quantum R matrices associated with S,(k) x Si(q) and §(k, g): Baxterizing using the
three and four distinct eigenvalues formulae

The direct products S;(k) x S;(g) provide a good testing ground for the Baxterization
formulae discussed in section 5. We first consider the case k = g whose three distinct
eigenvalues are k%, —1 and k2. With the choice A, = k*, A,=—1 and A, = k2 formula
(5.6) yields R;(x; k) x R,(x; k) given in (6.3) illustrating the fact that we can Baxterize
S, and S, first and then take the direct product or take the direct product first and
then Baxterize. It is interesting to note that there are two distinct ways of Baxterizing
S,(k) x S,(k), each one corresponding to a different ordering of the eigenvalues. While
the ordering A, =k* A,=—1 and A;=k™? gives R,(x, k) x R,(x; k) the use of (5.6)
with the ordering A,=—1, A,=k* and A,=k™? gives a different quantum R matrix
which we denote R*(x; k); —k*PR*(x; k) is equal to the A® quantum R matrix given
by Jimbo in [12]. For all the other direct products, out of the three distinct orderings
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of the eigenvalues only one leads to a solution of (1.2). Finally we can Baxterize
Si(k) x S;(g), which constitutes a four-distinct-eigenvalue case. Choosing A, =gk, A, =
—gk™', A;=q 'k™" and A,=—kq ', formula (5.8) gives (6.3) within an overall factor
(1—k?x). We have not examined other orderings of the eigenvalues. The results of the
Baxterization of direct products is summarized in figures 1 and 2. We now turn to the
Baxterization of the two-parameter solution S(k, q) given in (3.4). Using formula (5.6)

;: R (x; k)

)
o o

(6.3): A.(x; k) x ﬁ,(x; q)

-/

ﬁ,(x; k) x ﬁ,(x; k)

Baxterization ,
(5.4): A, =k A,=—k~

Baxterizatiozn »
(6.8): A, =k, X, =—1,A;=k

Baxterization

(5.8): A, =kg, A,=—gk ™'

Ay=q k7' A=—kg”

Baxterization »
(5.4):x=q A=—q

B3l s

- (3.2): 8,(k) x S,(q) -

33 sta)

Figure 1. Commutativity of the Baxterization procedure for the direct products S;(k) x
S,(q). Numbers in the diagram refers to equations in the text.

Dy quantum R matrix
(6.3): A, (x: k) x A,(x; k)

AY quantum R matrix

Baxterization

(6.6): A, =K%, A,==~1, A,=k"?

Baxterization

(58): A, ==1,A,=k*, A,=k?
2 3

(3.2a): S,(k) x S, (k)

Figure 2. Two distinct ways of Baxterizing S,(k)x S,(k). Numbers in the diagram refer
to equations in the text.
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with A, =—k~", A,=k and A;=—kq* we get
R(x; k q) =block diag(T,, Ty, Ts, Tu, 7oy, Toa, T2))

. (x(k—k“‘)(l—qzx) (1—x)(1—q2x)>
T2=

> L~ _ a2
Ty=(k-k™'x)(1-¢%x) (1-x)1-¢%)  (k=k")(1-¢°x)

x(1-¢*)(k—k'x) 0 g(1-x)(k—k~'x)
T, = 0 (1=-g*x)(kx—k™") 0
g(1-x)(k—k™'x) 0 (1-¢*)(k—k™'x)
- . - x(1-g*(k—k™'x) q(l—x)(k—xk“))
T .=(k-k'x)(1—g°x) T_z_(q(l—-x)(k—xk_l) (1= g2 (k—kx— (6.4)
(k—k™H)x(1-g°x) 0 (1-x)(1-¢°x)
T..= 0 (x—g¥)(k -k 'x) 0
(1-x)(1-¢%x) 0 (k=k™)(1-g¢%x)

W, wW; wW; W3
T4 - Wy Wy Ws We
W Ws Wy Wg
W3 We W Wg
with
w,=x(—k'x+2¢°xk™" —g’xk — ¢’k + k)

w,=k7'gx(x - 1)[(1-¢*)(1 -k*]"?

wy=q(1-x)* ws=(1-g*)(k—k™)x
ws=(x~1)(k-k™'g’x)
we=(1-x)[(1-¢*)(1-k*]"* wr=x(1~g*)(k—k)

ws=(1=-x)k(1-g*)+k-k™']+(1-g*)(k-k")x.

We have verified that (6.4) is a solution of (1.2). Note that the other two distinct
orderings, namely A, =k, A\,=—k™', A\y;=—~kg’ and A, =k, A,=—kg?, A;=—k ' do not
give solutions of (1.2).

6.3. Baxterization of the D; type solutions

The Baxterization of D, type solutions is done using (5.6). Using Jimbo’s [12] formula
(3.6), it may be verified that the Baxterization of the standard solution—given in (4.1)
with the orderings A, =k, A,=—k™', Ay;=k > and A, =—k™!, A,=k, A;=k° give the
DY’ and AY’ quantum R matrices respectively; the third possible ordering, namely
A=k Ay=k™, A;=~k™" does not lead to a solution of (1.2). We have verified that
S given in (4.2) may also be Baxterized into two distinct ways. The quantum R matrix
corresponding to the ordering A, =k, A\,=—k™' and A,=k"'is

R(x; k)=x8§"'-§ (6.5)
while that corresponding to the ordering A, =—k™', A,=k and A; =k’ is

R(x; k)=—=k2x(x=1)S '+ k(K k™ )xI - (x—1)§. (6.6)
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7. Concluding remarks

Let us first summarize the main results of this paper. By solving the braid group
relations directly, we have found new solutions of the D, and Dj; types. These solutions
distinguish themselves from the standard solutions by the fact that, although they obey
the same weight conservation rule (they have the same zeros), they do not obey the
classical decomposition rule of tensor products. The second main result consists in
the construction of the associated quantum R matrices and illustrates the fact that in
some cases there is more than one way to Baxterize a given braid group representation.
We conclude with a few remarks.

Remark 1. The underlying mathematical structure behind the standard solutions of
(2.3) is the quantized universal enveloping algebra of simple Lie algebras. The fact
that the non-standard solutions do not follow the classical decomposition rule hints
at a different type of quantized enveloping algebra. Recently, the mathematical structure
behind non-standard solutions of the A, types has been identified (twisted quantum
groups) [21].

Remark 2. Results show that the constraints (5.2) are useful guidelines to construct
quantum R matrices but are clearly insufficient to ensure that the resulting matrix will
be a solution of the QYBE, as the problem of the orderings of the eigenvalues clearly
indicates. Additional constraints might be a way of solving this problem. In that respect
the work of Bazhanov might shed some light on this problem. In [11] he shows that
a meromorphic function R(8)(x =¢e"®) yields a solution of (1.1) provided it satisfies,
in addition to constraints equivalent to (5.2), the properties of authomorphicity (quasi-
periodicity) and crossing symmetry. It would be interesting to determine under what
conditions our prescription leads to such functions.

Remark 3. We suspect that non-standard solutions of (2.3) exists for B,, C,, D, for
all n as well as for the exceptional groups.

Remark 4. Recently the quantum superalgebra U, osp(2,2) has been described by
Deguchi et al [30]. The braid group representation they extract from this algebra is a
special case of the inverse of our two-parameter solution §(k, q) given in (3.4); indeed,
a simple symmetry-breaking transformation of the type described in [27] on [§(k, q=
k™")]7! followed by a change of variable k - k™' will give their result. The implications
of our two-parameter solution remain to be explored.
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