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It is shown that in geometric quantization formulation, fractional statistics in a
quantized system of &V indistinguishable particles in two spatial dimensions arise
from the nontrivial cohomology of the flat connection on the quantum line
bundles as well as from the nontrivial homology of the configuration space. The
propagator of a nonrelativistic interacting system with fractional statistics is
derived.

I. INTRODUCTION

The possible existence of fractional statistics in (24 1) dimensions has been recognized and
discussed for many years.! It has been suggested that fractional statistics may be relevant to
important physical phenomena such as the fractional quantum Hall effect® and high T, super-
conductivity.® Since the unusual statistical property in two dimensions is closely related to the
nontrivial topology, namely, the global property, of their configuration space of a system of
indistinguishable particles,** and since the geometric quantization formulation® is essentially
a globalization of canonical quantization, we think it is patural and important to discuss
fractional statistics in the context of this formulation. This paper is devoted to this subject.

In the framework that permits the existence of Fermi—Dirac statistics, the configuration
space of N indistinguishable particles in d spatial dimensions is*

MWN=(RWN_D)/Sy, (1)

where R¥=(R?) ®¥ is the dN-dimensional Euclidean space, Z ={(q;...q;)\ 4,=q p ]
=1,...,N} is the set of diagonal points, and Sy is the permutation group. The fundamental
group 7, (M) of M® depends decisively on d. For d>3 it is Sy and for d=2 it is Artin’s
braid group By (MY is disconnected when d=1). As is well-known, the difference between
By and Sy is responsible for the radically dissimilar statistical properties of systems in d>3 and
in d=2 spaces. We find that in the geometric quantization formulation the curial factor giving
rise to quantum statistics is the flat part of the connection on the quantum line bundle. When
the Hilbert space is chosen to be composed of covariantly constant sections along the vertical
polarization, that is, when the Schrddinger position representation is selected, a nontrivial
choice of the cohomology class of the flat part of the connection combines with the homology
of configuration space in d=2 dimensions to give unusual statistics.

In Sec. II the method of Refs. 5 and 6 is used to give a review of the classical geometric
description of an N particle system and to quantize it. In Sec. III the relation between statistics
and the aforementioned connection on the complex line bundle is examined. In Sec. IV the
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statistical phase factor is expressed in terms of a nontrivial solution to the equation for the flat
connection, and the Blattner—Konstant-Sternberg (BKS) kernel is used to derive a path-
integral expression for the propagator of a nonrelativistic system. Section V contains our
conclusion.

Il. GEOMETRIC QUANTIZATION OF A SYSTEM OF N INDISTINGUISHABLE PARTICLES

Following the method of Refs. 5 and 6, we first construct a symplectic geometry for a
system of AV indistinguishable particles, whose configuration space MY is given by Eq. (1) and
whose phase space I'=T*M?, is the cotangent bundle over M?". The symplectic manifold
(T,w) is the manifold I" equipped with a nondegenerate closed two-form o (called the sym-
plectic form) on I'. That is

do=0 (2)
and nondegenerate
o(X,0)=0=>X=0, (3)

where X is a tangent vector field on I'.
Associated with each smooth function f, which may be a classical observable on I', we
define a tangent vector field X called the Hamiltonian vector field by

X £ w=—d f s (4)
where 1 denotes the inner product. Define the Possion bracket of two functions f and g as
{fgl=—0(XX)=—Xg=X,f. (5)

The closure of @ ensures the Jacobi identity on the Poisson bracket. Let ¥ be a map of the
interval (0,1) to M?V:(0,1) -~ M?. If f is the Hamiltonian function, then the equation for the
integral curve y(¢) of X is

d
ZYO=X (1) (6)

is the canonical Hamiltonian equation of motion.
Because the symplectic form o is closed, it can be expressed locally as an exact form

w=d0, (7

where the canonical one-form symplectic potential 0 is defined only up to a closed one-form.
Also w and 6 may be expressed locally in terms of the canonical local coordinates (¢?,p;,),
i=1,..N,a=1,..,d

0=2,dp;, \dq],

0=32,2,.4dq; (8)

Being dependent only on w, classical mechanics is invariant under general canonical transfor-
mations which always preserves w.

The first step in geometric quantization is to associate a linear operator & , with each
function f on T such that &, is the identity operator and all Z ; satisfy the commutation
relation
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[Z p Pl =ihP (143 - (9)

This may be achieved by introducing a complex line bundle L, called the prequantization line
bundle, over I'. Denote by L* the bundle obtained from L by removing its zero section; this is
the U(1) principle bundle over I associated with L. On L* define a connection one-form a and
a curvature two-form () related by

Q=do. (10)

Denote by 7, the fundamental vector field on L and by 7.(z) the tangent vector of the curve
t—€?™z, where z is the coordinate on a fiber in L*. Then « satisfies

n.da=c, (11)
where ceC is a complex number. From Egs. (10) and (11)

7.10=0, .£,da=0, (12)

where . - is the Lie derivative along 7,. Hence, Q is the pull back of a closed two-form on TI'.
Thus the general form of « is

a=56+5, (13)

where 3 is a pull back of a one-form on I'" and, according to Eq. (11), § admits a local
expression

S5=dz/27iz. (14)

The operators &, act on the space of sections of the bundle L as follows. The one-
parameter group of canonical transformations ¢’f generated by f has a unique lift to a one-
parameter group of connection preserving transformations of the bundle, which defines the
action of ¢/ on the sections. The operator & , is defined by

d
P A=ifi— ($}A) | mo=(—i#iVx + f )4,
dt d (15)

VXfZXf+27TinJ B,

where A is a section of L and Vy ; is the covariant derivative along the direction X ;. Condition
(9) requires

O=—h""o, (16)
which, from Eqgs. (7) and (10), implies that in general
B=—h"10—ay, (17)
where @ is an arbitrary closed one-form,
day=0. (18)

Since o does not contribute to (), we call a, the flat part of the connection one-form.
The prequantization space, or the space of sections of L, forms the full representation space
of quantum physics. However, this space is obviously too big to be the correct physical Hilbert
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space, since locally a section admits functions of both ¢f and p;,, which would lead to violation
of the uncertainty principle. In order to prevent this from happening it is necessary to reduce
by “‘polarization” the prequantization space to a suitable subspace.

A polarization & of a symplectic manifold (I',w) is an involution complex distribution on
T satisfying

dim, ¥ =1dim T, wgyxs=0. (19)

Given a polarization %, the space of sections of L can be restricted to a subspace of
sections that are covariantly constant along %, the complex conjugate distribution of .% . The
conjugate 1 of such a section ¥ must be covariantly constant along .%. In general, the Her-
mitian product 4’ is covariantly constant along D=% N.Z and its integral over I" diverges
unless the leaves of D are compact. This may suggest that it should be natural to integrate ¥}’
over I'/ D, except that there is not natural measure on I'/D. One way to circumvent this
difficulty is to use half forms to construct the correct density to be integrated over I'/D. A
completely self-contained description of half forms is lengthy; interested readers are referred to
Refs. 5 and 6. Here, we only give a very simple presentation.

Let % be a polarization on I" which forms an n-dimensional vector space, {X,} an
arbitrary basis of % whose linear transformations form the group GL(#;C), and G a matrix
representation of an element in GL(n;C). Denote by §,(F) the set of all functions v on F
with the property

v{(XG),}=(det G)v{X,}. (20)

The elements in §,(# ) may be thought of as the rth power of the volume element on . Every
8,(F) is a one-dimensional complex vector space and the vector spaces of §,(.#) satisfy

60(?)=(g, 61(.?_)=A®ny*,
B(F)=(6_(F)W=b5_,F*), 8(F)=5(F), (21)

5;»(9-)@5.;(?):8”.5(37),

where & denotes constant functions, * denotes dual, and overline denotes complex conjuga-
tion. It can be shown that the bundle over I" whose sections give the correct quantum descrip-
tion of physical state is L&8_;,,(F ). Then the polarized wave functions are locally of the
form

P=sv, (22)
where s is a (polarized) section in L satisfying
Vis=0, VYXe{F}, (23)
and v is a section of 8_,,,(F) satisfying
V=0, VXe{F}. (24)

The sections of §_,,(F ) are called half forms. The inner product is defined as

B = [ sunl Tl | el 25)

r/D

where the subscript m denotes a point in I'/ D,
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1
€w=(_1)n(n—l)/2_’;wn (26)
is the Liouville form on T, and ¢, is the Liouville form on (% m+.7 m)/ Dy,

The above description is applicable to any polarization. In this paper we focus on the
Schrédinger’s position picture, i.e., we take the vertical polarization in which # is spanned by
the linear frame fields {3/3pf;i=1,...,N;a=1,...,d}. Then the polarized wave functions have the
form

P=1(g)3v, (27)

where § is the unit section. Since I'/ D=M?¥, the inner product can be reduced to

f WP (@) |dgi A~ Ndgl]. (28)

The reduction of the full prequantization representation space to the Hilbert space 5% of
the sections of L®8_,,,(F ), which is covariantly constant along %, requires that the defi-
nition (15) of operators be modified. Consider a function f on I' and its Hamiltonian vector
field X ;. Denote by 0y f the one-parameter group of canonical transformations generated by X
with parameter #; ¢ is a map on the prequantization representation space. For each teR, the
image of the polarization .# of I' under the derived mapping .7~ ¢’ br is a polarization
F =T ¢(F) of the symplectic (I',). For each ¥, one can define ¢’t). This gives a map
¢'r: ¢~ X, whose target space 5, consists of covariantly constant sections of L ®8_1,( F)
along .Z,. If f is a polarization-preserving function, i.e., if & ,=.%, then a quantum operator
& ron d"f can be defined as in Eq. (15)

Of(',l')——lﬁ (¢f1/’) li=0r Y (29)

On the other hand, if f is not a polarization-preserving function, i.e., if & 5.5, then (see Sec.
5 in Ref. 6) there exists a Blattner~Konstant-Sternberg (BKS) kernel ¥ 2 #°, X 5 - % and
a linear map % ;#°,—5% such that

‘z/t(ll’,'/’t):(‘“ @tlpt)' (30)
For small te(0,€) define ¢.5%" -7, by
b=Z o¢) (31)

Then the quantum operator is given by
. d
ﬁf=lﬁd_t¢t|t=0' (32)

. QUANTUM CONNECTION AND STATISTICS

In the last section it was shown that in a given classical system the symplectic two-form o
is fixed, but in the quantized system the quantum connection one-form « is determined only up
to a flat connection one-form a. Different choices of a, correspond to the same classical limit
but may give distinct quantum systems. In this section we will show that, for a system of N
indistinguishable particles. A choice of cohomology class to which &, belongs to is precisely the
choice of the statistics of the quantum system. Often statistics is thought of as just the exchange

J. Math. Phys., Vol. 34, No. 3, March 1993



Yu, Zhu, and Lee: Flat connections in geometric quantization 993

symmetry of the wave functions of indistinguishable particles. However, as is well-known,’ the
issue is not just exchange symmetry when MY is not simply connected. To see this, let 7(z) be
a curve in M“ as before. Since M?" is base manifold of the cotangent bundle I" it is a
submanifold of the base manifold of the quantization bundle L. After having been fixed to the
vertical polarization the Hilbert space 5#° may be considered as a bundle over M?Y. Then,
because the representation space is restricted to the Schédinger’s position representation,

0(X,X)=0, VX, XV (M™). (33)

Therefore, from Eq. (16), the curvature (} vanishes, and the connection one-form «a restricted
to MY is flat, or da==0 on M“Y. This means that o on M* may be classified into equivalence
classes according to the first d¢ Rham cohomology H' (M%) of M4V,

The parallel transport of the wave function ¢ along the curve ¥(z) on M?Y is given by the
solution to the equation for the horizontal lift of y(z),

Vx  ly(2))=0, (34)

o

where X, is the tangent vector field of ¥(#). The equation has the formal solution

—if a
y(n)

Consider the case when y(¢) is a closed curve: ¥(1) =y(0). Although y(1) and y(0) are the
same point in MY the wave functions ¥(y(1)) and y(y(0)) differ by the phase factor

~i§a
4

which is an element of the holonomy group of connections. Its value is determined by the de
Rham cohomology class to which o belongs and the homology class {¥} to which y belongs.
For a given a Eq. (36) gives a one-dimensional representation of the homology group
H,(M“w). Since

Wy ())=exp Wy (0)). (35)

¥(y)=exp , (36)

H{(M,;)=2Z,, for d>3, (37)
and
H(M*M)=Z, (38)
we have, for d>3,

1, Vaetrivial class of H'(MY),

x(r)= +1, Vaenontrivial class of H'(M), (39)

and for d=2,

x(7)=e"®, ©OcRneZ. (40)

One recognizes the y in Eq. (39) to be just the one-dimensional representations of the per-
mutation group .Sy: bosonic in the upper case and fermionic for the lower case. In Eq. (40) n,
characterizes the homology class to which y belongs and the parameter ® is determined by the
choice of the connection one-form acH! (M?Y). Different values of @ implies different statis-
tics.
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IV. FRACTIONAL STATISTICS IN THE d=2 CASE

We have seen that the connection one-form a on the quantization bundle L satisfies the
equations

h lo=—da, on T,
dal V(MdN)=0' (41)

That is, a is generally determined up to a flat connection one-form a; and is itself flat when the
vertical polarization is chosen. In the latter case only the de Rham cohomology class A 0. 500!
to which o belongs matters to the phase factor y(y). In what follows we focus on the case
d=2. Then, locally, ¢ admits the expression

—a=—8+ Z Z p,,,dq,+— 2 déi(q), (42)

i=1 a=1

where @;; is the azimuthal angle of particle 7 relative to particle j. The last term on the right
hand side of Eq. (42) is a,. This expression obviously obeys Eq. (41) and gives the result for
the integral in Eq. (36)

® N
- § a=— z n,ﬂT, (43)
Y

i<j

where n;;= §,4,/m is the winding number of the jth particle around the ith particle. Thus the
factor is

x{(y) =e’®z?,<j"i/'§e'®"7. (44)

The choice @=0(mod 27) gives Bose-FEinstein statistics, @ = (mod 27) gives Fermi-Dirac
statistics, ®@ =rational number gives fractional statistics, and any other choice of real number
gives ® statistics.

A nontrivial choice of oy may also contribute a statistical factor to the propagator. To see
this, consider a system of N indistinguishable particles interacting with a Hamiltonian

N

1
H=r— X S Gt V) (45)

i=1 a=1

Since H does not preserve the vertical polarization, the evolution from #=0 to ¢ generated by
H brings the Hilbert space from #° to 5¢°, According to the discussion given in Sec. II, the
method outlined in Egs. (30)-(32) should be used to quantize the system. There is an explicit
expression of Eq. (30) (Ref. 6)

H ()= [ /Mt X g X 15 @@ 0] (46)

By means of this expression, the quantum operator of the Hamiltonian equation (45)
defined by Eq. (32) may be rewritten as

d
Opp=ifi— (¢H1,lz)‘ zﬁ ‘I’, (47)

t=0

Using Eq. (6.49) in Ref. 6, for the n=dN=2N case we have that

J. Math. Phys., Vol. 34, No. 3, March 1893
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¥,= f (if) | det (0 (X 85X 1)1 2 exp

; f [—a(Xg) —H] - ¢7'ds|¥(geot5")d™"p,
¥(s) (48)

where ¥(s) are curves mapping the interval (0,r) to MY, Changing the integration variables
p to g(0), we can rewrite Eq. (48) in the form

V,= d*¥q(0)K(g(0),0;9,0¥g(0)), (49)

MY

where

K(g(0),0;9,8)= (ifi) " [det w(qu,¢§qui) 1172 exp{ -'ﬁ— f " [—a(Xy)—H] ¢g’ds
J y(s

[det W] (50)

Equation (47) implies that the curves in #° given by t—exp( —itOg)¥{g(0)) and - ¢4{(g(0))
are tangent at t—O Therefore, if we divide the interval [0,f] into M equal subintervals,
exp( — i(t/M)O)P(go) can be approximated by ¢4y for large M. Hence

exp(—it0y) =lim 5, o, [viar - 95 1MY((0))

=1im p_, [¢,/M]M1/’(q(0))

M-1

M-1
=1ime(—i)-M”f I @2 exp
r=0

—i g‘.o S(0,g5t/M,g,.1) | ¥(g(0))

po"
. M
det oK go1d X g1t ), (s1)
which is equivalent to

(Wr|¥;) = (Y(q(0))|exp(—itOy) {{(g(0))), = f q(0)d?¥qZ(0,9(0);t,q),  (52)
where

Z(0,g(0);t,9(2))= J‘@q(y(s))exp[ifi‘l f( )(—a(XH) — H)ds|. (53)
y(s

Substituting the connection one-form « given in Eq. (42) into Eq. (53) obtains

N 2

® ®
~a(Xy)—H= Zl Z Piadgf(Xp) —H+— Z db(Xp) =2 +— Z dé; (X)),
i=1 a=1 i<j i<j
(54)

where . is the classical Lagrangian corresponding to H. Denote by the set of homology classes
of ¥’s and write for any class §

J. Math. Phys., Vol. 34, No. 3, March 1993



996 Yu, Zhuy, and Lee: Fiat connections in geometric quantization

@ N
x(@) =expi— X (Ad;), (55)
T i<y
where along any curve ¥ in the class £, the change in ¢,
M= [ dbyXmds, (56)
y(s)eg

depends only on £. In terms of y (&), Eq. (53) becomes

t
Z(q(0),0;9,0)= Zx@)f ggq(r)eXP ifo L(?)I- (57)
7E

{&r
This is just Eq. (1) in Ref. 4.

V. CONCLUSION

We have seen that in the geometric quantization formalism there exist on the quantization
bundle different adimissable choices of the flat part o, of the connection one-form, to which the
classical limit is insensitive. Different statistics of the quantum system are due to the inequiv-
alent de Rham cohomology classes H LMy to which ag belongs. In case of d=2, for which
the topology of the configuration space of N indistinguishable particles is nontrivial, fractional
statistics is a consequence of the existence of nontrivial de Rham cohomology classes on M“",
Here we have only discussed cases in which the Hilbert space is composed of the sections of the
line bundle. The existence to the internal degrees of freedom which give rise to more compli-
cated bundles and Hilbert spaces would of course be extremely interesting.
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