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It is shown that in geometric quantization formulation, fractional statistics in a 
quantized system of N indistinguishable particles in two spatial dimensions arise 
from the nontrivial cohomology of the flat connection on the quantum line 
bundles as well as from the nontrivial homology of the configuration space. The 
propagator of a nonrelativistic interacting system with fractional statistics is 
derived. 

I. INTRODUCTION 

The possible existence of fractional statistics in (2 + 1) dimensions has been recognized and 
discussed for many years.’ It has been suggested that fractional statistics may be relevant to 
important physical phenomena such as the fractional quantum Hall effect’ and high T, super- 
conductivity.3 Since the unusual statistical property in two dimensions is closely related to the 
nontrivial topology, namely, the global property, of their configuration space of a system of 
indistinguishable particles, lv4 and since the geometric quantization formulation’v6 is essentially 
a globalization of canonical quantization, we think it is natural and important to discuss 
fractional statistics in the context of this formulation. This paper is devoted to this subject. 

In the framework that permits the existence of Fermi-Dirac statistics, the configuration 
space of N indistinguishable particles in d spatial dimensions is4 

MdNz (RdN-9)/S,, (1) 

where RdN= (Rd) @N is the &V-dimensional Euclidean space, 9 = { (q1...q2) \ qi=qp i#j 
= l,...,N) is the set of diagonal points, and SN is the permutation group. The fundamental 
group al (MdN) of MdN depends decisively on d. For d>3 it is SN and for d= 2 it is Artin’s 
braid group BN (MdN is disconnected when d= 1). As is well-known, the difference between 
BN and S’N is responsible for the radically dissimilar statistical properties of systems in d> 3 and 
in d=2 spaces. We find that in the geometric quantization formulation the curia1 factor giving 
rise to quantum statistics is the flat part of the connection on the quantum line bundle. When 
the Hilbert space is chosen to be composed of covariantly constant sections along the vertical 
polarization, that is, when the Schrodinger position representation is selected, a nontrivial 
choice of the cohomology class of the flat part of the connection combines with the homology 
of configuration space in d=2 dimensions to give unusual statistics. 

In Sec. II the method of Refs. 5 and 6 is used to give a review of the classical geometric 
description of an N particle system and to quantize it. In Sec. III the relation between statistics 
and the aforementioned connection on the complex line bundle is examined. In Sec. IV the 
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statistical phase factor is expressed in terms of a nontrivial solution to the equation for the flat 
connection, and the Blattner-Konstant-Sternberg (BKS) kernel is used to derive a path- 
integral expression for the propagator of a nonrelativistic system. Section V contains our 
conclusion. 

II. GEOMETRIC QUANTIZATION OF A SYSTEM OF N INDISTINGUISHABLE PARTICLES 

Following the method of Refs. 5 and 6, we first construct a symplectic geometry for a 
system of N indistinguishable particles, whose configuration space MdN is given by Rq. ( 1) and 
whose phase space I’= T*MdN, is the cotangent bundle over MdN. The symplectic manifold 
(T,w) is the manifold l? equipped with a nondegenerate closed two-form w (called the sym- 
plectic form) on I. That is 

da=0 (2) 

and nondegenerate 

w(X,O) =0*x=0, (3) 

where X is a tangent vector field on I’. 
Associated with each smooth function f, which may be a classical observable on I, we 

define a tangent vector field Xf called the Hamiltonian vector field by 

Xf,w= -df, (4) 

where -I denotes the inner product. Define the Possion bracket of two functions f and g as 

~f,g}~---o(xf,x,)=-xfg=x,f. (5) 

The closure of o ensures the Jacobi identity on the Poisson bracket. Let y be a map of the 
interval (0,l) to MdN: (0,l) +MdN. If f is the Hamiltonian function, then the equation for the 
integral curve y(t) of Xr is 

$ r(t) =XJw) (6) 

is the canonical Hamiltonian equation of motion. 
Because the symplectic form w is closed, it can be expressed locally as an exact form 

o=dk’, (7) 

where the canonical one-form symplectic potential 8 is defined only up to a closed one-form. 
Also w and 6 may be expressed locally in terms of the canonical local coordinates (q4,pia), 
i= l,... N, a= l,..., d 

8=zi,aPi,&9* (8) 

Being dependent only on w, classical mechanics is invariant under general canonical transfor- 
mations which always preserves o. 

The first step in geometric quantization is to associate a linear operator 9f with each 
function f on I such that 9 t is the identity operator and all $Yf satisfy the commutation 
relation 
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v&q =‘fiP’o, * (9) 

This may be achieved by introducing a complex line bundle L, called the prequantization line 
bundle, over l?. Denote by Lx the bundle obtained from L by removing its zero section; this is 
the U( 1) principle bundle over r associated with L. On Lx define a connection one-form a and 
a curvature two-form $2 related by 

Denote by qc the fundamental vector field on Lx and by 7,1,(z) the tangent vector of the curve 
&+e2”“z, where z is the coordinate on a fiber in L”. Then a satisfies 

qc -I a=c, 

where CEC is a complex number. From Eqs. ( 10) and ( 11) 

(11) 

qc -I Cl=O, Z,,pa=O, (12) 

where Y,,c is the Lie derivative along qc. Hence, fl is the pull back of a closed two-form on r. 
Thus the general form of a is 

a=S+B, (13) 

where p is a pull back of a one-form on r and, according to Eq. ( 1 1 ), S admits a local 
expression 

6 = dz/2riz. (14) 

The operators .Pf act on the space of sections of the bundle L as follows. The one- 
parameter group of canonical transformations 4) generated by f has a unique lift to a one- 
parameter group of connection preserving transformations of the bundle, which defines the 
action of 4) on the sections. The operator P’f is defined by 

VX,= Xr-t 2mXf J B, 

where A is a section of L and VX,. is the covariant derivative along the direction XP Condition 
(9) requires 

R= -h-b, (16) 

which, from Eqs. (7) and ( lo), implies that in general 

P= -he’0--ao, (17) 

where a0 is an arbitrary closed one-form, 

da0 = 0. (18) 

Since a0 does not contribute to a, we call a0 the flat part of the connection one-form. 
The prequantization space, or the space of sections of L, forms the full representation space 

of quantum physics. However, this space is obviously too big to be the correct physical Hilbert 
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space, since locally a section admits functions of both q4 and pia, which would lead to violation 
of the uncertainty principle. In order to prevent this from happening it is necessary to reduce 
by “polarization” the prequantization space to a suitable subspace. 

A polarization 7 of a symplectic manifold (I’,@) is an involution complex distribution on 
r satisfying 

dim, F=f dim I?, 0~~~7=0. (19) 

Given a polarization 9, the space of sections of L can be restricted to a subspace of 
sections that are covariantly constant along 9, the complex conjugate distribution of F. The 
conjugate $ of such a section $ must be covariantly constant along 9. In general, the Her- 
mitian product t,!$’ is covariantly constant along D=Fnp and its integral over I’ diverges 
unless the leaves of D are compact. This may suggest that it should be natural to integrate t/q’ 
over IT/D, except that there is not natural measure on r/D. One way to circumvent this 
difficulty is to use half forms to construct the correct density to be integrated over r/D. A 
completely self-contained description of half forms is lengthy; interested readers are referred to 
Refs. 5 and 6. Here, we only give a very simple presentation. 

Let 9 be a polarization on I? which forms an n-dimensional vector space, {X,} an 
arbitrary basis of 9 whose linear transformations form the group GL( n;C), and G a matrix 
representation of an element in GL(n;C). Denote by S,(3) the set of all functions Y on Y 
with the property 

v{ (XG) .} = ( det G) ‘v{X,}. (20) 

The elements in S,( 7) may be thought of as the rth power of the volume element on 7. Every 
S,(F) is a one-dimensional complex vector space and the vector spaces of 6,(F) satisfy 

So(F)=% f S,(F)= A anP-* , 

U.-m =(6&m)*=6-,(~*), s,Ln =&(3-q, (21) 

wm Q um =&+M), 

where %’ denotes constant functions, * denotes dual, and overline denotes complex conjuga- 
tion. It can be shown that the bundle over I? whose sections give the correct quantum descrip- 
tion of physical state is L 8 S- ,,z(g). Then the polarized wave functions are locally of the 
form 

*=sv, 
where s is a (polarized) section in L satisfying 

v,ys=o, VXE{P}, 

and v is a section of 6- i,z( g) satisfying 

v,yv=o, VXE{F}. 

- The sections of S _ i,z( 9) are called half forms. The inner product is defined as 

(22) 

(23) 

(24) 

(41 ti) = I,, ~~~lIrm121~,~11’21~,I~ (25) 

where the subscript m denotes a point in r/D, 
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E,-(4)“~“-1v2L~” 
?I! 

is the Liouville form on I, and e,r is the Liouville form on (9,+9,)/O,. 
The above description is applicable to any polarization. In this paper we focus on the 

Schriidinger’s position picture, i.e., we take the vertical polarization in which F is spanned by 
the linear frame fields {d/ap~;i= 1 ,..., N;a= l,..., &. Then the polarized wave functions have the 
form 

$=$(q;)f% 
where s^ is the unit section. Since r/D=MdN, the inner product can be reduced to 

(27) 

r ~(q)~‘(q)ldq:A...Adq~I. 
J 

The reduction of the full prequantization representation space to the Hilbert space 2?? of 
the sections of L o S-,,2(9), which is covariantly constant along 9, requires that the defi- 
nition ( 15) of operators be modified. Consider a function f on I and its Hamiltonian vector 
field XP Denote by 4; the one-parameter group of canonical transformations generated by Xf 
with parameter t; 4: is a map on the prequantization representation space. For each td, the 
image of the polarization 3- of I’ under the derived mapping 7 4; is a polarization 
9,~7r#$-( Y-) of the symplectic (I,@). For each t+!&Y, one can define $@. This gives a m_ap 
+;:&a-+&ot whose target space 2Yt consists of covariantly constant sections of L o S- 1,2(.F) 
along pr If f is a polarization-preserving function, i.e., if Ft=F, then a quantum operator 
8, on 2? can be defined as in Eq. ( 15) 

W. (29) 

On the other hand, if f is not a polarization-preserving function, i.e., if 9123, then (see Sec. 
5 in Ref. 6) there exists a Blattner-Konstant-Sternberg (BKS) kernel z,:&“,X&“- ‘3’ and 
a linear map %$Yt-+Z’ such that 

X,($44) =($I ~A4)- (30) 

For small ttz( 0,e) define 4,:2Y-+2Yt by 

Then the quantum operator is given by 

d 
Uf=ifi;jr;f$,Ir=O. 

III. QUANTUM CONNECTION AND STATISTICS 

(31) 

(32) 

In the last section it was shown that in a given classical system the symplectic two-form w 
is fixed, but in the quantized system the quantum connection one-form a is determined only up 
to a flat connection one-form a,,. Different choices of a0 correspond to the same classical limit 
but may give distinct quantum systems. In this section we will show that, for a system of N 
indistinguishable particles. A choice of cohomology class to which a0 belongs to is precisely the 
choice of the statistics of the quantum system. Often statistics is thought of as just the exchange 
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symmetry of the wave functions of indistinguishable particles. However, as is well-known,3 the 
issue is not just exchange symmetry when MdN is not simply connected. To see this, let y(t) be 
a curve in MdN as before. Since MdN is base manifold of the cotangent bundle I? it is a 
submanifold of the base manifold of the quantization bundle i. After having been fixed to the 
vertical polarization the Hilbert space GY may be considered as a bundle over MdN. Then, 
because the representation space is restricted to the Schodinger’s position representation, 

O(Xi*Xj)=O, WXi,X,EV(MdN)* (33) 

Therefore, from Eq. ( 16), the curvature R vanishes, and the connection one-form a restricted 
to MdN is flat, or da=0 on MdN. This means that a on MdN may be classified into equivalence 
classes according to the first de Rham cohomology H’ (MdN) of MdN. 

The parallel transport of the wave function 9 along the curve y(t) on MdN is given by the 
solution to the equation for the horizontal lift of y(t), 

vx&wt))=o~ (34) 

where XYct) is the tangent vector field of y(t). The equation has the formal solution 

W(t))=exp( -iJycr, a]W(O)). (35) 

Consider the case when y(t) is a closed curve: y( 1) = y(0). Although y( 1) and y(O) are the 
same point in MdN the wave functions $(r( 1)) and fly(O)) differ by the phase factor 

x(y) =exp( --i $y a], (36) 

which is an element of the holonomy group of connections. Its value is determined by the de 
Rham cohomology class to which a belongs and the homology class {r) to which y belongs. 
For a given a Eq. (36) gives a one-dimensional representation of the homology group 
H1 ( MdN) . Since 

Hl (MdN) =&, for d>3, (37) 

and 

H1(M2N) =z, 
we have, for d>3, 

X(Y) = I 1, Va&-ivial class of H’(MdN), 
f 1, Va~nontrivial class of H’ (MdN), 

(38) 

(39) 

and for d = 2, 

x(y) =eV, OER,nyEz. (4.0) 

One recognizes the x in Eq. (39) to be just the one-dimensional representations of the per- 
mutation group SN: bosonic in the upper case and fermionic for the lower case. In Eq. (4.0) nY 
characterizes the homology class to which y belongs and the parameter 0 is determined by the 
choice of the connection one-form adi’ (MdN) . Different values of 0 implies different statis- 
tics. 
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IV. FRACTIONAL STATISTICS IN THE d=2 CASE 

We have seen that the connection one-form a on the quantization bundle e satisfies the 
equations 

h-lo=-da, on r, 

da I y(MdN) =o. (41) 

That is, a is generally determined up to a tlat connection one-form a0 and is itself flat when the 
vertical polarization is chosen. In the latter case only the de Rham cohomology class H’ (MdN) 
to which a belongs matters to the phase factor x(y). In what follows we focus on the case 
d=2. Then, locally, a admits the expression 

-a=--S+ $ I$ p,Bql+~ ,? d#ij(q), 
i=l a=1 r<j 

(42) 

where #ii is the azimuthal angle of particle i relative to particle j. The last term on the right 
hand side of Eq. (42) is ae. This expression obviously obeys Eq. (41) and gives the result for 
the integral in Eq. (36) 

- I 7 
a=f jjnijv9 (43) 

where nijs $5 &ir/ G- is the winding number of the jth particle around the ith particle. Thus the 
factor is 

x(y) =em”Zfij~em”7. (4) 

The choice O=O( mod 27r) gives Bose-Einstein statistics, 0 = p( mod 2~) gives Fermi-Dirac 
statistics, O=rational number gives fractional statistics, and any other choice of real number 
gives 0 statistics. 

A nontrivial choice of a0 may also contribute a statistical factor to the propagator. To see 
this, consider a system of N indistinguishable particles interacting with a Hamiltonian 

H=& i f 6:+uq;)). 
i-l a-l 

(45) 

Since H does not preserve the vertical polarization, the evolution from t=O to t generated by 
H brings the Hilbert space from &” to XP According to the discussion given in Sec. II, the 
method outlined in Eqs. (30)-( 32) should be used to quantize the system. There is an explicit 
expression of Eq. (30) (Ref. 6) 

XA$,c4) = Jr (i/h) dN’2[det(X~X’8)l~(q)~t(q) 1~1~~. 
I 

(46) 

By means of this expression, the quantum operator of the Hamiltonian equation (45) 
defined by Eq. (32) may be rewritten as 

(47) 

Using Eq. (6.49) in Ref. 6, for the n=dN=2N case we have that 
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Y,= det(d$v&.&# 1 1’2 exp [ -~M,Y> --HI * $j@ 
(48) 

where y(s) are curves mapping the interval (0~) to MdN. Changing the integration variables 
p to q(O), we can rewrite Eq. (48) in the form 

Y,= I M2Nd2Nq(0)K(4(0),0;q,r)~q(o)), (49) 

where 

[ -o(X,) ---HI * #j?s I 

Equation (47) implies that the curves in A? given by t+exp( -irO,)rt(q(O)) and t+t$$(q(O)) 
are tangent at f =O. Therefore, if we divide the interval [OJ] into M equal subintervals, 
exp( - i(UM)O$hhqd can be approximated by &?lc, for large M. Hence 

=lim M4m[$t,MlMtiq(o)) 

=lim W_,wq y!iolc 1 M-1 exp -i rzo S(O,q$/M,q,+l) $44(O)) 
I 

vdet o(X4+1,&/MXg:1)det (51) 

which is equivalent to 

<@fl $i> = (~~q(O)) (exp( -itO,) 1 $(q(O))), = d2Nq(0)d2NqZ(0,q(O);t,q), (52) 

where 

Z(O,q(O);t,q(t))= J Qdy(s))exp(ifi-’ s,O, (-~XH) -Il)ds]. (53) 

Substituting the connection one-form a given in Eq. (42) into Eq. (53) obtains 

-~(XH)-H= 2 Ik P,d&(XH,--H+F ,i,d4ij(XH)=T+z E d4ij(X,), 
i=l a=1 I</ i<j 

(54) 

where 2 is the classical Lagrangian corresponding to H. Denote by the set of homology classes 
of yts and write for any class 5 
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xQ3 =exp iz i$j (Wij)c 9 
where along any curve y in the class 6, the change in #ii, 

depends only on f‘. In terms of x(c), Eq. (53) becomes 

(55) 

(56) 

(57) 

This is just Eq. ( 1) in Ref. 4. 

V. CONCLUSION 

We have seen that in the geometric quantization formalism there exist on the quantization 
bundle different adimissable choices of the flat part (r. of the connection one-form, to which the 
classical limit is insensitive. Different statistics of the quantum system are due to the inequiv- 
alent de Rham cohomology classes H1(MdN) to which a0 belongs. In case of d=2, for which 
the topology of the configuration space of N indistinguishable particles is nontrivial, fractional 
statistics is a consequence of the existence of nontrivial de Rham cohomology classes on MdN. 
Here we have only discussed cases in which the Hilbert space is composed of the sections of the 
line bundle. The existence to the internal degrees of freedom which give rise to more compli- 
cated bundles and Hilbert spaces would of course be extremely interesting. 
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