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On the axial gauge: Ward identities and the separation of infrared and 
ultraviolet singularities by analytic regularization 
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It is shown that the method of analytically regulating Yang-Mills theories in the axial gauge 
preserves gauge invariance. Two- and three-point Ward identities are computed and verified at 
the one-loop level. The method also permits a convenient and gauge-invariant separation of 
infrared and ultraviolet singularities in the axial gauge. In the axial gauge the renormalization 
constants Z3 = ZI = 1 + IIg2C2/{481Tc), leading to af3 function which is identical to that 
computed in the covariant 5 gauges. 

I. INTRODUCTION 

Recently, an analytic method1
,2 has been shown to be a 

powerful and elegant means to implement the principal-val­
ue prescription3 for regulating and evaluating Feynman inte­
grals occurring in Yang-Mills theories in the axial gauges.4 

Such gauges are defined by the constraint n . A a = 0, where 
A: is the vector gauge field, n,.. is an arbitrary constant vec­
tor, and the superscript a is an index for the gauge group. In 
particular, analytic representations1

•
2 have been found for 

two-point functions in the general axial gauge (n2#0) (Ref. 
4), the light-cone gauge (n 2 = 0) (Ref. 5), and the special 
gauge defined by p. n = 0 (n2#0) (Ref. 2), where P,.. is the 
external momentum in the two-point functions. 

Although there is a widely held belief (possibly caused 
by using the work "analytic" to describe different and ine­
quivalent regularization methods6

) that "analytic regular­
ization does not preserve gauge invariance," it will be dem­
onstrated that the contrary is true for the new analytic 
method. The preservation of gauge invariance depends on 
the fact that the method preserves such algebraic properties 
as commutativity and associativity of operations in the 
Feynman integrals and that in the appropriate limit the new 
method, for both the infinite and regular parts of a Feynman 
integral, yields results that are identical to those obtainable 
from dimensional regularization. For the light-cone gauge, 
this has already been demonstrated by verifying two- and 
three-point Ward identities7 at the one-loop level.s 

In Sec. II, we extend this study by verifying these identi­
ties in the general axial gauge (n2#0). Here again, we find 
that the preservation of algebraic properties mentioned ear­
lier is sufficient to guarantee that Ward identities will be 
upheld, even before the Feynman integrals involved in the 
identities are evaluated. 

The capability of distinguishing infrared from ultravio­
let singularities is another one of the appealing properties 6f 
analytic regularization. The lack of this capability in dimen-

alTheoretical Physics Branch. 
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sional regularization9 has been the cause of considerable in­
convenience in practical calculations using that technique. 
In Sec. III, using integrals appearing in the three-point Ward 
identities as examples, we show how the analytic method can 
easily be employed to separate the two types of singularities. 
We also show that when these two types of singularities are 
not distinguished, the cancellation between the two is the 
direct cause of the vanishing of some tadpoles. 10 In other 
words, if infrared and ultraviolet singularities are separated, 
then not all tadpoles vanish. 

In Sec. IV we show that the f3 function, which can be 
computed from the renormalization constants Z and Z 3 I' 
associated with the self-energy and the three-vertex, respec-
tively, are identical in the axial gauge and the covariant 5 
gauges to lowest order. Furthermore, in contrast to the 5 
gauges, the equality Z 1 = Z3 in the axial gauge allows the f3 
function to be derived directly from the self-energy. 

In Sec. V, we compare our results for the axial gauge 
with those obtained previously for the light-cone gauge. S 

Briefly, other than being ghost-free, the axial gauge shares 
the properties of the covariant gauges,l1 but does not have 
the pecularities possessed by the light-cone gauge. On the 
other hand, computations in the light-cone gauge are much 
less tedious. 

In the following, we briefly review the analytic repre­
sentation for the "two-point" integrals-integrals with one 
external momentum-defined by 

S2w{p,n;K,fL,v,s) == f d 2"'q[(p - q)2]K{q2r{q. n)2v+s, 

(I) 
where s = 0 or 1 and liJ, K, /-l, and v are continuous variables. 
Feynman integrals in four-dimensional Euclidean space 
(Minkowski space is reached by analytic continuation) that 
are sometimes divergent and therefore ill defined, corre­
spond to those in (I) when K, /-l, and v are integers and liJ = 2; 
these form a subset of (I) which we call primal integrals. 
Methods of analytic regularization 1 were used to find a rep­
resentation for (I) in terms of a Meijer G function 12 
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~(p2)"'+K+JL+ v(n2)V(p. n)'F(s + v + !) 
S2ld (p,n;K,p" V,s) = --....:.=-!-----'--'-=--''----'---'----'-'"'''''''--

F( - K)F( -1-l)F( - v)F(2w + K + I-l + 2v + s) 
X G 2,3 ( 11 - W -I-l - v - s,1 + W + K + I-l + v,I + V;), 

3,3 Y O,W + K + v;l/2 - s 

= ~(p2)"'+K+JL(p. n)2v+sF(s + V + !) 
F( -K)F( -p,)F( - v)F(2w +K +p, + 2v+s) 

XG 3,2(l/yII+v,I-W-K;l/2+s+v ),IYI>I, 
3,3 0, - W - K - p"W + P, + 2v + S; 

(2) 

where y == (p. n)2/(p2n2), The right-hand side of (2) is a 
well-defined, analytic function of all its variables and, when 
n2 i= 0, has at most simple poles in the (W,K,p" v) plane. 

The evaluation of any primal integral in terms of the 
independent variables y, p, nand infinitesimals Eo which 
label the singularities, now becomes a well-defined mecha­
nistic process, which is discussed elsewhere. 1 Tables of pri­
mal integrals have also been prepared. 13 

II. WARD IDENTITIES 

We shall verify both the one-loop radiative corrections 
to the two-point Ward identity 

PJLn~v(p) = n~JL(p)PJL = 0, (3) 

as well as a special case of the three-point Ward identity 

ipAF~t~(p, - p,O) = ijabcPAFAJLV(P, - p,O) 

(4) 

where n ~v( p) is the self-energy less its 0 (gO) longitudinal 
term 

n~v(p) = nJLv(p) - (i/5 )nJLnV' (5) 

g is the Yang-Mills coupling, jabc are the structure con­
stants of the gauge group, and 5 is the parameter of the 
gauge-fixing Lagrangian - (l/25)(n • A a)2; the ghost-free 
axial gauge is realized in the limit 5-0, For a derivation of 
the identities (3) and (4) see Ref, 8. 

Equation (3) expresses the well-known notion that 
II ~v (p) is transverse to P JL' Because the subtracted term in (5) 
appears only in the zeroth order (ing), (3) also implies that all 
radiative corrections to nJLv are transverse. The transversi­
lity of n ~v may be expressed by writing 

II~v(p) = - i[ IIo(p)PJLV + III(p)NJLv ]' (6) 
where PJLV and NJLv are two linearly independent tensors 
transverse to PJL: 

PJLv = p2/jJLV - PJL p", (7a) 

NJL" = PJL Pv - (pJLn" + PVnJL )p2/p . n + nJLnv p4/(p . n)2, 

(7b) 
Our first task is to verify that, to one-loop order (see Fig. I), 

p -p 

(a) (b) 

FIG. I. Diagrams for 0 ( oi) self-energy. Part (b) is tadpolelike and vanishes 
only in the limit (10). 
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I 
II~" indeed has the form (6), and to also compute the coeffi-
cients II~) and n\l) in the limit 5 = 0. (The superscript de­
notes that these are one-loop results.) 

The symbol FAJLV(p, - p,O) in (4) represents the three­
vertex with one external line carrying zero momentum; this 
special momentum configuration reduces the three-vertex to 
a two-point function. Feynman diagrams for the one-loop 
radiative corrections to F AJL" are shown in Fig. 2. 

We now digress to explain how it is possible to evaluate 
the tensor II~v' which clearly depends on integrals with 
nonscalar integrands, using only the scalar integral (1). We 
parenthetically note that it would have been impossible to 
derive a viable analytic regularization with generalized ex­
ponents, if it were necessary to find representations for inte­
grals with tensorial integrands. 

There are four linearly independent, symmetric, rank­
two tensors in the axial gauge: /jJLV ' PJL pv,PJLnV + PvnJL' and 
nJLnv' Therefore any symmetric rank-two tensor such as 
II ~v can be expressed as 

II~" =HA1/jJL" +A2PJL P,,/p
2 

+A 3(PJL n" +p"nJL)/p.n 

+ p2A4nJLn,,/(p. n)2]/(t - 1), (8) 

whereA; arescalarfunctionsofp2,n2
, andp· n,andt = l/y. 

These functions can be found by contracting II ~v as follows: 

a l =II~v/jJL'" 

a2 = II~v PJL p,,/p2, 

a3 = II~v PJLnv/p . n, 

a4 = II~vnJLn" p 2/(p. nf, 

q: 
(a) 

(b) 

(9a) 

(9b) 

(9c) 

(9d) 

FIG. 2. Diagrams for 0 (oi) three-vertex. All momenta flow in. The last 
diagram in part (b) vanishes identically because of gauge group and Lorentz 
symmetry. 

H. Lee and M. S. Milgram 1794 



and solving the resulting set of equations. The relations 
between ai andAi are given in Appendix A. This technique 
can be generalized for computing tensors of any rank. Since 
any such tensor can be evaluated by calculating the corre­
sponding scalars aj> it follows that (for two-point functions) 
only scalar integrals of the type (1) need ever be computed. 

We now return to follow the simpler of two paths. On 
this path all primal integrals are evaluated in a limit in which 
the infrared and ultraviolet singularities are not distin­
guished. (In the next section we consider another limit in 
which the two types of singularities are distinguished.) For 
now, we let 

K = K, It = M, v = N, cu = 2 + E, (10) 

where E is small but finite. This limit is equivalent I to that 
obtainable with the principal-value prescription used in con­
junction with dimensional regularization. We emphasize 
that with (10) and analytic regularization, all tadpole-like 
integrals, namely primal integrals satisfying either one or 
both of the conditions 

(i) K>O, 

(ii) M>O, N>O, 

(1Ia) 

(lIb) 

vanish. In comparison, dimensionless regularization, having 
only one generalized variable cu, is insufficiently powerful to 
regulate such integrals. Conventionally,IO such integrals are 
simply assumed to be zero l4 in dimensional regularization. 

Using the method described above, we find that il ~v 
indeed has the form of the right-hand side of (6) [this implies 
that the a2 and a3 of (9) vanish, or equivalently, 
A I + A2 = A4 = - A3]' TheA I andA 3 are listed in Table IV 
of Appendix B in terms of reduced primal integrals defined 
by 

S(K,M,N,s) == 1T-"'(p2)-K-M-2(p. n)-2N-S 

XS4(p,n;K,M,N,s). (12) 

Because of space limitations, all integrals satisfying (11) have 
been omitted from Table IV. 

In the limit (10), using (2) we find 

ilo = g'lC2 _1_ [2: (1 _;) -In (~) (8 _ 6; + ;2) 
32r 1-; 3e ; 

_~+ 44; +2;2+(~-8+2;_L)z] 
9 9 ; 2' 

(13) 

TABLE I. The ten tensors n". of (17) and the operators 0 ~". of (A4). 

0)." P. 
2 0". PA + 0).. P" 
3 p2/p. no)." n. 
4 p2/p . n(o". n). + o'A n,,) 
5 p2/(p.nfn).n"p./(t-1) 

6 p2/(p. n)2(n"n. PA + n. n). p,,)/(t - 1) 

7 p). P" nJ(p· n)/(t - 1) 
8 (p" P. n). + P.PA n,,)/(p. n)/(t - 1) 
9 p). P" pJp2/(t - 1) 
10 p4/(p. n)3n).n"nJ(t - 1) 
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(14) 

where 

lie == liE + Inp2 + y, (15) 
; = lIy, y is Euler's constant, and Z is defined in Table II. 

Noticeably absent from ill is an infinite part. This will 
allow us to comment in Sec. III on the multiplicative renor­
malizability of the Yang-Mills theory in the axial gauge after 
having ascertained that the finiteness of ill is not the result 
of a cancellation between the as yet undistinguished infrared 
and ultraviolet singularities. 

We now consider the three-point Ward identity. To ver­
ify (4), it is sufficient to expand the left-hand side, which is 
again a symmetric rank-two tensor, as in (9). However, to 
learn more about the three-vertex rP.VA' we shall instead cal­
culate it explicitly. This vertex function has the symmetry 
relation 

rAp.v(p, - p,O) = - r pAv( - p,p,O), (16) 

showing that it can be expanded in terms often independent 
tensors T~~v given in Table I: 

_ g 10 (i) 
rAp.v(p, - p,O) - I Bi T AP.V· (17) 

2(; - 1) i= I 

In a manner similar to (9), we compute the ten scalar func­
tions Bi by contracting both sides of (17) using the symbol hi 
to label the contracted left-hand sides. The linear relations 
between the sets Bi and hi are given in Appendix A. The 
formidable expressions for Bi , in the form of a sum of primal 
integrals with tadpoles omitted, are given in Table V of Ap­
pendix B. When the integrals are evaluated using (2) in the 
limit (10) the B;'s have values given in Table II. 

To satisfy (4), the Bi 's must first satisfy the "transversa­
lity" relations 

B3 + (B6 + B7)1(; - 1) = B4 + (Bs + Bs)/(; - 1) 

= - (B6 + BIO)/(;" - 1) (18a) 

and 

BI +2B2+B3+B4= -(;-I)(B6+ B7+Bs+B9)' 

(18b) 

0)." p./p2 
0". PA/p2 
0).1' n./(p· n) 

0". n)./p· n 
n).n" pJ(p. nf/(t - 1) 
n" n.PA/(p·n)2/(t-1) 

p). P" nJp2/p . nIt - 1) 
P" Pv n)./p2/p . n/(t - 1) 
p). P" Pv/p4/(t - 1) 
p2n).n"nv/(p, n)3/(t - 1) 

H. Lee and M. S. Milgram 1795 



TABLE II. Coefficients (in units of glC2/32,r) B, of(17) after evaluating all the integrals in Table v.a Note: lie = liE + r + log(p2). 

Bl = - ~*lIe*(1 - lIy) - ~ - 20/r + 376/(9y) 

+ log(4y)*(46 + lO/r - 34/y - ISy/(1 - y)) + Z *(25 - 32y + 5/r - 15/y + 9y/(1 - y)). 

B2 = ~*lIe*(1 - ly) - ~ + 4/y2 + 124/(9y) 

+ log(4y)*( - 2 - 2fr + lO/y - ISy/(1 - y)) + Z *( - 11 - lIy2 + 3/y + 9y/(1 - y)). 

B, = 32 + 12fr - 32/y + log(4y)*( - 14 - 6/y2 + lO/y + ISy/(1 - y)) + z*(7 - 3/r + 7/y - 9y/(1 - y)). 

B. = 16 - 4/y + log(4y)*( - 14 + 2fy + ISy/(1 - y)) + Z *( - 5 + 16y + lIy - 9y/(1 - y)). 

B, =.1¥ + 20/y2 - 20S/(3y) + log(4y)*( - 70 - lO/r + 50/y + 90y/(1 - y)) 

+ Z *( - 37 + 64y - 5/y2 + 23/y - 45y/(1 - y)). 

B6 = ~ + S/r - 112/(3y) + log(4y)*(26 - 4/r + 2/y + 90y/(1 - y)) 

+ Z*( - I + 16y- 2fr + 5/y- 45y/(I- y)). 

B, = -1¥ - 12/y' + 4D/y2 - 112/(3y) + log(4y)*( - 90 + 6/y' - 14/r + 3S/y - 90y/(1 - y)) 

+ Z *(5 + 3/y' - 9fT + lIy + 45y/(1 - y)). 

Bs = - ~ - 12fr + 116/(3y) + log(4y)*(6 + 6/r - IS/y - 90y/(1 - y)) 

+ Z *(13 - 32y + 3/y2 - Illy + 45y/(1 - y)). 

B9 = J + 12/y' - 20S/(3r) + 344/(3y) + log(4y)*(90 - 6/y' + 14/y2 - 3S/y + 90y/(1 - y)) 

+ Z *( - 5 - 3/y' + 9/r - lIy - 45y/(1 - y)). 

BIO = - 96 - 12fr + 4S/y + log(4y)*(6 + 6/r - IS/y - 90y/(1 - y)) 

+ Z *(13 - 32y + 3/y2 - Illy + 45y/(1 - y)). 

a In the above tables. we use the symbol Z to denote the infinite series 

Z=2i (1),l[lnY_t/!{1+1)+t,b(2.+ 1)]. iyi<1 
1_0 (3/2h 2 

=_1 i H)ly-l-l {[t,b(.l-I)-t/!(1+1)-ln y]2 +2t,b'(.l) -t,b'(I+l)-If(.l-I)}. iyi>1 
2,[ii 1-0 (lh 2 2 2 

r= G 2' ( 1
0•0•0;) ti II = " 1T 3:3 YO. _ • or a y . 

• 0. ! 

which they do. Then they must satisfy 

B3+(B6+B?!I(;-I)= -A3' (I8c) 

B2 + B4 = -AI, (I8d) 

which they also do, both in terms of primal integrals (from 
Tables IV and V) and when the intervals are evaluated [from 
(13), (14), and Table II]. This concludes our demonstration 
by explicit computation that the two- and three-point Ward 
identities are satisfied in our method, in the limit (10). 

We wish to emphasize a rather appealing feature of the 
analytic method, that is, its ability to display the equality (4) 
be/ore the primal integrals on both sides of the equations 
have been evaluated 15 by any means of regularization. In our 
opinion, it is this feature that truly demonstrates the superior 
properties of the analytic method: it allows one to manipu­
late divergent integrals using the same formal rules of alge­
bra as are used for finite integrals. 

In Table II, the absence ofinfinite parts in B;, i = 3-10, 
is crucial for multiplicative renormalizability. However, a 
final assessment of this desirable result again must be de­
ferred until after we have separated the infrared and ultra­
violet singularities in the primal integrals. This is done in the 
next section. 
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III. TADPOLES AND THE SEPARATION OF INFRARED 
AND ULTRAVIOLET SINGULARITIES 

The capability of evaluating tadpole integrals lO defined 
by the conditions (11) is special to analytic regularization. To 
illustrate why dimensional regularization is incapable of re­
gulating a tadpole integral consider a simple case of (11) with 
K = N = 0, and M arbitrary 

I(w) == f d 2wq(q2)M. (19) 

Clearly, if Re(w + M);;;.O, I(w) is ultraviolet divergent and if 
Re(w + M ).;;;;0,1 (w) is infrared divergent. So regardless of the 
value of M, there does not exist a region in the entire complex 
w plane in which I (w) can be well defined. Therefore, as a 
function of w alone, I(w) cannot be evaluated by analytic 
continuation. In other words, the integral cannot be regulat­
ed by dimensional regularization. 

In our analytic regularization, all two-point integrals 
(1), of which (19) is but a special case, are considered to be 
functions over the complex (W,K,f-L, v) (hyper) space, not mere­
ly as functions of w. Although no region in the w plane exists 
in which I(w) is regular, there always exists a region in the 
(w,K,f-L,v) space in which the generalized integral is regular. 

H. Lee and M. S. Milgram 1796 



Therefore it is always possible to evaluate (1) by analytic 
continuation. This is why dimension regularization must set 
the right-hand side of (19) equal to zero (or some other value) 
by decree, whereas in analytic regularization, the value of 
any given primal integral with parameters K, M, and N is 
determined by the limiting processes (W,K,,,,, v) 
-(w,K,M,N)-(2,K,M,N). In the limiting process (10) used 
in the last section, all tadpole integrals vanish. See Ref. 1 for 
more details. 

We now return to (19) and consider the special case 
M = - 2. By power counting it is clear that the integral is 
both ultraviolet and infrared divergent when w approaches 
2. Why then should it be finite and zero in analytic regular­
ization? The answer is simple: In the special limiting process 
(10) both the infinite and the finite parts associated, respec­
tively, with the infrared and ultraviolet singularities exactly 
cancel! (See Table 3 of Ref. 13 for tabulation of this and other 
integrals.) That these two types of singularities can cancel 
each other is certainly consistent with the spirit of dimen­
sional regularization because in this method all singularities 
must be expressed as liE poles and are therefore indistin­
guishable. Simil~rly, it has already been shown elsewhere I 
that the vanishing of many tadpole integrals defined by (11) 
is caused by the cancellation between infrared and ultravio­
let singularities. 16 

In dimensional regularization, with sufficient knowl­
edge of what the outcome should be, it is possible to separate 
infrared from ultraviolet singularities. 17 A common practice 
is to to assign a mass to each massless particle. Other than 
being cumbersome, this procedure is also very tricky and 
must be practiced with great care because it does not pre­
serve gauge invariance. 

In our analytic method, infrared and ultraviolet singu­
larities can be easily separated by ajudicious choice oflimit­
ing procedure. The simplest limit that serves this purpose 
(but does not distinguish the two types of infrared singulari­
ties l6

) is 

K = K + p, '" = M + p, v = N, 
w = 2 + E, p-o, (20) 

with E small but finite. In this limit, ultraviolet singularities 
are characterized by the pole 

lIe l = - lIEI + Inp2 + y, EI = - 2p - E, (21a) 
and both infrared singularities by 

lIeo = lIEo + Inp2 + y, Eo = E + p. (21b) 
Tadpole integrals that are both ultraviolet and infrared di­
vergent are proportional to lIeo - lIe l • The limit (10) is a 
special case of (20) with p = 0, for in that limit such integrals 
vanish: 

(lleo - lIeIlp =o = liE - liE = O. (22) 

We now use limit (20) to evaluate the integrals in Tables 
IV and V. In this limit tadpole diagrams such as (b) of Fig. 1 
contain terms that do not automatically vanish. However, 
the ultraviolet and infrared singularities of the regulated in­
tegrals describing Fig. (1 b) cancel among themselves, so that 
in the limit (20) this diagram does vanish. Remarkably, the' 
results for the remaining diagrams are identical to those in 
(13), (14), and Table II except that all pole terms (lIe) therein 
are now replaced by ultraviolet poles (lIe l ); all infrared sin-
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gularities have cancelled! We do not know whether this is a 
general result [Le., whether we can use the simpler limit (10) 
in which all tadpole integrals vanish and treat all poles as 
ultraviolet singUlarities] or if not, what is the reason for this 
remarkable cancellation of infrared singularities at the one­
loop level. We do note, however, that the Ward identities (18) 
do not appear to be manifestly satisfied prior to regulariza­
tion, if all tadpole integrals and diagrams are retained. 

IV. THE/3FUNCTION 

Our calculation shows that at the one-loop level, all 
infinite parts in llpv and r).pv are of ultraviolet origin, and of 
the operators generated by radiative correction, only those 
that appear in the original Lagrangian at the tree (no-loop) 
level-llo Ppv in llpv and BjD ~1v' i = 1,2,3 in r).pv-have 
infinite parts. These results indicate that Yang-Mills theor­
ies are multiplicatively renormalizable in the axial gauge. 
That is, the infinite parts generated by radiative corrections 
can be absorbed into renormalization constants ZI and Z3 
that rescale the gauge field, the coupling constant, and the 
gauge parameter according to 

A a Ii a = Z - I/2A a 
p- p 3 p' 

- ZZ -3/2 Z g-g= I 3 g= gg, 
SO that the bare Lagrangian is 

2'(Ii,g,~) = - HF;v(li,g)) 2 
- (1I2S)(n .Ii;f, 

and from (13) and Table II 

(23a) 

(23b) 

(24) 

zaxial = zaxial = 1 + g2c2 J...!... [..!... + In (L) + ... J 
3 I 16r 3 E A. 2 ' 

(25) 
where the explicit dependence on an arbitrary momentum 
scale A. is displayed. As expected, the two renormalization 
constants are identical in the axial gauge, an outcome which 
is not true in the covariant S gauges, where l8 

zs -1 =g2C2 (~-2-s) [..!...+ ... J, 
I 32r 6 2 E 

zs - 1 = g2C2 (~- s) [..!... + ... J . (26) 
3 32r 3 E 

Although the renormalization constants are gauge de­
pendent, the P function, or the logarithmic derivative of the 
renormalized coupling constant, 

a az 
P (g) = A. ..K.. - 2gZ - 1 -g- (27) 

- aA. - g a(lIE) , 

should be gauge independent. This is indeed true since 

zaxial = (zaXial)-1/2 = zs = 1 _ g2C2 ..!.!.. + D(g4) 
g 3 g 32r 3E ' 

(28) 
which leads to the equality 

P ( g)axial = p ( g)S = _ ~C2 ..!.!.. + D ( gS). (29) 
16r 3E 

The point to be noted here is that unlike the S gauges, in the 
axial gauge the equality (25) allows the P function to be de­
rived directly from radiative corrections to the self-energy. 

V. AXIAL GAUGE VERSUS LIGHT-CONE GAUGE 

A comparison of our result for the axial gauge with 
results obtained previously2,8 for the principal-value pre-
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scription of the light-cone gauge (n 2 = 0) is summarized in 
Table III, with the following comments. 

(i) The advantages for the light-cone gauge is the simpli­
city of the propagator and the extreme ease with which 
Feynman integrals can be evaluated. On the other hand, we 
emphasize that although integrals in the axial gauge are 
comparatively more cumbersome to compute, with the aid 
of analytic regularization, such computations are not the 
kind of brutal undertaking they used to be when the princi­
pal-value prescription was used. In any case, two-point inte­
grals in both the axial and light-cone gauges have now been 
evaluated and tabulated. 13 

(ii) In this paper and in Ref. 8, analytic regularization 
has been employed to verify that two- and three-point Ward 
identities in Yang-Mills theories are true in both gauges. 

(iii) A pecularity of the light-cone gauge is that some of 
the divergences generated by one-loop radiative corrections 
manifest themselves8,19 as double poles [0 (11 ~)]. This effect 
is directly caused by the coalescence of ultraviolet diver­
gences with one type of infrared divergence inherent in the 
analytic regularization of this gauge; only one other Lorentz 
invariant regularization of this gauge exists,20 which mani­
fests a nonlocal infinite part residual to the double pole. In 
this aspect the axial gauge is normal: one-loop corrections 
generate only single poles and local interactions. 

(iv) We have shown that in the axial gauge infrared and 
ultraviolet singularities can be separated by letting the gener­
alized integrals approach a given primal integral in an appro­
priate way [see (20)]. In contrast, for the same reason given in 
(iii) these singularities cannot be separated in the light-cone 
gauge. Indeed, when the limit (20) is used to evaluate the 
integrals in the three-point Ward identity, we find that the 
identity is no longer true. The only limit that we believe does 
not lead to any incorrect result in the light-cone gauge is (10), 
in which all tadpole-like integrals (defined by K;;;.O and/or 
M;;;.O in this gauge) vanish. 

-;(;-1) 
3;2 

-3; 
;+2 

2(;-1) 

-6; 
2(;+2) 

-6 

(v) In the axial gauge, infinite parts generated by one­
loop corrections occur only in operators associated with the 
original Lagrangian at the tree (zero-loop) level. Therefore, 
as is well-known, the theory in this gauge is multiplicatively 
renormalizable. In contrast, in the light-cone gauge, new op­
erators generated by radiative corrections also have infinite 
parts. 8,19,21 Consequently, the theory in this gauge, assuming 
it is renormalizable, is not multiplicatively renormalizable. 
The renormalization program in the light-cone gauge needs 
to be thoroughly studied. 

Note added in proof All comments in this paper per­
taining to the peculiarities of the light-cone gauge refer to the 
principal-value prescription of that gauge. Recent calcula­
tions by the authors (Chalk River preprint CRNL-TP-85-II-
11) have shown that the Mandelstam-Leibbrandt prescrip­
tion of the gauge does not share such peculiarities; in 
particular it is one-loop renormalizable. 
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APPENDIX A: CALCULATION OF SCALAR FUNCTIONS 
AjANDBj 

Define the scalar functions A i by the general expansion 
for the self-energy (8) and compute the scalar quantities ai 

defined in (9). Substituting (8) into (9) yields the linear rela­
tions 

ai = (U ii l)ij Aj' (AI) 

which have inverse relations 

Ai = (U1l)ij aj • (A2) 

For general axial gauges, defining; = p2n2/(p. n)2 = 1Iy, 
we find 

-(; -1)] 
;+2 
-3 ' 
3 

(A3) 

TABLE III. Comparison of axial and light-cone gauges in analytic regularization. 

Evaluation of integrals 
Preserves gauge invariance 
Divergences at one loop 
Infrared and ultraviolet 
singularities separable 
"New" operators in ll!,v( p) at 
one loop contain infinite parts 
"New" operators in r .. !'v(p, - p,O) 
at one loop contain infinite parts 
Multiplicatively renormalizable 

Renormalization constants 

f3 function 

Axial gauge 

moderately easy 
yes 
single poles 
yes [see (20)] 

no 

no 

yes 
iG2 11 Z,=Z3=1+-.-
16,r 3E 

iG2 11 
-16,r'3 

1798 J. Math. Phys., Vol. 26, No.7, July 1985 

Light-cone gauge 
(principal-value prescription) 

extremely easy 
yes 
single and double poles 
no 

yes 

yes 

no (see note added in proof) 

? 

? 
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independently of the regularization method. 
Similarly, for the vertex function written in (17), we compute the scalar quantities b; defined by contracting 

b; = L r)./Jv(p, -p,O)O~~v' 
).,/J,V 

(A4) 

where 0 ~/Jv are operators defined in Table I. This defines a linear relation between B; and b; which, upon inversion, yields 

B; = (Ur)ij bj • (A5) 

We find 

U _ 1 
r - 2(; _ 1) 

; 0 -1 0 -; -2 ; 2; _;2 

0 ; 0 -1 -1 -;-1 ; 2; _;2 1 
-1 0 0 2 -; -2 ; -1 
0 -1 0 1 2 -1 -;-1 ; -1 
-; -2 

X 
-1 -;-1 

1 2 3;+2 10 -;-4 -8;-2 ;(;+4) -5 
1 2 5 3;+7 -4;-1 - 5;-5 ;(;+4) -5 

; 2; -; -2 -;-4 - 8; -, 2 ;(3;+ 2) 10; _ 5;2 ;+4 
; 2; -1 -;-1 -4;-1 - 5;-5 5; ;(3;+ 7) _ 5;2 ;+4 

_;2 _ 2;2 ; 2; ;(;+4) 2;(; + 4) _ 5;2 _10;2 5;3 -3;-2 
1 2 -1 -2 -5 

again independently of the method of regularization. 

APPENDIX B: REDUCTION TO PRIMAL INTEGRALS 

In Tables IV and V we list the one-loop scalar functions 
A; and B;. defined, respectively, in (8) and (17) in terms of 
reduced primal integrals defined in (12). TheA;'s andB;'s are 
given in units of g2C2/16r. 

The tables were generated by evaluating the diagrams 
of Fig. 1, contracting as in (9) and (A4), and using the matri­
ces (A3) and (A6). All contractions were simplified by reduc­
ing them to a sum of primal integrals using both the "shift" 
rule q~p - q in (1) where necessary, and partial fraction 
decomposition of integrals with multiple denominators. See 
Appendix C of Ref. 8 for more details: 

Once the coefficients were reduced to a sum of primal 
integrals, the integrals themselves were reduced to a smaller 
set by using algebraic identities easily obtainable for cases 
with N> O. For example, 
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-10 ;+4 2;+ 8 -3;-2 5 

(A6) 

S(K,M,l,O) = (p. n)2S(M,K,0,0) - 2p· nS(M,K,O, 1) 

+ S (M,K, 1,0). (B1) 

We emphasize that the legitimacy of this technique is 
founded on the fact that divergent integrals obey the usual 
rules of algebra, such as (B 1). We also note that when regu­
lating primal integrals, it is vital to preserve this property. 
This is true of both (1) and (20), but it is easy to invent limiting 
processes which do not preserve simple algebraic identities 
such as (B 1). 

Each of the primal integrals was then evaluated accord­
ing to (2) by an algorithm described elsewhere. 13 Both limits 
(10) and (20) were investigated. To reduce the tables to man­
ageable proportions, those integrals satisfying (11) are omit­
ted here. 

All calculations were performed with the algebraic ma­
nipulator SCHOONSCHIP,22 except for the matrices (A3) and 
(A6) that were obtained using REDUCE.23 The tables them­
selves were formatted, using an on-line editor and type­
writer, directly from the computer output. 
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TABLE IV. Coefficients Ai of (S) in terms of primal integrals with tadpoles omitted. 

AI = - (- lIy3 + 2fT)*S( - I,D, - I,D) - ( - 2fy' + 61y2 - Sly)*S( - I,D, - 1,1) 

- (1I(2y')).S( - 1,1, - I,D) - (1Iy' - 2fy2).S( - 1,1, - 1,1) 

- (12 - IOIY).S( - I, - 1,0,0) - S.S( - I, - 1,1,0) - (1I(2y') - 4/T + 4Iy)*S( - I, - I, - I,D) 

- ( - 16 + 1Iy' - 4fT + 16Iy)*S( - I, - I, - 1,1), 

A2 = + (3 - lIy3 + liT - lIy + 3y/(1 - y))*S( - I,D, - I,D) 

+ (- 12 - 21y3 + 41y2 - 12y/(1 - y))*S( - I,D, - 1,1) 

+ H + 1I(2y') + 1I(2T) + 3/(2y) + 3y/(2(1 - y))).S( - 1,1, - I,D) 

+ (- 3 + 1Iy' - liT - 31y - 3y/(1 - y)).S( - 1,1, - 1,1) 

+ (10 - IOly + 6y/(1 - y)).S( - I, - 1,0,0) + (S + 24y/(1 - y)).S( - I, - 1,1,0) 

+ (~+ 1I(2y') -7/(2T) + 3/(2y) + 3y/(2(1 - y))).S( - I, - I, - I,D) 

+ (- 9 + 1Iy' - 31y2 + Illy - 9y/(1 - y)).S( - I, - I, - 1,1), 

A. = - A3 = + (3 - liT - lIy + 3y(1 - y)).S( - I,D, - I,D) 

+ (-12 - 2fT + Sly - 12y/(1 - y))*S( -I,D, -1,1) 

+ (~+ 1I(2T) + 3/(2y) + 3y/(2(1 - y))).S( - 1,1, - I,D) 

+ (- 3 + liT - 31y - 3y(1 - y)).S( - 1,1, - 1,1) 

+ ( - 2 + 6y/(1 - y)).S( - I, - 1,0,0) 

+ (24y/(1 - y)).S( - I, - l,l,0) 

+ (~+ 1I(2T) - 5/(2y) + 3y/(2(1 - y))).S( - I, - I, - I,D) 

+ (7 + liT - 51y - 9y/(1 - y)).S( - I, - I, - 1,1). 

TABLE V. Coefficients Bi of(17) in terms of primal integrals with tadpoles omitted. 

BI = (i + 3/(4y3) - 13/(4y2) + 3/(4y) + 3y/(41l - y))).S( - 2,0, - I,D) 

+ (- ~ + 3/(2y3) - 9/(2T) + 23/(2y) - 9y/(2(1 - y)))*S( - 2,0, - 1,1) 

+ G - 3/(4y3) + 3/(4T) + 3/(4y) + 3y/(4(1 - y))).S( - 2,1, - I,D) 

+ (- 3 - 3/(2y3) + 31T - 31y - 3y/(1 - y)).S( - 2,1, - 1,1) 

+ U + 1I(4y') + 1(4T) + 1I(4y) + y/(4(1 - y))).S( - 2,2, - 1,0) 

+ (- ~ + 1I(2y') - 1I(2T) - 1I(2y) - y/(2(1 - y))).S( - 2,2, - 1,1) 

+ (1- 1I(4y') + 9(4T) - 15/(4y) + y/(4(1 - y))).S( - 2, - I, - 1,0) 

+ (14 - 1I(2y') + 21T - 61y - 2y/(1 - y)).S( - 2, - I, - 1,1) 

+ (- ~ - 13/(4y') + 23/(4y2) - 9/(4y) - 9y/(4(1 - y))).S( - I,D, - I,D) 

+ (9 - 13/(2y') + 13ly2 -71y + 9y/(1 - y)).S( - I,D, - 1,1) 

+ (- 1 + 1Iy' - liT - lIy - y/(1 - y)).S( - 1,1, - 1,0) 

+ (2 + 21y3 - 2fT + 21y + 2y/(1 - y)).S( - 1,1, - 1,1) 

+ (- 6 + IOly - 6y/(1 - y))*S( - I, - 2,0,0) 

+ ( - 12 + 20yl(1 - y)).S( - I, - 2,0,1) + (- S - 24y/(1 - y)).S( - I, - 2,1,0) 

+ (16y/(1 - y)).S( - I, - 2,1,1) 

+ ( -1- 1I(4y3) + 7/(4T) - 1I(4y) - yl(4(1 - y))).S( - I, - 2, - I,D) 

+ (2 - 1I(2y') + 2/T - IO/y + 2yl(l- y))*S( - I, - 2, - 1,1) 

+ (1S - IO/y - 6y/(1 - y)).S( - I, - 1,0,0) + ( - S - 24y/(1 - y)).S( - I, - 1,1,0) 

+ ( - ~ + 5/(2y') - 26/(2T) + 29/(2y) - 3yl(2(1 - y))).S( - I, - I, - 1,0) 

+ (- 23 + 5/y' - 15/T + 251y + 9y/(1 - y)).S( - I, - I, - 1,1), 

B2 = (3 + 3/(4T) - 5/(4y) + 3y/(4(1 - y))).S( - 2,0, - I,D) 

+ (-1- 1I(2y) - 9y/(2(1 - y))).S(2,O, - 1,1) 
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TABLE V. (Continued.) 

+ (i - 3/(4.1) + 3/(4y) + 3y/(4(1 - y))).S( - 2,1, - 1,0) 

+ ( - 3 - 3y/(1 - y)).S( - 2,1, - 1,1) 

+ (1 + 1/(4.1) + 1/(4y) + y/(4(1 - y))).S( - 2,2, - 1,0) 

+ (-! - 1/(2y) - y/(2(1 - y))).S( - 2,2, - 1,1) 

+ U - 1/(4.1) + 1/(4y) + y/(4(1 - y))).S( - 2, - 1, - 1,0) 

+ (- 2 + 1/y - 2y/(1 - y)).S( - 2, - 1, - 1,1) 

+ (- ~ + 1/7' -7/(4.1) + 7/(4y) - 9y/(4(1 - y))).S( - 1,0, - 1,0) 

+ (9 + 2/7' - 4/Y + 9y/(1 - y)).S( - 1,0, - 1,1) 

+ (- 1 - 1/(27') - 1/y - y/(1 - y)).S( - 1,1, - 1,0) 

+ (2 - 1/7' + 1/.1 + 2/y + 2y/(1 - y)).S( - 1,1, - 1,1) 

+ (- 2 - 6y/(1 - y)).S( - 1, - 2,0,0) + (4 + 20y/(l- y)).S( - 1, - 2,0,1) 

+ (- 24y/(1 - y)).S( - 1, - 2,1,0) + (16y/(1 - y)).S( - 1, - 2,1,1) 

+ (-1 + 1/(4.1) - 1/(4y) - y/(4(1 - y))).S( - 1, - 2, - 1,0) 

+ (2 - 1/y + 2y/(1 - y)).S( - I, - 2, - 1,1) 

+ ( - 10 + 10/y - 6y/(1 - y)).S( - 1, - 1,0,0) 

+ (- 8 - 24y/(1 - y)).S( - 1, - 1,1,0) 

+ ( -! - 1/(27') + 7/(2.1) - 3/(2y) - 3y/(2(l - y))).S( - 1, - I, - 1,0) 

+ (9 - 1/7' + 3/.1 - l1/y + 9y/(I- y)).S( -1, - 1, - 1,1), 

B3 = (- i + 1/(4.1) + 5/(4y) - 3y/(4(1 - y))).S( - 2,0, - 1,0) 

+ (- i - 1/(2.1) + 1/(2y) + 9y/(2(1 - y))).S( - ,2,0, - 1,1) 

+ ( - i + 1/(4.1) - 3/(4y) - 3y/(4(1 - y))).S( - 2,1, - 1,0) 

+ (3 + 1/.1 - 1/y + 3y/(1 - y)).S( - 2,1, - 1,1) 

+ (-1- 1/(4.1) - 1/(4y) - y/(4(1 - y))).S( - 2,2, - 1,0) 

+ H -1/(2.1) + 1/(2y) + y/(2(1- y)).S( - 2,2, - 1,1) 

+ (-1- 1/(4.1) + 7/(4y) - y/(4(1 - y)).S( - 2, - I, - 1,0) 

+ (- 6 - 2/y + 2y/(2 - y)).S( - 2, - 1, - 1,1) + (1/7' - 2/Y).S( - 1,0, - 2,1) 

+ (t + 3/7' - 23/(4.1) + 25/(4y) + 9y/(4(1 - y))).S( - 1,0, - 1,0) 

+ (- 9 + 6/7' - 11/.1 + 3/y - 9y/(1 - y)).S( - I,D, - 1,1) 

+ (- 1/(27')).S( - 1,1, - 2,1) 

+ (1 - 3/(27') + 2/.1 + 1/y + y/(I- y)).S( - 1,1, - 1,0) 

+ (- 2 - 3/7' + 4/.1 - 2/y - 2y/(1 - y)).S( - 1,1, - 1,1) 

+ (- 10 + 6y/(1 - y)).S( - 1, - 2,0,0) + (20 - 20y/(1 - y)).S( - 1, - 2,0,1) 

+ (24y/(1 - y)).S( - 1, - 2,1,0) + (- 16y/(1 - y)).S( - 1, - 2,1,1) 

+ (1 + 1/(4.1) - 7/(4y) + y/(4(1 - y))).S( - 1, - 2, - 1,0) 

+ (6 + 2/y - 2y/(l- y)).S( - 1, - 2, - 1,1) + (- 2 + 6y/(1 - y)).S( - I, - 1,0,0) 

+ (24y(1 - y)).S - 1, - 1,1,0) + (- 1/(27') + 4/.1 - 4/y).S( - 1, - 1, - 2,1) 

+ Pi - 3/(27') + 7/(2.1) - 21/(2y) + 3y/(2(1 - y))).S( - 1, - 1, - 1,0) 

+ (- 9 - 3/7' + 7/Y + 7/y - 9y/(1 - y)).S( - 1, - 1, - 1,1), 

Bs = P; - 3/(47') + 1/(4.1) + 17/(4y) - 15y/(4(1 - y))).S( - 2,0, - 1,0) 

1801 

+ (~- 3/(27') + 15/(2y2) - 35/(2y) + 45y/(2(1 - y))).S( - 2,0, - 1,1) 

+ ( -l( + 3/(47') + 9/(4.1) - 15/(4y) - 15y/(4(1 - y))).S( - 2,1, - 1,0) 

+ (15 + 3/(27') - 6/Y + 9/y + 15y/(1 - y)).S(2,1, - 1,1) 

+ ( - i - 1/(47') - 5/(4.1) - 5/(4y) - 5y/(4(1 - y))).S ( - 2,2, - 1,0) 

+ (~- 1/(27') + 3/(2.1) + 5/(2y) + 5y/(2(1- y))).S( - 2,2, - 1,1) 
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TABLE V. (Continued.) 

+ ( - ~ + 1/(4y) - S/(4y2) + 1l/(4y) - Sy/(4(1 - y))).S( - 2, - I, - I,D) 

+ (- 6 + lI(2y) - 3/y2 + 4/y + 10y/(1 - y)).S( - 2, - I, - 1,1) 

+ (!J + 13/(4y) - IS/(4y2) - 19/(4y) + 4Sy/(4(1 - y)))*S( - I,D, - I,D) 

+ ( - 4S + 13/(2y) - 22fy2 + 29/y - 4Sy/(1 - y)).S( - I,D, - 1,1) 

+ (S - lIy + lIy2 + Sly + Sy/(I - y)).S( - 1,1, - I,D) 

+ (- 10 - 2fy + 4/y2 - lO/y - lOy/(1 - y))*S( - 1,1, - 1,1) 

+ (22 - 2fy + 30y/(1 - y)).S( - I, - 2,0,0) 

+ (- 28 - lOOy/(1 - y)).S( - I, - 2,0,1) + (24 + 120y/(1 - y)).S( - I, - 2,1,0) 

+ ( - 80y/(1 - y)).S( - I, - 2,1,1) 

+ (~+ 1/(4y) -7/(4y2) + S/(4y) + Sy/(4(1 - y))).S( - I, - 2, - I,D) 

+ (- 10 + lI(2y) - 3/y2 + 8/y - lOy/(1 - y)).S( - I, - 2, - 1,1) 

+ (- 2 + 2/y + 30y/(1 - y)).S( - I, - 1,0,0) + (24 + 120y/(1 - y)).S( - I, - 1,1,0) 

+ (.1/ - S/(2y) + 23/(2y2) - 33/(2y) + ISy/(2(1 - y))).S( - I, - I, - I,D) 

+ (19 - Sly + 23/y2 - 37/y - 4Sy/(1 - y)).S( - I, - I, - 1,1), 

B6 = ( -lj - S/(4y2) + 17/(4y) - ISy/(4(1 - y))).S( - 2,0, - I,D) 

+ (.y - lI(2y2) - 3/(2y) + 4Sy/(2(1 - y))).S( - 2,0, - 1,1) 

+ (-lj + 7/(4r) -7/(4y) - ISy/(4(1 - y))).S( - 2,1, - I,D) 

+ (IS + lIr - I/y + ISy/(I- y)).S( - 2,1, - 1,1) 

+ ( - i - 3/(4r) - S/(4y) - Sy/(4(1 - y))).S( - 2,2, - I,D) 

+ (~- lI(2r) + S/(2y) + Sy/(2(1 - y))).S( - 2,2, - 1,1) 

+ (- i + 1/(4r) + 3/(4y) - Sy/(4(1 - y))).S( - 2, - I, - I,D) 

+ (2- 2fy + lOy/(1 - y)).S( - 2, - I, - 1,1) + (lly - 4/y).S( - 1,0, - 2,1) 

+ (!J + 2fy - 33/(4r) + 6l1(4y) + 4Sy/(4(1 - y))).S( - I,D, - I,D) 

+ ( - 4S + 4/y - 9/y2 - lIy - 4Sy/(1 - y)).S( - I,D, - 1,1) 

+ ( - lI(2y) - lIr).S( - 1,1, - 2,1) 

+ (S - lIy + 4/r + Sly + Sy/(I - y)).S( - 1,1, - I,D) 

+ (- 10 - 2/y + 4/r - lO/y - lOy/(1 - y)).S( - 1,1, - 1,1) 

+ (2 + 30y/(1 - y)).S( - I, - 2,0,0) + (- 4 - lOOy/(1 - y)).S( - I, - 2,0,1) 

+ (120y/(1 - y)).S( - I, - 2,1,0) + (- 80y/(1 - y)).S( - I, - 2,1,1) 

+ (i - lI(4r) - 3/(4y) + Sy/(4(1 - y))).S( - I, - 2, - I,D) 

+ (- 2 + 2fy - 10y/(1 - y)).S( - I, - 2, - 1,1) + (26 - 2fy + 30y/(1 - y)).S( - I, - 1,0,0) 

+ (24 + 120y/(1 - y)).S( - I, - 1,1,0) + (- lI(2y) + 3/r - 4/y).S( - I, - I, - 2,1) 

+ (~- I/y + S/(2r) - 13/(2y) + ISy/(2(1 - y))).S( - I, - I, - 1,0) 

+ (- 29 - 2/y + Sir - lIy - 4Sy/(1 - y)).S( - I, - I, - 1,1), 

B7 = (lj - lI(4y) + 1/(4r) - 9/(4y) + ISy/(4(1 - y))).S( - 2,0, - I,D) 

1802 

+ (- 11 + lI(2y) - lI(2r) + IlI(2y) - 4Sy/(2(1 - y))).S( - 2,0, - 1,1) 

+ (lj - lI(4y) - 3/(4r) + 7/(4y) + ISy/(4(1 - y))).S( - 2,1, - I,D) 

+ (- IS - lIy + lIr - 3/y - ISy/(I- y)).S( - 2,1, - 1,1) 

+ Ii + lI(4y) + 3/(4r) + S/(4y) + Sy/(4(1 - y))).S( - 2,2, - I,D) 

+ (- ~ + lI(2y) - lI(2r) - S/(2y) - Sy/(2(1 - y))).S( - 2,2, - 1,1) 

+ Ii + lI(4y - 9/(4r) + S/(4y) + Sy/(4(1 - y))).S( - 2, - I, - I,D) 

+ (- 10 + 2fr + 6/y - lOy/(1 - y)).S( - 2, - I, - 1,1) 

+ (- lIy" + 2/y - 2fr + 4/y).S( -I,D, - 2,1) 
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TABLE V. (Continued.) 

+ (- ~ - 3/y4 + 31/(4y') - 15/(4T) - 61/(4y) - 45y/(4(1 - y))).S( - 1,0, - 1,0) 

+ (45 - 6/y4 + 15/y' - 15/y2 + 33/y + 45y/(1 - y)).S( - 1,0, - 1,1) 

+ (1/(2y") + 1/T).S( - 1,1, - 2,1) 

+ ( - 5 + 3/(2y4) - 3/y' - 4/T - 5/y - 5y/(1 - y)).S( - 1,1, - 1,0) 

+ (10 + 3/y4 - 6/y' + 6/T + lO/y + lOy/(1 - y)).S( - 1,1, - 1,1) 

+ (- 18 + lO/y - 30y/(1- y)).S( - I, - 2,0,0) + (44 - 20/y + l00y/(1 - y)).S( - I, - 2,0,1) 

+ (- 24 - 120y/(1 - y)).S( - I, - 2,1,0) + (16 + 80y/(1 - y))_S( - I, - 2,1,1) 

+ (- i - 1/(4y') + 9/(4T) - 5/(4y) - 5y/(4(1 - y)))_S( - I, - 2, - 1,0) 

+ (10 - 2/T - 6/y + lOy/(1 - y)).S( - I, - 2, - 1,1) 

+ (- 42 + 6/y - 30y/(1 - y))_S( - I, - 1,0,0) + (-72 - 120y/(1 - X)).S( - I, - 1,1,0) 

+ (1/(2y4) - 4/y' + 5/T).S( - I, - I, - 2,1) 

+ (- 11 + 3/(2y4) - 9/(2y' + 29/(2y2) - 35/(2y) - 15y/(2(1- y)))_S( - I, - I, - 1,0) 

+ (45 + 3/y4 - 9/y' + 1/T + 5/y + 45y/(1 - y)).S( - I, - I, - 1,1), 

Bs = (1; + 3/(2y') - 9/(4T) - 9/(4y) + 15y/(4(1 - y))).S( - 2,0, - 1,0) 

+ ( - ¥ + 3/(2y') - 8/T + 35/(2y) - 45y/(2( 1 - y))).S ( - 2,0, - 1,1) 

+ (.I; - 3/(4y') - 3/(4T) + 15/(4y) + 15y/(4(1 - y)))_S( - 2,1, - 1,0) 

+ ( - 15 - 3/(2y') + 6/T - 12/y - 15y/(1 - y))_S( - 2,1, - 1,1) 

+ (i + 1/(2y') + 5/(4T) + 5/(4y) + 5y/(4(1 - y)))_S( - 2,2, - 1,0) 

+ (- ~ + 1/(2y') - 2/T - 5/(2y) - 5y/(2(1 - y))).S( - 2,2, - 1,1) 

+ (i - 1/(2y') + 7/(4T) - 11/(4y) + 5y/(4(1 - y))).S( - 2, - I, - 1,0) 

+ (6 - 1/(2y') + 4/T - 7/y - lOy/(1 - y)).S( - 2, - I, - 1,1) 

+ ( - ~ - 2/y3 + 21/(4T) - 13/(4y) - 45y/(4(1 - y))).S( - 1,0, - 1,0) 

+ (45 - 5/(2y') + 2IT + 8/y + 45y/(1 - y)).S( - 1,0, - 1,1) 

+ ( - 5 + 1/(2y') - 3/T - 5/y - 5y/(1 - y))_S( - 1,1, - 1,0) 

+ (10 + 3/T + lO/y + lOy/(1 - y)).S( - 1,1, - 1,1) 

+ (- 26 - 30y/(1 - y)).S( - I, - 2,0,0) + (44 + 4/y + l00y/(1 - y)).S( - I, - 2,0,1) 

+ (- 48 - 120y/(1 - y)).S( - I, - 2,1,0) + (16 + 80y/(1 - y)).S( - I, - 2,1,1) 

+ ( - i + 5/(4T) - 5/(4y) - 5y/(4(1 - y)).S( - I, - 2, - 1,0) 

+ (10 - 1/(2y') + 2/T - 5/y + lOy/(1 - y)).S( - I, - 2, - 1,1) 

+ ( - 14 + 2/y - 30y/(1 - y)).S( - I, - 1,0,0) + ( - 72 - 120y/(1 - y)).S( - I, - 1,1,0) 

+ ( - 11 + 3/(2y3) - 11/(2T) + 17/(2y) - 15y/(2(1 - y)))_S( - I, - I, - 1,0) 

+ (13 + 3/y' + l1/T + 13/y + 45y/(1 - y)).S( - I, - I, - 1,1), 

B. = (- J} - 3/(4y4) + 7/(4y') + 1/(4T) + 1/(4y) - 15y/(4(1 - y)))_S( - 2,0, - 1,0) 

+ (¥ - 3/(2y4) + 9/(2y') - 15/(2y2) - 3/(2y) + 45y/(2(1 - y)))_S( - 2,0, - 1,1) 
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+ ( - J} + 3/(4y4) + 3/(4y') - 3/(4T) - 15/(4y) - 15y/(4(1 - y))).S( - 2,1, - 1,0) 

+ (15 + 3/(2y4) - 3/y3 + 15/y + 15y/(1 - y))_S( - 2,1, - 1,1) 

+ ( - i - 1/(4y4) - 3/(4y') - 5/(4T) - 5/(4y) - 5y/(4/( 1 - y)))_S ( - 2,2, - 1,0) 

+ (~- 1/(2y4) + 1/(2y') + 5/(2T) + 5/(2y) + 5y/(2(1 - y))).S( - 2,2, - 1,1) 

+ ( - i + 1/(4y4) -7/(4y') + 15/(4T) - 5/(4y) - 5y/(4(1 - y)))_S( - 2, - I, - 1,0) 

+ (10 + 1/(2y4) - 2/y' + 3/T - lO/y + lOy/(1 - y))_S( - 2, - I, - 1,1) 

+ (~+ 5/(4y4) - 9/(4y') - 11/(4T) + 45/(4y) + 45y/(4(1 - y))).S( - 1,0, - 1,0) 

+ ( - 45 + 5/(2y4) - 5/y3 + lO/T - 45/y - 45y/(1 - y))_S( - 1,0, - 1,1) 
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TABLE V. (Continued.) 

+ (5 + 1Iy' + 5/y + 5/y + 5y/(1 - y)).S( - 1,1, - 1,0) 

+ (- 10 - lO/y - lO/y - 10y/(1 - y)).S( - 1,1, - 1,1) 

+ (30 - 10/y + 18/y + 30y/(1 - y)).S( - 1, - 2,0,0) 

+ (- 92 + 4/y - l00y/(1 - y)).S( - 1, - 2,0,1) + (88 + 8/y + 120y/(1 - y))( - 1, - 2,1,0) 

+ (48 - 80y/(1 - y)).S( - 1, - 2,1,1) 

+ (i + 1I(4y4) - 9/(4y') + 5/(4y) + 5/(4y) + 5y/(4(1 - y))).S( - 1, - 2, - 1,0) 

+ (- 10 + 1I(2y4) - 2/y' + ll/Y - lO/y - lOy/(1 - y)).S( - 1, - 2, - 1,1) 

+ (30 - lO/y + lO/y + 30y/(1 - y)).S( - 1, - 1,0,0) 

+ (120 + 24/y + 120y/(1 - y)).S( - 1, - 1,1,0) 

+ (-If - 3/(2y4) + 13/(2y') - 25/(2y + 15/(2y) + 15y/(2(1 - y))).S( - 1, - 1, - 1,0) 

+ (- 45 - 3/y4 + 9/y' - lIy - 5/y - 45y/(1 - y)).S( - 1, - 1, - 1,1), 

B4 = - B2 + (1Iy' - 2/Y).S( - 1,0, - 1,0) 

+ (2/y' - 6/y + 8/y).S( - 1,0, - 1,1) + (- 11(2y')).S( - 1,1, - 1,0) 

+ ( - 1Iy' + 2/Y).S( - 1,1, - 1,1) + ( - 12 + lO/y).S( - 1, - 1,0,0) 

- 8.S( - 1, - 1,1,0) + (- 1I(2y') + 4/y - 4/y).S( - 1, - 1, - 1,0) 

+ (16 - 1Iy' + 4/y - 16/y).S( - 1, - 1, - 1,1), 

BIO = - B6 + (- 1Iy' + 4/y).S( - 1,0, - 1,0) + (- 2/y' + lO/y - 20/y).S( - 1,0, - 1,1) 

+ (1I(2y') + IIY).S( - 1,1, - 1,0) + (1Iy' - 4/Y).S( - 1,1, - 1,1) 

+ (8 - 2/y).S( - 1, - 1,0,0) + 24.S( - 1, - 1,1,0) 

+ (1I(2y') - 3/Y + 4/y).S( - 1, - 1, - 1,0) 

+ (- 16 + 1Iy' - 6/y + 12/y).S( - 1, - 1, - 1,1). 
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