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On the axial gauge: Ward identities and the separation of infrared and
ultraviolet singularities by analytic regularization
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It is shown that the method of analytically regulating Yang—Mills theories in the axial gauge
preserves gauge invariance. Two- and three-point Ward identities are computed and verified at
the one-loop level. The method also permits a convenient and gauge-invariant separation of
infrared and ultraviolet singularities in the axial gauge. In the axial gauge the renormalization
constants Z, = Z, = 1 + 11g°C,/(487¢?), leading to a § function which is identical to that

computed in the covariant £ gauges.

1. INTRODUCTION

Recently, an analytic method’? has been shown to be a
powerful and elegant means to implement the principal-val-
ue prescription® for regulating and evaluating Feynman inte-
grals occurring in Yang-Mills theories in the axial gauges.*
Such gauges are defined by the constraint n - 4 ¢ = 0, where
A |, is the vector gauge field, n,, is an arbitrary constant vec-
tor, and the superscript ¢ is an index for the gauge group. In
particular, analytic representations’? have been found for
two-point functions in the general axial gauge (n”>#£0) (Ref.
4), the light-cone gauge (n” =0) (Ref. 5), and the special
gauge defined by p - n = 0 (n*>5£0) (Ref. 2), where P, is the
external momentum in the two-point functions.

Although there is a widely held belief (possibly caused
by using the work “analytic” to describe different and ine-
quivalent regularization methods®) that “analytic regular-
ization does not preserve gauge invariance,” it will be dem-
onstrated that the contrary is true for the new analytic
method. The preservation of gauge invariance depends on
the fact that the method preserves such algebraic properties
as commutativity and associativity of operations in the
Feynman integrals and that in the appropriate limit the new
method, for both the infinite and regular parts of a Feynman
integral, yields results that are identical to those obtainable
from dimensional regularization. For the light-cone gauge,
this has already been demonstrated by verifying two- and
three-point Ward identities’ at the one-loop level.®

In Sec. I, we extend this study by verifying these identi-
ties in the general axial gauge (n”#0). Here again, we find
that the preservation of algebraic properties mentioned ear-
lier is sufficient to guarantee that Ward identities will be
upheld, even before the Feynman integrals involved in the
identities are evaluated.

The capability of distinguishing infrared from ultravio-
let singularities is another one of the appealing properties of
analytic regularization. The lack of this capability in dimen-
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sional regularization® has been the cause of considerable in-
convenience in practical calculations using that technique.
In Sec. III, using integrals appearing in the three-point Ward
identities as examples, we show how the analytic method can
easily be employed to separate the two types of singularities.
We also show that when these two types of singularities are
not distinguished, the cancellation between the two is the
direct cause of the vanishing of some tadpoles.!® In other
words, if infrared and ultraviolet singularities are separated,
then not all tadpoles vanish.

In Sec. IV we show that the 8 function, which can be
computed from the renormalization constants Z, and Z,,
associated with the self-energy and the three-vertex, respec-
tively, are identical in the axial gauge and the covariant £
gauges to lowest order. Furthermore, in contrast to the &
gauges, the equality Z, = Z; in the axial gauge allows the 8
function to be derived directly from the self-energy.

In Sec. V, we compare our results for the axial gauge
with those obtained previously for the light-cone gauge.®
Briefly, other than being ghost-free, the axial gauge shares
the properties of the covariant gauges,'' but does not have
the pecularities possessed by the light-cone gauge. On the
other hand, computations in the light-cone gauge are much
less tedious.

In the following, we briefly review the analytic repre-
sentation for the “two-point” integrals—integrals with one
external momentum—defined by

Sy PMY,S) = f d *q[(p — a1 (g - P+,
1)

wheres = Oor 1 and w, «, i, and v are continuous variables.
Feynman integrals in four-dimensional Euclidean space
{Minkowski space is reached by analytic continuation) that
are sometimes divergent and therefore ill defined, corre-
spond to those in (1) when «, 2, and v are integers and w = 2;
these form a subset of (1) which we call primal integrals.
Methods of analytic regularization' were used to find a rep-
resentation for (1) in terms of a Meijer G function!?
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where y = (p - n)*/( p*n?). The right-hand side of (2} is a
well-defined, analytic function of all its variables and, when
n?#0, has at most simple poles in the (w,x,u,v) plane.

The evaluation of any primal integral in terms of the
independent variables y, p, n and infinitesimals €;, which
label the singularities, now becomes a well-defined mecha-
nistic process, which is discussed elsewhere.! Tables of pri-
mal integrals have also been prepared.'?

{l. WARD IDENTITIES

We shall verify both the one-loop radiative corrections
to the two-point Ward identity

A1, (p)=1T,(pp, =0, (3)
as well as a special case of the three-point Ward identity

i, 5%, (p, — p.0) = if “*p, Ty, (P, — p,0)

=gf "I, (p), (4)
where IT,,,( p) is the self-energy less its O ( g% longitudinal
term

I, (p)=1,(p)— (/5 )n,n,, (5)
g is the Yang-Mills coupling, f “*° are the structure con-
stants of the gauge group, and ¢ is the parameter of the
gauge-fixing Lagrangian — (1/2£)(n - A°); the ghost-free
axial gauge is realized in the limit £&—0. For a derivation of
the identities (3) and (4) see Ref. 8.

Equation (3) expresses the well-known notion that
IT,,(p)istransverse to p,, . Because the subtracted term in (5)
appears only in the zeroth order (in g), (3) also implies that all
radiative corrections to /T, are transverse. The transversi-
lity of IT,,, may be expressed by writing

., (p)= —i[{l(p)P,, +I1,(pIN,.], (6)
where P,, and N, are two linearly independent tensors
transverse to p,:

Pyv Epzayv —p,u Pys (73)
N, =p,p, —(pun, +p,n,)p*/p-n+n,n,p*/(p-np
(7b)

Our first task is to verify that, to one-loop order (see Fig. 1),

~Nl—-

(0} (b

FIG. 1. Diagrams for O { g°) self-energy. Part (b} is tadpolelike and vanishes
only in the limit (10).
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14+vl —w—K1/2+s+v
0, —w—r—po+p+2v+s

), || > 1, (2)

?I »v indeed has the form {6), and to also compute the coeffi-
cients I7{ and IT'" in the limit £ = 0. (The superscript de-
notes that these are one-loop results.)

The symbol I, p, — p,0) in (4) represents the three-
vertex with one external line carrying zero momentum; this
special momentum configuration reduces the three-vertex to
a two-point function. Feynman diagrams for the one-loop
radiative corrections to I';,, are shown in Fig. 2.

We now digress to explain how it is possible to evaluate
the tensor I7,,, which clearly depends on integrals with
nonscalar integrands, using only the scalar integral (1). We
parenthetically note that it would have been impossible to
derive a viable analytic regularization with generalized ex-
ponents, if it were necessary to find representations for inte-
grals with tensorial integrands.

There are four linearly independent, symmetric, rank-
two tensors in the axial gauge:3,,,,p, p,,p.n, + p,n,, and
n,n,. Therefore any symmetric rank-two tensor such as
IT,,, can be expressed as

”;‘tv = %["’416;1v +A2pu pv/p2
+A3(pynv +pvn,u)/p'n
+p*Agn,n,/(p-nP1/€ — 1) (8)

where A4, arescalar functions of p?, n?,andp - n,and £ = 1/y.
These functions can be found by contracting 17, as follows:

a, = II;V&W, (9a)
02=H;4v py PV/PZ, (9b)
a,=1II,, p.n,/p-n, (9¢)
a,= H;wnunv pZ/(p * n)2’ (gd)

o]

P
-p
{a)

o]

0 > 0
LxQu<:><+ . >
2

-P

-p P
-p
(b)

FIG. 2. Diagrams for O( g°) three-vertex. All momenta flow in. The last
diagram in part (b) vanishes identically because of gauge group and Lorentz
symmetry.
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and solving the resulting set of equations. The relations
between a; and A4, are given in Appendix A. This technique
can be generalized for computing tensors of any rank. Since
any such tensor can be evaluated by calculating the corre-
sponding scalars a;, it follows that (for two-point functions)
only scalar integrals of the type (1) need ever be computed.

We now return to follow the simpler of two paths. On
this path all primal integrals are evaluated in a limit in which
the infrared and ultraviolet singularities are not distin-
guished. (In the next section we consider another limit in
which the two types of singularities are distinguished.) For
now, we let

k=K, p=M, v=N, w=2+¢, (10)

where ¢ is small but finite. This limit is equivalent! to that
obtainable with the principal-value prescription used in con-
junction with dimensional regularization. We emphasize
that with (10) and analytic regularization, all tadpole-like
integrals, namely primal integrals satisfying either one or
both of the conditions

(i) K>0, (11a)
(i) M>0, N>0, (11b)

vanish. In comparison, dimensionless regularization, having
only one generalized variable w, is insufficiently powerful to
regulate such integrals. Conventionally,'° such integrals are
simply assumed to be zero'* in dimensional regularization.

Using the method described above, we find that IT},
indeed has the form of the right-hand side of (6) {this implies
that the @, and a; of (9) vanish, or equivalently,
A, +A,=A,= — A;]. The A, and A, are listed in Table IV
of Appendix B in terms of reduced primal integrals defined
by

SKMNs)=m=(p) K=" p.n) =2
XS, p:n; K,M,N,s). (12)

Because of space limitations, all integrals satisfying (11) have
been omitted from Table IV.
In the limit (10), using (2) we find

m=£2 [ 200 - (3 - +23

”1=g2C2 1

R 1-¢

X[ -Frxan(g)(-e-12)

A
where

1/é=1/e+Inp*+vy, (15)

¢ = 1/y, y is Euler’s constant, and Z is defined in Table IL

Noticeably absent from /7, is an infinite part. This will
allow us to comment in Sec. III on the multiplicative renor-
malizability of the Yang-Mills theory in the axial gauge after
having ascertained that the finiteness of /7, is not the result
of a cancellation between the as yet undistinguished infrared
and ultraviolet singularities.

Wenow consider the three-point Ward identity. To ver-
ify (4), it is sufficient to expand the left-hand side, which is
again a symmetric rank-two tensor, as in (9). However, to
learn more about the three-vertex I, , we shall instead cal-
culate it explicitly. This vertex function has the symmetry
relation

r).yv(p’ —p,0)= _F,u.v( —P’p’o)’ (16)
showing that it can be expanded in terms of ten independent
tensors T'%,, given in Table I:

10

FMW(P’ —p0)= 2@_{_ 1) 'Zl B, T(/{Lv (17)

In a manner similar to (9), we compute the ten scalar func-
tions B; by contracting both sides of (17) using the symbol b,
to label the contracted left-hand sides. The linear relations
between the sets B; and b, are given in Appendix A. The
formidable expressions for B;, in the form of a sum of primal
integrals with tadpoles omitted, are given in Table V of Ap-
pendix B. When the integrals are evaluated using (2) in the
limit (10) the B,’s have values given in Table II.

To satisfy (4), the B,’s must first satisfy the “transversa-
lity” relations

B, + (Bs + B,)/(6 — 1) = B, + (Bs + Bg)/(£ — 1)

R 1—¢ L3 = — (Bs+ B,o)/(E —1) (18a)
62 444 2 ( 8 &2 ) ] and
——t+—42 ——842—-=2-)Z|,
9 + 9 A < +2% 2 B, +2B,+ B+ B,= —({ — 1){Bs + B; + Bg + By),
(13) (18Y)
TABLE 1. The ten tensors T, of (17) and the operators O%,,, of (A4).
i T 0%
1 6,1,; P, 8/1,‘ /P
2 8,y Ps + 82, P, 8. pi/P
3 p/p-nby, n, 8, n/(p-n)
4  p/p-nb., n+8,n,) 8, n./p-n
5 PAp-nun, p/§—1) nun, p/(p-nf/§—1)
6  PAp-nlman,pi+n,npVE—1) n, n, p/(p-nf/iE—1)
7 mp.n/lpeniE—-1) Pa Py n/P/p -G~ 1)
8 (Du Py ny 4+ P P2 m M p-0)/(E—1) P, P, 1 /P /p-n/iE—1)
9 Pp.p/P/E-Y) P b, P/PYE—1)
10 p/p-nfnumn/E—1) prgnn,/(p-np/(§—1)
1795 J. Math. Phys., Vol. 26, No. 7, July 1985 H. Lee and M. S. Milgram 1795



TABLE I1. Coefficients (in units of g°C,/3277) B, of (17) after evaluating all the integrals in Table V.* Note: 1/& = 1/¢€ + ¥ + log( p?).

B, = — $x1/2+(1 — 1/y) — 30 — 20/y? + 376/(%y)

+ log(dy)#(46 + 10/y* — 34/y — 18y/(1 — ¥)) + Z »(25 — 329 + 5/* — 15/y + /(1 — y)),

B, =4s1/2+(1 — ly) — %5 4+ 4/3? + 124/(9)

+ log{dy)s( —
By =32+ 12/y% — 32/y + log(4y)s( —
B, =16 — 4/y + log(4y)*( —
= 38 4+ 20/y* — 208/(3y) + log(4y)*( —
+ Z o — 37 + 64y — 5/y" + 23/y — 45y/(1 — y)),
By =248 + 8/y% — 112/(3p) + log(4y)s(26 — 4/y* + 2/y + 90p/(1 — y))
+ Zs(— 1+ 16y —2/7 + 5/y — 45p/(1 — y)),
B,= 152 — 12/3% + 40/y* — 112/(3p) + log(4y)( — 90 + 6/y° —

+Zs(5+3/y =9/ + L/y +45p/(1 —y)),

By = — 25— 12/y* + 116/(3p) + log(4y)+(6 + 6/y* — 18/y — 90y/(1 — p)}

+ Z (13 = 32p + 3/2 — 11/y + 45p/(1 — ),

22/ +10/y — 18p/(1 —p)) + Z #( — 11 — 1/y* + 3/y + /(1 — )},

14 — 6/y* + 10/y + 18p/(1 — y)) + z#(7 — 3/y* + 1/y — 9y/(1 — y)),
144+ 2/y + 18p/(1 —y)) + Z »( — 5 + 16y + 1/y — /(1 — y)),

— 10/y% + 50/y + 90y/(1 — )

14/y* + 38/y — 90y/(1 — y)}

By =§ + 12/y* — 208/(3)%) + 344/(3y) + log(4y)+(90 — 6/3° + 14/)* — 38/y + 90p/(1 — y))

+Zs( =53/ +9/y* — 1/y—45p/(1 —})),
Bio= — 96 — 12/y* + 48/y + log(4y)«(6 + 6/y* — 18/y — 90p/(1 — y))
+ Z (13 — 32y + 3/¥* — 11/y + 45y/(1 — p)).

2In the above tables, we use the symbol Z to denote the infinite series

- 3
=22 6, [l"y_'/'““]“/'(?“)]’ i<
__1 3 (i)ly_l '
\/_g (1)
s (. 10,00
=Jr G 3( 0’0;_%), for all y.

which they do. Then they must satisfy
By+ (Bs+ B))/(E—1)= — 43, (18c¢)
B,+B,= —4, (18d)

which they also do, both in terms of primal integrals (from
Tables IV and V) and when the intervals are evaluated [from
(13), (14), and Table II]. This concludes our demonstration
by explicit computation that the two- and three-point Ward
identities are satisfied in our method, in the limit (10).

We wish to emphasize a rather appealing feature of the
analytic method, that is, its ability to display the equality (4)
before the primal integrals on both sides of the equations
have been evaluated'® by any means of regularization. In our
opinion, it is this feature that truly demonstrates the superior
properties of the analytic method: it allows one to manipu-
late divergent integrals using the same formal rules of alge-
bra as are used for finite integrals.

In Table I, the absence of infinite parts in B,, i = 3-10,
is crucial for multiplicative renormalizability. However, a
final assessment of this desirable result again must be de-
ferred until after we have separated the infrared and ultra-
violet singularities in the primal integrals. This is done in the
next section.

1796 J. Math. Phys., Vol. 26, No. 7, July 1985

[[¢(%—1)—¢(1+1)—1ny]2 +2¢/(%) —¢’(l+l)—tl/(%—l)], v >1

Ill. TADPOLES AND THE SEPARATION OF INFRARED
AND ULTRAVIOLET SINGULARITIES

The capability of evaluating tadpole integrals'® defined
by the conditions (11) is special to analytic regularization. To
illustrate why dimensional regularization is incapable of re-
gulating a tadpole integral consider a simple case of (11) with
K =N =0, and M arbitrary

Io)= f d g™ (19)

Clearly, if Re(w + M )>0, I (w) is ultraviolet divergent and if
Re(w + M )<0, I (w)isinfrared divergent. Soregardless of the
value of M, there does not exist a region in the entire complex
o plane in which I (@) can be well defined. Therefore, as a
function of w alone, I (w) cannot be evaluated by analytic
continuation. In other words, the integral cannot be regulat-
ed by dimensional regularization.

In our analytic regularization, all two-point integrals
{1), of which (19) is but a special case, are considered to be
functions over the complex (w,x,u,v) (hyper) space, not mere-
1y as functions of w. Although no region in the @ plane exists
in which 7 (w) is regular, there always exists a region in the
(w4 ,u,v) space in which the generalized integral is regular.

H. Lee and M. S. Milgram 1796



Therefore it is always possible to evaluate (1) by analytic
continuation. This is why dimension regularization must set
the right-hand side of (19) equal to zero (or some other value)
by decree, whereas in analytic regularization, the value of
any given primal integral with parameters K, M, and ¥ is
determined by the limiting processes (w.x,u,v)
—(w,K,M,N }—(2,K,M,N ). In the limiting process (10) used
in the last section, all tadpole integrals vanish. See Ref. 1 for
more details. '

We now return to (19) and consider the special case
M = — 2. By power counting it is clear that the integral is
both ultraviolet and infrared divergent when @ approaches
2. Why then should it be finite and zero in analytic regular-
ization? The answer is simple: In the special limiting process
(10) both the infinite and the finite parts associated, respec-
tively, with the infrared and ultraviolet singularities exactly
cancel! (See Table 3 of Ref. 13 for tabulation of this and other
integrals.) That these two types of singularities can cancel
each other is certainly consistent with the spirit of dimen-
sional regularization because in this method all singularities
must be expressed as 1/€ poles and are therefore indistin-
guishable. Similarly, it has already been shown elsewhere'
that the vanishing of many tadpole integrals defined by {11)
is caused by the cancellation between infrared and ultravio-
let singularities.'®

In dimensional regularization, with sufficient knowl-
edge of what the outcome should be, it is possible to separate
infrared from ultraviolet singularities."” A common practice
is to to assign a mass to each massless particle. Other than
being cumbersome, this procedure is also very tricky and
must be practiced with great care because it does not pre-
serve gauge invariance.

In our analytic method, infrared and ultraviolet singu-
larities can be easily separated by a judicious choice of limit-
ing procedure. The simplest limit that serves this purpose
(but does not distinguish the two types of infrared singulari-
ties'®) is

k=K+p, u=M+p, v=N,

wo=2+¢€ p—0, (20)
with € small but finite. In this limit, ultraviolet singularities
are characterized by the pole

1/6,= — /e, +Inp’+y, €,= —20—¢€, (2la)
and both infrared singularities by
1/8=1/€,+Inp*+ v, €=€+p. (21b)

Tadpole integrals that are both ultraviolet and infrared di-
vergent are proportional to 1/é, — 1/2,. The limit (10) is a
special case of (20) with p = 0, for in that limit such integrals
vanish:

(17— 1/8),_o = /e — 1/e=0. (22)

We now use limit (20) to evaluate the integrals in Tables
IV and V. In this limit tadpole diagrams such as (b) of Fig. 1
contain terms that do not automatically vanish. However,
the ultraviolet and infrared singularities of the regulated in-
tegrals describing Fig. (1b) cancel among themselves, so that

in the limit (20) this diagram does vanish. Remarkably, the’

results for the remaining diagrams are identical to those in
(13), (14), and Table II except that all pole terms (1/¢) therein
are now replaced by ultraviolet poles (1/¢,); all infrared sin-

1797 J. Math. Phys., Vol. 26, No. 7, July 1985

gularities have cancelled! We do not know whether this is a
general result fi.e., whether we can use the simpler limit (10)
in which all tadpole integrals vanish and treat all poles as
ultraviolet singularities] or if not, what is the reason for this
remarkable cancellation of infrared singularities at the one-
loop level. We do note, however, that the Ward identities (18)
do not appear to be manifestly satisfied prior to regulariza-
tion, if all tadpole integrals and diagrams are retained.

IV. THE 8 FUNCTION

Our calculation shows that at the one-loop level, all
infinite partsin /7, and I',,, are of ultraviolet origin, and of
the operators generated by radiative correction, only those
that appear in the original Lagrangian at the tree (no-loop)
level—I1, P,, in IT,, and B,0Y,,,i=123inI';,,—have
infinite parts. These results indicate that Yang-Mills theor-
ies are multiplicatively renormalizable in the axial gauge.
That is, the infinite parts generated by radiative corrections
can be absorbed into renormalization constants Z, and Z,
that rescale the gauge field, the coupling constant, and the
gauge parameter according to

Ai—AL =Z748,
§8=2,Z;"g= Z, g,
so that the bare Lagrangian is

(23a)
(23b)

LAgE)= —i[F;.[AR]) —(1/2£)n- 427, (24)
and from (13) and Table I1
2
Zaxml Zaxml gZCZL —_ 1 ( ) _"] ,
167 3 le +in A2 +

(25)
where the explicit dependence on an arbitrary momentum
scale A is displayed. As expected, the two renormalization

constants are identical in the axial gauge, an outcome which
C 3
i 1-£9(2 ) [Lo-].
C
s-LG(0 (L]
pendent, the 8 function, or the logarithmic derivative of the
renormalized coupling constant,

is not true in the covariant £ gauges, where'®
3277
Although the renormalization constants are gauge de-
g 207 —1 9Z,

=1A—== , 27
B(8) TR AL a1/ (27)
should be gauge independent. This is indeed true since
C 11
Z axial Z axiah—1/2 __ Z 5 g2 2 0
= (Z5) 23+ (&%)
(28)
which leads to the equality
axial __ £ __ g3 CZ 11 0 29
B(g) Blgr= T2 3¢ T (&) (29)

The point to be noted here is that unlike the § gauges, in the
axial gauge the equality (25) allows the 8 function to be de-
rived directly from radiative corrections to the self-energy.

V. AXIAL GAUGE VERSUS LIGHT-CONE GAUGE

A comparison of our result for the axial gauge with
results obtained previously>® for the principal-value pre-

H. Lee and M. S. Milgram 1797



scription of the light-cone gauge (n* = 0) is summarized in
Table I1I, with the following comments.

(i) The advantages for the light-cone gauge is the simpli-
city of the propagator and the extreme ease with which
Feynman integrals can be evaluated. On the other hand, we
emphasize that although integrals in the axial gauge are
comparatively more cumbersome to compute, with the aid
of analytic regularization, such computations are not the
kind of brutal undertaking they used to be when the princi-
pal-value prescription was used. In any case, two-point inte-
grals in both the axial and light-cone gauges have now been
evaluated and tabulated.'?

(ii) In this paper and in Ref. 8, analytic regularization
has been employed to verify that two- and three-point Ward
identities in Yang-Mills theories are true in both gauges.

(iii) A pecularity of the light-cone gauge is that some of
the divergences generated by one-loop radiative corrections
manifest themselves®'? as double poles [0 (1/€2)]. This effect
is directly caused by the coalescence of ultraviolet diver-
gences with one type of infrared divergence inherent in the
analytic regularization of this gauge; only one other Lorentz
invariant regularization of this gauge exists,?° which mani-
fests a nonlocal infinite part residual to the double pole. In
this aspect the axial gauge is normal: one-loop corrections
generate only single poles and local interactions.

(iv) We have shown that in the axial gauge infrared and
ultraviolet singularities can be separated by letting the gener-
alized integrals approach a given primal integral in an appro-
priate way [see (20)]. In contrast, for the same reason given in
(iii) these singularities cannot be separated in the light-cone
gauge. Indeed, when the limit (20) is used to evaluate the
integrals in the three-point Ward identity, we find that the
identity is no longer true. The only limit that we believe does
not lead to any incorrect result in the light-cone gauge is (10),
in which all tadpole-like integrals (defined by K>0 and/or

M>0 in this gauge) vanish. )

(v) In the axial gauge, infinite parts generated by one-
loop corrections occur only in operators associated with the
original Lagrangian at the tree (zero-loop) level. Therefore,
as is well-known, the theory in this gauge is multiplicatively
renormalizable. In contrast, in the light-cone gauge, new op-
erators generated by radiative corrections also have infinite
parts.®'*?! Consequently, the theory in this gauge, assuming
it is renormalizable, is not multiplicatively renormalizable.
The renormalization program in the light-cone gauge needs
to be thoroughly studied.

Note added in proof: All comments in this paper per-
taining to the peculiarities of the light-cone gauge refer to the
principal-value prescription of that gauge. Recent calcula-
tions by the authors (Chalk River preprint CRNL-TP-85-11-
11) have shown that the Mandelstam-Leibbrandt prescrip-
tion of the gauge does not share such peculiarities; in
particular it is one-loop renormalizable.
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APPENDIX A: CALCULATION OF SCALAR FUNCTIONS
A; AND B,

Define the scalar functions 4; by the general expansion
for the self-energy (8) and compute the scalar quantities a,

defined in (9). Substituting (8) into (9) yields the linear rela-
tions

a,=Ug ‘),.j A, (A1)
which have inverse relations
A; =(Ug); a;. (A2)

For general axial gauges, defining ¢ = p?n?/(p - n)* = 1/y,
we find

CE—1F  —gE-1 22-1 —€-1)

_ 1| -fe-n %t e f2

i —3% 2+ -3 | &
—¢-1 £+2 —6 3

TABLE III. Comparison of axial and light-cone gauges in analytic regularization.

Axial gauge

Light-cone gauge
{principal-value prescription)

Evaluation of integrals
Preserves gauge invariance
Divergences at one loop
Infrared and ultraviolet
singularities separable

moderately easy
yes

single poles

yes [see (20)]

“New” operators in [T, ( p) at no
one loop contain infinite parts
“New” operators in I, ( p, — p,0) no

at one loop contain infinite parts

extremely easy

yes

single and double poles
no

yes

yes

Multiplicatively renormalizable yes e no {see note added in proof)
L C, 11
Renormalization constants Z,=2Z,=14+222. ?
! 2 3= e e
. C, 11
B function — 2. ?
167 3
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independently of the regularization method.

Similarly, for the vertex function written in (17), we compute the scalar quantities b, defined by contracting

b, = z FA,W(P, —p,O)Of{Lv,

A, v

(A4)

where O ,,, are operators defined in Table I. This defines a linear relation between B, and b, which, upon inversion, yields

B, =(Up), b, (A5)
We find
1
T
[ ¢ 0 -1 0 —¢ -2 ¢ 2® —£2 1]
0 ¢ 0 -1 -1 —£—1 ¢ %> L 1
—1 0 1 0 1 2 —¢ -2 £ 1
0 —1 0 1 1 2 -1 —£—1 £ —1
o€ -2 1 2 3¢ 42 10 —E—4  —BE—2 ((E+4) -5
-1 —f—-1 1 2 5 E4+T  —4—1 —5E—5 £(E+4) -5
4 % -5 =2 —5—4 —80-2 £(3+2) 106 — 52 C+4
'Y 28 -1 —-§~-1 —4—-1 —-5/-5 5¢ §B&+17) — 562 s+ 4
=67 =2 ¢ % LEH4 AECHY -5 —1067 s -3¢ 2
| 1 2 —1 -2 -5 —10 E+4 2A+8 —3t-2 5 ]
(A6)

again independently of the method of regularization.

APPENDIX B: REDUCTION TO PRIMAL INTEGRALS

In Tables I'V and V we list the one-loop scalar functions
A; and B,, defined, respectively, in (8) and (17) in terms of
reduced primal integrals defined in (12). The 4,’s and B,’s are
given in units of g*C,/1672.

The tables were generated by evaluating the diagrams
of Fig. 1, contracting as in (9) and (A4), and using the matri-
ces (A3) and (A6). All contractions were simplified by reduc-
ing them to a sum of primal integrals using both the “shift”
rule g—p — g in (1) where necessary, and partial fraction
decomposition of integrals with multiple denominators. See
Appendix C of Ref. 8 for more details.

Once the coefficients were reduced to a sum of primal
integrals, the integrals themselves were reduced to a smaller
set by using algebraic identities easily obtainable for cases
with N> 0. For example,

1799 J. Math. Phys., Vol. 26, No. 7, July 1985

S(K’M’I’O) = (P M n)2S (M’K’()’O) - 2p -nS (M,K,O,l)

+ S (M,K,1,0). (B1)

We emphasize that the legitimacy of this technique is
founded on the fact that divergent integrals obey the usual
rules of algebra, such as (B1). We also note that when regu-
lating primal integrals, it is vital to preserve this property.
This is true of both (1) and (20), but it is easy to invent limiting
processes which do not preserve simple algebraic identities
such as (B1).

Each of the primal integrals was then evaluated accord-
ing to (2) by an algorithm described elsewhere.'® Both limits
(10) and (20) were investigated. To reduce the tables to man-
ageable proportions, those integrals satisfying (11) are omit-
ted here.

All calculations were performed with the algebraic ma-
nipulator SCHOONSCHIP,?? except for the matrices (A3) and
(A6) that were obtained using REDUCE.** The tables them-
selves were formatted, using an on-line editor and type-
writer, directly from the computer output.
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TABLE IV. Coefficients A4, of (8) in terms of primal integrals with tadpoles omitted.

A,=

— (= 1/3? + 2/5%98(— 1,0, — 1,0} — ( — 2/3* + 6/3* — 8/p)sS( — 1,0, — 1,1)

— (/P8 (— 1,1, — 1,0) — (1/p* — 2/y*#8( — 1,1, — 1,1)

— (12— 10/ysS( =1, — 1,0,0) — 85 ( — 1, — 1,1,0) — (1/(2°) — 4/%* + 4/y}s8(— 1, — 1, — 1,0)
—(— 164 1/5° —4/y? + 16/yS(— 1, — 1, — 1,1),

FB =1+ 17— Uy + 3p/(1 — y)sS(— 1,0,— 1,0)

(=12 =2/ + 4/%* — 129/(1 —p)#S(— 1,0, — 1,1)

+ @+ 1/(2°) + 1/127°) + 3/(29) + 3p/(2(1 —yS(—1,1,-1,0)

=3+ 1P — 12 =3y —3p/(1 —peS(— 1,1, — L,1)

+ (10 — 10/y + 69/(1 — p)eS(— 1, — 1,0,0) + (8 + 24p/(1 — y)#S( — 1, — 1,1,0)
G+ 1027 — T/25%) + 3/29) + 39/2(1 — y)sS(— 1, — 1, — 1,0)

F{ =941/ =3/ + 11y — /(1 —p)sS(— 1, — 1, — L1},

—A;= +(3-1/"— U/y+3p(1 — y))*S(— 1,0, — 1,0)

(=12 =2/ 4+ 8/p — 129/(1 =S (=10, — 1,1)

+ G+ 1/(27) + 3/29) + /(201 — y))eS(— 1,1, — 1,0)

(=34 17— 3/y— 31 —peS(— 1,1, — 1,1)

+(=2+69/(1—yS(— 1, - 1,00)

+ (24p/(1 — p)oS(— 1, — 1,1,0)

+ @+ 123 — 5/20) + /20 —p)sS(— 1, — 1, — 1,0)

+ T+ 12 —5/y — /(1 —psS(— 1, — 1, — 1,1).

TABLE V. Coefficients B; of (17) in terms of primal integrals with tadpoles omitted.

By = + 3/(49) — 13/(45°) + 3/(49) + 3p/(4{1 — )5 (— 2,0, — 1,0)

+(— 3+ 3/(2°) — 9/(2°) + 23/(2) — 9/ (2(1 —yeS(~20,-1,1)

+ (3 — 3/4°) + 3/(47) + 3/(4y) + 3y/(4(1 —yS(—21,-1,0)

+{—3 =3/ + 3/ — 3y — /(1 —peS(— 21, — 1,1)

+ (4 + 1/(49) + /147 + 1/(49) + p/(4(1 — y))eS( — 2,2, — 1,0)

+ (= 3+ V/27) — V(252 — 1/29) — /(201 — S (— 2,2, — 1,1)

+ (3 — 1/(49%) + 9(4y%) — 15/(4p) + y/(4{1 — Y)ppS(— 2, — 1, — 1,0)

+ (14— /207 + 2/5* — 6/y — 2p/(1 — )8 (— 2, — 1, — L,1)

+(—§ — 13/(45%) + 23/(45%) — 9/(49) — Iy/(4(1 — p)))+S(— 1,0, — 1,0)

+ (9 = 13/20) + 13/3% — 1/p + /(1 — S ( — 1,0, — 1,1)

(= 1+ 1P — 12— Uy — /(1 — eS8 ( — 1,1, — 1,0)

+Q+2/y =2+ 2y +2/(1 — S (— 1,1, — 1,1)

+(~ 6+ 10/y — 6p/(1 — p)sS(— 1, — 2,0,0)

(= 124 20p/(1 — P)sS(— 1, — 2,0,1) + (— 8 — 24p/(1 — P)eS(— 1, — 2,1,0)
+{169/(1 — phoS(— 1, — 2,1,1)

+(— 1= V@) + T/ — 1/(49) — p/(4{1 — y)sS(— 1, — 2, — 1,0)

+Q2— VA + 27— 10/y + 2/(1 — p)S(— 1, — 2, — 1,1)

+ (18 = 10/y — 6p/(1 — psS(— 1, — 1,0,0) + ( — 8 — 24p/(1 — p)eS(— 1, — 1,1,0)
+( =3+ 5/(20%) — 26/(25%) + 29/(2) — 3p/(21 — peS(— 1, — 1, — 1,0)

H (=234 5/ — 15/57 + 25/ + /(1 — peS(— 1, — 1, — L,1),

B, =3+ 3/47) — 5/(49) + /(41 — y)S( ~ 2,0, — 1,0)

+ (=1 — 1/129) — 9/(2(1 — y))*S(2,0, — 1,1)
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TABLE V. (Continued.)

B; =

+ (3 — 3/40%) + 3/(49) + /(41 — M)eS(— 2,1, - 1,0)

+{—=3=3p/(1 —y)eS(—2,1, — 1,1)

+ (1 + 1/(457) + 1/(49) + p/(4{1 — y)S (- 2,2, — 1,0)

+ (= = 1/29) — p/2(1 = p))eS(— 2,2, — L,1)

+ (1 — 1/(49) + 1/(43) + /(41 — p)eS(— 2, — 1, — 1,0)

H(=2+4 1y = /(1 = PpsS(—2,~ 1, - 1))

+ (= 3+ 1y — T/ + 1/(4y) — /(41 — p))eS(— 1,0, — 1,0)

+(9+ 2/ —4/8 + /(1 —y)eS (= 1,0, — 1,1)

+(—1=1/25") — 1/y — y/(1 — a8 { — 1,1, — 1,0)

R = 1P+ 1y 4 2/y+ 20/(1 — S (= 1,1, — 1,1)

+ (=2 —6p/(1 — P8 (— 1, — 2,0,0) + (4 + 20p/(1 — peS(— 1, — 2,0,1)
+(—24p/(1 — Y)eS(— 1, — 2,1,0) + (16p/(1 — Y)sS(— 1, —2,1,1)

(= 1+ V497 — 1/149) — /(41 — Y)eS(— 1, — 2, — 1,0)
+Q2—1/y+29/(1 —yaS(—1,—2,~ 1,1)

+(— 10+ 10/y — 6p/(1 — y)eS( — 1, — 1,0,0)

+{—8—24p/(1 —y)eS(— 1, — 1,1,0)

F (=3 = 127 + /2% — 3/(29) — 3p/(2(1 — IwS(— 1, — 1, — 1,0)
+(O— 19 + 37 = 11/y + /(1 —p)eS(— 1, — 1, — 1,1),

— 34 1/(4%) + 5/(4y) — 3p/(4(1 — p)ppS(— 2,0, — 1,0)

+(—3— V2P + 1/(29) + 9/(2(1 — S (— 2,0, — 1,1)

+ (= §+ /@) — 3/t4p) — /(41 — IS ( — 2,1, — 1,0

+ (B4 17— 1y + 3p/(1 —peS(— 2,1, — 1,1)

+ (= = /49 = 1/(4) — y/(4(1 — p)S( — 2,2, — 1,0

+ (1 — 1(22) + /(29 +3/21 — S (- 2,2, - 1,])

+(—4— V42 + 7/14) — /(41 —pS(—2,— 1, — 1,0)

(= 6—2/y+20/2 — S (— 2, — 1, — L,1) + (1/5* — 2/7#8 (= 1,0, — 2,1)
+§ 4 3/5° — 23/(4y) + 25/(83) + /(41 — p))eS( — 1,0, — 1,0)
+(=946/y* — 11/ + 3/y — 9p/(1 — p)}eS(— 1,0, — 1,1)

+(— /28 (= 1,1, = 2,1)

+ (1= 3/2%) + 2/ + Uy +p/(1 — oS ( — 1,1, — 1,0)

H(=2=3/ + 4/ —2/y— /(1 —y)sS(— L1, — L,1)

+{— 10 + 6p/(1 — YJ#S( — 1, — 2,0,0) + (20 — 20p/(1 — y)aS( — 1, — 2,0,1)
+ (24p/(1 — P)sS(— 1, — 2,1,0) + { — 16p/(1 — p)sS(— 1, — 2,1,1)

+ (1 + /(497 — T/149) + 3/ = S (~ 1, -2, — 1,0)

+(6+2/y — /(1 —pwS(— 1, — 2, — L,1) + (— 2+ 6p/(1 — y)#S(— 1, — 1,0,0)
+ 241 — S — 1, — LLO) + (— 12 + 4/ — 4/yeS (= 1, — 1, — 2,1)
+ (5 — 3/(25°) + 1/(22) — 21/(2) + 39/ 21 — IS (— 1, — 1, — 1,0)
H(=9=3/P+ TP+ Ty =W/l —p)S(—1,— 1, — 1,1),

By = (5 — 3/149%) + 1/147) + 17/(4y) — 159/8{1 — p))sS( — 2,0, — 1,0)

+ (B — 3/(27) + 15/(25%) — 35/(29) + 459/(2(1 — y))eS (— 2,0, — 1,1)
+ (= § + 3/47) + 9/(4%) — 15/(4y) — 15p/4(1 = YeS(— 2,1, — 1,0)

+ (15 4 3/(2%) — 6/3 + 9y + 15p/(1 — p)sS (2,1, — 1,1)
+(—3— 1/4°) — 5/(47) — 5/(4y) — Sp/(4(1 —yeS(—22,— 1,0)

+(3— 1/20°) + 3/(20) + 5/(29) + Sp/(2(1 = YIS (= 2.2, — L,1)
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TABLE V. (Continued.)

+( =3+ /(@) — 5/(49) + 11/(4y) — Sp/(4(1 — S (= 2, — 1, — 1,0)
F(— 64+ 1/2P) =3/ + 4/y + 10p/(1 — S (— 2, — 1, — 1,1)
+ (& + 13/14°) — 15/(47) — 19/(4y) + 45p/(4(1 — y)))eS( — 1,0, — 1,0)
+ (= 45 + 13/(20%) — 22/5% + 29/y — 45p/(1 — S (— 1,0, — L,1)
+(5— 1/ + 152 + 5/y + 5p/(1 — y)eS (- 1,1, — 1,0)
+(=10=2/y* + 4/y* — 10/y — 10p/(1 — poS(— 1,1, — 1,1)
+(22 = 2/y + 30p/(1 — S (— 1, — 2,0,0)
+{—28 — 100p/(1 — p)uS( = 1, — 2,0,1) + (24 + 120p/(1 — S (- 1, — 2,1,0)
+(~ 80p/(1 —y))eS(—1,—2,1,1)
+({+ /49 — T/ + 5/149) + Sp/(4{1 — y)eS(— 1, - 2, 1,0)
+ (=104 1/(20°) — 3/5* + 8/y — 10p/(1 — poS(— 1, — 2, — 1,1)
4 (=24 2/p + 30p/(1 — p)eS(— 1, — 1,0,0) + (24 + 1209/(1 — Y)eS( = 1, — 1,1,0)
+ (8 — 5/(2°) + 23/(2%) — 33/(29) + 159/(2(1 — S (— 1, — 1, — 1,0)
+(19 = 5/ +23/y? — 37/y — 45p/(1 — S (— 1, — 1, — 1,1),

By =(—1 — 5/(4%) + 17/{4y) — 15p/(4(1 — y)}sS(— 2,0, — 1,0)
+ (8 — 1/(20%) = 3/(2y) + 459/(2(1 — y)aS (— 2,0, — 1,1)
(= 5§+ 1/(87) — 1/14y) — 1S/(4(1 — S (— 2,1, — 1,0)
+ (15 + 1/5% — 1y + 15p/(1 —p)e8( = 2,1, — 1,1)
+ (=3 = 3/(4%) — 5/45) — Sy/(4(1 — YIS (— 22, — 1,0)
+§ — 1/20) + 5/(2) + 59/(2(1 — y))eS(— 2,2, — 1,1)
+ (= § + V47) + 3/(4y) — Sy/(4(1 — yeS (— 2, — 1, — 1,0)
+ 2= 2/ + 10p/(1 — S (=2, — 1, — L,1) + (1/5° — 4/ppsS (- 1,0, — 2,1)
+ (8§ + 2/y° — 33/149%) + 61/(4y) + 45p/(4(1 — y))oS(— 1,0, — 1,0)
+(—45+4/y° —9/y2 — 1/y — 45p/(1 —yS(—~ 1,0, — L,1)
+ (= /2% — 128 (— 1,1, — 2,1)
+(5— 1/ + 4/ + 5/ + Sp/(1 — Y)eS(— 1,1, — 1,0)
+ (= 10— 2/%* + 4/ — 10/y — 10p/(1 — p)sS{( — 1,1, — 1,1)
+ (2 4+ 30p/(1 — p)eS(— 1, — 2,0,0) + ( — 4 — 100p/(1 — p)sS(— 1, — 2,0,1)
+(1200/(1 — peS( = 1, ~ 2,1,0) + ( — 80p/(1 — y)sS( = 1, —2,1,1)
+(§— 1/145%) — 3/189) + 5p/(4{1 — y)peS(— 1, — 2, — 1,0)
(=24 2/y— 10p/(1 — pPoS(— 1, — 2, — 1,1) + (26 — 2/y + 30p/(1 — y))eS( — 1, — 1,0,0)
+ (24 + 120p/(1 — Y8 (= 1, — L,1,0) + (= 1/(2%) + 3/3? — 4/p)eS(— 1, — 1, — 2,1)
+ (@ = 1/ + 5/(254 — 13/(29) + 159/2(1 — pS(— 1, — 1, — 1,0)
(=29 = 2/y* + 5/17 — 1y — 45p/(1 — poS(— 1, — 1, — 1,1),

By = (§ — 1/(49°) + 1/(49%) — 9/(43) + 159/(&(1 — y))eS ( — 2,0, — 1,0)
+ (= 3+ 1429 = 1/(2%) + 11/(2) — 45p/(2(1 — y))sS(— 2,0, — 1,1)
+ ( — 1/14y°) = 3/14°) + T/4y) + 159/(4(1 —yeS(—2,1,-10)
H(= 15— 1/ + 17 = 3/y — 15p/(1 = PeS(— 2,1, = L,1)
+ G+ 1/49°) + 3/47) + 5/149) + Sp/(4{1 — YIS (— 2,2, — 1,0)
+ (=5 + 120 — /257 — 5/29) — Sp/@2(1 — y)wS(— 2,2, — 1,1)
+ (§ + 1/(4y° — 9/(47) + 5/(4y) + 5p/ (41 —yS(—2,—1,- 1,0
+(—10+2/5? + 6/y — 10p/(1 —p)eS(—2,— 1, — L,1)
(= 19 + 2/ — 2/9 + &/yS(— 1,0, — 2,1)
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TABLE V. (Continued.)

+ (=% — 3/5* + 31/(45°) — 15/145%) — 61/(4y) — 45p/(4(1 — Y)}sS( — 1,0, — 1,0)

+ (45— 6/5° + 15/5° — 15/3% + 33/y + 45p/(1 — p)eS{ — 1,0, — 1,1)

+ (1/(20%) + 1LyS (= 1,1, — 2,1)

F(=5+3/20%) = 3/y* — 4/ — 5/y — Sp/(1 — p)sS(— 1,1, — 1,0)

+ (10 + 3/5* — 6/5° + 6/3* + 10/y + 10p/(1 — peS(— 1,1, — 1,1)

+(— 18 + 10/ — 30p/(1 — Y)sS(— 1, — 2,0,0) ++ (44 — 20/p + 100p/(1 — p)aS(— 1, — 2,0,1)
+(— 24 — 120p/(1 — p)#S( — 1, — 2,1,0) + (16 + 80p/(1 — p)}eS( — 1, — 2,1,1)

+(— § — 1/49°) + 9/(4) — 5/(4p) — Sp/(4(1 — p)#S(— 1, — 2, — 1,0)

+{10 = 2/5% — 6/y + 10p/(1 = p)oS(—1,— 2, — 1,1)

+(— 42 + 6/y — 30p/(1 — p}*S( — 1, — 1,0,0) + ( — 72 — 120p/(1 — g)sS( — 1, — 1,1,0)
F (/2" — 4P + 5/PeS(— 1, — 1, — 2,1)

(=B +3/(25%) — 9/(2° + 29/(24) — 35/(2p) — 15p/(2(1 — y)sS(~ 1, — 1, — 1,0)

F 45439 — /P + 152 + 5/ + 45p/(1 — S (— 1, — 1, — 1,1,

By = (§ + 3/(25%) — 9/149%) — 9/(4y) + 159/(4(1 — ))S( — 2,0, — 1,0)
+(— 3+ 3/(25°) — 8/ + 35/(2y) — 45p/(2(1 — Y8 ( — 2,0, — 1,1)
+ (1 — 3/149%) — 3/(@%) + 15/149) + 15/(4(1 — p))eS( — 2,1, — 1,0)
+ (= 15— 3/(20%) + 6/3* — 12/y — 15p/(1 — peS( — 2,1, — 1,1)
+ (G + 1/(26°) + 5/1497) + 5/(49) + 5p/(4{1 — p))eS (- 2,2, — 1,0)
+ (= 3+ 1/ — 2/ — 5/(29) — 5/2(1 — p)eS( — 2,2, — 1,1)
+(§ = 1/(20°%) + T/(49%) — 11/(4y) + 5p/(4(1 — p)hoS (— 2, — 1, — 1,0)
(6 — 1/20) + &/y2 — /y — 10p/(1 — psS(— 2, — 1, — L,1)
+ (=% — 2/y° + 21/(4y%) — 13/(4p) — 45p/(4(1 — p))sS( — 1,0, — 1,0)
+ (45 — 5/(2°) + 2/ + 8/y + 45p/(1 — p)S(— 1,0, — 1,1)
+(= 5+ /2 = 3/ — 5/y — Sp/(1 — p)sS(— 1,1, — 1,0)
+(10 4 3/%% + 10/y + 10p/(1 — p)sS(— 1,1, — 1,1)
+(— 26— 30p/(1 — y)sS(— 1, — 2,0,0) + (44 + 4/y + 100p/(1 — p)sS(— 1, — 2,0,1)
4 (— 48 — 120p/(1 — Y)S(— 1, — 2,1,0) + (16 + 80p/(1 — peS(— 1, — 2,1,1)
+(—3+ 5/ — 5/(4y) — Sp/(4(1 — y)eS(— 1,~ 2, — 1,0)
+(10 — 1/(25%) + 2/5% — 5/p + 10p/(1 — p)S(— 1, — 2, — 1,1)
(= 18+ 2/y = 30p/(1 — P)eS(— 1, — 1,0,0) + ( — 72 — 120p/(1 — yp))sS( — 1, — 1,1,0)
+ (=3 + 3/(25%) — 11/(25%) + 17/2p) — 15p/(2(1 — y)sS(~ 1, — 1, — 1,0)
+(13 43/ + 11/y? + 13/p + 45p/(1 —y)sS(— 1, — 1, — L,1),
Bo=(— 3 — 3/149") + /() + L/(&) + 1/(49) — 159/(4{1 — y))s8( — 2,0, — 1,0}
+ 8 — 3/(20%) + 9/(20°) — 15/(29%) — 3/(29) + 45p/2(1 — p)S(— 2,0, — 1,1)
+ (=3 + 3/45") + 3/4°) — 3/(4%) — 15/(4y) — 15p/(4(1 — p)S(— 2,1, — 1,0)
+ (15 4+ 3/(20%) — 3/ + 15/ + 15p/(1 — p)eS(— 2,1, — 1,1)
+(—§~ 1/145") — 3/(&7) — 5/(49%) — 5/(4y) — Sp/(4/(1 — y)sS ( — 2,2, — 1,0)
+ 3 — V(2" + /(2 + 5/(27°) + 5/(29) + Sp/(2(1 —yS(—22,- 1))
+(— 1+ /4% — /(45%) + 15/@5%) — 5/(4p) — Sp/8{1 — S (=2, — 1, — 1,0)
+ (10 + 1/25%) — 2/5° + 3/y% — 10/y + 10p/(1 — S {— 2, — 1, — 1,1)
+ (8 + 5/4y*) — 9/(4y%) — 11/(47) 4 45/(4y) + 45p/(4(1 — S (— 1,0, — 1,0)
4 (— 454 5/(20%) — 5/9° + 10/y* — 45/p — 45p/(1 — y)sS(— 1,0, — L1)
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TABLE V. (Continued.)

B, =

(54 1/ + 5/ + 5/y + Sp/(1 — psS (= 1,1, — 1,0)
+(— 10— 10/5? — 10/y — 10p/({1 — p)S(— 1,1, — 1,1)
+ (30 — 10/57 + 18/p + 30p/(1 — Y8 (— 1, — 2,0,0)

+ (=92 +4/y — 100/(1 — p)aS(— 1, — 2,0,1) + (88 + 8/ + 120p/(1 — y))( — 1, — 2,1,0)

+ (48 — 80p/(1 — p#S(— 1, —2,1,1)

+ 3+ 1/(49%) — 9/(4°) + 5/147) + 5/{4y) + 5p/(4(1 —yS(—1,-2,—1,0)
+ (= 10+ 1/(20") — 2/3° + 11/y* — 10/y — 10p/(1 — p)S(~1, — 2, — 1,1)

+(30 — 10/5? + 10/y + 30p/(1 — p)#S(— 1, — 1,0,0)
+ (120 + 24/y + 120p/(1 — p)oS(— 1, — 1,1,0)

+ (4 — 3/20%) + 13/(2)°) — 25/(2)% + 15/(2p) + 15p/(2(1 — eS| -1,-1,-10

+ (=45 =3/ + 9/ — 1/y* = 5/y — 45p/(1 = psS(— 1, — 1, — L,1),
— B, + (175 — 2/y"8( — 1,0, — 1,0)

+ 2/ — 6/ + 8/paS(— 1,0, — L1) + ( — 1/(2A)#8(— 1,1, — 1,0)

+ (= 19+ 2/52s8(— L1, — L1) + ( — 12 + 10/p)sS( ~ 1, — 1,0,0)
—8S(—1,— L,1,0) + (— 1/(2%) + 4/5* — 4/p)sS(— 1, — 1, — 1,0)

+(16 — 1/ + 4/ — 16/yS(— 1, — 1, — 1,1},

Bio= — B+ (— 1/5* + 4/9)8{ — 1,0, — 1,0) + ( — 2/ + 10/5* — 20/3)eS( — 1,0, — 1,1)

+ (1/25%) + 175258 ( — L1, — 1,0) + (1/5% — 48 (— 1,1, — L,1)

+(8—2/p#S(—1, — 1,0,0) + 2465 (— 1, — 1,1,0)
+(1/(20) = 3/ + 4/pwS(— 1, — 1, — 1,0)
+ (=164 1/ — 6/5% + 12/~ 1, — 1, — 1,1).
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