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We study the Hopf algebra structure and the highest weight representation of a
multiparameter version of),gl(2). The Hopf algebra maps of this algebra are
explicitly given. We show that the multiparameter univerRaimatrix can be con-
structed directly as a quantum double intertwiner without using Reshetikhin’s twist-
ing transformation. We find there are two types highest weight representations for
this algebra: type a corresponds to the gengrémd type b corresponds to the case
that q is a root of unity. When applying the representation theory to the multi-
parameter universdk matrix, both standard and nonstandard colored solutions of
the Yang—Baxter equation are obtained. 2000 American Institute of Physics.
[S0022-24880)02409-9

I. INTRODUCTION

As is well known, the Yang—Baxter equati¢¥iBE)>? plays an essential role in the study of
quantum group$QG) and quantum algebra®A),>8 integrable models;'2 as well as in the
construction of knot or link invariantS™° For instance, in the Faddeev—Reshetikhin—Takhtajan
(FRT) approach"to construct quantum groups or quantum algebras, one has to fiRdraairix,
which is a matrix solution of the YBE then, using thisR matrix as input, substitute it into the
RTTor RLL relations to get the quantum group or quantum algebra as output.

There are various methods to find the approprRtmatrix. One way is to borrow aR(u)
matrix from the integrable modeland then take an appropriate limit to remove the spectral
parameteru. The second method is to solve the matrix YBE dire¢ty?! In this approach one
usually assumes aR with prescribed nonzero elements, and impose some restrictions on them to
find a class of solutions. SomR matrices obtained in this way have unexpected interesting
features, so a number of authors call them “nonstandard” solufiois.

Many known quantum algebras belong to the category of quasitriangular Hopf algebras
(QTHA).2 This observation provides us an alternative approach toRintatrices. When applying
representation theory to the univergamatrix of a QTHA, the desire® matrix is obtained(We
denote the universal algebraic solution of YBE Byand the matrix solution bir.) To get more
interesting solutions, people also try various methods to additional parameters inte the
matrix?"?8 This has led to the study @f-boson realizatiorfS>3with q being a root of unity and
the multiparameter deformatios®° of Hopf algebras. These solutions are sometimes called
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“colored” solutions!838 Although theq-boson realization method is very powerful in construct-
ing representations of quantum groups or quantum algebras, it tends to obscure the structure of the
Hopf algebra.

In this article we studyJ,gl(2). Weshow that the appearance of the commuting elerdent
makes it possible to introduce additional parametetsandv, and hence yields a multiparameter
version of Hopf maps and a multiparameter univef@amatrix. We then explain how to get the
sameR from quantum double construction. In this way the Hopf algebra structure is preserved
and emphasized. We also compare our results with those obtained via Reshetikhin’s twisting
transformation.

We consider only the highest weight representations ¢g1(2). Under the finite-dimension
restriction, two categories of representation appear automatically. When applying this representa-
tion theory toR, the standard and nonstandard colored solutions are obtained and these are
consistent with those published in the literature.

This article is organized as follows: In Sec. I, we review some basic definitions and properties
of Hopf algebras, quasitriangular Hopf algebras and quantum double. In Sec. Ill, different choices
of coproduct antipodeand universalR matrices are given. We also briefly discuss quantum
double construction and its relation with the multiparameter versiod @fl(2). In Sec. IV, we
compare our results to those obtained from Reshetikhin’s twisting transforniatiosec. V, the
highest weight representations are studied and appli€d to obtain matrix solution®&. In Sec.

VI, colored solutions are obtained and compared to the literature. Section VII contains concluding
remarks.

II. HOPF ALGEBRAS, QUASI-TRIANGULAR HOPF ALGEBRAS AND QUANTUM
DOUBLE

In this section we give a brief review of some definitions and properties of Hopf algebras
(HA) and quasi-triangular Hopf algebré®THA) and their relations to the notion of quantum
double(QD).2 These ideas will be used in our latter discussions of the multiparardgte(2).

A. Hopf algebras

A Hopf algebra is an associative algel#awith five basic mapsin this article, we call them
Hopf maps, namely, four homomorphisma: A® A— A (multiplication), A:A—A®A (coprod-
uct), »:C—A (inclusion, e:A—C (counit, and one antihomomorphisng:A— A (antipode.
They satisfy the following relations for arge A:

(A®id)A(a)=(id®A)A(a),
(e®id)A(a)=(id®e)A(a)=id(a)=a, (2.9
m(S®id)A(a)=m(id® S)A(a)=nce(a)=¢c(a)l,
where id is thadentity map To be more precise, we use the notatiénri,A, ,e,S) instead of
A to denote a Hopf algebra. The following proposition is apparent:

Proposition 11.1: The algebrgdA,m,A’,7,¢,S™ 1) is also a Hopf algebra
Here A’ denotes the opposite coproduct, which maps aayA to AQ A as

A'(a)=o0°A(a)=2, @b, if A(a)=2, bec, (2.2)

andS™ ! is defined as the inverse &

S(s Ya))=S"*(S(a))=a. (2.3
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B. Quasitriangular Hopf algebras

A quasitriangular Hopf algebréQTHA) is a Hopf algebra equipped with an eleméde A
® A which is the solution of the algebraic version of YBE. We start with the definition.

Definition II.1: Let.A=(A,m,A, n,€,S) be a Hopf algebra anR (intertwiner) be an invert-
ible element in &A. Then the pair(A4, R) is called a QTHA if for any & A we have

(i) RA(a)=A"(a)R,
(ll) (A®id)R:R13R23,
(lll) (id@A)R:RlsRlz.
Here, for exampleR 5 lives in the first and third sections kX AXA.
By definition, the three relations are satisfied:
R12R13R23= R23R13R12,
(S®iId)R=(IdeS HR=R 1, (2.9
(e®id)R=(id®e)R=1.

The first line is the Yang—Baxter equation.
As in the case of Hopf algebras, we denofe®,m,A,7,e,S) as a QTHA. From i) of
Definition 1.1, we immediately find

RA(a)=A"(a)R, (0°R)A'(a)=A(a)(o°R),
R (a)=A@R L (0oR HA(a)=A'(a)(c°oR ).
DefineR (N=goR, R()=R ! andR=0°R "1, then
RA=A'R, RA=A'R. (2.59
Also, writing A’ asA, then
REOA=ARE), ROA=A"R), (2.5b

These observations lead to the following result:

Proposition 11.2: If (A;R,mA,e,S;») is a QTHA, then (A,R,mA,e,S 7)),
(AR mA",e,S 175 and(ART) mA’ e,S 1 7) are all QTHAs

This can be easily proved by using Definition 1.1 and E21). It tells us that for a pair

(A,S), there are two univers&® matrices:R andR=o°R ~L. Both can be used as intertwiner in
a QTHA. Now let us turn to the discussion gfiantum doublé&

C. Quantum double

Suppose we have a Hopf algebkathat is spanned by basfg;}. By introducing a nonde-
generate bilinear forng,), we can defineA’s dual algebraA® that is spanned bye'}; here
(€',ej)= 4. Then all the Hopf maps oA° can be defined in terms df,). Introduce theinter-
twiner,

R=2, e®¢. (2.6)

The commutation relations betwe@&nand A° can be established via the relation
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RA(a)=A'(a)R, for aeA or A°

which tells us how to expand ahe; type product as a sum efe! type products. Choosinig;e'}

as the basis, one can “combin&’ andA° to form an enlarged algebia(A), thequantum double
of A, and treatA or A° as its subalgebra. Thdm(A) can be proved to be a QTHA equipped with
R=3,e,0€ as its intertwinefuniversalR matrix). In other words, a QTHA is a quantum double
of its subalgebra. In the next section, we will show thatlthgl(2) is a quantum double as well
as a QTHA.

lll. UNIVERSAL R MATRIX OF U,g/(2)

We define our version oU.gl(2) algebra as a multiparameter QTHA generated by
(H,J,X*,X7) with the commutation relations

[J,H]=[J,X"]=0,

[H,X"]=x2X", (3.
Hi—J_ q—Hid

gt —q "t

Xt X ]l=—m——;
[ ] a=q°
coproduct, antipode and counit,

A(H)=H®1+1®H, A(J)=J®1+1®J,
coproduct] A(X*)=q~ V2 H(uty) 2 X+ + X+ e g2 H(uty 1)~ 129 (32
A(XT)=q~ W2H( 1ty " 112 Ig X~ 4 X~ @M H(y~ lty)~ (129,

antipode: S(H)=—H, SJ)=-J, S(X*)=-q~ X", (3.3
counit: e(H)=g(J)=e(X*)=0; (3.9

and the universalk matrix given by

R:Roio (S[Ln_}—?qn(n—l)q(n/Z)(H®l—l®H)((uUt—l)(I/Z) JX—)n®((uU—1t)(1/2) IXHyn,
o 39
where

Ro=q~ (1/2) H®Ht(1/2)(H®J+J®H)u(1/2)(H®J7J®H), (3.6

t, u andv are arbitrary parameters, afd},2 and{n}.2! are defined as

_q2n
{n}g2= - :qn_l[n]q,

(3.7

n
{n}eat =11 {iyqe=a = Vn]!,

with {0} 42! =[0]4! = 1. Note that since the generatbcommutes with each element gl(2),

different expressions of Hopf maygise., multiplication coproduct antipodeandcouni) are pos-
sible. If we replaced by H'=H—cJ and defing’=q~°t (herec is an arbitrary constaptthen
a new Hopf map is obtained by the replacement

H—H', t-t’.
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The parametet can even be made to disappear when one defifiés’=q" and replaces the

generatoH by H. For reasons that will become clear we shall retain the pararneteraddition
tot, two more parameters, andv, appear in the expressions faX™*), although they do not
explicitly appear in the commutation relatiof&1). It is important to note that, u andv are all
arbitrary parameters. Knowing this allows one to see that many so-called “multiparameter defor-
mations” of U,gl(2) are in fact different expressions bf,gl(2). We will discuss this point
further in the next section.

Consider the transformation

Xt =y FU2IE (3.9
under which the expressions farandS on X= become

A(’)’(i):(q—(1/2)Ht(1/2)J)ut(1/2)J®')"<t+')"(1-®(q(1/2)Ht—(1/2)J)u1(1/2)J' (3.9

S(S'(i): _q(1/2) HS'(,qf (U2 H_ _q'g(i, (3.10

and the commutation relatior{8.1) preserve their formjwith the replacemenx™—X*). More-
over, the universakR matrix now becomes

2\n

—" e N -

R= Ronzo [n] q~ (V2001 (yt1) (12 IqUHY N ((yt) (V2 Ig— (V2 HY+)n,
- a:
(3.11

In the following, we shall us&™ instead ofX™ as generators.
As stated in the last section, corresponding to the same pa8)( there is another appropri-
ate universalR matrix that shares the same Hopf algebra structure:

(1 q—2)n B ) ~ . ) -
onEO Il qU2 (=1 (yt)~ (12U HY +yng (1) (12 Ig= (V2 HY—yn
q*
(3.12
with
Ro=0oR § 1= g2 HEHE— (U2 (HEIHIEH)(U2(HOI-JeH) (3.13

Similarly,_if_we chooseA =A’ andS=S"! as another choice of coproduct and antipode, then
for the pair (A,S), we have the other two univers& matrices,R (") and R (7);

(1-g?»" . <
(+)—p (+) - (1/2)n(n—-1) (1/2) I5— (12 HY +\n —14(1/2) I (12 HY —\n
RU=RE ;o—[n]q! q (U2 9q~ (W2 HX )N ((ut ) 2 g2 X,
RE)+):O_OR0:q7(1/2)H®Htl/2(H®J+J®H)u7(1/2)(H®J7J®H)’ (3.14
and

S (1- q—Z)n (12 n(n=1)/ 7y, —141(1/2) I\ y— (1/2) HY —\n — (1/2) I5(1/2) HY +\n

b2 (Ut ¥ 9)q X )@ ((ut)” (M2 g2 HK N,
RB—):Ralzq(llz)H@cHt—(1/2)(H®J+J®H)u—(1/2)(H®J—J®H)_ (3.15
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These universaR matrices can be compared to the literattré®*8**However, since different
authors adopt different conventions in the definitiorAo&nd S, one has to properly choose one
universalR matrix from the se{R, R, R(*), R(7)} to make the comparison.

If we defineq®1=u"t andq*2=ut, and useH;=H— a;J andH,=H— a,J as generators
instead ofH andJ, then the form of the univers® matrix becomeghere a trivial commuting
element— 3 a;,J®J is added to the exponent &)

R=q~ V2HoH, 3 (1-9?)"

L q—(1/2)n(n—l)(q(llz)Hly(—)n(@(q—(1/2>H2')“<+)n, (3.16
n=0 n q-

which is very similar to the univers& matrix of U,sl(2):

B o (1-9)" B B B
Rqul(Z): q (/2 H®H nzo [n] | q (1/2) n(n 1)(q(l/2) HX )n®(q (1/2) Hx+)n. (317)
- !

In fact, the similarity is not an accident but a consequence of QD. To see this, we first replace
the generatorX "™ andX~ by e andf:®

e=q X", f=gM2X", (3.18
then Eqgs(3.1)—(3.4) become

[His,e]=2e, [Hy, f]l=-2f1,

qti—q "
[e,f]=qu, (319

A(Hi)=H1,®1+10H;,, A(1)=1®1,

A(e)=ex1+q M@e, A(f)=10f+feqg"L (3.20
S(Hi)=—Hi, Se)=—q"2e, S(f)=-fq ", S(1)=1, (3.21
e(Hi)=¢e(e)=¢e(f)=0, e(1)=1. (3.22

These equations provide us the coefficients in the construction of a quantum double. Now, choos-
ing the lower Borel subalgebra &f,gl(2),

UgB-= spafH gfm};c,mzo

as the Hopf algebra in the quantum double construction, then by applying the same method as
Tjin did in Ref. 8, we find thatA® can be identified with the upper Borel subalgebra

UoB. =spafHZe™  n—o-
This obtains the quantum double structurelgl(2).
Note that in the case df ;sl(2), thedual element oH can only be identified as an element
proportional toH itself. However, in theU,gl(2) case, sincé is a commuting element, it is
possible to identify the dual element Bf;, asH,, with

Hl_HZOCJ,

and thus obtain the univers® matrix of Eq.(3.16).
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IV. MULTIPARAMETER DEFORMATION AND RESHETIKHIN'S TWISTING
TRANSFORMATION

The same multiparameter univergalmatrix can also be obtained in a different way. In this
section we shall discuss Reshetrikhin’s twisting transformatiamd compare our definition of
U,g!(2) with those introduced by other authdf$®*#3%First denoteR in (3.11) asR(H;,H,).

Let u=1 and defineH=H-aJ with q"=q"q *’=g"t~’. We obtain a single-parameter
Uqgl(2) and the corresponding universal matrix now denoted byR(H,H):

S aphens (1-9)" _ ol _ (i
R(H,H):q (1/2)H®H§0Wq (1/2) n(n l)(q(1/2)HX )n®(q (1/2)HX+)n. (41)

According to the procedure introduced by Reshetikhin, for a QTAJAf we can find an element
F=3;f'®f, e A®A such that

(A@id):/r:flgfzg, (id@A)f:flgflz,
(4.2
FroF1aFo3= FosF13F10,  F1oFo1=1,

then a possible multiparameter version of this QTHA can be established and the transformed
universalR matrix can be obtained:

RUO=F IRF 1, 4.3

where R represents the original single-parameter univef8ammatrix. For the present single-
parameteit ,gl(2) case the appropriatg is

Fe - WAHHEI-ISH) _ |~ (L4 (HeI-JoH) (4.4

After applying Reshetikhin’s twisting transformation @{H,H), the transformed Hopf algebra
is indeed(3.1)—(3.4) and the new universak matrix R ) is that which appeared if8.11), i.e.,

R(ﬂzR(Hlsz)-

Note that in the expression &, [cf. Eq. (3.6)], the exponent of the parameterhas an
antisymmetricform, which can be obtained from Reshetikhin’s transformafioote that in Eq.
(4.2) the restrictionF,;=F 1 is required. In contrast, the exponent of the parametdras a
symmetric form that comes from the third formula(8f1) and cannot be obtained from a twisting
transformation. It also seems not possible to obtain an expression containing the patawmater
a twisting transformation. We conclude that twisting transformation is the multiparameter gener-
alization of thecoproductstructure, whereas our construction is the multiparameter generalization
for both productandcoproductstructures.

Now we compare outl,gl(2) algebra with those introduced by other autifdré:®***First
consider the algebra introduced by Burdik and HellinfdePenote their coproduct, antipode and
universalR matrix asAgy, Sgy andRpy, respectively. Then, the following substitutions,

H—23,, X*—J., J—2Z,
v—S, uU—q, (4.5

A—Agy, S—Sgy, 73—’RBH1

recover their algebra and universRl matrix. As a second example we consider the algebra
introduced by Chakrabarti and Jagannatffafihe replacements
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HHZTJO, Xiﬂﬁi, JHZZ,
q—Q, v—1, u—\% (4.6)

A—Acy;, S—Sg, 7€HRCJ

recover their results. The main differences between their results and ours )aie: the first
exampleu is set equal ta@, which is not an arbitrary parameteij ) in the second example there
is nov-like parameter andiii ) there is an extra arbitrary parameten the commutation relation
(3.1.

In some sense our expressionldfgl(2) is a “general gauge form,” whereas other authors
have considered “gauge fixing form” of the same algebra. The advantage of our expression is that
when we consider the representation theorylgyl(2), more general and interesting matrix
solutions of the Yang—Baxter equation are obtained.

V. THE HIGHEST WEIGHT REPRESENTATIONS OF U,g/(2)

For the representation theory, we only study the highest weight representattérdLet =
be the map fronU,gl(2) to anm-dimensional (n=2) representation:

m(J)=\1, w(H)=pl+ >, (m—2i+1l)e;,
=1
m-1 m-1 5.1

7T($<+):i§l i€ i1, 77(3(7):241 bieq;.

Heree;; represents the matrix basi€e;; )= 6k 6j ] and1 denotes the unit matrix. Our strategy is
to find a proper choice of parametersu, {a;,b;}", such that they will give us the appropriate
highest weight representations df,gl(2). Substituting these expressions iri®1), we get

1 m*it*)\_ — M i*mt)\
a a4 , i=1,2,..m—1. (5.2)
a—q

aibi=[ilq

Here we do not requirb; to have any prior relation ta; . Equation(5.2) naturally comes from the
commutation relatior§3.1) of U,gl(2). Lett*=q”. Equation(5.2 can now be rewritten as

aibj=[ilg[u—7m+m—ily, i=12,..m-1.
Fori=m—1, comparing with another expressipaiso obtained fron{3.1)],
am-10m-1=—[pn—7+1-m]q,
and, using the identities

[xJg—[y1a=[x—yl{[x+ Y],

2

+y]? [x—
Xdyla=| 52| —| 52| -
q q
we find
[/L—T]q[m]qzo- (5.3

This result thus gives us two kinds of highest weight representation:
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Type a: If g?*~7=1 org?*t~?*=1, thenq can be any complex number.

Type b: If u, 7or g?*t~ 2" are arbitrary complex numbers, them satisfiesm]4=0 or
g°M=1. In other wordsg must be restricted to the roots of unity.

Now let us consider two simple examples. First, the 2 case:

B ut+l 0 ) B (1 0)
mH)={"g ] =M
(5.9
<. 0 a o (00
(X )—(O o] X )—(b 0),
+1li—N_ 4~ p— 1N
ab= ot ?1# ! . (5.5

a—-q

The 4xX4 matrix solutionsk of the YBE can be obtained via the representation(7® )R

q Ha #th) 0 0 0
R=gq~ (2D v ° ° (5.6
0 (g t-q)ab u™? 0 '
0 0 0 g Yg“t™)
Let g“t *=q s, u*=1 and drop the factog~ (1@’ ~Dt\= We then have
st 0 0 0
O y 0 0
R= L . (5.7

According to previous discussions, tlsmatrix in fact represents two solutions, which are

st 0 0 0 st 0 0 0
. 0 y 0 0 . 0 y 0 O0 58
a1l 0 sl-s 9yt o " 0 st-s yl 0] '
0 0 0 st 0 0 0 -s

Whenq is generic(type @, we haveq 2s?=1, which gives us solutioR,. On the other hand, if
s is arbitrary(type b, we haveg*=1, which impliesg?=—1 (q?=1 is ruled out since that will
causeab— ) and gives us solutioR,. Next, we consider then=3 case,

u+2 0 0 100
0 0 u-2 00 1
(5.9
0 a 0 0 0 0
7T(X+): 0 0 a |, W(X_): bl 0 0 ,
0 0 b, O
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q,u+2t—)\_q—,u—2t)\>
b =[u—7+2] q—q ° q
(5.10
qM+1t_)\_q_'u_1t)\
a2b2=[2]q[,u—T+1]q:(q+q_1)( q—q * )
Let g “t*=q%s 2, u*=y and remove the factay~ Y2#*t**_ Then we get
A, 0 0
R=|B1 Ay 0], (5.19)
C B, A,
whereA;, A,, Az, B;, B, andC are 3x3 matrices:
q’s 4 0 0 g’s 2yt 0 0
A=| 0 d’s®y 0 |, A= 0 1 0 |
0 0 q’y? 0 0 q %8y
(5.12
q’y 2 0 0
Ag=| 0 g%t 0 |,
0 0 q 5s*
0 g%(s™*-1) 0
B,=| 0 0 (1-9°) yazb, |,
0 0 0
(5.13
0 (1-g*)y *aib, 0
B,=| 0 0 (1+97%)(1-q7%sh |,
0 0 0
0 0 (s *1)(g?>-s%
c=lo o 0 . (5.14
0 O 0

This result also provides us two kinds Bf matrices. Whend/s)*=1, we have the type a
solution (the standard solution whereas in the situationg(s)*+#1, we haveq®=1—1+q?
+q*=0, which gives us type b solutigithe nonstandard solutiprNote that the factora;b, and
a,b; appearing irB; andB, cannot be uniquely determined in termsopfy,s only, whereas their
product @;b,asb;)=(a;bia,b,) is unique. The type a solution is well known and can be ob-
tained by different methods. The type b solutions are also known by many althth&?-34
However, most of the authors obtain type b solutions via solving matrix equations and do not
emphasize their algebraic origin. Some authors use t#d'son realization” method combined
with representation theord:*® Nevertheless, this method destroys the Hopf algebra structure.

For a general integem, after removing the factoq~ Y2#*t*#, and letting
gt r=(q )™t ut=y, (5.15

we have
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m—1 (1_ Z)n m—n
R:qu/z)(mfl)zsf(mzfl)z L7a) q 20-1DG--n(i+))
n=0 {N}q2! i1
XM= DEH+M (=D (@) (aj4n-1Ditn-1) € 4ni®€f j1n, (5.16

where

] q,ut*)\qm*i_q*,ut)\qi*m
aibi=[|]q(

M—1~1—i__ cl-mqi—1
:[i]q(s qq_qs,l A ) (5.17
and the identity
2(m—-1)
(qzﬂt—”—1>[m]q=((a) —1)[mlq=0 19

holds. Here we defineafb;)---(a;;,-1bj+n-1)=1 whenn=0.

In the last section we see that Reshetikhin’s twisting transformation transforms the single-
parameter expression of a Hopf algebra into its multiparameter deformation form. Hence a natural
question may arise: when we consider the representation of a Hopf algebra, in what sense does the
twisting transformation generalize tiematrix solution of the Yang—Baxter equation? In order to
answer this question, we now study the representatiotis 8fenote the representation BfasF
(hereF=u~ WAHSIZI®H)) i e F=(7® ) F. For them-dimensional representation we have

m
F= '}’_ (U4 (m(H)@l1l-1em(H)) — , ]Z

1 Y120 D we (5.19

where the relation = y is used and one finds thEt contains only parametey. As an example
let us consider then=2 case. Thé& matrix now reads

1 0 0 O
0 ,y— 1/2 0 0 )
F= :
0 0 »* o0 (529
0 0 0 1
The representation of tH&(H,H) that mentioned in Sec. IV, denoted Bgj; , is
st 0 0 O
R 1 0O O -
ma=c(t,u,\ _ .
An=c(t,u,\) slos 1 0 (5.21)

0 0 0 g2
Herec(t,«,\) is an unimportant factor and can be ignored. Now the transfoethtrix R(7),

st 0 0 0

RA=F R F 1= 7 0 0 (5.22
0 st-s y1 o [’ '
0 0 0 q3s
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is indeed theR in (5.7).

From these observations we see that only the paranyaten appear in the representations of
F. Thus we conclude thati) Reshetikhin’s twisting transformation transforms Rnsolution
without parametely to a new solution withy; (ii) The twisting transformation cannot change the
type of representation, i.e., it is impossible to obtainRamatrix of type b from arR matrix of
type a via a twisting transformation.

One more point should be emphasized: there are two sets of free parameters, one for the
algebraUgl(2) itself, they are, u andv, and the other for the representationtgfgl(2), they
ares and y. In this article we distinguish these two sets of parameters explicitly.

VI. COLORED SOLUTIONS OF THE YANG—-BAXTER EQUATION

In order to obtain a colored solution of the YBE via representation, we have to prepare two

representations dfl,g1(2):32% ;= 74 andm,= m#"*" acting on the first and second factors
of the direct product®, respectively. Then the colored solution is given by

R(M!)\;M,v)\l):(ﬂ-l®ﬂ-2)7€' (61)

Now let us calculatdr(w, ;' ,N"). For the first factor, we have

m m

wl(H)=i§1 (w+m=2i+1)e;, wl(J):m:)\;l e,

m-1
Wl(xf):izl b€,

and, for the second factor, we have

m m

Wz(H):Zl (' +m—2i+1)e;, 772(\])2)\’12)\'21 e,

m-1

W2(§(+):§1 aj € 1.

Here,
m-1

N A P RN (1_q2)“ n (n/2)(m—1) Y e

m-n

X E qu(ifl)(jfl)fn(i+j)((sr)mfl( ,yr)fl)i(smfl,y)j
i,j=1

X(ajb) (a1 n-1Pi+n-1) €i+ni®€ jin, (6.2

ands,s’,vy,y’ are defined by

E

m—1 ’

S mil ! ! ’
=grt, (H) =g*'t™N, y=ut, y'=u, 6.3

and the factor
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f(u N u' N)=q" (12) o (U2 (N + 1" M) (LD (N =" N)

!
% q(llz)(m_l)z(ss’ ) (1/2)(m2—1)( v

(1/2)(m+1)
7)

(6.9

is irrelevant and can be dropped.

As discussed in the previous section, there are two different types of solution: tipésa
generi¢ and type b(g is a root of unity. Whenm=2, let us compare our results with Hlavaty
solution4® (see also Ref. 25

1 0 0 0
B pT(N\) 0 0
RiLRZE0 o eoiew) Kt o | ©9
0 0 0 p /P
1 0 0 0
pt(N\) 0 0
0 0 0  —p"(Mp (w
where
WA, @) =(1=p " (M)p (M) EN)/E(p) (6.7
with ¢(\) being an arbitrary function.
(1) For type a,
1 0 0 0
0 qy 0 0
Ra=d01 o w1y ary 0 | ©9
0 0 0 vy

which becomesR; when we definep*(\)=qy, p'(n)=0qy’, k=0g% and &\)/&(u)
== (yly)'"
(2) For type b,

1 0 0 0
NEAE sy 0 0
=6 o Cagsrmyan sy o | €9
0 0 0 —ss(ylv)

whereg?=—1, a’, b are arbitraryC numbers. Lep*(\)=sy, p*(u)=s"y’, p (\)=s/y, and
p (un)=s'/y". We get the diagonal part &,. Furthermore, rewriting@'b=a’ab/a, using the
relationab=(s—s 1)/(q—q ) =(q/2s)(1—s?), and defining

N [(v19)"a]
Ep) [(Y'I1s) ']

we obtainW(\, )= —2q(ss)¥4(y/y')¥?a’b, which leads to the nonstandard solutigg.
Another interesting applicgtion is to compare our solutions with those given in Ref. 32. Their

universalR matrix (4.1 is ourR. The equivalence can be easily established by the replacements:

(6.10
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2N—N;—H;, 2N—N,—H,, (6.11)

al- a(N)-X*, a-BN)—=X". (6.12
The additional relation

a(N=1)- Bi(N)=[\+1-N], (6.13

appearing in Ref. 32 is a consistency condition, just like our E§4d7 and (5.18. Therefore,
without explicit calculation, we know the solutions obtained in Ref. 32 are the sart@e2xs

When comparing the solutiof6.2) with those in Refs. 18, 38, and 39, one has to be very
careful. Since different authors sometimes adopt different definitions and conve(ftorex-
ample, some authors define d®P or PR as theirR, P which represents the permutation majrix
before the comparison one needs to choose appropriate conventiphsShfand definition ofR
orR.

VII. CONCLUDING REMARKS

We have studied the Hopf algebra structure and representation theory of a multiparameter
version ofU,gl(2). We show that the YBE can be solved directly in the QTHA framework,
without introducing additional tricks or doing any transformations. The interesting feature of
highest weight representation shows that there exist two kinds of representations. A large class of
Borel type solutiondR can be obtained via the highest weight representation, including standard
and nonstandard colored solutions. We also study in what sense Reshetikhin’s twisting transfor-
mation generalizes a single-paramé®(R) to a multiparameteR (R). However, in this article
we have not yet discussed the cyclic representdtithf?of U4gl(2) for g being a root of unity.

We also have not explored what will happen to thggl(2) algebra itself and its univers@
matrix whenq is a root of unity?>*4We leave these discussions to another publication.
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