
of

jan

tral

em to
ting

ebras

the

lled

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 9 SEPTEMBER 2000

Downloaded 0
Colored solutions of the Yang–Baxter equation
from representations of Uqgl „2…

Pi-Gang Luana)

Department of Physics, National Central University, Chung-li, Taiwan, Republic of China

H. C. Leeb)

Department of Physics, National Central University, Chung-li, Taiwan, Republic of China
and National Center for Theoretical Sciences, P.O. Box 2-131, Hsinchu, Taiwan,
Republic of China

R. B. Zhangc)

Department of Mathematics, University of Queensland, Brisbane,
Queensland 4072, Australia

~Received 6 December 1999; accepted for publication 18 May 2000!

We study the Hopf algebra structure and the highest weight representation of a
multiparameter version ofUqgl(2). The Hopf algebra maps of this algebra are
explicitly given. We show that the multiparameter universalR matrix can be con-
structed directly as a quantum double intertwiner without using Reshetikhin’s twist-
ing transformation. We find there are two types highest weight representations for
this algebra: type a corresponds to the qenericq and type b corresponds to the case
that q is a root of unity. When applying the representation theory to the multi-
parameter universalR matrix, both standard and nonstandard colored solutions of
the Yang–Baxter equation are obtained. ©2000 American Institute of Physics.
@S0022-2488~00!02409-9#

I. INTRODUCTION

As is well known, the Yang–Baxter equation~YBE!1,2 plays an essential role in the study
quantum groups~QG! and quantum algebras~QA!,3–8 integrable models,9–12 as well as in the
construction of knot or link invariants.13–19 For instance, in the Faddeev–Reshetikhin–Takhta
~FRT! approach5–7 to construct quantum groups or quantum algebras, one has to find anR matrix,
which is a matrix solution of the YBE,2 then, using thisR matrix as input, substitute it into the
RTT or RLL relations to get the quantum group or quantum algebra as output.

There are various methods to find the appropriateR matrix. One way is to borrow anR(u)
matrix from the integrable model2 and then take an appropriate limit to remove the spec
parameteru. The second method is to solve the matrix YBE directly.19–21 In this approach one
usually assumes anR with prescribed nonzero elements, and impose some restrictions on th
find a class of solutions. SomeR matrices obtained in this way have unexpected interes
features, so a number of authors call them ‘‘nonstandard’’ solutions.22–26

Many known quantum algebras belong to the category of quasitriangular Hopf alg
~QTHA!.8 This observation provides us an alternative approach to findR matrices. When applying
representation theory to the universalR matrix8 of a QTHA, the desiredR matrix is obtained.~We
denote the universal algebraic solution of YBE byR and the matrix solution byR.! To get more
interesting solutions, people also try various methods to additional parameters intoR
matrix.27,28 This has led to the study ofq-boson realizations29–33with q being a root of unity and
the multiparameter deformations34–39 of Hopf algebras. These solutions are sometimes ca
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‘‘colored’’ solutions.18,38 Although theq-boson realization method is very powerful in constru
ing representations of quantum groups or quantum algebras, it tends to obscure the structur
Hopf algebra.

In this article we studyUqgl(2). Weshow that the appearance of the commuting elemeJ
makes it possible to introduce additional parameterst, u andv, and hence yields a multiparamet
version of Hopf maps and a multiparameter universalR matrix. We then explain how to get th
sameR from quantum double construction. In this way the Hopf algebra structure is pres
and emphasized. We also compare our results with those obtained via Reshetikhin’s tw
transformation.

We consider only the highest weight representations ofUqgl(2). Under the finite-dimension
restriction, two categories of representation appear automatically. When applying this repre
tion theory toR, the standard and nonstandard colored solutions are obtained and the
consistent with those published in the literature.

This article is organized as follows: In Sec. II, we review some basic definitions and prop
of Hopf algebras, quasitriangular Hopf algebras and quantum double. In Sec. III, different ch
of coproduct, antipodeand universalR matrices are given. We also briefly discuss quant
double construction and its relation with the multiparameter version ofUqgl(2). In Sec. IV, we
compare our results to those obtained from Reshetikhin’s twisting transformation.35 In Sec. V, the
highest weight representations are studied and applied toR to obtain matrix solutionsR. In Sec.
VI, colored solutions are obtained and compared to the literature. Section VII contains conc
remarks.

II. HOPF ALGEBRAS, QUASI-TRIANGULAR HOPF ALGEBRAS AND QUANTUM
DOUBLE

In this section we give a brief review of some definitions and properties of Hopf alge
~HA! and quasi-triangular Hopf algebras~QTHA! and their relations to the notion of quantu
double~QD!.8 These ideas will be used in our latter discussions of the multiparameterUqgl(2).

A. Hopf algebras

A Hopf algebra is an associative algebraA with five basic maps~in this article, we call them
Hopf maps!, namely, four homomorphisms:m:A^ A→A ~multiplication!, D:A→A^ A ~coprod-
uct!, h:C→A ~inclusion!, «:A→C ~counit!, and one antihomomorphism:S:A→A ~antipode!.
They satisfy the following relations for anyaPA:

~D ^ id!D~a!5~ id^ D!D~a!,

~« ^ id!D~a!5~ id^ «!D~a!5 id~a!5a, ~2.1!

m~S^ id!D~a!5m~ id^ S!D~a!5h+«~a!5«~a!1,

where id is theidentity map. To be more precise, we use the notation (A,m,D,h,«,S) instead of
A to denote a Hopf algebra. The following proposition is apparent:

Proposition II.1: The algebra(A,m,D8,h,«,S21) is also a Hopf algebra.
HereD8 denotes the opposite coproduct, which maps anyaPA to A^ A as

D8~a!5s+D~a!5(
i

ci ^ bi if D~a!5(
i

bi ^ ci , ~2.2!

andS21 is defined as the inverse ofS:

S~S21~a!!5S21~S~a!!5a. ~2.3!
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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B. Quasitriangular Hopf algebras

A quasitriangular Hopf algebra~QTHA! is a Hopf algebra equipped with an elementRPA
^ A which is the solution of the algebraic version of YBE. We start with the definition.

Definition II.1: LetA5(A,m,D,h,e,S) be a Hopf algebra andR (intertwiner) be an invert-
ible element in Â A. Then the pair~A, R! is called a QTHA if for any aPA we have

~i! RD(a)5D8(a)R,
~ii ! (D ^ id)R5R13R23,
~iii ! (id^ D)R5R13R12.

Here, for example,R13 lives in the first and third sections inA3A3A.

By definition, the three relations are satisfied:

R12R13R235R23R13R12,

~S^ id!R5~ id^ S21!R5R 21, ~2.4!

~« ^ id!R5~ id^ «!R51.

The first line is the Yang–Baxter equation.
As in the case of Hopf algebras, we denote (A,R,m,D,h,«,S) as a QTHA. From (i ) of

Definition II.1, we immediately find

RD~a!5D8~a!R, ~s+R!D8~a!5D~a!~s+R!,

R 21D8~a!5D~a!R 21, ~s+R 21!D~a!5D8~a!~s+R 21!.

DefineR (1)5s+R, R (2)5R 21 andR̄5s+R 21, then

RD5D8R, R̄D5D8R̄. ~2.5a!

Also, writing D8 as D̄, then

R (1)D̄5D̄8R (1), R (2)D̄5D̄8R (2). ~2.5b!

These observations lead to the following result:
Proposition II.2: If (A,R,m,D,«,S,h) is a QTHA, then (A,R̄,m,D,«,S,h),

(A,R (1),m,D8,«,S21,h) and (A,R (2),m,D8,«,S21,h) are all QTHAs.
This can be easily proved by using Definition II.1 and Eq.~2.1!. It tells us that for a pair

(D,S), there are two universalR matrices:R andR̄5s+R 21. Both can be used as intertwiner i
a QTHA. Now let us turn to the discussion ofquantum double.8

C. Quantum double

Suppose we have a Hopf algebraA that is spanned by basis$ei%. By introducing a nonde-
generate bilinear form̂ , &, we can defineA’s dual algebraAo that is spanned by$ei%; here
^ei ,ej&5d j

i . Then all the Hopf maps ofAo can be defined in terms of^ , &. Introduce theinter-
twiner,

R5(
i

ei ^ ei . ~2.6!

The commutation relations betweenA andAo can be established via the relation
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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RD~a!5D8~a!R, for aPA or Ao,

which tells us how to expand aneiej type product as a sum ofeie
j type products. Choosing$eie

j%
as the basis, one can ‘‘combine’’A andAo to form an enlarged algebraD(A), thequantum double
of A, and treatA or Ao as its subalgebra. ThenD(A) can be proved to be a QTHA equipped wi
R5( iei ^ ei as its intertwiner~universalR matrix!. In other words, a QTHA is a quantum doub
of its subalgebra. In the next section, we will show that theUqgl(2) is a quantum double as we
as a QTHA.

III. UNIVERSAL R MATRIX OF Uqgl „2…

We define our version ofUqgl(2) algebra as a multiparameter QTHA generated
(H,J,X1,X2) with the commutation relations

@J,H#5@J,X6#50,

@H,X6#562X6, ~3.1!

@X1,X2#5
qHt2J2q2HtJ

q2q21 ;

coproduct, antipode and counit,

coproduct:H D~H !5H ^ 111^ H, D~J!5J^ 111^ J,
D~X1!5q2 ~1/2! H~utv !~1/2! J

^ X11X1
^ q~1/2! H~utv21!2 ~1/2! J,

D~X2!5q2 ~1/2! H~u21tv21!~1/2! J
^ X21X2

^ q~1/2! H~u21tv !2 ~1/2! J,
~3.2!

antipode: S~H !52H, S~J!52J, S~X6!52q61v7JX6, ~3.3!

counit: «~H !5«~J!5«~X6!50; ~3.4!

and the universalR matrix given by

R5R 0(
n50

`
~12q2!n

$n%q2!
qn(n21)q~n/2!(H ^ 121^ H)~~uvt21!~1/2! JX2!n

^ ~~uv21t !~1/2! JX1!n,

~3.5!

where

R05q2 ~1/2! H ^ Ht ~1/2!(H ^ J1J^ H)u~1/2!(H ^ J2J^ H), ~3.6!

t, u andv are arbitrary parameters, and$n%q2 and$n%q2! are defined as

$n%q25
12q2n

12q2 5qn21@n#q ,

~3.7!

$n%q2! 5)
j 51

n

$ j %q25q~1/2! n(n21)@n#q!,

with $0%q2! 5@0#q! 51. Note that since the generatorJ commutes with each element inUqgl(2),
different expressions of Hopf maps~i.e., multiplication, coproduct, antipodeandcounit! are pos-
sible. If we replaceH by H85H2cJ and definet85q2ct ~herec is an arbitrary constant!, then
a new Hopf map is obtained by the replacement

H→H8, t→t8.
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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The parametert can even be made to disappear when one definesqHt2J5qH̃ and replaces the
generatorH by H̃. For reasons that will become clear we shall retain the parametert. In addition
to t, two more parameters,u andv, appear in the expressions forD(X6), although they do not
explicitly appear in the commutation relations~3.1!. It is important to note thatt, u andv are all
arbitrary parameters. Knowing this allows one to see that many so-called ‘‘multiparameter d
mations’’ of Uqgl(2) are in fact different expressions ofUqgl(2). We will discuss this point
further in the next section.

Consider the transformation

X̃65v71/2JX6, ~3.8!

under which the expressions forD andS on X6 become

D~X̃6!5~q2 ~1/2! Ht ~1/2! J!u6~1/2! J
^ X̃61X̃6

^ ~q~1/2! Ht2 ~1/2! J!u7~1/2! J, ~3.9!

S~X̃6!52q~1/2! HX̃6q2 ~1/2! H52qX̃6, ~3.10!

and the commutation relations~3.1! preserve their form~with the replacementX6→X̃6!. More-
over, the universalR matrix now becomes

R5R 0(
n50

`
~12q2!n

@n#q!
q2 ~1/2! n(n21)~~ut21!~1/2! Jq~1/2! HX̃2!n

^ ~~ut!~1/2! Jq2 ~1/2! HX̃1!n.

~3.11!

In the following, we shall useX̃6 instead ofX6 as generators.
As stated in the last section, corresponding to the same pair (D,S), there is another appropri

ate universalR matrix that shares the same Hopf algebra structure:

R̄5R̄0(
n50

`
~12q22!n

@n#q!
q~1/2! n(n21)~~ut!2 ~1/2! Jq~1/2! HX̃1!n

^ ~~u21t !~1/2! Jq2 ~1/2! HX̃2!n

~3.12!

with

R̄05s+R 0
215q~1/2! H ^ Ht2 ~1/2!(H ^ J1J^ H)u~1/2!(H ^ J2J^ H). ~3.13!

Similarly, if we chooseD̄5D8 andS̄5S21 as another choice of coproduct and antipode, th
for the pair (D̄,S̄), we have the other two universalR matrices,R (1) andR (2):

R (1)5R 0
(1) (

n50

`
~12q2!n

@n#q!
q2 ~1/2! n(n21)~~ut!~1/2! Jq2 ~1/2! HX̃1!n

^ ~~ut21!~1/2! Jq~1/2! HX̃2!n,

R 0
(1)5s+R05q2 ~1/2! H ^ Ht1/2(H ^ J1J^ H)u2 ~1/2!(H ^ J2J^ H), ~3.14!

and

R (2)5R 0
(2) (

n50

`
~12q22!n

@n#q!
q~1/2! n(n21)~~u21t !~1/2! J!q2 ~1/2! HX̃2)n

^ ~~ut!2 ~1/2! Jq~1/2! HX̃1!n,

R 0
(2)5R 0

215q~1/2! H ^ Ht2 ~1/2!(H ^ J1J^ H)u2 ~1/2!(H ^ J2J^ H). ~3.15!
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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These universalR matrices can be compared to the literature.27,28,38,39However, since different
authors adopt different conventions in the definition ofD andS, one has to properly choose on
universalR matrix from the set$R, R̄, R (1), R (2)% to make the comparison.

If we defineqa15u21t andqa25ut, and useH15H2a1J andH25H2a2J as generators
instead ofH andJ, then the form of the universalR matrix becomes~here a trivial commuting
element2 1

2 a1a2J^ J is added to the exponent ofR0!:

R5q2 ~1/2! H1^ H2 (
n50

`
~12q2!n

@n#q!
q2 ~1/2! n(n21)~q~1/2! H1X̃2!n

^ ~q2 ~1/2! H2X̃1!n, ~3.16!

which is very similar to the universalR matrix of Uqsl(2):

RUqsl(2)5q2 ~1/2! H ^ H (
n50

`
~12q2!n

@n#q!
q2 ~1/2! n(n21)~q~1/2! HX2!n

^ ~q2 ~1/2! HX1!n. ~3.17!

In fact, the similarity is not an accident but a consequence of QD. To see this, we first re
the generatorsX̃1 and X̃2 by e and f :8

e5q2 H2/2X̃1, f 5qH1/2,X̃2, ~3.18!

then Eqs.~3.1!–~3.4! become

@H1,2,e#52e, @H1,2, f #522 f ,

@e, f #5
qH12q2H2

q221
, ~3.19!

D~H1,2!5H1,2^ 111^ H1,2, D~1!51^ 1,

D~e!5e^ 11q2H2^ e, D~ f !51^ f 1 f ^ qH1. ~3.20!

S~H1,2!52H1,2, S~e!52qH2e, S~ f !52 f q2H1, S~1!51, ~3.21!

«~H1,2!5«~e!5«~ f !50, «~1!51. ~3.22!

These equations provide us the coefficients in the construction of a quantum double. Now,
ing the lower Borel subalgebra ofUqgl(2),

UqB25span$H1
nf m%n,m50

`

as the Hopf algebraA in the quantum double construction, then by applying the same metho
Tjin did in Ref. 8, we find thatAo can be identified with the upper Borel subalgebra

UqB15span$H2
nem%n,m50

` .

This obtains the quantum double structure ofUqgl(2).
Note that in the case ofUqsl(2), thedual element ofH can only be identified as an eleme

proportional toH itself. However, in theUqgl(2) case, sinceJ is a commuting element, it is
possible to identify the dual element ofH1 asH2 , with

H12H2}J,

and thus obtain the universalR matrix of Eq.~3.16!.
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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IV. MULTIPARAMETER DEFORMATION AND RESHETIKHIN’S TWISTING
TRANSFORMATION

The same multiparameter universalR matrix can also be obtained in a different way. In th
section we shall discuss Reshetrikhin’s twisting transformation,35 and compare our definition o
Uqgl(2) with those introduced by other authors.27,28,38,39First denoteR in ~3.11! asR(H1 ,H2).

Let u51 and defineH̃5H2aJ with qH̃5qHq2aJ5qHt2J. We obtain a single-paramete
Uqgl(2) and the corresponding universalR matrix now denoted byR(H̃,H̃):

R~H̃,H̃ !5q2 ~1/2!H̃ ^ H̃ (
n50

`
~12q2!n

@n#q!
q2 ~1/2! n(n21)~q~1/2!H̃X̃2!n

^ ~q2 ~1/2!H̃X̃1!n. ~4.1!

According to the procedure introduced by Reshetikhin, for a QTHAA, if we can find an elemen
F5( i f

i
^ f iPA^ A such that

~D ^ id!F5F13F23, ~ id^ D!F5F13F12,
~4.2!

F12F13F235F23F13F12, F12F2151,

then a possible multiparameter version of this QTHA can be established and the transf
universalR matrix can be obtained:

R (F)5F 21RF 21, ~4.3!

where R represents the original single-parameter universalR matrix. For the present single
parameterUqgl(2) case the appropriateF is

F5u2 ~1/4!(H̃ ^ J2J^ H̃)5u2 ~1/4!(H ^ J2J^ H). ~4.4!

After applying Reshetikhin’s twisting transformation onR(H̃,H̃), the transformed Hopf algebr
is indeed~3.1!–~3.4! and the new universalR matrix R (F) is that which appeared in~3.11!, i.e.,

R (F)5R~H1 ,H2!.

Note that in the expression ofR0 @cf. Eq. ~3.6!#, the exponent of the parameteru has an
antisymmetricform, which can be obtained from Reshetikhin’s transformation@note that in Eq.
~4.2! the restrictionF215F 21 is required#. In contrast, the exponent of the parametert has a
symmetric form that comes from the third formula of~3.1! and cannot be obtained from a twistin
transformation. It also seems not possible to obtain an expression containing the parametev via
a twisting transformation. We conclude that twisting transformation is the multiparameter g
alization of thecoproductstructure, whereas our construction is the multiparameter generaliz
for both product andcoproductstructures.

Now we compare ourUqgl(2) algebra with those introduced by other authors.27,28,38,39First
consider the algebra introduced by Burdik and Hellinger.27 Denote their coproduct, antipode an
universalR matrix asDBH , SBH andRBH , respectively. Then, the following substitutions,

H̃→2J0 , X6→J6 , J→2Z,

v→s, u→q, ~4.5!

D→DBH , S→SBH , R̄→RBH ,

recover their algebra and universalR matrix. As a second example we consider the alge
introduced by Chakrabarti and Jagannathan.28 The replacements
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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H̃→2J̃0 , X̃6→ J̃6 , J→2Z̃,

q→Q, v→1, u→l21, ~4.6!

D→DCJ, S→SCJ, R̄→RCJ

recover their results. The main differences between their results and ours are: (i ) in the first
exampleu is set equal toq, which is not an arbitrary parameter; (i i ) in the second example ther
is nov-like parameter and (i i i ) there is an extra arbitrary parametert in the commutation relation
~3.1!.

In some sense our expression ofUqgl(2) is a ‘‘general gauge form,’’ whereas other autho
have considered ‘‘gauge fixing form’’ of the same algebra. The advantage of our expression
when we consider the representation theory ofUqgl(2), more general and interesting matr
solutions of the Yang–Baxter equation are obtained.

V. THE HIGHEST WEIGHT REPRESENTATIONS OF Uqgl „2…

For the representation theory, we only study the highest weight representations.15,32,38Let p
be the map fromUqgl(2) to anm-dimensional (m>2) representation:

p~J!5l1, p~H !5m11(
i 51

m

~m22i 11!eii ,

~5.1!

p~X̃1!5(
i 51

m-1

ai ei ,i 11 , p~X̃2!5(
i 51

m-1

bi ei 11,i .

Hereei j represents the matrix basis@(ei j )kl5d ikd j l # and1 denotes the unit matrix. Our strategy
to find a proper choice of parametersl, m, $ai ,bi% i 50

m such that they will give us the appropria
highest weight representations ofUqgl(2). Substituting these expressions into~3.1!, we get

aibi5@ i #qS qmqm2 i t2l2q2mqi 2mtl

q2q21 D , i 51,2,...,m21. ~5.2!

Here we do not requirebi to have any prior relation toai . Equation~5.2! naturally comes from the
commutation relation~3.1! of Uqgl(2). Let tl5qt. Equation~5.2! can now be rewritten as

aibi5@ i #q@m2t1m2 i #q , i 51,2,...,m21.

For i 5m21, comparing with another expression@also obtained from~3.1!#,

am21bm2152@m2t112m#q ,

and, using the identities

@x#q
22@y#q

25@x2y#q@x1y#q ,

@x#q@y#q5Fx1y

2 G
q

2

2Fx2y

2 G
q

2

,

we find

@m2t#q@m#q50. ~5.3!

This result thus gives us two kinds of highest weight representation:
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Type a: If q2(m2t)51 or q2mt22l51, thenq can be any complex number.
Type b: If m, t or q2mt22l are arbitrary complex numbers, thenm satisfies@m#q50 or

q2m51. In other words,q must be restricted to the roots of unity.
Now let us consider two simple examples. First, them52 case:

p~H !5S m11 0

0 m21D , p~J!5lS 1 0

0 1D ,

~5.4!

p~X̃1!5S 0 a

0 0D , p~X̃2!5S 0 0

b 0D ,

ab5
qm11t2l2q2m21tl

q2q21 . ~5.5!

The 434 matrix solutionsR of the YBE can be obtained via the representationR5(p ^ p)R:

R5q2 ~1/2!(m221)tlmS q21~q2mtl! 0 0 0

0 ul 0 0

0 ~q212q!ab u2l 0

0 0 0 q21~qmt2l!

D . ~5.6!

Let qmt2l5q21s, ul5g and drop the factorq2(1/2)(m221)tlm. We then have

R5S s21 0 0 0

0 g 0 0

0 s212s g21 0

0 0 0 q22s

D . ~5.7!

According to previous discussions, thisR matrix in fact represents two solutions, which ar

Ra5S s21 0 0 0

0 g 0 0

0 s212s g21 0

0 0 0 s21

D , Rb5S s21 0 0 0

0 g 0 0

0 s212s g21 0

0 0 0 2s

D . ~5.8!

Whenq is generic~type a!, we haveq22s251, which gives us solutionRa . On the other hand, if
s is arbitrary~type b!, we haveq451, which impliesq2521 ~q251 is ruled out since that will
causeab→`! and gives us solutionRb . Next, we consider them53 case,

p~H !5S m12 0 0

0 m 0

0 0 m22
D , p~J!5lS 1 0 0

0 1 0

0 0 1
D ,

~5.9!

p~X̃1!5S 0 a1 0

0 0 a2

0 0 0
D , p~X̃2!5S 0 0 0

b1 0 0

0 b2 0
D ,
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ob-

o not
d
.

6538 J. Math. Phys., Vol. 41, No. 9, September 2000 Luan, Lee, and Zhang

Downloaded 0
a1b15@m2t12#q5S qm12t2l2q2m22tl

q2q21 D , tl5qt,

~5.10!

a2b25@2#q@m2t11#q5~q1q21!S qm11t2l2q2m21tl

q2q21 D .

Let q2mtl5q2s22, ul5g and remove the factorq2(1/2)m2
tlm. Then we get

R5S A1 0 0

B1 A2 0

C B2 A3

D , ~5.11!

whereA1 , A2 , A3 , B1 , B2 andC are 333 matrices:

A15S q2s24 0 0

0 q2s22g 0

0 0 q2g2
D , A25S q2s22g21 0 0

0 1 0

0 0 q22s2g
D ,

~5.12!

A35S q2g22 0 0

0 q22s2g21 0

0 0 q26s4
D ,

B15S 0 q2~s2421! 0

0 0 ~12q2!ga2b1

0 0 0
D ,

~5.13!

B25S 0 ~12q2!g21a1b2 0

0 0 ~11q22!~12q22s4!

0 0 0
D ,

C5S 0 0 ~s2421!~q22s4!

0 0 0

0 0 0
D . ~5.14!

This result also provides us two kinds ofR matrices. When (q/s)451, we have the type a
solution ~the standard solution!, whereas in the situation (q/s)4Þ1, we haveq651→11q2

1q450, which gives us type b solution~the nonstandard solution!. Note that the factorsa1b2 and
a2b1 appearing inB1 andB2 cannot be uniquely determined in terms ofq,g,s only, whereas their
product (a1b2a2b1)5(a1b1a2b2) is unique. The type a solution is well known and can be
tained by different methods. The type b solutions are also known by many authors.15–20,32–34

However, most of the authors obtain type b solutions via solving matrix equations and d
emphasize their algebraic origin. Some authors use the ‘‘q-boson realization’’ method combine
with representation theory.32,33 Nevertheless, this method destroys the Hopf algebra structure

For a general integerm, after removing the factorq2(1/2)m2
tlm, and letting

qmt2l5~q21s!m21, ul5g, ~5.15!

we have
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R5q~1/2!(m21)2s2(m221) (
n50

m21
~12q2!n

$n%q2!
qn (

i , j 51

m2n

q22(i 21)( j 21)2n( i 1 j )

3s(m21)(i 1 j 1n)g2~ i 2 j !~ajbi !¯~aj 1n21bi 1n21! ei 1n,i ^ ej , j 1n , ~5.16!

where

aibi5@ i #qS qmt2lqm2 i2q2mtlqi 2m

q2q21 D
5@ i #qS sm21q12 i2s12mqi 21

q2q21 D ~5.17!

and the identity

~q2mt22l21!@m#q5S S s

qD 2(m21)

21D @m#q50 ~5.18!

holds. Here we define (ajbi)¯(aj 1n21bi 1n21)[1 whenn50.
In the last section we see that Reshetikhin’s twisting transformation transforms the s

parameter expression of a Hopf algebra into its multiparameter deformation form. Hence a n
question may arise: when we consider the representation of a Hopf algebra, in what sense d
twisting transformation generalize theR matrix solution of the Yang–Baxter equation? In order
answer this question, we now study the representations ofF. Denote the representation ofF asF
~hereF5u2(1/4)(H ^ J2J^ H)), i.e., F5(p ^ p)F. For them-dimensional representation we have

F5g2 ~1/4!(p(H) ^ 121^ p(H))5 (
i , j 51

m

g~1/2!( i 2 j )eii ^ ej j , ~5.19!

where the relationul5g is used and one finds thatF contains only parameterg. As an example
let us consider them52 case. TheF matrix now reads

F5S 1 0 0 0

0 g2 1/2 0 0

0 0 g1/2 0

0 0 0 1

D . ~5.20!

The representation of theR(H̃,H̃) that mentioned in Sec. IV, denoted asRH̃H̃ , is

RH̃H̃5c~ t,m,l!S s21 0 0 0

0 1 0 0

0 s212s 1 0

0 0 0 q22s

D . ~5.21!

Herec(t,m,l) is an unimportant factor and can be ignored. Now the transformedR matrix R(F),

R(F)5F21RH̃H̃F215S s21 0 0 0

0 g 0 0

0 s212s g21 0

0 0 0 q22s

D , ~5.22!
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is indeed theR in ~5.7!.
From these observations we see that only the parameterg can appear in the representations

F. Thus we conclude that: (i ) Reshetikhin’s twisting transformation transforms anR solution
without parameterg to a new solution withg; ( i i ) The twisting transformation cannot change t
type of representation, i.e., it is impossible to obtain anR matrix of type b from anR matrix of
type a via a twisting transformation.

One more point should be emphasized: there are two sets of free parameters, one
algebraUqgl(2) itself, they aret, u andv, and the other for the representation ofUqgl(2), they
ares andg. In this article we distinguish these two sets of parameters explicitly.

VI. COLORED SOLUTIONS OF THE YANG–BAXTER EQUATION

In order to obtain a colored solution of the YBE via representation, we have to prepar
representations ofUqgl(2):32,38 p15pm,l andp25pm8,l8 acting on the first and second facto
of the direct product̂ , respectively. Then the colored solution is given by

R~m,l;m8,l8!5~p1^ p2!R. ~6.1!

Now let us calculateR(m,l;m8,l8). For the first factor, we have

p1~H !5(
i 51

m

~m1m22i 11!eii , p1~J!5l15l(
i 51

m

eii ,

p1~X̃2!5(
i 51

m-1

bi ei 11,i ,

and, for the second factor, we have

p2~H !5(
i 51

m

~m81m22i 11! eii , p2~J!5l815l8(
i 51

m

eii ,

p2~X̃1!5(
i 51

m-1

ai8 ei ,i 11 .

Here,

R~m,l;m8,l8!5 f ~m,l;m8,l8! (
n50

m-1
~12q2!n

$n%q2!
qn~ss8!~n/2!(m21)S g

g8D
n/2

3 (
i , j 51

m-n

q22(i 21)( j 21)2n( i 1 j )~~s8!m21~g8!21! i~sm21g! j

3~aj8bi !¯~aj 1n218 bi 1n21! ei 1n,i ^ ej • j 1n , ~6.2!

ands,s8,g,g8 are defined by

S s

qD m21

5qmt2l, S s8

q D m21

5qm8t2l8, g5ul, g85ul8, ~6.3!

and the factor
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f ~m,l;m8,l8!5q2 ~1/2! mm8t ~1/2!(ml81m8l)u~1/2!(ml82m8l)

3q~1/2!(m21)2~ss8!2 ~1/2!(m221)S g8

g D ~1/2!(m11)

~6.4!

is irrelevant and can be dropped.
As discussed in the previous section, there are two different types of solution: type a~q is

generic! and type b~q is a root of unity!. Whenm52, let us compare our results with Hlavaty´’s
solutions40 ~see also Ref. 25!:

R1~l,m!5f~l,m!S 1 0 0 0

0 p1~l! 0 0

0 ~12k!j~l!/j~m! k/p1~m! 0

0 0 0 p1~l!/p1~m!

D , ~6.5!

R2~l,m!5f~l,m!S 1 0 0 0

0 p1~l! 0 0

0 W~l,m! p2~m! 0

0 0 0 2p1~l!p2~m!

D , ~6.6!

where

W~l,m!5~12p1~l!p2~l!!j~l!/j~m! ~6.7!

with j(l) being an arbitrary function.
~1! For type a,

Ra5q2~g/g8!S 1 0 0 0

0 qg 0 0

0 6~12q2!~g/g8!1/2 q/g8 0

0 0 0 g/g8

D , ~6.8!

which becomesR1 when we definep1(l)5qg, p1(m)5qg8, k5q2, and j(l)/j(m)
56(g/g8)1/2.

~2! For type b,

Rb5~ss8!S g

g8D S 1 0 0 0

0 sg 0 0

0 22q~ss8!1/2~g/g8!1/2a8b s8/g8 0

0 0 0 2ss8~g/g8!

D , ~6.9!

whereq2521, a8, b are arbitraryC numbers. Letp1(l)5sg, p1(m)5s8g8, p2(l)5s/g, and
p2(m)5s8/g8. We get the diagonal part ofR2 . Furthermore, rewritinga8b5a8ab/a, using the
relationab5(s2s21)/(q2q21)5(q/2s)(12s2), and defining

j~l!

j~m!
5

@~g/s!1/2/a#

@~g8/s8!1/2/a8#
, ~6.10!

we obtainW(l,m)522q(ss8)1/2(g/g8)1/2a8b, which leads to the nonstandard solutionR2 .
Another interesting application is to compare our solutions with those given in Ref. 32.

universalR matrix ~4.1! is ourR̄. The equivalence can be easily established by the replacem
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2N̂2l1→H1 , 2N̂2l2→H2 , ~6.11!

a†
•a~N̂!→X̃1, a•b~N̂!→X̃2. ~6.12!

The additional relation

a i~N̂21!•b i~N̂!5@l i112N̂#q ~6.13!

appearing in Ref. 32 is a consistency condition, just like our Eqs.~5.17! and ~5.18!. Therefore,
without explicit calculation, we know the solutions obtained in Ref. 32 are the same as~6.2!.

When comparing the solution~6.2! with those in Refs. 18, 38, and 39, one has to be v
careful. Since different authors sometimes adopt different definitions and conventions~for ex-
ample, some authors define ourRP or PR as theirR, P which represents the permutation matrix!,
before the comparison one needs to choose appropriate conventions of$D,S% and definition ofR
or R.

VII. CONCLUDING REMARKS

We have studied the Hopf algebra structure and representation theory of a multipara
version of Uqgl(2). We show that the YBE can be solved directly in the QTHA framewo
without introducing additional tricks or doing any transformations. The interesting featur
highest weight representation shows that there exist two kinds of representations. A large c
Borel type solutionsR can be obtained via the highest weight representation, including stan
and nonstandard colored solutions. We also study in what sense Reshetikhin’s twisting tra
mation generalizes a single-parameterR (R) to a multiparameterR (R). However, in this article
we have not yet discussed the cyclic representation31,41,42of Uqgl(2) for q being a root of unity.
We also have not explored what will happen to theUqgl(2) algebra itself and its universalR
matrix whenq is a root of unity.43,44 We leave these discussions to another publication.
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