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The quantum supergroup O§EE|2n) is studied systematically. A Haar functional

is constructed, and an algebraic version of the Peter—Weyl theory is extended to
this quantum supergroup. Quantum homogeneous superspaces and quantum homo-
geneous supervector bundles are defined following the strategy of Connes’ theory.
Parabolic induction is developed by employing the quantum homogeneous super-
vector bundles. Quantum Frobenius reciprocity and a generalized Borel-Weil theo-
rem are established for the induced representations19@9 American Institute of
Physics[S0022-24889)00205-4

I. INTRODUCTION

Quantized universal enveloping algebras of Lie superalgebras were introduced in the late
1980$+ to describe the type of supersymmetries exhibited by some two-dimensional statistical
mechanics modefsSince then these quantum superalgebras have been intensively studied, lead-
ing to the development of an extensive theory on both the structure and representations. We
mention in particular that the quasi-triangular Hopf superalgebraic structure of the quantum supe-
ralgebras was investigated in Ref. 4; the representation theory of the type | quantum superalgebras,
the gl(m|n) super Yangians and the quantum affine superalgebras with symmetrizable Cartan
matrices were developed in Ref. 5. The theory of quantum superalgebras had significant impact on
a range of areas of physics and mathematics. Its applications to two-dimensional integrable models
in statistical mechanics and quantum field theory were extensively explored in Refs. 1 and 6 and
many other publications. The application to knot theory and three-marfifotdss yielded many
new topological invariants, notably, the multi-parameter generalizations of Alexander—Conway
polynomials.

The associated quantum supergroups are in contrast less studied in the literature. So far only
the quantum supergroup @lm|n) has been systematically investigafeld. Ref. 9, the structure
and representation theories of gm|n) were developed. The irreducible covariant and contra-
variant tensorial representations were studied in detail within the framework of parabolic induc-
tion, resulting in a quantum Borel-Weil theorem for these representations. The aim of this paper
is to treat the osp(2n) series of quantum supergroups at genegric

The osp(]2n) series of Lie superalgebras played an important role in the study of supersym-
metry on de Sitter spac@.These Lie superalgebras, especially (489), also featured promi-
nently in recent developments of string theory. An Inonu—Wigner contraction ¢1/82pyields
the 11-dimensional Poincasuperalgebra with two and five form central charges, which is the
underlying symmetry oM theory; the superalgebra d4{82) itself also plays an important role in
the theory of supermembranEsFrom a mathematical point of view, osg@h) is also rather
exceptional amongst all the finite-dimensional simple Lie superalgebras in that its Cartan matrix is
symmetrizable, and the structure of its finite-dimensional representations is completely under-
stood. In particular, it is known that all finite-dimensional representations are completely reduc-
ible.
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Many properties of osp(2n) carry over to the quantum case whers generic. It is par-
ticularly useful to recall that the Drinfeld version ofq(d>sp(]12n)) is, algebraically, a trivial
deformation of Wosp(12n)) in the sense of GerstenhabéFhis fact is known to experts, and
may be easily inferred from results of Ref. 1 Zherefore finite-dimensional representatiors
Uq(osp(12n)) are also completely reducibleThis remains true for the Jimbo version of
Uq(osp(12n)) at generiay. One way to see this is through the specialization of the indeterminate
of the Drinfeld algebra to a generic complex parameter; the other is through the isomorphism
between (osp(42n)) and U_,(so(n+1)) established by a kind of Bose—Fermi
transmutatiort? There is also an interesting connection between the representation theory of
Uq(osp(]JZn)) and quantum para-statistics, details on which can be found in Ref. 14.

This paper will study structural and representation theoretical properties of the quantum su-
pergroup OSK(1|2n), and also investigate its underlying geometries. This quantum supergroup
will be defined by its superalgebra of functions, which isZhegraded Hopf algebra generated by
the matrix elements of the vector representation gfdsp(12n)). Two major results in the
structure theory are presented, namely, the existence of a left and right integral, which will be
called a quantum Haar functional, and a quantum Peter—Weyl theorem.

Corresponding to each reductive subalgebgék) of Uq(osp(]JZn)), we introduce a quan-
tum homogeneous superspace, which is defined by specifying its superalgebra of quétidns
guantum homogeneous supervector bundle over the quantum homogeneous superspace is induced
from any given finite-dimensional J¢k) module. We shall show that the space of sectibﬁ(sV)
of this bundle is projective and is of finite type both as a left and a right module Aﬁer
Therefore our definition of quantum homogeneous supervector bundles is consistent with the
general definition of noncommutative vector bundles in Connes’ thEory.

Quantum homogeneous supervector bundles will be applied to develop a theory of induced
representations for O§(31|2n). Amongst the results obtained are quantum versions of Frobenius
reciprocity and the Borel-Weil theorem. The latter provides a concrete realization of finite-
dimensional irreducible O$P1|2n) representations in terms of quantum analogs of “holomor-
phic” sections of quantum homogeneous supervector bundles.

We wish to point out that in the context of Lie supergroups at the classical level, the math-
ematical theories of homogeneous superspaces and homogeneous supervector bundles were stud-
ied in Refs. 16 and 17. The development of a Bott—Borel-Weil theory was also initiated and
extensively investigated by Penkov and co-workérslowever, complications arising from su-
permanifold geometry render these subjects very difficult to study. So far as we are aware, many
aspects of the subjects remain to be fully developed. It seems that the Hopf algebraic approach
developed here and in Ref. 9 is also worth exploring at the classical level, and is likely to provide
a new method complementary to the geometric approach of Refs. 16 and 17.

The organization of the paper is as follows. In Sec. Il we review some known facts about
Uq(osp(12n)), which will be needed later. In Sec. Ill we study the quantum supergroup
OSFa(1|2n). In Sec. IV we investigate the quantum homogeneous superspaces and quantum
homogeneous supervector bundles determined by this quantum supergroup, while the last section
applies results of Sec. IV to study the representation theory of,QA$E).

Il. Ug(osp (1]2n))

This section reviews some known results on the quantized universal enveloping algebra
Uq(osp(12n)). Let E be then-dimensional Euclidean space spanned by the veetgraith the
inner product,) defined by €;,€;) = &;; . We can express the simple roots of the Lie superalgebra
osp(12n) in terms of thee's as

a=€—€.1, i=12,..0-1, ap=e,

wherea,, is the odd simple root. The Cartan matme(aij)ﬂjzl of osp(12n) is then given by
ajj=2(aj,a;)/(aj,a;). An elementu € E will be called integral if
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_2(p ) : ~ (pap)
_(Ofi ) eZ, Vi<n, |n—(an,an) S

i Z,
and the set of all integral elements will be denoted7y(Note the unusual form of,,.) Set
P,={ueP|li,l,eZ,}. Elements ofP, will be called integral dominant.

The Jimbo version of the quantum superalgeba{io@p(]lZn)) is aZ,-graded complex as-
sociative algebra generated Py t,e;,f;,i eN,}, N,={1,2,...n}, subject to the relations

kiki '=1, kikj=kk;,

kiej=q'“i-Vejk;, kifj=q~(“fik;,
(1)
i—Ki

k .
[ei,fj}=5ijﬁ, VI,]E|,

(Ade) %i(e)=0, (Adf) 1 %i(f)=0, Vi#].

All the generators are chosen to be homogeneous, Ivﬁi.‘h Vi, andey, fj, j<n, being even,
ande,,f, being odd. For a homogeneous elemenive defing[x]=0 if x is even, andx]=1

when odd. The graded commutafar} represents the usual commutator when any one of the two
arguments is even, and the anticommutator when both arguments are odd. The adjoint operation
Ad is defined by

Ad ei(X) =exX— ( - 1)[ei][x]kiXkFlei ,
Ad f(x)= fix— (— 1)IillXk xk 1

For x being a monomial ire;’s or f;'s it carries a definite weights(x) e H*. Then Ade;(x)
=ex— (—1)&Xglai.«Mxe and similarly for Adf;(x). For convenience, we will use the no-
tationg to denote osp({2n), and U,(g) to denote Y(osp(1|2n)). As is well known, this algebra
has the structures of &,-graded Hopf algebra. We will denote the comultiplication &ythe
counit by e, and the antipode bg.

The representation theory of,(§) was developed in Ref. 13. For any finite-dimensional
Uqy(g) module, there exists a homogeneous basis relative to whiclk;tlage represented by
diagonal matrices. Here we will only consider such finite-dimensionggJUmodules that the
eigenvalues of thi; tend to 1 ag) approaches 1. We will denote the set of all sugftd) modules
by Mod(g). Recall that all objects oflod,(g) are semi-simple.

If W(\) is a simple object oMod,(g), then there exists the unig@ep to scalar multiplgs
highest weight vectov , , such that

ev =0, kiU+:q()\’ai)U+y ANePy,

and the modul&V(\) is uniquely determined by the highest weightWe will denote the lowest

weight of W(\) by \, and define\"=—\. The dual module ofV(\) has highest weight".

The irreducible {(g) module with highest weight; plays a special role in the representation
theory of U,(g). We denote this module b, and refer to it as the vector module. Let us now
examine this module in some detail. Denote Wy the highest weight vector dE, which is
assumed to be even. Define

Wi=fi_1Wi_1, 1<i<n,
wo=Ffw,, w_,=fw,,

W—j:fjW—j—11 n>121
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Then{w,|u=0,+1,+2,...n} forms a weight basis of. We will denote byt the irreducible
representation relative to this basis. The matrix elements oth& andk; can be immediately
written down. We have

t(ei),uV: 5Mi 5V,i+1+ 5#,—i—151},—i '

t(fi),u,V: )

,u,i+15vi+§,u,,—i51/,—i—ll i<n1

t(en)/uz: 5,un5110_ 5,4/,06v,—n '
t(fn),uvz 5/1,051/n+ 5,11.,7!‘151/01
t(K;) ., =6,,9% %), 1<j<n,

whereey=0, ande_;=—¢; .
Let {w::_} be the basis (_)E* Qefined bywy, (w,) =4, . HereE* has a natural |[g)-module
structure with the X(g) action given by

xwh = (—1)X%ot(S(x)),, W . )

The lowest weight oE is — €;. Thus the modul€ is self-dual. This implies that there exists a
Uq(9)-module isomorphisnM:E—E*, which is unique up to scaler multiples. The ;, being
the highest weight vector d&*, will be identified withw, so that this arbitrariness i can be
removed. Now let

*
WM_E WVMV,u'
v

Then

(_Q)M_lv 1U'>01
M/.LV:m/.L5/J,+V,O1 m,= (_q)n! ,LLZO, (3)
(—@)>""#, u<o.

It follows from earlier discussions that repeated tensor produdisas& completely reducible.
Furthermore, every finite-dimensional irreduciblg() module is embedded in sonieX for at
least onek=0.

For later use, we consider two classesZgfgraded Hopf subalgebras of,(g). Correspond-
ing to any subse® of N,,, we introduce

Sc={kLieN,; e.f,je®}
Sp=SkU{ej Je Nn\®}-

The elements of each set generaté,agraded Hopf subalgebra of,(h). The subalgebra gener-
ated by the elements & will be denoted by |J(k), and called a reductive subalgebra of(),
while that generated by the elements &f will be denoted by Y(p) and called a parabolic
subalgebra. Note that{(k) is aZ,-graded Hopf subalgebra of,(b). If we replacee; by f; and
vice versa inS,, we obtain another set, which will generateZg-graded Hopf subalgebra of
Uy(g) having similar properties asq(b). Results presented in the remainder of the paper can also
be formulated using such algebras.

Observe that there are two types of reductive subalgebras, depending on vhethetains
n. The first type arises when¢ O, and in this case, k) is the direct product of quantized
universal enveloping algebras associated with a series of ordinarynongradexLie algebras of
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type A supplemented by the algebra generated by sbﬁfe The second type arises when
€ ®. This time, Y(k) is the direct product of the first type with aq(msp(JlZm)) for somem
<n. In both cases, the finite-dimensional representations,ok)Jare completely reducible. This
fact will be of great importance to the main subject of the paper.

LetV, be a finite-dimensional irreducible (k) module. TherV, is of highest weight type.
Let u be the highest weight arid the lowest weight o/, respectively. We can extend, in a
unique fashion to a k(p) module, which is still denoted by, , such that the elements 6f\S
act by zero. Itis not difficult to see that all finite dimensional irreducibjéd) modules are of this
kind.

Consider a finite-dimensional irreducible,(d) module W(\), with highest weight\ and
lowest weightA. W(X\) can be restricted in a natural way to g(p) module, which is always
indecomposable, but not irreducible in general. It can be readily shown that

dimz Homy (,,(W(XN),V )= L —)\ R,
i o] , !
c q(P) # 0, AN#nL.

lll. THE QUANTUM SUPERGROUP OSP,(1]2n)

There exist well-established methods for quantizing ordinary Lie groups in the non-
supersymmetric settingSee Ref. 18 and references thergirhese methods can also be extended
to construct OSf1|2n), and this will be done here. However, we should point out that it is, in
general, much more difficult to study quantum supergroups. See Ref. 9 for detailsq()m|G)_

We will show that the quantum supergroup Q8F2n) admits a quantum Haar functional,
and also a Peter—Weyl basis. This, however, is an exception rather than the rule. It is known that
the finite-dimensional representations of all the quantum superalgebrag (osp(l|2n)) are not
completely reducible. This fact renders it impossible to construct Peter—Weyl bases for the cor-
responding quantum supergroypghich are yet to be defined except @m|n)].

Let us recall some general results abdwgraded Hopf algebras. Létbe aZ,-graded Hopf
algebra with comultiplicatior\, counite, and antipod&s. We define the finite dua’ of A to be
a subspace oA* such that for anyf e A°, Kerf contains a two-sided idedl of A which is of
finite codimension, i.e., dilA/Z<<o. Of course in the most general situation, there is no guarantee
that A° will not be zero. But wher\° is nontrivial, then it is also &,-graded Hopf algebra with
a structure dualizing that ok. More explicitly, the multiplication is defined, fdt ge A°, a, b
eA, by

(fg,a)=<f®g,A(a)):% (—Dlelalif,aq))(g.a.))-

It is easy to see that the unit 8 is e. Denote the comultiplication, the counit, and the antipode
of AY respectively byA,, €® andS,. Then

(Ag(F),a®by=2 (—Dfwli@)f ) a)(f, ,b)=(f,ab),
(f)

(So(f),ay=(f,S(@)), €(f)=(f,la).

Now we come back to the quantum supergroup @SEn). As is well known, we cannot
define the quantum supergroup directly. Instead, we need to find the algebra of functions on it.
Introducet,,, e (Ug(9))*, u,»=0,+1,+2,...%n, defined by

t,uv(x):t(x),uvl VXEUq(Q),
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wheret is the vector representation ofy(4)). We call thet,, the matrix elements of. Finite
dimensionality ofE implies thatt,,, e (Uq(g)) Yu, v

We define the superalgeb#g(g) of functions on OS[(1/2n) to be theZ,-graded subalgebra
of (Uq(g))O generated by the matrix elements of the vector representation, (@) Ui.e., t
pm,v=0,£1,=2 ... +£n. Then we have the following theorem.

Theorem 1: (1) 74(9) is a Z,-graded Hopf algebra

(2) Let tM be the irreducible representation &f,(g) with highest weight e P, , and let
t, i,j=1,2,..4, (dy,=dimt®), be the matrix elements ot Then

To- O &, @

NeP, i,j=1

g

Proof: The Z,-graded bialgebra structure @(g) is obvious, and the existence of the anti-
pode follows from the self-duality of the vector modue over U,(g). Part(2) immediately
follows from the complete reducibility of finite-dimensional representations (4t)J O

Let us now work out the explicit forms of the comultiplication and the antipode. The comul-
tiplication is given by

Ag(t,,) =2 (—1)u0t %0000t 300t o1,
a

The antipode can be constructed fré2 by using the |(g)-module isomorphisnM. We have
Solty,)=(—1)%0* 20%0(M M),

m_,t_, _
= (— 1) 0 gt

14

wherem,, is given by(3).

Here we introduce more notations for later use. {A&?‘)ll =1,2,...d,} be the homogeneous
basis of W(\) with respect to which the representatith) is defined. We denote b{/wm||
=1,2,...4,} the basis ofM(\)* =W(\") such thaf™ (w) = ;. The U,(g)-module structure
of W(\)* enables us to definé™ e 7,(g) by

XWMN = 2 TVOWN,  VYxeUq(g).

Then
TN =(— 1)+ gy M),

where[i]=0 or 1 depending on whethey; is even or odd. Clearly the‘” are linear combina-

tions oft(* ). Furthermore, theM, VA e P, , also form a basis df’(g)

From here on, we will omlt the subscript O froft, and S, .

Let us now turn to the discussion of a Haar functional on the quantum superggtg)p But
before embarking on this task, we first consider the notion of an integral on an ariiggnaded
Hopf algebraA. Let A* be its dual, which has a naturd}-graded algebraic structure induced by
the co-algebraic structure & An even homogeneous elemgie A* is called a left integral on
Alif

f-f':<f,1A>f', VfecA*

Similarly, an even homogeneous eleméghe A* is called a right integral or if
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Jr.f=<f,1A>fr, VfeA®,

A straightforward calculation shows that the defining properties of the integrals are equivalent to

the following requirements
| r
A(x)zjx, (J’ ®id

e[

where id is the identity map oA.
A Haar functionalf e A* on A is an integral omA which is both left and right, and sendig

to1,ie.,
(i) (f ®id)A(x)=

(ii) f Ta=1.

A(x):frx, VxeA. (5)

id®f )A(x)=fx, VxeA,
(6)

In the case of/;(g), it is an entirely straightforward matter to show the following.
Theorem 2: The elemenf e (7,(g))* defined by

fqu(g)zl; ftf,-”:o, 0#NeP,,

gives rise to a Haar functional off,(9).
Denote by 2 the sum of the positive roots @f Let K,, be the product of powers cbfl’s
such that

Kp,eKo, =% e, Vi.
Then it can be easily shown that
SA(x) =Ky, XKz, VxeUg(q).
We define the quantum superdimension of the irreducibgglumodule W(\) by
SDy(N) =SttM(K,)}.

For quantum superalgebras other than the ogu(l series, there exists a class of finite-
dimensional irreducible representations, the typicals, of which the super-dimensions vanish iden-
tically. Again, qusp(llZn)) is an exception, and we have the following important property: for
any irreducible |J(osp(12n)) moduleW(\) with highest weightx e P, ,

SDy(N) #0.
Now the Haar functional satisfies the following properties.
Lemma 1:
T+ t§)'(K,)
f ti<]_>\ff<rg>(_ DU+ = 5, 5)%%,
(7)
- . TM(K,,)
T lillrl= g5 T > 27
f ij *rs ( ) IV SDq()\)
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Proof: Consider the first equation. The# u case is easy to prove: the integral vanishes
because the tensor produat(\)@ W(u") does not contain the trivial 40g) module. Whem
= u, we introduce the notations

(bir;sj:f t()\r()\( 1)[]][r]+[|]+[1] (I)[S J] (¢|r Sl)lr 1; ‘P[i: r]:((ﬁir;sj):’)}:l-

It is clearly true that St [i,r])=4;, .
Note that corresponding to eacte Uy(g), there exists aik e (7,4(g))* defined byX(a)
=(a,x), Yae 74(g). The left integral property of leads to

€(X) Py s]=( f ) W‘(%( 1)U+

N N R .
=(§; E t|(|r)(x(l))t(rfr)(s(x(Z)))‘f’i’r';sj(_l)[x]([lH[J]H[X(z)](m”s]),
X) i’

e)P[s, j1= 2 tN(x1) D[S, jItM(S(x2)))(—DX@ITIFED vy e Uy(g).
(x)

Schur’s lemma force®d[s, j] to be proportional to the identity matrix, and we have
‘I’[I, r]:5ir¢7

for somed, X d, matrix . The right integral property of leads to

e(y)w=(2y) tVK M (Yt (KD gt M (S(y ).

Again by using Schur’'s lemma we conclude tllais proportional tot(")(sz). Since its super-
trace is 1, we have

_t()\)(KZp)
~SD,(n)

This completes the proof of the first equation of the lemma. The second equation can be shown in
exactly the same way. O

It is worth observing that this Lemma and pé2} of Theorem 1 provide a quantum analog of
the Peter—Weyl theorem for O§(B|2n).

IV. QUANTUM HOMOGENEOUS SUPERVECTOR BUNDLES

In this section we will investigate the quantum homogeneous superspaces and quantum ho-
mogeneous supervector bundles arising from the quantum supergroy§1(¥8# by adapting
the methods and techniques of Refs. 9 and 19 to the present context. Let us start by introducing
two types of actions of {g) on 7,(g). The first action will be denoted by which corresponds
to the right translation in the classical theory of Lie groups. It is defined by

X°f=(2)(—1)“(1)][f(2>]f(1)<f(2).X>, xeUq(9), feZ4(9). 8
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Straightforward calculations show that
xo(yef )=(xy)ef,  (xef)(y)=F(yx), (idzg@xe)A(f)=A(xf).

The other action, which corresponds to the left translation in the classical Lie group theory, will be
denoted by-. It is defined by

Xf:% <f(1),571(x)>f(2> (9)

It can be easily shown that
(x-f)(y)= (=D (S H(x)y),

x-(y-f)=(xy)-f, x,yeUq9), feZy9).

Furthermore, the two actions graded commute in the following sense

xo(y-f)=(—1)XWy.(xof ), x,yeUy(g), feZy(g).

Let V be a finite-dimensional module over,(%). We extend the actionsand - trivially to
V®7T4(9): for any {=Zv;®fe V& T4(0),

x-¢=2 (— )My ex-f;,

xol=2, (—)MMily@xef;,  xeUgy(g).
We now introduce two important definitions:
Al={fe T(g)Ixof=€e()f, VxeUy(K)}: (10)
T(V)i={f eV Ty(g)xe¢=(S(x)®idyg)¢, ¥xeUqk)}. (1D

The remainder of this section is devoted to studying the properties of these objects. Let us first
prove the following.
Proposmon 1:(1) Ak is an infinite-dimensional subalgebra @§(q).
(2 Fq(V) is an |nf|n|te dimensional supervector space if the weight of any vector of V is
Uq(9) integral, and is zero otherwise
Proof: We first show tha‘r,élk is a subalgebra df,(g). Since (k) is a Hopf subalgebra of
Uq(9), for anyxe Ug(k), A(X)=ZX(1)®X2) € Uq(k)®Uq(k) Hence

xe(ab) =2, (= 1)@ x; ea}{x b} = e(x)ab
(x)
that is,abe A .
Since the f|n|te dimensional representations gfk) are completely reducible, the study of
properties ofl'¥ (V) reduces to the case whahis irreducible. LetV, be a finite- d|menS|onaI

irreducible Lgl(k) module with highest weight and lowest weighfx. Any element; eI a(V)
can be expressed in the form

-5 3 s,

NePy
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for somevi(j”evu. Fix an arbitraryh e P, . For any nonvanishingve W(\), the following
linear map is clearly surjective:

Homgc(W(MN),V, )ew—V,,
dOW— P(W).

Thus there existy e Home(W(\),V,,) such thav (M= ¢ (wM), where{w™} is the basis of
W(\) discussed before. Therefore, we can rew{ites

(= 2 2 eMNwM)eth.

NePy ]
The defining property of §(V,,) states that
/°§=(Id7q(g)®5(/))§, V/ e Uq(k)

Thus we have

DIEPIREH (SN SN WM @ (— IR = 2 T st

NePy i),k NePy i,j
Recalling that théf(k}i‘) are linearly independent, the above is equivalent to
: o) :
£ M) = (=DM (AWM, Ve Ug(k).

This equation is precisely the statement that zﬁé) be U,(k)-module homomorphisms of de-
grees] M7,

¢ e Homy (1 (W(X),V, ) CHom(W(X), V), Vi

Thus finding sections i« q(V,) is equivalent to finding, for alk € P, , the homomorphisms
¢™ e Homy, (W), V ) Note that each such homomorphisgt®) determinesd, linearly
mdependent sections:

(V=2 M) ot

However, whenu is not integral with respect to J0g), Hom, (k)(W()\) V,)=0, and hence

rk q(V,) vanishes in this case.

Now consider the case with=0; we havel'X q(Vu=0)= Ak as supervector spaces. There is a
homomorphism from the trivial representation o(j(g) W(O) C, ontoVy=C. This gives the
constant sections oflX. Let y be the highest root of. Recall that in the classical situatiok,is
reductive withN=r 7®| independent central elements. This, transcribed to the quantum case,
implies the existence dfl linearly independent (k) homomorphism&V(y)—C. As mentioned
above, each of these correspondsitedim(g) linearly independent sections. So the representa-
tion W(y) determinedNd linearly independent sections. Further linearly independent sections can
be obtained using the following lemma.

Lemma 2: Suppose there are nontrividj(k) homomorphisms ‘(\)&1)—>VM1 and W(\»,)

=V, Then there is an induced nontriviél,(k) homomorphism

W()\1+ )\2)*>V

Myt pg
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For example, for any positive integer, there exist (n|N) (partition ofminto <N part9 linearly
independent homomorphisnv¥(mvy)—C. Thus we have proved that the algebﬂé is infinite
dimensional.

Now let us consider the case with/Qu e P. It is an elementary exercise to verify thé, is
Uq(K)-isomorphic to a {(k)-irreducible part ofW(\"), where)’ is the dominant weight in the
Weyl group orbit ofu. Thus there is a nontrivial {{k) homomorphism

W)=V,

and this determines at lead{, linearly independent sections ]hg(vﬁ). Further linearly inde-
pendent sections can be constructed explicitly using Lemma 2 which promises a family of homo-
morphisms

W(\'+my)—V,, meN,.

This establishes thzﬂg(vﬂ) is infinite dimensional. O

Ag may be regarded as the quantum analog of the algebra of functions over the superspace
OSP(12n)/K, whereK is the subgroup of OSP(2n) with Lie superalgebr&. Such homoge-
neous superspaces were studied in the work of M&hiRenkov!’ and others. Here we wish to
make some investigations into their quantum analogs.

As is well known, one cannot define a noncommutativethe Z,-graded sengespace di-
rectly in geometrical terms. Instead, such a space has to be defined by specifying its algebra of
functions. We will takeAg as the algebra of functions over the quantum homogeneous superspace
which corresponds to OSP|@n)/K in the classical situation. Let us now study properties of
FE(V). First observe the following.

Theorem 3: FE(V) furnishes a two-sidedﬁlg module under the multiplication &f,(g).

Proof: The left and right actions Qﬂg on FE(V) are respectively defined by
az=2 (-l gaf, (a=> viefa,
r r
whereae A'é and{=Zv;®f;e FE(V). Now for p e Ugy(k),

pe(ag)= (Ep) (—DlP@lallpeal{p)edt=(—1)Plaa{pef}=(S(p)® idf[q(g))aé'i

pe(fa)= (Ep) (—DPlfp 0 tHpoeat ={p-{ta=(S(p)® iqu(g))fa-

This completes the proof. O
WhenV is actually a {(g) module, theAg moduleF'é(V) has a particularly simple structure.
Proposition 2: Let W be a finite-dimensional I&f,(g) module, which we regard as a left

Ug(k) module by restriction. Theﬁ'c‘](W) is isomorphic to V@Ag either as a left or rightAg

module
Proof: We first construct the righIél'a module isomorphism. Being a left () module, W

carries a natural righ¥,(g) comodule structure with the comodule actioriW—W®7,(g) de-
fined by

o(W)(x)=xw, XxeUq(g), weW. 12
[Here the notation requires some clarification. If we expré$e)=X,,W)®W), then

S(W) (X) = = (4 (— 1)l g (W 5y ,X).] Define 7:W® To(g) ~W®74(g) by the composition
of maps
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S®id
WR74(9) —— We73(9)®74(9) —~We74(9),

where the last map is the multiplication B§(g). Thenz defines a righl‘Ag module isomorphism,
with the inverse map given by the composition

é®id (id® S®id)
WR74(9) ——— W 74(9)®74(9) —»W@T(g)@T(g)—>W®T(g)

where the last map is again the multiplicationg{g). It is not difficult to show that

xen({)= (2 (X1 ®|dT(g))X(2) §)

xep H=9"" % (S(X(l))®id7q(g))x(2)°§): V{eT(9)®W, xeUy(g).

Consider{ e T§(W). We have

pen({)= 77( (EP) (p(1>®id7q(g>)p(2)°§) = 77( (2;,) (P(1)S( p(2))®id7q(g))§)

=e(p)n({), VpeUyk).

Hencen(T'§(W))CWe A¥. Conversely, given ang e We A¥, we have

pen 1(&)= 77_1( (Ep) (S(p1y)® iqu(g))P(z)°§

= 771( (Ep) (S(p1)) €( p(2))®id7;‘(g))§) = (S(p)®id’]a(g))7]71(§)y Vpe Uy(k).

Thus 7;*1(W®Ak)CFq(VV) Therefore the restriction of to Fq(V\/) provides the desired right
A module isomorphism.

The left module isomorphism is given by the restrictionHEJ(W) of the linear mapx: W
®T4(9) —W®74(g), which is defined by the following composition of maps

s®id ide P(S2®id)
WeTy(g) —— W T(9)®74(9) —— W T (9)®@74(9) =W 74(9),

where
T4(9)®14(9) — T4(9) ® 74(9),
a®b—(—1)AllPlhga. (13

The inverse mag ! is given by

s®id id® P(S®id)
We74(g) ——— WRTy(9)®74(9) ——— WRT (9 ®74(9) W Ty(Q).

O

With the help of this Proposition, we can now prove the following important result.

Theorem 4: T¥ q(V) is projective and of finite type both as a left and right module over the
superalgebrr:ulk of functions on the quantum homogeneous superspace

Proof: Slnce W (k) is a reductive subalgebra of,(4), all finite-dimensional representations
of Uy(k) are completely reducible. L&t;, s= 1,2,...K<oo, be the irreducible direct summands of
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V such that their weights are all integral with respect tgd). ThenFE(V) = EBSFE(VS). Consider
any Vs, and denote its highest weight .. There exists such A in the Weyl group orbit of
g that is integral dominant with respect ¢p Let W(is) be the irreducible L(g) module with
highest weighti, which can be regarded as @(lld) module in the natural way. There always
exists a (k) moduleVy such thatW(is) =Vs®Vy . Write V- =@ Vg , andW= & W(js). We
have

TEV)e TV =TW)=We AL,

where the last step follows from Proposition 2. O

Recall that in classical differential geometry, the spatef sections of a vector bundle over
a compact manifoldV furnishes a module over the algeh{M) of functions onM. It then
follows from Swan’s theorem that this module must be projective and is of finite type. Conversely,
any projective module of finite type ove4(M) is isomorphic to the space of sections of some
vector bundle oveM. This result is taken as the starting point for studying vector bundles in
noncommutative geometry: one defines a vector bundle over a noncommutative space in terms of
the space of sections which is required to be a finite-type project module over the noncommutative
algebra of functions on the virtual noncommutative space. Thereﬂﬁ(e[) will be called the
space of sections of a quantum supervector bundle over the quantum homogeneous superspace
associated with4§ .

Homogeneous supervector bundles at the classical level were studied in Refs. 16 and 17. We
will not enter the discussion of the subject, but merely mention that the subject proves to be
extremely rich and many aspects of it remain to be developed.

Following the classical terminology, we will call a quantum supervector bundle trivial if the
sections form a free module over the superalgebra of functions on the quantum superspace. The
following proposition is an immediate consequence of Proposition 2.

Proposition 3: If theU,(k) module V is in fact a finite-dimensional léft,(g) module, then
the quantum homogeneous supervector bundle with the space of sé‘tﬁ(ol)sis trivial.

V. INDUCED REPRESENTATIONS

In this section we will investigate induced representations of the quantum supergroup
OSR,(1/2n) by using results of the last section. The following proposition explains how quantum
homogeneous supervector bundles enter representation theory.

Proposition 4:T' q(V) furnishes a leftU,(g) module under the action, and also a rightZy(g)
comodule under the action =idy® (idr (g)®S HA.

Proof: For pe Uy(k), xe Uy(9), andgqu(V) we have
p°(x‘§)=(—1)“’][”X-(p°§)=(8(p)®id%<g))(x{).

Thust(V) indeed furnishes a left 4¢g) module under the action. TheZ,(g) coactionw is just
the dual of this left |(g) action.
We call Fq(V) an induced {(g) module, and also an inducegj(g) comodule. For such
induced modules, we have the following quantum analog of Frobenius reciprocity.
Theorem 5: Let W be aJ,(g) module, the restriction of which furnished (k) module in
a natural way. Then there exists a canonical isomorphism

Homy, g/ (W, T'g(V)=Homy, )(W.V), (14
whereU,(g) acts on the left moduIE';(V) via the - action

Proof: We prove the proposition by explicitly constructing the isomorphism, which we claim
to be the linear map
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F:Homy,_ (g (W,T§(V))—Homy i (W,V), > 4(Ly(g),
with the inverse map
F:Homy 1o(W,V) —Homy (W.T(V),  ¢—>¢=(¢©9)3,

where §:W—W®7,(g) is the right7,(g) comodule action defined bi12).
To verify our claim, we first need to demonstrate that the imagd-dé contained in
Horr*Uq(k)(W,V). Considery e Hormq(g)(w,l"g(V)). For anyp e Uy(k) andwe W, we have

p(F ¢(W)):(S_l(p)"lﬂ(W))(luq(g)),
where we have used the defining propertyFQ(V). Note that
(S 1 (P)eg(w))(ly,(g) = (P (W)(ly (g)-

The U,(g)-module structure OFS(V) and the given condition thaf is a U,(g)-module homo-
morphism immediately leads to

p(F (W)=~ DI IPly(pw) (I ()= (- DIIPIEY(pw),  peUg(k); weW.

Now consider F. We first show that the image I of F is contained in
Hoqu(g) (W,FE(V)). Note that ImF)CHomc(W,V®74(g)). Some relatively simple manipula-
tions lead to

(- p(W))=b(xw),
(Ped(W))=(S(p)®idz g) (W), XeUq(g), peUq(k), weW.

Therefore, Im?)c Hoqu(g)(W,F'é(V)). Now we show thaE andF are inverse to each other. For
e Hoqu(g)(W,FE(V)), and ¢ e Homy_(W,V), we have

(FF¢)(w)=(F ¢)(W)(Ly (g)=h(W),

(FF ) (W) (x)=(— L)X D(F ) (S(x)w)
:(_1)[X]([W]+l)¢(S(X)W)(1uq(g))
= (= DPIVHIIED(S(x) - (W) (Ly () = (W) (X),  xeUqg(Q), WeW.

This completes the proof of the Proposition. [l
Let vV, be a finite-dimensional irreducible,(p) module with highest weight and lowest
weight . SinceV,, is a Uy(p) module the following is a well-defined subspacel“(’j’(v#),

Oy(V,)={LeT4(V,)pet=(S(p)®idr ), VpeUy(p)}.

We may regarddy(V,) as the quantum analog of the space of “holomorphic sections.” Recall
that the notatiotW(\) denotes the irreducible j(g) module with highest weight. We have the
following result.

Theorem 6: There exists the following,(g) module isomorphism

W(-m)", -mePy,

0, otherwise. (15

Oy(V,)=
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Proof: Each{e O4(V,) can be expressed in the form

=3 3 uMeid,

NePy i

for somevl(“ev (i,j=1,...dy). Arguing as in the proof of Proposition 1 one concludes, for
each\ e P, , that there eX|st;'>(") e Home(W(M),V,) such thav V= g™ (w), where{w(M} is

the basis oW()\), relative to which the |rreduC|bIe representatt(S’r? of Uq(g) is defined. Thus
we can rewritel as

- M) (W) g TN

+ 1]

Similar reasoning as in the proof of Proposition 1 shows that¢tﬁ% must be Y(p)-module
homomorphisms of degre{@sm] It immediately follows from(4) that

pV=cip™, ceC,

and ™) may be nonzero only when

AN=L.

Hence, if—z ¢ P, , we haveOy(V,)=0. When—7 e P, , we set
=(—m)".

Then, we may conclude tha?,(V,) is spanned by
§i=; (W), (16)
which are obviously linearly independent. Furthermore,
x L= (=DM 60008, xeUg(g).

Thus Oy(V,)=W(v). More explicitly, the isomorphism is given by

(id®S) s sMeid
W(v)—>(’)(W(v)—>(’)(V ). a7
This completes the proof of the theorem. O

This result provides an analog of the celebrated Borel-Weil theorem for the quantum super-
group OSP(1|2n) For the classical Lie supergroups, the program of developing a Bott—Borel—
Weil theory was extensively investigated by Penkov and co-worKetéso, a quantum Borel—

Weil theorem for the covariant and contravariant tensor representations of quantumrixas
obtained in Ref. 9.
When u =0, the theorem implies that

{feTy(g)|pe-f=€(p)f, VpeUy(p)}=Ce.

Combining this result with with Proposition 2, we obtain the following
Corollary: Let W be any finite-dimensiontl,(g) module. Then, abl,(g)-modules

Og(W)=ed@W.
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