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The quantum supergroup OSPq(1u2n) is studied systematically. A Haar functional
is constructed, and an algebraic version of the Peter–Weyl theory is extended to
this quantum supergroup. Quantum homogeneous superspaces and quantum homo
geneous supervector bundles are defined following the strategy of Connes’ theory.
Parabolic induction is developed by employing the quantum homogeneous super-
vector bundles. Quantum Frobenius reciprocity and a generalized Borel–Weil theo-
rem are established for the induced representations. ©1999 American Institute of
Physics.@S0022-2488~99!00205-4#

I. INTRODUCTION

Quantized universal enveloping algebras of Lie superalgebras were introduced in th
1980s1,2 to describe the type of supersymmetries exhibited by some two-dimensional stat
mechanics models.3 Since then these quantum superalgebras have been intensively studied
ing to the development of an extensive theory on both the structure and representation
mention in particular that the quasi-triangular Hopf superalgebraic structure of the quantum
ralgebras was investigated in Ref. 4; the representation theory of the type I quantum superal
the gl(mun) super Yangians and the quantum affine superalgebras with symmetrizable C
matrices were developed in Ref. 5. The theory of quantum superalgebras had significant im
a range of areas of physics and mathematics. Its applications to two-dimensional integrable
in statistical mechanics and quantum field theory were extensively explored in Refs. 1 and
many other publications. The application to knot theory and three-manifolds7,8 has yielded many
new topological invariants, notably, the multi-parameter generalizations of Alexander–Co
polynomials.

The associated quantum supergroups are in contrast less studied in the literature. So
the quantum supergroup GLq(mun) has been systematically investigated.9 In Ref. 9, the structure
and representation theories of GLq(mun) were developed. The irreducible covariant and con
variant tensorial representations were studied in detail within the framework of parabolic i
tion, resulting in a quantum Borel–Weil theorem for these representations. The aim of this
is to treat the osp(1u2n) series of quantum supergroups at genericq.

The osp(1u2n) series of Lie superalgebras played an important role in the study of super
metry on de Sitter space.10 These Lie superalgebras, especially osp~1u32!, also featured promi-
nently in recent developments of string theory. An Inonu–Wigner contraction of osp~1u32! yields
the 11-dimensional Poincare´ superalgebra with two and five form central charges, which is
underlying symmetry ofM theory; the superalgebra osp~1u32! itself also plays an important role in
the theory of supermembranes.11 From a mathematical point of view, osp(1u2n) is also rather
exceptional amongst all the finite-dimensional simple Lie superalgebras in that its Cartan ma
symmetrizable, and the structure of its finite-dimensional representations is completely
stood. In particular, it is known that all finite-dimensional representations are completely r
ible.
31750022-2488/99/40(6)/3175/16/$15.00 © 1999 American Institute of Physics
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Many properties of osp(1u2n) carry over to the quantum case whenq is generic. It is par-
ticularly useful to recall that the Drinfeld version of Uq„osp(1u2n)… is, algebraically, a trivial
deformation of U„osp(1u2n)… in the sense of Gerstenhaber.~This fact is known to experts, an
may be easily inferred from results of Ref. 12.! Therefore,finite-dimensional representationsof
Uq„osp(1u2n)… are also completely reducible. This remains true for the Jimbo version
Uq„osp(1u2n)… at genericq. One way to see this is through the specialization of the indetermi
of the Drinfeld algebra to a generic complex parameter; the other is through the isomor
between Uq„osp(1u2n)… and U2q„so(2n11)… established by a kind of Bose–Ferm
transmutation.13 There is also an interesting connection between the representation theo
Uq„osp(1u2n)… and quantum para-statistics, details on which can be found in Ref. 14.

This paper will study structural and representation theoretical properties of the quantu
pergroup OSPq(1u2n), and also investigate its underlying geometries. This quantum superg
will be defined by its superalgebra of functions, which is theZ2-graded Hopf algebra generated b
the matrix elements of the vector representation of Uq„osp(1u2n)…. Two major results in the
structure theory are presented, namely, the existence of a left and right integral, which w
called a quantum Haar functional, and a quantum Peter–Weyl theorem.

Corresponding to each reductive subalgebra Uq(k) of Uq„osp(1u2n)…, we introduce a quan-
tum homogeneous superspace, which is defined by specifying its superalgebra of functionsAq

k . A
quantum homogeneous supervector bundle over the quantum homogeneous superspace is
from any given finite-dimensional Uq(k) module. We shall show that the space of sectionsGq

k(V)
of this bundle is projective and is of finite type both as a left and a right module overAq

k .
Therefore our definition of quantum homogeneous supervector bundles is consistent w
general definition of noncommutative vector bundles in Connes’ theory.15

Quantum homogeneous supervector bundles will be applied to develop a theory of in
representations for OSPq(1u2n). Amongst the results obtained are quantum versions of Frobe
reciprocity and the Borel–Weil theorem. The latter provides a concrete realization of fi
dimensional irreducible OSPq(1u2n) representations in terms of quantum analogs of ‘‘holom
phic’’ sections of quantum homogeneous supervector bundles.

We wish to point out that in the context of Lie supergroups at the classical level, the m
ematical theories of homogeneous superspaces and homogeneous supervector bundles w
ied in Refs. 16 and 17. The development of a Bott–Borel–Weil theory was also initiated
extensively investigated by Penkov and co-workers.17 However, complications arising from su
permanifold geometry render these subjects very difficult to study. So far as we are aware
aspects of the subjects remain to be fully developed. It seems that the Hopf algebraic ap
developed here and in Ref. 9 is also worth exploring at the classical level, and is likely to pr
a new method complementary to the geometric approach of Refs. 16 and 17.

The organization of the paper is as follows. In Sec. II we review some known facts a
Uq„osp(1u2n)…, which will be needed later. In Sec. III we study the quantum supergr
OSPq(1u2n). In Sec. IV we investigate the quantum homogeneous superspaces and qu
homogeneous supervector bundles determined by this quantum supergroup, while the last
applies results of Sec. IV to study the representation theory of OSPq(1u2n).

II. Uq„osp „1z2n ……

This section reviews some known results on the quantized universal enveloping a
Uq„osp(1u2n)…. Let E be then-dimensional Euclidean space spanned by the vectorse i , with the
inner product~,! defined by (e i ,e j )5d i j . We can express the simple roots of the Lie superalge
osp(1u2n) in terms of thee’s as

a i5e i2e i 11 , i 51,2,...,n21, an5en ,

wherean is the odd simple root. The Cartan matrixA5(ai j ) i , j 51
n of osp(1u2n) is then given by

ai j 52(a i ,a j )/(a i ,a i). An elementmPE will be called integral if
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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l i5
2~m,a i !

~a i ,a i !
PZ, ; i ,n, l n5

~m,an!

~an ,an!
PZ,

and the set of all integral elements will be denoted byP. ~Note the unusual form ofl n .! Set
P15$mPPu l i ,l nPZ1%. Elements ofP1 will be called integral dominant.

The Jimbo version of the quantum superalgebra Uq„osp(1u2n)… is a Z2-graded complex as
sociative algebra generated by$ki

61,ei , f i ,i PNn%, Nn5$1,2,...,n%, subject to the relations

kiki
2151, kikj5kjki ,

kiej5q~a i ,a j !ejki , ki f j5q2~a i ,a j ! f jki ,
~1!

@ei , f j%5d i j

ki2ki

q2q
, ; i , j PI ,

~Ad ei !
12ai j ~ej !50, ~Ad f i !

12ai j ~ f j !50, ; iÞ j .

All the generators are chosen to be homogeneous, withki
61, ; i , andej , f j , j ,n, being even,

anden , f n being odd. For a homogeneous elementx, we define@x#50 if x is even, and@x#51
when odd. The graded commutator@.,.% represents the usual commutator when any one of the
arguments is even, and the anticommutator when both arguments are odd. The adjoint op
Ad is defined by

Ad ei~x!5eix2~21!@ei #@x#kixki
21ei ,

Ad f i~x!5 f ix2~21!@ f i #@x#kixki
21f i .

For x being a monomial inej ’s or f j ’s it carries a definite weightv(x)PH* . Then Adei(x)
5eix2(21)@ei @x#q(a i ,v(x))xei , and similarly for Adf i(x). For convenience, we will use the no
tationg to denote osp(1u2n), and Uq(g) to denote Uq„osp(1u2n)…. As is well known, this algebra
has the structures of aZ2-graded Hopf algebra. We will denote the comultiplication byD, the
counit bye, and the antipode byS.

The representation theory of Uq(g) was developed in Ref. 13. For any finite-dimension
Uq(g) module, there exists a homogeneous basis relative to which theki are represented by
diagonal matrices. Here we will only consider such finite-dimensional Uq(g) modules that the
eigenvalues of theki tend to 1 asq approaches 1. We will denote the set of all such Uq(g) modules
by Modq(g). Recall that all objects ofModq(g) are semi-simple.

If W(l) is a simple object ofModq(g), then there exists the unique~up to scalar multiples!
highest weight vectorv1 , such that

eiv150, kiv15q~l,a i !v1 , lPP1 ,

and the moduleW(l) is uniquely determined by the highest weightl. We will denote the lowest
weight of W(l) by l̄, and definel†52l̄. The dual module ofW(l) has highest weightl†.

The irreducible Uq(g) module with highest weighte1 plays a special role in the representati
theory of Uq(g). We denote this module byE, and refer to it as the vector module. Let us no
examine this module in some detail. Denote byw1 the highest weight vector ofE, which is
assumed to be even. Define

wi5 f i 21wi 21 , 1, i<n,

w05 f nwn , w2n5 f nwn ,

w2 j5 f jw2 j 21 , n. j >1.
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



a

.

-

f
also

d

3178 J. Math. Phys., Vol. 40, No. 6, June 1999 H. C. Lee and R. B. Zhang

Downloaded 0
Then $wmum50,61,62,...,6n% forms a weight basis ofE. We will denote byt the irreducible
representation relative to this basis. The matrix elements of theei , f i andki can be immediately
written down. We have

t~ei !mn5dm idn,i 111dm,2 i 21dn,2 i ,

t~ f i !mn5dm,i 11dn i1dm,2 idn,2 i 21 , i ,n,

t~en!mn5dmndn02dm0dn,2n ,

t~ f n!mn5dm0dnn1dm,2ndn0 ,

t~kj !mn5dmnq~a j ,em!, 1< j <n,

wheree050, ande2 i52e i .
Let $wm* % be the basis ofE* defined bywm* (wn)5dmn . HereE* has a natural Uq(g)-module

structure with the Uq(g) action given by

xwm* 5(
n

~21!@x#dm0t„S~x!…mnwn* . ~2!

The lowest weight ofE is 2e1 . Thus the moduleE is self-dual. This implies that there exists
Uq(g)-module isomorphismM :E→E* , which is unique up to scaler multiples. Thew21* , being
the highest weight vector ofE* , will be identified withw1 so that this arbitrariness inM can be
removed. Now let

wm* 5(
n

wnM nm .

Then

Mmn5mmdm1n,0 , mm5H ~2q!m21, m.0,
~2q!n, m50,
~2q!2n1m, m,0.

~3!

It follows from earlier discussions that repeated tensor products ofE are completely reducible
Furthermore, every finite-dimensional irreducible Uq(g) module is embedded in someE^ k for at
least onek>0.

For later use, we consider two classes ofZ2-graded Hopf subalgebras of Uq(g). Correspond-
ing to any subsetQ of Nn , we introduce

Sk5$ki
61,i PNn ; ej , f j , j PQ%;

Sp5Skø$ej , j PNn\Q%.

The elements of each set generate aZ2-graded Hopf subalgebra of Uq(g). The subalgebra gener
ated by the elements ofSk will be denoted by Uq(k), and called a reductive subalgebra of Uq(g),
while that generated by the elements ofSp will be denoted by Uq(p) and called a parabolic
subalgebra. Note that Uq(k) is aZ2-graded Hopf subalgebra of Uq(p). If we replaceei by f i and
vice versa inSp , we obtain another set, which will generate aZ2-graded Hopf subalgebra o
Uq(g) having similar properties as Uq(p). Results presented in the remainder of the paper can
be formulated using such algebras.

Observe that there are two types of reductive subalgebras, depending on whetherQ contains
n. The first type arises whenn¹Q, and in this case, Uq(k) is the direct product of quantize
universal enveloping algebras associated with a series of ordinary~i.e., nongraded! Lie algebras of
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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type A supplemented by the algebra generated by someki
61. The second type arises whenn

PQ. This time, Uq(k) is the direct product of the first type with a Uq„osp(1u2m)… for somem
,n. In both cases, the finite-dimensional representations of Uq(k) are completely reducible. This
fact will be of great importance to the main subject of the paper.

Let Vm be a finite-dimensional irreducible Uq(k) module. ThenVm is of highest weight type.
Let m be the highest weight andm̃ the lowest weight ofVm respectively. We can extendVm in a
unique fashion to a Uq(p) module, which is still denoted byVm , such that the elements ofSp\Sk

act by zero. It is not difficult to see that all finite dimensional irreducible Uq(p) modules are of this
kind.

Consider a finite-dimensional irreducible Uq(g) module W(l), with highest weightl and
lowest weightl̄. W(l) can be restricted in a natural way to a Uq(p) module, which is always
indecomposable, but not irreducible in general. It can be readily shown that

dimC HomUq~p!„W~l!,Vm…5H 1, l̄5m̃,

0, l̄Þm̃.

III. THE QUANTUM SUPERGROUP OSPq„1z2n …

There exist well-established methods for quantizing ordinary Lie groups in the
supersymmetric setting.~See Ref. 18 and references therein.! These methods can also be extend
to construct OSPq(1u2n), and this will be done here. However, we should point out that it is
general, much more difficult to study quantum supergroups. See Ref. 9 for details on GLq(mun).

We will show that the quantum supergroup OSPq(1u2n) admits a quantum Haar functiona
and also a Peter–Weyl basis. This, however, is an exception rather than the rule. It is know
the finite-dimensional representations of all the quantum superalgebras but Uq„osp(1u2n)… are not
completely reducible. This fact renders it impossible to construct Peter–Weyl bases for th
responding quantum supergroups@which are yet to be defined except GLq(mun)#.

Let us recall some general results aboutZ2-graded Hopf algebras. LetA be aZ2-graded Hopf
algebra with comultiplicationD, counite, and antipodeS. We define the finite dualA0 of A to be
a subspace ofA* such that for anyf PA0, Ker f contains a two-sided idealI of A which is of
finite codimension, i.e., dimA/I,`. Of course in the most general situation, there is no guara
that A0 will not be zero. But whenA0 is nontrivial, then it is also aZ2-graded Hopf algebra with
a structure dualizing that ofA. More explicitly, the multiplication is defined, forf, gPA0, a, b
PA, by

^ f g,a&5^ f ^ g,D~a!&5(
~a!

~21!@g#@a~1!#^ f ,a~1!&^g,a~2!&.

It is easy to see that the unit ofA0 is e. Denote the comultiplication, the counit, and the antipo
of A0 respectively byD0 , e0 andS0 . Then

^D0~ f !,a^ b&5(
~ f !

~21!@ f ~1!#@ f ~2!#^ f ~1! ,a&^ f ~2! ,b&5^ f ,ab&,

^S0~ f !,a&5^ f ,S~a!&, e0~ f !5^ f ,1A&.

Now we come back to the quantum supergroup OSPq(1u2n). As is well known, we cannot
define the quantum supergroup directly. Instead, we need to find the algebra of functions
IntroducetmnP„Uq(g)…* , m,n50,61,62,...,6n, defined by

tmn~x!5t~x!mn , ;xPUq~q!,
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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where t is the vector representation of Uq(g). We call thetmn the matrix elements oft. Finite
dimensionality ofE implies thattmnP„Uq(g)…0, ;m, n.

We define the superalgebraTq(g) of functions on OSPq(1u2n) to be theZ2-graded subalgebra
of „Uq(g)…0 generated by the matrix elements of the vector representation of Uq(g), i.e., tmn ,
m,n50,61,62,...,6n. Then we have the following theorem.

Theorem 1: ~1! Tq(g) is a Z2-graded Hopf algebra.
~2! Let t(l) be the irreducible representation ofUq(g) with highest weightlPP1 , and let

t i j
(l) , i , j 51,2,...,dl (dl5dim t (l)), be the matrix elements of t(l). Then

Tq~g!5 %
lPP1

%
i , j 51

dl

Ct i j
~l! . ~4!

Proof: The Z2-graded bialgebra structure ofTq(g) is obvious, and the existence of the an
pode follows from the self-duality of the vector moduleE over Uq(g). Part ~2! immediately
follows from the complete reducibility of finite-dimensional representations of Uq(g). h

Let us now work out the explicit forms of the comultiplication and the antipode. The co
tiplication is given by

D0~ tmn!5(
s

~21!~dm01ds0!~dn01ds0!tms ^ tsn .

The antipode can be constructed from~2! by using the Uq(g)-module isomorphismM. We have

S0~ tmn!5~21!~dm01dn0!dm0~M 21tM !nm

5~21!~dm01dn0!dm0
m2mt2n,2m

m2n
,

wheremm is given by~3!.
Here we introduce more notations for later use. Let$wi

(l)u i 51,2,...,dl% be the homogeneou
basis ofW(l) with respect to which the representationt (l) is defined. We denote by$w̃i

(l)u i
51,2,...,dl% the basis ofW(l)* 5W(l†) such thatw̃i

(l)(wj
(l))5d i j . The Uq(g)-module structure

of W(l)* enables us to definet̃ i j
(l)PTq(g) by

xw̃i
~l!5(

j
t̃ j i

~l!~x!w̃j
~l! , ;xPUq~g!.

Then

t̃ j i
~l!5~21!@ i #~@ i #1@ j # !S0~ t i j

~l!!,

where@ i #50 or 1 depending on whetherwi is even or odd. Clearly thet̃ j i
(l) are linear combina-

tions of t i j
(l†) . Furthermore, thet̃ j i

(l) , ;lPP1 , also form a basis ofTq(g).
From here on, we will omit the subscript 0 fromD0 andS0 .
Let us now turn to the discussion of a Haar functional on the quantum supergroupTq(g). But

before embarking on this task, we first consider the notion of an integral on an arbitraryZ2-graded
Hopf algebraA. Let A* be its dual, which has a naturalZ2-graded algebraic structure induced b
the co-algebraic structure ofA. An even homogeneous element* lPA* is called a left integral on
A if

f •E l

5^ f ,1A&E l

, ; f PA* .

Similarly, an even homogeneous element* rPA* is called a right integral onA if
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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E r

• f 5^ f ,1A&E r

, ; f PA* .

A straightforward calculation shows that the defining properties of the integrals are equival
the following requirements

S id^ E l DD~x!5E l

x, S E r

^ idDD~x!5E r

x, ;xPA. ~5!

where id is the identity map onA.
A Haar functional*PA* on A is an integral onA which is both left and right, and sends1A

to 1, i.e.,

~ i ! S E ^ idDD~x!5S id^ E DD~x!5E x, ;xPA,

~6!

~ i i ! E 1A51.

In the case ofTq(g), it is an entirely straightforward matter to show the following.
Theorem 2: The element*P„Tq(g)…* defined by

E 1Tq~g!51; E t i j
~l!50, 0ÞlPP1 ,

gives rise to a Haar functional onTq(g).
Denote by 2r the sum of the positive roots ofg. Let K2r be the product of powers ofki

61’s
such that

K2reiK2r
215q~2r,a i !ei , ; i .

Then it can be easily shown that

S2~x!5K2rxK2r
21, ;xPUq~q!.

We define the quantum superdimension of the irreducible Uq(g) moduleW(l) by

SDq~l!ªStr$t ~l!~K2r!%.

For quantum superalgebras other than the osp(1u2n) series, there exists a class of finit
dimensional irreducible representations, the typicals, of which the super-dimensions vanish
tically. Again, Uq„osp(1u2n)… is an exception, and we have the following important property:
any irreducible Uq„osp(1u2n)… moduleW(l) with highest weightlPP1 ,

SDq~l!Þ0.

Now the Haar functional* satisfies the following properties.
Lemma 1:

E t i j
~l! t̃ rs

~m!~21!@ j #@r #1@ i #1@ j #5d ir dlm

ts j
~l!~K2r!

SDq~l!
,

~7!

E t̃ i j
~l!t rs

~m!~21!@ j #@r #5d jsdlm

t̃ ir
~l!~K2r!

SDq~l!
.

6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Proof: Consider the first equation. ThelÞm case is easy to prove: the integral vanish
because the tensor productW(l) ^ W(m†) does not contain the trivial Uq(g) module. Whenl
5m, we introduce the notations

f ir ;s j5E t i j
~l! t̃ rs

~l!~21!@ j #@r #1@ i #1@ j #; F@s, j #5~f ir ;s j! i ,r 51
dl ; C@ i , r #5~f ir ;s j!s, j 51

dl .

It is clearly true that Str(C@ i ,r #)5d ir .
Note that corresponding to eachxPUq(g), there exists anx̃P„Tq(g)…* defined by x̃(a)

5^a,x&, ;aPTq(g). The left integral property of* leads to

e~x!f ir ;s j5S x̃.E D t i j
~l! t̃ rs

~l!~21!@ j #@r #1@ i #1@ j #

5(
~x!

(
i 8,r 8

t i i 8
~l!

~x~1!!t r 8r
~l!

„S~x~2!!…f i 8r 8;s j~21!@x#~@ i #1@ j # !1@x~2!#~@ j #1@s# !,

i.e.,

e~x!F@s, j #5(
~x!

t ~l!~x~1!!F@s, j #t ~l!
„S~x~2!!…~21!@x~2!#~@ j #1@s# !, ;xPUq~g!.

Schur’s lemma forcesF@s, j # to be proportional to the identity matrix, and we have

C@ i , r #5d ir c,

for somedl3dl matrix c. The right integral property of* leads to

e~y!c5(
~y!

t ~l!~K2r!t ~l!~y~1!!t
~l!~K2r

21!ct ~l!
„S~y~2!!….

Again by using Schur’s lemma we conclude thatc is proportional tot (l)(K2r). Since its super-
trace is 1, we have

c5
t ~l!~K2r!

SDq~l!
.

This completes the proof of the first equation of the lemma. The second equation can be sh
exactly the same way. h

It is worth observing that this Lemma and part~2! of Theorem 1 provide a quantum analog
the Peter–Weyl theorem for OSPq(1u2n).

IV. QUANTUM HOMOGENEOUS SUPERVECTOR BUNDLES

In this section we will investigate the quantum homogeneous superspaces and quant
mogeneous supervector bundles arising from the quantum supergroup OSPq(1u2n) by adapting
the methods and techniques of Refs. 9 and 19 to the present context. Let us start by intro
two types of actions of Uq(g) on Tq(g). The first action will be denoted by+, which corresponds
to the right translation in the classical theory of Lie groups. It is defined by

x+ f 5(
~ f !

~21!@ f ~1!#@ f ~2!# f ~1!^ f ~2! ,x&, xPUq~g!, f PTq~g!. ~8!
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Straightforward calculations show that

x+~y+ f !5~xy!+ f , ~x+ f !~y!5 f ~yx!, ~ idTq~g! ^ x+ !D~ f !5D~x+ f !.

The other action, which corresponds to the left translation in the classical Lie group theory, w
denoted by•. It is defined by

x• f 5(
~ f !

^ f ~1! ,S21~x!& f ~2! . ~9!

It can be easily shown that

~x• f !~y!5~21!@x#@y# f ~S21~x!y!,

x•~y• f !5~xy!• f , x,yPUq~g!, f PTq~g!.

Furthermore, the two actions graded commute in the following sense

x+~y• f !5~21!@x#@y#y•~x+ f !, x,yPUq~g!, f PTq~g!.

Let V be a finite-dimensional module over Uq(k). We extend the actions+ and• trivially to
V^Tq(g): for any z5(v i ^ f iPV^Tq(g),

x•z5( ~21!@x#@v i #v i ^ x• f i ,

x+z5( ~21!@x#@v i #v i ^ x+ f i , xPUq~g!.

We now introduce two important definitions:

Aq
k
ª$ f PTq~g!ux+ f 5e~x! f , ;xPUq~k!%; ~10!

Gq
k~V!ª$zPV^Tq~g!ux+z5„S~x! ^ idTq~g!…z, ;xPUq~k!%. ~11!

The remainder of this section is devoted to studying the properties of these objects. Let
prove the following.

Proposition 1:~1! Aq
k is an infinite-dimensional subalgebra ofTq(g).

~2! Gq
k(V) is an infinite-dimensional supervector space if the weight of any vector of

Uq(g) integral, and is zero otherwise.
Proof: We first show thatAq

k is a subalgebra ofTq(g). Since Uq(k) is a Hopf subalgebra o
Uq(g), for anyxPUq(k), D(x)5( (x)x(1)^ x(2)PUq(k) ^ Uq(k). Hence

x+~ab!5(
~x!

~21!@x~2!#@a#$x~1!+a%$x~2!+b%5e~x!ab,

that is,abPAq
k .

Since the finite-dimensional representations of Uq(k) are completely reducible, the study o
properties ofGq

k(V) reduces to the case whenV is irreducible. LetVm be a finite-dimensiona
irreducible Uq(k) module with highest weightm and lowest weightm̃. Any elementzPGq

k(Vm)
can be expressed in the form

z5 (
lPP1

(
i , j

v i j
~l!

^ t̃ i j
~l! ,
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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for somev i j
(l)PVm . Fix an arbitrarylPP1 . For any nonvanishingwPW(l), the following

linear map is clearly surjective:

HomC„W~l!,Vm…^ w→Vm ,

f ^ w°f~w!.

Thus there existf i
(l)PHomC„W(l),Vm… such thatv i j

(l)5f i
(l)(wj

(l)), where$wi
(l)% is the basis of

W(l) discussed before. Therefore, we can rewritez as

z5 (
lPP1

(
i , j

f i
~l!~wj

~l!! ^ t̃ i j
~l! .

The defining property ofGq
k(Vm) states that

l +z5„idTq~g! ^ S~ l !…z, ;l PUq~k!.

Thus we have

(
lPP1

(
i , j ,k

t jk
~l!

„S~ l !…f i
~l!~wj

~l!! ^ ~21!@ l #@f i
~l!

# t̃ ik
~l!5 (

lPP1

(
i , j

S~ l !f i
~l!~wj

~l!! ^ t̃ i j
~l! .

Recalling that thet̃ ki
(l) are linearly independent, the above is equivalent to

l f i
~l!~wj

l!5~21!@ l #@f i
~l!

#f i
~l!~ l wj

~l!!, ;l PUq~k!.

This equation is precisely the statement that thef i
(l) be Uq(k)-module homomorphisms of de

grees@f i
(l)#,

f i
~l!PHomUq~k!„W~l!,Vm…,HomC„W~l!,Vm…, ; i .

Thus finding sections inGq
k(Vm) is equivalent to finding, for alllPP1 , the homomorphisms

f (l)PHomUq(k)„W(l),Vm…. Note that each such homomorphismf (l) determinesdl linearly
independent sections:

z i
~l!5(

j
f~l!~wj

~l!! ^ t̃ i j
~l! .

However, whenm is not integral with respect to Uq(g), HomUq(k)„W(l),Vm…50, and hence

Gq
k(Vm) vanishes in this case.

Now consider the case withm50; we haveGq
k(Vm50)5Aq

k as supervector spaces. There is
homomorphism from the trivial representation of Uq(g), W(0)5C, onto V05C. This gives the
constant sections ofAq

k . Let g be the highest root ofg. Recall that in the classical situation,k is
reductive withN5r 2uQu independent central elements. This, transcribed to the quantum
implies the existence ofN linearly independent Uq(k) homomorphismsW(g)→C. As mentioned
above, each of these corresponds tod5dim(g) linearly independent sections. So the represen
tion W(g) determinesNd linearly independent sections. Further linearly independent sections
be obtained using the following lemma.

Lemma 2: Suppose there are nontrivialUq(k) homomorphisms W(l1)→Vm1
and W(l2)

→Vm2
. Then there is an induced nontrivialUq(k) homomorphism

W~l11l2!→Vm11m2
.
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For example, for any positive integerm, there exist (muN) ~partition ofm into <N parts! linearly
independent homomorphismsW(mg)→C. Thus we have proved that the algebraAq

k is infinite
dimensional.

Now let us consider the case with 0ÞmPP. It is an elementary exercise to verify thatVm is
Uq(k)-isomorphic to a Uq(k)-irreducible part ofW(l8), wherel8 is the dominant weight in the
Weyl group orbit ofm. Thus there is a nontrivial Uq(k) homomorphism

W~l8!→Vm ,

and this determines at leastdl8 linearly independent sections inGq
k(Vm). Further linearly inde-

pendent sections can be constructed explicitly using Lemma 2 which promises a family of h
morphisms

W~l81mg!→Vm , mPN1 .

This establishes thatGq
k(Vm) is infinite dimensional. h

Aq
k may be regarded as the quantum analog of the algebra of functions over the supe

OSP(1u2n)/K, whereK is the subgroup of OSP(1u2n) with Lie superalgebrak. Such homoge-
neous superspaces were studied in the work of Manin,16 Penkov,17 and others. Here we wish to
make some investigations into their quantum analogs.

As is well known, one cannot define a noncommutative~in the Z2-graded sense! space di-
rectly in geometrical terms. Instead, such a space has to be defined by specifying its alg
functions. We will takeAq

k as the algebra of functions over the quantum homogeneous super
which corresponds to OSP(1u2n)/K in the classical situation. Let us now study properties
Gq

k(V). First observe the following.
Theorem 3: Gq

k(V) furnishes a two-sidedAq
k module under the multiplication ofTq(g).

Proof: The left and right actions ofAq
k on Gq

k(V) are respectively defined by

az5(
r

~21!@a#@v i #v i ^ a fi , za5(
r

v i ^ f ia,

whereaPAq
k andz5( iv i ^ f iPGq

k(V). Now for pPUq(k),

p+~az!5(
~p!

~21!@p~2!#@a#$p~1!+a%$p~2!+z%5~21!@p#@a#a$p+z%5„S~p! ^ idTq~g!…az;

p+~za!5(
~p!

~21!@p~2!#@z#$p~1!+z%$p~2!+a%5$p+z%a5~S~p! ^ idTq~g!!za.

This completes the proof. h

WhenV is actually a Uq(g) module, theAq
k moduleGq

k(V) has a particularly simple structure
Proposition 2: Let W be a finite-dimensional leftUq(g) module, which we regard as a le

Uq(k) module by restriction. ThenGq
k(W) is isomorphic to Ŵ Aq

k either as a left or rightAq
k

module.
Proof: We first construct the rightAq

k module isomorphism. Being a left Uq(g) module,W
carries a natural rightTq(g) comodule structure with the comodule actiond:W→W^Tq(g) de-
fined by

d~w!~x!5xw, xPUq~g!, wPW. ~12!

@Here the notation requires some clarification. If we expressd(w)5( (w)w(1)^ w(2) , then
d(w)(x)5( (w)(21)@x#@w(1)#w(1)^w(2) ,x&.# Define h:W^Tq(g)→W^Tq(g) by the composition
of maps
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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W^Tq~g! ——→
d ^ id

W^Tq~g! ^Tq~g!→W^Tq~g!,

where the last map is the multiplication ofTq(g). Thenh defines a rightAq
k module isomorphism,

with the inverse map given by the composition

W^Tq~g! ——→
d ^ id

W^Tq~g! ^Tq~g! ——→
~ id^ S^ id!

W^Tq~g! ^Tq~g!→W^Tq~g!,

where the last map is again the multiplication ofTq(g). It is not difficult to show that

x+h~z!5hS (
~x!

~x~1! ^ idTq~g!!x~2!+z D ,

x+h21~z!5h21S (
~x!

„S~x~1!! ^ idTq~g!…x~2!+z D , ;zPTq~g! ^ W, xPUq~g!.

ConsiderzPGq
k(W). We have

p+h~z!5hS (
~p!

~p~1! ^ idTq~g!!p~2!+z D 5hS (
~p!

~p~1!S~p~2!! ^ idTq~g!!z D
5e~p!h~z!, ;pPUq~k!.

Henceh„Gq
k(W)…,W^Aq

k . Conversely, given anyjPW^Aq
k , we have

p+h21~j!5h21S (
~p!

„S~p~1!! ^ idTq~g!…p~2!+j D
5h21S (

~p!
„S~p~1!!e~p~2!! ^ idTq~g!…j D 5„S~p! ^ idTq~g!…h

21~j!, ;pPUq~k!.

Thush21(W^Aq
k),Gq

k(W). Therefore the restriction ofh to Gq
k(W) provides the desired righ

Aq
k module isomorphism.

The left module isomorphism is given by the restriction toGq
k(W) of the linear mapk:W

^Tq(g)→W^Tq(g), which is defined by the following composition of maps

W^Tq~g! ——→
d ^ id

W^Tq~g! ^Tq~g! ——→
id^ P~S2

^ id!

W^Tq~g! ^Tq~g!→W^Tq~g!,

where

P:Tq~g! ^Tq~g!→Tq~g! ^Tq~g!,

a^ b°~21!@a#@b#b^ a. ~13!

The inverse mapk21 is given by

W^Tq~g! ——→
d ^ id

W^Tq~g! ^Tq~g! ——→
id^ P~S^ id!

W^Tq~g! ^Tq~g!→W^Tq~g!.
h

With the help of this Proposition, we can now prove the following important result.
Theorem 4: Gq

k(V) is projective and of finite type both as a left and right module over
superalgebraAq

k of functions on the quantum homogeneous superspace.
Proof: Since Uq(k) is a reductive subalgebra of Uq(g), all finite-dimensional representation

of Uq(k) are completely reducible. LetVs , s51,2,...,K,`, be the irreducible direct summands
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



s

r

rsely,
e

s in
rms of

utative

erspace

17. We
to be

the
ce. The

group
tum

aim

3187J. Math. Phys., Vol. 40, No. 6, June 1999 H. C. Lee and R. B. Zhang

Downloaded 0
V such that their weights are all integral with respect to Uq(g). ThenGq
k(V)5 % sGq

k(Vs). Consider
any Vs , and denote its highest weight byms . There exists such am̂s in the Weyl group orbit of
g that is integral dominant with respect tog. Let W(m̂s) be the irreducible Uq(g) module with
highest weightm̂s , which can be regarded as a Uq(k) module in the natural way. There alway
exists a Uq(k) moduleVs

' such thatW(m̂s)5Vs% Vs
' . Write V'5 % sVs

' , andW5 % sW(m̂s). We
have

Gq
k~V! % Gq

k~V'!5Gq
k~W!>W^Aq

k ,

where the last step follows from Proposition 2. h

Recall that in classical differential geometry, the spaceH of sections of a vector bundle ove
a compact manifoldM furnishes a module over the algebraA(M ) of functions onM. It then
follows from Swan’s theorem that this module must be projective and is of finite type. Conve
any projective module of finite type overA(M ) is isomorphic to the space of sections of som
vector bundle overM. This result is taken as the starting point for studying vector bundle
noncommutative geometry: one defines a vector bundle over a noncommutative space in te
the space of sections which is required to be a finite-type project module over the noncomm
algebra of functions on the virtual noncommutative space. Therefore,Gq

k(V) will be called the
space of sections of a quantum supervector bundle over the quantum homogeneous sup
associated withAq

k .
Homogeneous supervector bundles at the classical level were studied in Refs. 16 and

will not enter the discussion of the subject, but merely mention that the subject proves
extremely rich and many aspects of it remain to be developed.

Following the classical terminology, we will call a quantum supervector bundle trivial if
sections form a free module over the superalgebra of functions on the quantum superspa
following proposition is an immediate consequence of Proposition 2.

Proposition 3: If theUq(k) module V is in fact a finite-dimensional leftUq(g) module, then
the quantum homogeneous supervector bundle with the space of sectionsGq

k(V) is trivial.

V. INDUCED REPRESENTATIONS

In this section we will investigate induced representations of the quantum super
OSPq(1u2n) by using results of the last section. The following proposition explains how quan
homogeneous supervector bundles enter representation theory.

Proposition 4:Gq
k(V) furnishes a leftUq(g) module under the• action, and also a rightTq(g)

comodule under the actionv5 idV^ (idTq(g) ^ S21)D.

Proof: For pPUq(k), xPUq(g), andzPGq
k(V), we have

p+~x•z!5~21!@p#@x#x•~p+z!5„S~p! ^ idTq~g!…~x•z!.

ThusGq
k(V) indeed furnishes a left Uq(g) module under the• action. TheTq(g) coactionv is just

the dual of this left Uq(g) action.
We call Gq

k(V) an induced Uq(g) module, and also an inducedTq(g) comodule. For such
induced modules, we have the following quantum analog of Frobenius reciprocity.

Theorem 5: Let W be aUq(g) module, the restriction of which furnishes aUq(k) module in
a natural way. Then there exists a canonical isomorphism

HomUq~g!„W,Gq
k~V!…>HomUq~k!~W,V!, ~14!

whereUq(g) acts on the left moduleGq
k(V) via the• action.

Proof: We prove the proposition by explicitly constructing the isomorphism, which we cl
to be the linear map
6 May 2005 to 140.115.30.166. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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F:HomUq~g!„W,Gq
k~V!…→HomUq~k!~W,V!, c°c~1Uq~g!!,

with the inverse map

F̄:HomUq~k!~W,V!→HomUq~g!„W,Gq
k~V!…, f°f̄5~f ^ S!d,

whered:W→W^Tq(g) is the rightTq(g) comodule action defined by~12!.
To verify our claim, we first need to demonstrate that the image ofF is contained in

HomUq(k)(W,V). ConsidercPHomUq(g)„W,Gq
k(V)…. For anypPUq(k) andwPW, we have

p„Fc~w!…5„S21~p!+c~w!…~1Uq~g!!,

where we have used the defining property ofGq
k(V). Note that

„S21~p!+c~w!…~1Uq~g!!5„p•c~w!…~1Uq~g!!.

The Uq(g)-module structure ofGq
k(V) and the given condition thatc is a Uq(g)-module homo-

morphism immediately leads to

p„Fc~w!…5~21!@c#@p#c~pw!~1Uq~g!!5~21!@c#@p#Fc~pw!, pPUq~k!; wPW.

Now consider F̄. We first show that the image Im(F̄) of F̄ is contained in
HomUq(g) „W,Gq

k(V)…. Note that Im(F̄),HomC„W,V^Tq(g)…. Some relatively simple manipula
tions lead to

„x•f̄~w!…5f̄~xw!,

„p+f̄~w!…5„S~p! ^ idTq~g!…f̄~w!, xPUq~g!, pPUq~k!, wPW.

Therefore, Im(F̄),HomUq(g)„W,Gq
k(V)…. Now we show thatF andF̄ are inverse to each other. Fo

cPHomUq(g)„W,Gq
k(V)…, andfPHomUq(k)(W,V), we have

~FF̄f!~w!5~ F̄f!~w!~1Uq~g!!5f~w!,

~ F̄Fc!~w!~x!5~21!@x#~@w#11!~Fc!„S~x!w…

5~21!@x#~@w#11!c„S~x!w…~1Uq~g!!

5~21!@x#~@w#1@c#11!
„S~x!•c~w!…~1Uq~g!!5c~w!~x!, xPUq~g!, wPW.

This completes the proof of the Proposition. h

Let Vm be a finite-dimensional irreducible Uq(p) module with highest weightm and lowest
weight m̃. SinceVm is a Uq(p) module the following is a well-defined subspace ofGq

k(Vm),

Oq~Vm!ª$zPGq
k~Vm!up+z5„S~p! ^ idTq~g!…z, ;pPUq~p!%.

We may regardOq(Vm) as the quantum analog of the space of ‘‘holomorphic sections.’’ Re
that the notationW(l) denotes the irreducible Uq(g) module with highest weightl. We have the
following result.

Theorem 6: There exists the followingUq(g) module isomorphism

Oq~Vm!>HW„~2m̃ !†
…, 2m̃PP1 ,

0, otherwise. ~15!
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Proof: EachzPOq(Vm) can be expressed in the form

z5 (
lPP1

(
i , j

v i j
~l!

^ t̃ i j
~l! ,

for somev i j
(l)PVm ( i , j 51,...,dl). Arguing as in the proof of Proposition 1 one concludes,

eachlPP1 , that there existf i
(l)PHomC„W(l),Vm… such thatv i j

(l)5f i
(l)(wj

(l)), where$wi
(l)% is

the basis ofW(l), relative to which the irreducible representationt (l) of Uq(g) is defined. Thus
we can rewritez as

z5 (
lPP1

(
i , j

f i
~l!~wj

~l!! ^ t̃ i j
~l! .

Similar reasoning as in the proof of Proposition 1 shows that thef i
(l) must be Uq(p)-module

homomorphisms of degree@f i
(l)#. It immediately follows from~4! that

f i
~l!5cif

~l!, ciPC,

andf (l) may be nonzero only when

l̄5m̃.

Hence, if2m̃¹P1 , we haveOq(Vm)50. When2m̃PP1 , we set

n5~2m̃ !†.

Then, we may conclude thatOq(Vm) is spanned by

z i5(
j

f~n!~wj
~n!! ^ t̃ i j

~l! , ~16!

which are obviously linearly independent. Furthermore,

x•z i5~21!@x#@f~n!#(
j

t j i
~n!~x!z j , xPUq~g!.

ThusOq(Vm)>W(n). More explicitly, the isomorphism is given by

W~n! ——→
~ id^ S!d

Oq„W~n!… ——→
f~n!

^ id
Oq~Vm!. ~17!

This completes the proof of the theorem. h

This result provides an analog of the celebrated Borel–Weil theorem for the quantum s
group OSPq(1u2n). For the classical Lie supergroups, the program of developing a Bott–Bo
Weil theory was extensively investigated by Penkov and co-workers.17 Also, a quantum Borel–
Weil theorem for the covariant and contravariant tensor representations of quantum GL(mun) was
obtained in Ref. 9.

Whenm50, the theorem implies that

$ f PTq~g!up+ f 5e~p! f , ;pPUq~p!%5Ce.

Combining this result with with Proposition 2, we obtain the following
Corollary: Let W be any finite-dimensionalUq(g) module. Then, asUq(g)-modules,

Oq~W!>e ^ W.
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