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When is explicitly complexified, the gq-analogue of
the universal enveloping algebra of si(2,0), qu(sl(z,c)),

supports a bi-algebra structure besides the one discussed
recently by Drinfeld, Jimbo, Reshetikhin and others. The
bi-algebra may be a Hopf algebra and has the Hopf algebra of
DJR as the limit q - real. Solutions for the quantum Yang-
Baxter equation, representations for Artin's braid group B.,

and link invariants can be derived from representations of
the bi-algebra in qu(sl(z,c)). The classical Alexander-

Conway link polynomial is given by the two-dimensional
representation. complex link invariants of Lee, Couture
& Schmeing are associated with higher dimensional represen-
tations of ‘?l(sl(2 ,C)). A proposmon giving the link

invariant as an abstract map QI > ¢, where ¢ is the iden-
tity in QJ , is stated. It contrasts with, and has a more

general application than, the |usuval definition via the
Markov trace.

1. Introduction

Recently interest in the solutions of the Yang-Baxter
equation’ has increased considerably. The Yang-Baxter equa-
tion played a key role in the quantum inverse scattering
method and solvable state models. Subsequently- it was real-
ized that, because the solutions give representations to
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Artin’s braid group B., they can be used to construct link

invariants. As well, they are closely related to mono-
dromies of the correlation functions of conformal field
theories in two dimensions.s

Drinfeld® and Jimbo’ showed that underlying the solu-
tions to the Yang-Baxter equations is a vast mathematical
structure: to each simple or Kac-Moody algebra g, the g-
deformation of the universal enveloping algebra qu(y) has a

Hopf algebra structure, and to each representation of the
Hopf algebra there is a solution to the Yang-Baxter equa-
tion. The representation theory of this structure was
recently studied in detail by Reshetikhin® who derived,
among other things, the fusion rules for the R-matrices
associated with solutions of the Yang-Baxter equation, and
showed how link invariants are constructed.

In the algebraic structure discussed above, the link
invariant associated with the lowest, or tvyo-dimcnsional
representation of qu(sl(z,c)) is just the Jones” polynomial,

that associated with the three and higher dimensional repre-
sentations of ‘?tq(sl(Z,c)) are the link invariants of Akutsu,

Wadati and co-workers®. These higher order link invariants
and others similarly dgrived (see also those derived by
Yamagishi, Ge and Wu' via the three-dimensional topologi-
cally invariant gauge theory of Witteet:‘) are generalizations
of Jones’ polynomial. They share a common characteristic
that sets them apart from the classical Alexander-Conway
polynomial’:  the Alexander-Conway maps all split links to
the null-polynomial, whereas the Jones polynomial and its
generalizations do not. On the other hand, it is well-known
that the Jones polynomial and the Alexander-Conway polynom-
ial are closek' related.  They are respectively one-variable
specializath)ns of the two-variable link invariant of
HOMFLY' . To illustrate another relation, denote {L} as the
set of all links, P the space of power series in t, v.(1)

the Jones polynomial, P (Lw=-1) the Alexander-Conway poly-
nomial. Then V,(t) and PAC(t,w=-l) are distinct maps of
{L} » P; V(1) = P, (-LLw=-1) is a map {L} » ¢ which maps
all split links to zero; v,() =P (Lw=1) is a map {L} » ¢

that does not map all split links to zero. The extra para-
meter @ is characteristic of the Alexander-Conway class of
link invariants. Higher members of this class were recently
found by Lee & Couture” and Lee, Couture & Schmeing”. In
particular, the 3-state member of the class P Lo =
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¢?™P) is related to the 3-state Akutsu-Wadati polynomial
VAw(t) the same way P - is related to V,.

The B s invariants were found by directly solving the

Yang-Baxter equation. Since they are so closely related to
the link invariants of qu(sl(z,(:)), an intriguing question

is whether the Alexander-Conway class of invariants has a‘ll_:g;
thing to do with qu(sl(z,l:)). and if so, in what way.

answer is now known: the class is directly associated with a
bi-algebra structure in the complexified qu(sl(2,c)) which

fpegializes to the algebra of Drinfeld & Jimbo in the real
imit.

For the rest of this paper, in Sec. 2 we introduce the
concept of Hopf algebra by explicitly constructing represen-
tations for it in terms of 2xX2 matrices. We find that only
two distinct representations exists if each ome is to give a
solution to the Yang-Baxter equation. In sec. 3 we briefly
review some of the results of Drinfeld and Jimbo, following
mostly Reshetikhin. We identify one of the representations
derived in the previous section as precisely the lowest
dimensional representation for Drinfeld & Jimbo's Hopf alge-
bra for qu(s (2,c)). The other represents a generalization.

The new algebra, which we shall call a pseudo-Hopf algebra,
its antipode is not yet specified, also lies in the exponen-
tiation of qu(sl(Z,C)). but with q explicitly and necessar-

ily complex. @ We then give the 3-state representations of
both algebras. The representation for the Drinfeld-Jimbo
algebra is of course known. The representation for the
pseudo-Hopf algebra gives precisely the complex solution for
the Yang-Baxter equation from which the link invariant
Pw(t;w) mentioned earlier is constructed. In sec. 4 we

discuss the construction of link invariants and state a
position with which the link invariant can be defined via an
abstract map

%G " > e € Ul (1.1)

The pr ition is derived empirically, but not proven. The
map differs from the well-known map

End(V®" 5 ¢ (1.2)

or its abstract form
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qu(’)ﬁn > C (1.3)

used in the Markov-trace construction of link invariants,
where V is the vector space carrying the representation of
th(g). Of course (1.3) follows from (1.1), but not vice

versa. We believe (1.1) is the true algebraic definition of
link invariants. It is known that (1.3) is useless when q is
an integral root of unity, because the kernel of the map is
its entire domain. This is also true for all known repre-
sentations of the new algebra. Conversely, (1.1) works for
both cases. I thank Peter Leivo and Michel Couture, with
whom I collaborated on most of the work reported here.

2. Hopf Algebra: Two Toy Representations

Let A be an algebra with elements a and basis ¢, By a

basis one means that each element a € A can be expressed as

a linear combination of the e o,'s. A is a Hopf algebra if:

(i) There are homomorphic maps such that

multiplication m: A®A - A defined by the coefficients m; 3
m(cp,ea) = °p°a = m;o,et (2.1

co-multiplication A: A > A® A defined by the coefficients pga
- PO
ae,) = w7 ej0e; 2.2)

co-unit &: A - C defined by the coefficients ¢y

e(eo) = C, (2.3)
(ii) There is an antiautomorphic map
antipode y: A - A defined by the coefficients yg
= il
Yy =7, e, 2.4)

For each a € A the associativity relations hold

(iii) (4 eid)d(a) = (ided)4d(a) (2.5)
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(iv) (¢eid)d(a) = (ideg)d(a) = a (2.6)
(v) m(ide y)4(a) =m(yeid)d(a) = &(a)e 2.7

Recall that a homomorphism preserves the order of multipli-
cation, for example

A(ab) = A4(a)4(b), Ya,b € A.

On the other hand, an antimorphism reverses the order of
multiplication,

y(a,b) = y(b)y(a), Ya,b € A.

To illustrate what the constraints (2.5) and (2.7) are, let
a=e_ , then the left-hand side of (2.5) becomes, in component

form,

T

_ ,PT, UV
”a”g ¢, ®¢c,0¢,

; = Pt . e 2 PT
4 oxd)A(ea) [ 4 end)epoe Ky A(ep)oet

similarly for the right-hand side. Thus in full detail
(2.5) and (2.7) give the constraints

pPT UV _  UP T
ub u“ = u "y (2.8)

pt v o PT D -
nf;v e” Ky yp m”m_ e” CyC (2.9)

The last equanon suggests the notation (y y)p” p tr”
(rm“) = m,z‘n’ so that (2.9) can be eompact expressed as

Tr(ﬂay(mp) de, = Tr((u ,,)Trmp)c,, = c e (2.10)

suggesting that Hy and m? have a duality relation. This

suggestion is remforced by the similarity between (2.8) and
the following relation derived from the associativity of

multiplication of the product €4

ag
my mﬁt = mzv mpr (2.11)

We thus have the following:
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A Hopf algebra A with basis ¢? is d | to the Hopf
algebra A if its multiplication m is defined by ;‘2

m(e?,e?%) = p’;" e’ (2.12)

and its co-multiplication A is defined by the transpose of

mpa

AeEhH = m;a N Yot (2.13)

The antipode ¥ and co-unit ¢ of X is then determined by
(2.7). Let % be the union of A and A, % = A U A. Then for
clements in the intersection of A and A, the two maps in
each of the pairs, m and m, 4 and A, y and ¥, ¢ and & must
be identical, respectively. Otherwise the maps need not be
the same. Therefore no confusion will arise if only one set
of symbols m, 4, y, & are used for the abstract maps. Thus

& ool T 22 e ag
A(e)-—mw epoe,y(ea)—ygep, r(ep)-rge, ete.

Although a Hopf algebra and its dual appear to be tightly
structured, a representation for it is not so difficult to
find. We shall now construct one explicitly in terms of 2x2
matrices which obey the usual matrix multiplication rules.
There are only four linearly independent 2 X2 matrix elements

1 0 0 01
J"‘1-(0 :) Az-(o (:) A_-).‘-(l :) '1+'“13"o o
which separate naturally into three sets, the commuting, or

Cartan sector including A , and the noncommuniting rais-

ing operator 4 ; the noncommuting lowering operator 4. The
multiplication rules are

Ad =32 ij = 1,2 (2.14)
AA = AA = A; AA, = AA =4, (2.15,16)
Ad, = 4; AA =2 2.17)

With all other multiplications giving 2zero.  Note the sets
{A,A,A.} and {4,A,A} form subalgebras. Furthermore,

assigning the charge +1 to A + and 0 to A, and A,, then the
multiplications (2.14-17) are charge conserving. We now
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choose {4 ,4,,4 } as the basis of the Hopf algebra A

1 2 3
e = Al, ¢ = /11, e = 1+ (2.18)

The most general charge conserving basis for its dual A is
[ el ] = [ a“ alz ] [ Al ] (2.19)
% % % A,

(oul)‘, i = 1,2, where a is a 2X2 matrix
restricted to the Cartan sector, and

or simply e

e, = nA, (2.20)

The c-numbers @ and n are to be determined by the fact

)
that A is dual to A. Note that ¢' and e’ respectively are
their own inverses, c, and e A do not have inverses, while

I &U = (au)'l (2.21)

Recall that the co-multiplication for A is determined by the
multiplication for A. Therefore, from (2.14) and (2.16),
the (representations of) A(e a) are

A(ei) = ec@c i= 1,2 (2.22)

A(°3) =e,0¢ + ¢ ®c, (2.23)

Multiplications of e o are given by (2.19,20) and (2.14,16):

_ -k 2 _
eicj - ailajl(a ) e g = 0 (2.24)
ee, = a.e; ee = "‘,-ics (2.25)
These in turn determine the

co-multiplication of e?, or

?

equivalently, A ’ Az and ).+:

A€ = 4Q) = adajl(a")lk ded, k=12 (2.26)
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A@E) = AA) = a, e’ + a c'ec 2.27)
Since ¢, is a linear combination of A"s, A(Ay) is also
determined by (2.22):

A()..) = (a)klahalj ced (2.28)

Therefore « must be symmetric. In this case (2.23) and
(2.27) become
A(Ai) = A;t‘”z + °n°‘1;9; (2.29)

Note that (2.? is guaranteed by the associativity of multi-
plication for A. ere remains only the task to construct
the axalltipode and the co-unit. The solutions of (2.10) and
its du

Tr(u p;-m")ef’ = Tr(u p;m")e" = ¢% (2.30)

give y, ¥ as 3x3 block-diagonal matrices:

aa’ ) a'a
r=[ —i—3 ]; r=[ — i ~,,] (2.31)
e @y Gy

12 1

and the co-units

L0 )-() e

One can check that (2.5) and (2.6) are also satisfied. This
completes the 2X2 representation of an algebra which appears
to have a Hopf algebra structure. Note that the representa-
tions of all the mnontrivial maps are given in terms of
matrix elements of «, which is itself surprisingly unre-
stricted; it is only required that it be symmetric, bhas no
zero clements (so that & exists), and has an inverse. We
now impose an additional constraint on the algebra struc-
ture. Define an element & € Ae A by

R=c_o et (2.33)

and demand that
(g A)(A)R = RA(a), Va € AUA (2.34)
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split links only when t=w,, where P Aw(a’s) = Pw(wa;ws).

Finally, we present, minus proof, the following propo-
sition for constructing a link invariant on the (pseudo)
Hopf algebra % without reference to any representation. Let
B € B be a braid with positive (negative) crossings repre-

n
sented by generators g (g;'). Express B with n downward

pointing strings as an element in %®", each string occupying
one % At each positive (negative) cross&'pg the string des-
cending from the left has a factor e o€ ), and the string

descending from the right has a factor of e?(y(e a»' Now

close n-1 strings, leaving the right-most open, by connect-
ing, respectively, the n-1 ordered ends at the bottom of the
braid to the n-1 ordered ends at the top of the braid. On
the algebra, the action of connecting two strings is to
insert a factor h € % at the connection and then multiBly
the two eclements. The element h is given by h = ¢ ar(e )

When one end of a string is connected to its opposite end by
closing, thus forming a link, again a h is inserted at the
connection, and the connected element corresponding to the
link is taken value on C by the map &:4C, defined by
Rep(Z(a)) = Trace(Rep(a)), Ya€E

Proposition. The procedure described above for closing n-l
strings of a braid § € B_is a map

re): «®° sec € « (4.6)

The <;unction P[p] = A&+ I'(B) where A € ¢ is defined
by e¢“hy(e a) = Ae, is a link invariant.

This is just the abstract form of (4.4) and (4.5).
Theorem 1. cphep =e. 4.7)

! — o _ La ~0 TP
Proof. ephep = epear(e )ep - mpa ”ﬁ €y eﬁ

= (m(yeid) 4(c%)e, = ece, = ¢

where & is the co-unit. Note the left-hand side of (4.7) is
just the closing of one of the two strings in a braid with
one positive crossing. We therefore have:

Lemma 1. For an R-matrix given (4.1), the element h needed
to construct the Markov trace or the map (4.6) always exists
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and is given by h = ¢ ay(ea).
Theorem 2.  ¢’hy(e,) = Ae . (4.8)

The left-hand side represents the closing of a braid with
onec negative crossing; A is the constant needed in (4.3.5,6)
to ensure that the expressions given are invariant under the
first Reidemeister or the second Markov move. The proofs of
the proposition and theorem 2 will be given elsewhere.

I am grateful to T.D. Lee and K.C. Chou, Directors, and
H.Y. Guo and Z.M. Qiu, main organizers, for giving me an
opportunity to present this work and for hospitality at the

Symposium.
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Note Added: After these lectures were given I received the preprint “Knots,
abstract tensors and the Yang-Baxter equation” by L. Kauffman where a des-
cription of the Alexander polynomial in terms of a bialgebra is given. I
thank Kauffman for sending me the preprint.



