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Abstract 

In non-Hamiltonian dissipative systems that have at- 
tracting limit cycles there are phase shifts analogous to the 
geometric phase of Hamiltonian quantum systems. Here 
the phase variable is the equal-time parametrization of a 
limit cycle. The phase shift is calculable when the direr- 
entia1 equations of the variables of the systems are known. 
We study such a system with both numerical and analyti- 
cal methods and show that the phase shift sometimes, but 
not always, have a geometric meaning. The computation is 
obtain by using the IBM SP2 at NCHC. 

1. Geometric Phase in a Dissipative System 

There is an analogous phenomena to geometric phase in 
classical dissipative systems [ 11. They are dissipative oscil- 
latory systems which have attracting limit cycles. By defini- 
tion an attracting limit cycle of a dynamical system is such 
that if the system comes to a point sufficiently near a limit 
cycle it will relax to the cycle. A limit cycle in a dissipative 
system is therefore plays the role of a state, or an orbit, in 
a quantum system. The fast motion of the system around 
a limit cycle is analogous to the motion of the quantum 
system caused by the action of the Hamiltonian. A phase 
variable that equal-time parameterizes the limit cycle corre- 
sponds to the phase of a quantum state. Now consider adi- 
abatically moving the classical system through a parameter 
space. The adiabatic condition prevents large fluctuations 
from a limit cycle, and ensures that once a system enters a 
limit cycle, it will always stay close to that limit cycle. This 
is an exact analogy to the adiabatic condition in a quantum 
system, which is imposed to ensure that the system stays in 
one state. 

We start with a two-dimensional limit cycle whose first 
order derivative is given by 
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where R is periodic in 0 with periodicity 2 ~ ,  and p is a set of 
slowly varying parameters whose adiabatic limit is E -+ 0. 
The equal-time parametrization of the limit cycle is 

where w ( p )  is the inverse period of the cycle when p is 
fixed, i.e., @(2n1 p)  = 1. The integral is an average over 
the fast motion variable 8. The time derivative of equation 
(2) is 

- dB d/l d(P = --aO@+--VO,@ 
dt dt dt 

The first term of equation (3) is the dynamical phase, and 
the second term, the one we are interested in, is the rate of 
change of the phase caused by the adiabatic change of pa- 
rameters. After completing one closed loop in the parameter 
space, this phase changes by 

d t b ( 4  . VO,@ ( O ( t ) I  P ( 4 )  , (4) 

where T is the time needed to complete the loop in the 
parameter space. The gradient V p @  ( 0 ( t ) , p ( d ) )  is a fast 
changing function of 8. In the limit E -+ 0 we are only 
interested in slow variations. So we replace it by its angle 
average: 

where ( )0  means integration over 0 and the prime on 
@ means differentiation with respect to 8. The angle av- 
erage has the correct normalization because by definition 
w Jt" d80-'(8) = 1 .  Changing the time integration to an 
integration over the parameters p ,  the integrand in (4) takes 
the form of a one-form, 

(6) XbL)  = d P .  (-ae@(81 P)VP@(81 P I ) ,  
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and, in the E --+ 0 limit, the phase change becomes a line 
integral over a closed path C in p-space, 

(7) 

This is transformed by Stokes' theorem to a surface integral, 

where the two-form is 

dx = (V ,@'xV ,@)e .dS  

d e  V,@'(B) x V,@(8) dS (9) 

This is to be compared with Berry's two-form [2] for a 
quantum system 

~ x B ~ ~ ~ ~  = i ( V ~ n (  x ( V R ~ )  . d S  

= i 1 dq V ~ @ k ( q )  x V R @ ~ ( ~ )  . dSX10) 

where q is the coordinate system in which the representa- 
tion of the state In) is the wave-function Gn(q). With the 
exception that the complex conjugate i@E(q) in the quan- 
tum case is replaced by the derivative @;(e), the similarity 
is obvious. It should be pointed out that the two-form van- 
ishes when either the complex conjugate or the derivative is 
not taken. 

Now consider the system initially being not exactly on 
the limit cycle R but is near by, and define the small devia- 
tion from the limit cycle as x = T - R. Then 

and the deviation satisfies 

where f ( O , O ,  p)  = 0 and A-' is the scale of the relaxation 
time for returning to the limit cycle. In the limit A + ca the 
system will fall onto the limit cycle very rapidly. For large 
A one can expand x in A-' : 

00 

x ( t ,  A) = xm(t)X-m + e(t, A). (13) 
m=l 

The second term on the right-hand-side is a transient term 
dependent on the initial condition and decays exponentially 
as exp(-aht) for some constant a > 0. Since we are 
considering an indefinitely long time, this term can be ne- 
glected. Substituting (13) into (12), Taylor expand f to 

O(h-') and neglect all terms of order c2, x2 ,  E X  or higher, 
we obtain 

00 

- dX = dxm - -Axaxf - V,R 
d t  m=l d t  

00 

= - ~ x , A - m f l  f 1 -c/i.V,R, (14) 
m=l 

Note that dxm/dt = ( c f i .  V, + e&)xm and A-" also 
should be neglected for any m 2 1. Equating the coeffi- 
cients of terms of the same power in A-l ,  we get 

-1 

2 1  = - (2) qi.V,R(B,p), 

(15) 

for m 2 1. Since each term in the series is proportional to 
e@, x has the form 

axm - af n(O,Q, P )  38 - - X m + 1 ~  ( O , e ,  P )  7 

x = - ~ f i .  ((0, p,  A). (16) 

Taylor expanding the new R in (1 1) in x ,  we have 

M w - l ( p )  (1 - w(p)X 

Hence 

and (3) becomes 

(19) 
which adds an additional term to the one-form 

Since there is no need to the angle average twice, the one- 
form can finally be written as 

x = dP . (@'(e, P )  [V,@(O, P )  - 4 P ) C &  In nl)s 
E x1 f X z ,  (21) 

where x1 is the part of x independent of x and x 2  is the 
part that does, and @, ( and are all evaluated at x = 0. 
Evidently (8) still holds. 

646 

Authorized licensed use limited to: National Central University. Downloaded on April 03,2010 at 23:44:21 EDT from IEEE Xplore.  Restrictions apply. 



2. An Example Change the unit of time to t' = t / T ,  then X becomes 

Here we consider a case where it is possible to derive 
an approximate analytic expression for the phase shift; the 
result is proportional to the area enclosed by the closed 
path. Then we compare it against the numerically computed 
phase shift for several geometrically distinct paths. 

2.1. Approximate analytic expression 

Consider a dissipative system with one attracting limit 
cycle whose evolution is determined by the set of equations: 

(22) 

where the pair of parameters is p = ( p ,  $) with 0 5 p < 1 
and the limit cycle is an ellipse, 

8 = r,  
rg + ( R  - r ) ,  

R = I/ (1 + pcos(e + $1) . (23) 

When the system is initially on the limit cycle, 6 2i R and 
the period w-l  is 

which is independent of the parameters, and the function Qi 
is 

" "  

From (21) the first part of the one-form x is, 

1 d8 
XI = d p .  - 1 

%i 0 
(sin(0 + $)b + cos(8 + $)$) 

1 
= &P2d4, 

and phase shift produced by it is 

The phase shift is the area enclosed by the closed path in the 
parameter space divided by 27r. 

Now consider fluctuations about the limit cycle. Because 
x z r - R, we can get the equation for x from the equation 
of r 

. dR 
i = R+X = 8- -x, de 

and re-express (22) as equations of 0 and IC, 

dx 
dt' 
- = -TX  - /iU,R. 

A comparison with (14) yields 

f(.,e,p) = 2, A = 7, af/ax = 1. (31) 

The solution for (15) on the series expansion of x is 

2 1  = -/i.U,R, 
2 2  = /i. RdsU,R, (32) 

... 

Thus. 
1 00 

x = x,7-" = --/i(-, 0- (33) 
,=l 

where 

(34) 
1 

= U,R + -Rdsv,R + O ( T - ~ ) .  
7 

We can then obtain x2 and A&!. 

2.2. Numerical results for some paths 

As a first and simple example, we keep p = po as a con- 
stant and move the system along a circle in the parameter 
space at constant speed so that 4 = 2 ~ t / ~ .  Then from 
equation (27), 

(35) 1 2  
4 1  = y o .  

To compute the x2 we have to O(7-l) 

6 = R2 sin(O+$)-- (2R4psin2(8 +$) + R3 cos(8 + $)) . 

Then from (21) 

1 
7 

(36) 

-1 (2R4po sin2(8 + $) + R3 Cos(8 +$))I 
7 

so Acpa = -1/1-. The total phase shift is therefore 

(37) 

1 1 
2 

1 2  1 O ( F ) ,  lim Acp = - P E .  (38) 2 7  T+CC 
Acp = -PO - - + 
In the case ?c, = - 2 r t / r ,  the system is moved along the 

circle in the parameter space in the opposite direction. Then 
Acp = -1 2 Po + 1 / ~  + O( 3). These results are shown in 
Figure 1. 
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In general the phase shift may not be calculable analyt- 
ically. we have solved the the set of differential equations 
(22) by numerical integration using the fourth-order Runge- 
Kutta method [4] for several cases. 

In practice we compute 6(t) at any t. In particular we 
get p(r) = O(7). The dynamical phase denoted by 60 may 
be obtained similarly by keeping II, a constant; it should be 
and is equal to 27rwr. Then the phase shift is 

(39) Acp = - (6(r) - & ( r ) ) .  

Where the normalization is to conform with the definition of 
p (equation (2)), which is an angle divided by 27r. Because 
cp = / dx + O ( E ) ,  we only compare numerically and ana- 
lytically computed results when E is small (i.e., when r is 
large). The results are shown in Table 1 and Figure 1 and 2. 
The solid lines is the A4  for $ = 27rt/r and the dashed line 
is the -A4 for $ = -27rt/r The analytical result appears 
to have errors of the order of lo-’ N 10-l. 

In the second case we still move the system around a cir- 
cle but this time the center of the circle is not on the origin. 
The function of the parameters are p = po sin(27rt/r) and 
$ = 27rt/r. By this functions, the system will move around 
the circle twice. The analytical result when r + 03 is 

1 
27r 

1 PE sin2 $d$ = - ( 7 r - ) .  (40) 
27r 27r 2 

The figure of the path and the numerical results are shown 
in Figure 3 and 4. The errors of the analytical results are of 
the order of 10-l. 

In the third case, the functions of the parameters are p = 
po sin(27rtl.r) and $ = $0 cos(27r/r). The figure of the 
path is shown in Figure 5. In this case the total area enclosed 
by the path is equal to zero, and the numerical result also 
approaches zero ,as shown in Figure 6. 

In the fourth case, the system move along an eight-form 
path, as shown in Figure 7. The total area enclosed by 
the path is also equal to zero. The numerical result is ap- 
proaches to zero, too, as shown in Figure 8. Figure 10 is the 
numerical result when the closed path is a square, as shown 
in Figure 9. Here the parameter $ = 27rt/r. The analytic 
result for r + oc) is A$ = 4pg/27r. The error in this case 
is of the order of lo-’. All these results are obtained from 
IBM SP2 machine. 

In summary, we can say that the phase shift in a dissi- 
pative system with limit cycles is geometric, because A4 
approaches some constant at the adiabatic limit. The phase 
shift will not increase with the time limit cycles is geomet- 
ric, because A 4  approaches some constant at the adiabatic 
limit. The phase shift will not increase with the time to 
complete the circuit in the parameter space. In the exam- 
ple shown in section 4, the geometric property of the phase 
shift is that it is proportional to the area enclosed by the 

circuit in the parameter space. The numerical results also 
agree with this property. But this is not a general rule for 
the phase shift. The geometric properties of the phase shift 
in dissipative systems depend on the case given, not like the 
quantum systems which have a general rules for the phase 
shift. We can obtain the geometric properties of the phase 
shift in other cases by the formulae given in section 3. 
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Table 1. Analytical and numerical results of 
the circle uath. 

po r analytical reults numerical results error % 
0.2 104 0.1257 0.1568 19.878 

0.3260 13.256 0.3 104 0.2827 
0.4 104 0.5027 0.5410 7.089 

0.6 104 1.1310 1.1156 1.382 
0.7 104 1.5394 1.5224 1.118 
0.8 104 2.0106 2.1951 8.405 

0.5 104 0.7854 0.8008 1.919 

Figure 1. Analytical results of example 1. 
Here po = 0.8. 
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Figure 2. Numerical results of example 1. 
Here po = 0.8. 

Figure 3. The path in the parameter space of 
exsample 2. 

Figure 4. A$ for moving around the path 
shown in Fig.3. 

Figure 5. The path in the parameter space of 
example 3. 

Figure 6. A$ for moving around the path 
shown in Fig.5. 

Figure 7. The path in the parameter space 
example 4. 

of 
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Figure 8. A$ for moving around the path 
shown in Fig.7. 

Figure 9. A square path in the parameter space of 
example 5. 

Figure 10. Ab for moving around the path 
shown in Fig.9. 
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