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Abstract

In non-Hamiltonian dissipative systems that have at-
tracting limit cycles there are phase shifts analogous to the
geometric phase of Hamiltonian quantum systems. Here
the phase variable is the equal-time parametrization of a
limit cycle. The phase shift is calculable when the differ-
ential equations of the variables of the systems are known.
We study such a system with both numerical and analyti-
cal methods and show that the phase shift sometimes, but
not always, have a geometric meaning. The computation is
obtain by using the IBM SP2 at NCHC.

1. Geometric Phase in a Dissipative System

There is an analogous phenomena to geometric phase in
classical dissipative systems [1]. They are dissipative oscil-
latory systems which have attracting limit cycles. By defini-
tion an attracting limit cycle of a dynamical system is such
that if the system comes to a point sufficiently near a limit
cycle it will relax to the cycle. A limit cycle in a dissipative
system is therefore plays the role of a state, or an orbit, in
a quantum system. The fast motion of the system around
a limit cycle is analogous to the motion of the quantum
system caused by the action of the Hamiltonian. A phase
variable that equal-time parameterizes the limit cycle corre-
sponds to the phase of a quantum state. Now consider adi-
abatically moving the classical system through a parameter
space. The adiabatic condition prevents large fluctuations
from a limit cycle, and ensures that once a system enters a
limit cycle, it will always stay close to that limit cycle. This
is an exact analogy to the adiabatic condition in a quantum
system, which is imposed to ensure that the system stays in
one state.

We start with a two-dimensional limit cycle whose first
order derivative is given by

0= Q (9, ulet)), (1)
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where (1 is periodic in 8 with periodicity 27, and y is a set of
slowly varying parameters whose adiabatic limit is € — 0.
The equal-time parametrization of the limit cycle is

[/
=20 =u) [ @

where w(p) is the inverse period of the cycle when u is
fixed, i.e., (27, u) = 1. The integral is an average over
the fast motion variable 8. The time derivative of equation
Q) is

dy du
E —60<I)+dt quf‘
= wp)+ep-V,>e 3)

The first term of equation (3) is the dynamical phase, and
the second term, the one we are interested in, is the rate of
change of the phase caused by the adiabatic change of pa-
rameters. After completing one closed loop in the parameter
space, this phase changes by

Ap = e/OT dti(et) -V, @ (6(t), u(et)), 4

where 7 is the time needed to complete the loop in the
parameter space. The gradient V,® (0(¢), u(et)) is a fast
changing function of §. In the limit ¢ — 0 we are only
interested in slow variations. So we replace it by its angle
average:

27
S O(0), ulet) - w(p) / Qw S )

= <¢’(0a“)vu¢(0=“)>9: &)

where ()p means integration over # and the prime on
$ means differentiation with respect to 8. The angle av-
erage has the correct normalization because by definition
w fozﬂ dfQ~1(6) = 1. Changing the time integration to an
integration over the parameters , the integrand in (4) takes
the form of a one-form,

x(1) = dp - (09 ®(0, 1)V, 2(6, 1)), (6)
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and, in the ¢ — O limit, the phase change becomes a line
integral over a closed path €' in p-space,

Awmzix %

This is transformed by Stokes’ theorem to a surface integral,

Aﬂmz/' dx, ®)
88=C
where the two-form is

dx = (V,® xV,®)-dS

Il

27
/ 8V, 8(8) x V,8(6)-dS ()
0

This is to be compared with Berry’s two-form [2] for a
quantum system
(Vrn| x

dXBer'ry = lan> -dS

- / dg V% (q) x Vr@n(q) - dS(10)

where ¢ is the coordinate system in which the representa-
tion of the state |n) is the wave-function ®,(g). With the
exception that the complex conjugate 19, (g) in the quan-
tum case is replaced by the derivative ®/ (6), the similarity
is obvious. It should be pointed out that the two-form van-
ishes when either the complex conjugate or the derivative is
not taken.

Now consider the system initially being not exactly on
the limit cycle R but is near by, and define the small devia-
tion from the limit cycle as z = r — R. Then

6 = (.0, ), (11)
and the deviation satisfies
= —Af(.’E, 9) /1‘)

where f(0,8, 1) = 0 and A~! is the scale of the relaxation
time for returning to the limit cycle. In the limit A — oo the
system will fall onto the limit cycle very rapidly. For large
A one can expand z in A7

~ iV, R(6, ), (12)

D wm(®AT™ + (L A). (13)

m=1

z(t,A) =

The second term on the right-hand-side is a transient term
dependent on the initial condition and decays exponentially
as exp(—aAt) for some constant ¢ > 0. Since we are
considering an indefinitely long time, this term can be ne-
glected. Substituting (13) into (12), Taylor expand f to

O(A™1) and neglect all terms of order €2, 22, ez or higher,

we obtain
da - dz ,
- dYoAm=r = = A28, f —cfi- VR
m=1
= - Z T AT — e VR, (14)
m=1
Note that dz,, /dt = (ci- V,, + 08)x,, and A~™ - ¢ also
should be neglected for any m > 1. Equating the coeffi-
cients of terms of the same power in A~!, we get
TAN
Iy = - (%) €l VUR(O,,LL),
83: 0
0WEE = ~nnge06,0), (9

for m > 1. Since each term in the series is proportional to
€ft, = has the form

= —¢ii- C(6, 1, A). (16)
Taylor expanding the new {2 in (11) in z, we have
2m
de
wt T, ———
( 'U) [ Q(w70nu/)
~ W () (1 - w(n)e
2w de
A, )6 . In (0,8, u)).(17)
Hence
(@) sl (1+ () T B gm0, )
w(z, p) = n ,
o Q0 !

(18)
and (3) becomes

d 2 de
=l +ei (ol [ Goma+v,8),
it . 0

19)
which adds an additional term to the one-form
2w
d9
x = dp-wp) g Va2, n)
0
29
—w(pw)?*¢ ﬁa In Q] (20)
0

Since there is no need to the angle average twice, the one-
form can finally be written as

X = dp-(2'(0,1) [V,®(6, 1) — w(p)(: In Q)
= x1+ X2, 21

where y; is the part of x independent of x and x5 is the
part that does, and &, ¢ and ) are all evaluated at z = 0.
Evidently (8) still holds.
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2. An Example

Here we consider a case where it is possible to derive
an approximate analytic expression for the phase shift; the
result is proportional to the area enclosed by the closed
path. Then we compare it against the numerically computed
phase shift for several geometrically distinct paths.

2.1. Approximate analytic expression

Consider a dissipative system with one attracting limit
cycle whose evolution is determined by the set of equations:
= 7',

roR 4 (R 1), 22)

T

where the pair of parameters is £ = (p, ) with0 < p < 1
and the limit cycle is an ellipse,
R=1/(1+ pcos(d +1)). (23)

When the system is initially on the limit cycle, § ~ R and
the period w1 is
2m
df
-1 = / — = 277,
o R

which is independent of the parameters, and the function ®
is

w 24)

2m

b =—
27 9

(25)
From (21) the first part of the one-form x is,

1 [*™de /. . .
a = duege [ F (sin0-+)p+cos(o+ )0)
1 2
= — 26
and phase shift produced by it is
27 2 2
p 1 L
= dp— = — —p“di. 27
Apy /0 b= o .3’ Y @27)

The phase shift is the area enclosed by the closed path in the
parameter space divided by 27.

Now consider fluctuations about the limit cycle. Because
x = r — R, we can get the equation for = from the equation
of r

. .OR
and re-express (22) as equations of @ and z,
§ = R+z
! 2
& = —z—€euV,R. @9

(1+ peos(8 + 1)) = % (0 + psin(6 + 1)) .
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Change the unit of time to ¢’ = ¢/, then & becomes

gt’% = —7z — 4V, R. (30)
A comparison with (14) yields
f(z,8,p) =z, A=r, of oz =1. (31
The solution for (15) on the series expansion of z is
r1 = —fi- VR,
Ty = f[-ROV,R, (32)
Thus, -
T = mz=:1 Ty~ ™ = —%pc, (33)
where ]
¢=Vu.R+-ROV.R+ o(r™%). (34)

We can then obtain y2 and A¢s.
2.2. Numerical results for some paths

As a first and simple example, we keep p = pg as a con-
stant and move the system along a circle in the parameter
space at constant speed so that ¢» = 2xt/7. Then from

equation (27),
1
Apy = '2‘/’3-

To compute the x» we have to O(771)

(35)

¢(=R? sin(0+z/))—7l—_ (2R*psin®(0 +¢) + R3cos(6 +9)) .

(36)
Then from (21)
1 (% de
X2 = —du-w(u)% | ECazan
1 [™de1 ., .
I} —p'm A EE[R sm(0+1/))

—% (2R*po sin®(8 + ¢) + R cos(8 + 1/1))]

It

(37

s0 Ao = —1/7. The total phase shift is therefore

1, 1

_ 1 ) 1,
Ap = P07t 0(72)’ lim Ap = 2P0 (38)

T—00

In the case 1) = —27t/7, the system is moved along the
circle in the parameter space in the opposite direction. Then
Ap = —1p% +1/7 + O(Z). These results are shown in
Figure 1.
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In general the phase shift may not be calculable analyt-
ically. we have solved the the set of differential equations
(22) by numerical integration using the fourth-order Runge-
Kutta method [4] for several cases.

In practice we compute #(t) at any ¢. In particular we
get (1) = 6(7). The dynamical phase denoted by 8, may
be obtained similarly by keeping ¢ a constant; it should be
and is equal to 27rwr. Then the phase shift is

Ap = % (6(1) — 6o(7)) . 39)

Where the normalization is to conform with the definition of
 (equation (2)), which is an angle divided by 2. Because
¢ = [dx + O(e), we only compare numerically and ana-
lytically computed results when € is small (i.e., when 7 is
large). The results are shown in Table 1 and Figure 1 and 2.
The solid lines is the A¢ for vy = 2t/ and the dashed line
is the —A¢ for ¢ = —2wt/7 The analytical result appears
to have errors of the order of 1072 ~ 1071,

In the second case we still move the system around a cir-
cle but this time the center of the circle is not on the origin.
The function of the parameters are p = pg sin(27t/7) and
¥ = 2wt/ 7. By this functions, the system will move around
the circle twice. The analytical result when 7 — oo is

1 27

1 . 1 2
sosin ydyp = —(x2).  (40)

Yo ), 2 2

The figure of the path and the numerical results are shown
in Figure 3 and 4. The errors of the analytical results are of
the order of 1071,

In the third case, the functions of the parameters are p =
posin(2nt/T) and ¥ = g cos(2m /7). The figure of the
path is shown in Figure 5. In this case the total area enclosed
by the path is equal to zero, and the numerical result also
approaches zero ,as shown in Figure 6.

In the fourth case, the system move along an eight-form
path, as shown in Figure 7. The total area enclosed by
the path is also equal to zero. The numerical result is ap-
proaches to zero, too, as shown in Figure 8. Figure 10 is the
numerical result when the closed path is a square, as shown
in Figure 9. Here the parameter ¢y = 27t/7. The analytic
result for 7 — oo is Ay = 4p3 /2. The error in this case
is of the order of 10~2. All these results are obtained from
IBM SP2 machine.

In summary, we can say that the phase shift in a dissi-
pative system with limit cycles is geometric, because A¢
approaches some constant at the adiabatic limit. The phase
shift will not increase with the time limit cycles is geomet-
ric, because A¢ approaches some constant at the adiabatic
limit. The phase shift will not increase with the time to
complete the circuit in the parameter space. In the exam-
ple shown in section 4, the geometric property of the phase
shift is that it is proportional to the area enclosed by the

circuit in the parameter space. The numerical results also
agree with this property. But this is not a general rule for
the phase shift. The geometric properties of the phase shift
in dissipative systems depend on the case given, not like the
quantum systems which have a general rules for the phase
shift. We can obtain the geometric properties of the phase
shift in other cases by the formulae given in section 3.
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Table 1. Analytical and numerical results of
the circle path.

00 7  analytical reults numerical results  error %
0.2 10* 0.1257 0.1568 19.878
0.3 10t 0.2827 0.3260 13.256
04 10% 0.5027 0.5410 7.089
0.5 104 0.7854 0.8008 1.919
0.6 10% 1.1310 1.1156 1.382
0.7 10* 1.5394 1.5224 1.118
0.8 10* 2.0106 2.1951 8.405
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Figure 1. Analytical results of example 1.
Here py = 0.8.
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Figure 2. Numerical results of example 1.
= 0.8.

Here p,

Figure 3. The path in the parameter space of
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Figure

4. A¢ for moving around the path

shown in Fig.3.
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Figure 5. The path in the parameter space of
example 3.
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Figure 6. A¢ for moving around the path
shown in Fig.5.
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Figure 7. The path in the parameter space of
example 4.
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Figure 8. A¢ for moving around the path
shown in Fig.7.
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Figure 9. A square path in the parameter space of
example 5.
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Figure 10. A¢ for moving around the path
shown in Fig.9.
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