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The application of the principles of generalization and

analytic continuation to the regularization of divergent Feynman

integrals is discussed. The technique, or analytic regularization,

which is a generalization of dimensional regularization, is used

to derive analytic representations for two classes of massless two-

point integrals. The first class is based on the principal-value

prescription and includes integrals encountered in quantum field

theories in the ghost-free axial gauge (n * A = 0), reducing in a
special case to integrals in the light-cone gauge (n * 4 = 0, n* =

0). The second class is based on the Mandelstam prescription

devised especially for the light-cone gauge. For some light-cone

gauge integrals the two representations are not equivalent. Both

classes include as a sub-class integrals in the Lorentz covariant
ì&gaugesî. The representations are used to compute one-loop

corrections to the self-energy and the three-vertex in Yang-Mills

theories in the axial and light-cone gauges, showing that the two-,

and three-point Ward identities are satisfied; to illustrate that

ultraviolet and infrared singularities, indistinguishable in dimen-

sional regularization, can be separated analytically; and to show
that certain tadpole integrals vanish only because of an exact can-

cellation between ul&violet  and infrared singularities. In the axial

gauge, the wavefunction and vertex renormalization constants,

Z3 and Z,, are identical, so that the o-function can be directly

derived from Z, (i.e. from the self-energy), the result being the

same as that computed in the covariant E-gauges. Preliminary
results suggest that the light-cone gauge in the Mandelstam pre-

scription, but not in the principal value prescription, has the same

renormalization property of the axial gauge.

*Lectures given at the Physics Centre, National Taiwan University, Taipei, 1984, March and April.

0. INTRODUCTION

a hese notes are based on lectures given at the Physics Centre, National Taiwan
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University, in March and April, 1984, and at a number of other places in China and Japan
in May.

The lectures deal at a pedagogical level with topics related to the need for, and
methods employed in the regularization of divergent Feynman integrals in quantum field

theories. The major part of these notes is devoted to the development and application

of a new analytic regularization technique.

.

Although reeularization involves relatively simple mathematical concepts and

techniques, it is not unusual that a student does not learn about renormalization - perhaps

the single most important topic setting quantum field theory apart from its classical

counterpart - because he is intimidated by divergent integrals he encounters but cannot

deal with. With the advent of the method of dimensional regularizaítion,  the evaluation
of divergent Peynman integral has for the most part become routine. In these lectures

we discuss a recently developed generalization of this method that we call analytic regulari-

zation. In essence it is a hybrid of an older method bearing the same name and
the dimensional method. In developing the analytic method the two-step procedure of

generalization and analytic continuation is given special emphasis. Among the advantages
of taking such a systematic approach is the reward of finding representations for classes

of Feynman integrals that are extremely easy to evaluate. The power of this approach
is especially manifest in dealing with integrals of Yang-Mills theories in the ghost-free

axial and light-cone gauges.
An often sought after property of a regularization method is the preservation of

symmetries in the associated field theory, some examples of which are gauge invariance,
the Becchi-Rouet-Stora invariance and supersymmetries. With this goal in mind, these
notes follow a program whereby the operations of tensor algebra and the regularization
of integrals are separated as much as possible. In such a program only formally invariant,

or scalar, integrals need be regularized. From the point of view of such an approach, the

dimensional method is a purely formal technique which need not be associated with

ìdoing physics in 2w dimensionsî. Thus the trace of the Euclidean metric is equal to

the dimension d (an integer), not to the generalized dimension 2w (a continuous variable).

This approach is the generalization of the one known in the literature as dimension

reduction. Although we believe it shows great promise, in these notes we have only

shown that it preserves guage invariance, at least at the one-loop level.

The reader is assumed to have a rudimentary knowledge of Yang-Mills theory and

the functional method, which are discussed briefly in Section 1. The bibliography -

we make no pretense for it being complete - given at the end of these notes provides the

reader with material for further reading on these topics.

Section 2 is composed of a short review of what is meant by regularization and why
it is needed in quantum field theory, and an introduction to the most powerful regulari-

zation method devised until recently ë-  dimensional, regularization - as well as some older

regularization methods.
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In Section 3 we go back and discuss with examples in some detail the two principles,

generalization and analytic continuation, on which dimension regularization is based.

In Section 4 the two principles are used to devise the method of analytic

regularization which in essence is a generalization of dimension regularization. The new

method, being more powerful than its precursor, is then used to derive the representation

of a complete class of Feynman integral involving only one external momentum (i.e.,

two-point integrals). This class includes akial gauge integrals which are previously known

to be notoriously difficult to evaluate; with the aid of the new representation their

evaluation is always straightforward and often trivial.

Section 5 demonstrates one of the many advantages that analytic regularization has

over dimension regularization: the analytic separation of ultraviolet and infrared

singularities.

In Section 6 it is shown that with the new method, Ward-Takahashi identities remain

true, meaning that local gauge invariance is preserved.

In Section 7 we discuss a very special kind of axial gauge, the light-cone gauge. This

gauge has simplifying features based on the properties of a null-vector (ní = 0), which can

. exist only in a Minkowski space (but not in an Euclidean space). The material presented

in this section represents the status of light-cone gauge at the time when the lectures

were given. Work done since then, which has increased our understanding of this gauge

significantly, will be published elsewhere.

We make contact with physics in Section 8, where it is shown how asymptotic

freedom, a gauge independent property of non Abelian theories, results from radiative

processes.

My gratitude to Michael Milgram is best expressed by saying that without his colla-

boration all of the work reported here would not have been done. I am thankful

to George Leibbrandt for his help during the early phase of work and for his continuing

interest. I thank Kuo-Lung Chang for the invitation to National Taiwan University and the.
Faculty, especially Ting-Wei Chiu, of the Physics Department for its hospitality during

my stay there, where these notes were first drafted. I thank the Physics Departments

of Cheng-Kung University (Tainan), Hiroshima University, Tokyo University (Komaba)

and the Institute for Fundamental Research (Kyoto), where parts of these lectures were

given, for hospitality. Last but not least, I thank Margaret Carey for carefully preparing

these notes.

This work was partially supported by a grant from the National Science Council

(Taipei).

1. YANG-MILLS THEORY, GAUGE FIXING AND

GHOST-FREE AXIAL GAUGES
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In the functional method, the sourceless (J = 0) generating functional for a Yang-Mills

theory with fields $ is given by

Z[ J = 0] = ZIO] = S [dA] eiStA1 (1.1)

where
S =  ld2x d: (1.2)

is the action,

is the Lagrangian density, and the field tensor is

qv = a,~, - a,A, + ku,, x 4~~ )

(1.3)

(1.4)

The gauge field Acl transforms as a vector of the gauge group G. The components of such

vectors will be labeled by the indices a, b, . . . . The scalar product and the cross product

in (3) and (4) are defined respectively as

A * B = AaBa , (A x @a = fabc Ab BC (1.5)

where fabc are structure constants of G. The symbol J[dA]  , or the path integral, in (1)

is meant to integrate over all possible values of each gauge field A;(x)  at each space-time
point x. In the following, we will often drop all labels of the gauge field and simply
express it as A.

The group G is defined by the set of ìgauge” transformations leaving the action

S invariant. Let h be an element of G, hf G. Then under the action of h,

A-+A h

S[A] -+ S[Ah] =  S[A]  . (1.6)

The transformations are gauge transformations, which are local because h is a function of
space-time. Clearly if the number of elements in G is N then S is N-fold degenerate. For
Yang-Mills theories G is a Lie group which, being continuous, has an infinite number

of elements. Thus S has an infinite degeneracy. It follows that the generating function

Z[ 01 in (1) is not well-defined, since it contains an infinite factor proportional to

htcc,I  MAhI - S[d*l Jdh (l-7)

As we shall see later, a symptom associated with this infinite degeneracy is that the propa-

gator derived from (2) will be singular.
In the path integral method, the infinite gauge degeneracy is removed by imposing

on the integral a functional constraint
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F[A]  = 0 (1.8)

that breaks the gauge invariance, thus insuring that each infinite set of gauge equivalent

paths will be integrated over only once. This is a method first used by Faddeev and
Popov.í Here we follow Lee.2

Define the functional

A; [A] = j-dh 6(F[Ah]) (1.9)

where Jdh integrates over the group space for each A at each space-time point. It is
clear that AF is invariant under the transformation A + Ahí.  We now insert the factor

1  = AF[A]  Jdh 6(F[Aî]) (1.10)

into the right-hand-side of (1) to obtain

Z[O] =  J[dA]AF]A]  { Jdh s(F[Ah])}  eiSíA1  . (1.11)

Because J[dA] integrates over all possible values of A, including those covered by gauge

transformations, and because J[ dA] , AP[A] and S [ A] are all gauge invariant, we may

change variable

A +Ah-’ (1.12)

and rewrite (11) as

Z[Ol = JLd-41  AF[AI  6(F[Al)  e ISLAl Sdh (1.13)

to isolate the infinite normalization Jdh mentioned earlier. We now redefine Z[O]  by
removing from it this infinite factor, so that

ZIO]  E J[dA]  AP[A]  6(F[A])eiS]A3 (1.14)

is now well-defined; in a manner dictated by F[A] , the integral takes only one path among

each set of gauge equivaIent  paths. This equation will not be suitable for computation
in perturbation theory until the two factors AF[A] and 6 (F[AJ)  are exponentiated.

For the first factor, we recall the identity

af -1
Idx 6(f(x)) = (---)

ax  f=O

and write

ëA;  [A]  =  [dh s(F[Ah])

lT =  xnaIdh UF{Aa(x)}hl)
>

(1.15)
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= det-’  FI I F=O

F=O

E det-’ (MF)

The matrix MF has elements

(1.16)

aFa
<X,alMFI  y,b>=64(x-y)  ~

a AC,(x)
Deb (x) (1.17)

where

Dib(x) =  6 cb a, - igfCba A; (1.18)

is the covariant derivative associated with gauge transformations under G. Eq. (16) also

reads

AF[A] = det(MF) . (1.19)

But a determinant can be expressed as a path integral of anticommuting fields.2 Let

such fields be g and 9; then one may write

det(MF) = I[d ,$ 1 [dv 1 e iSghost (1.20)

sghost  [A,E, VI G _fd Xfghost  = Jd4g Ea(MFIab  ë?b (1.21)

g and n are called ghosts (fields) because they do not represent physical particles, but

owe their existence purely to the constraint (8). Ghosts do not appear as external legs

in any Feynman diagram representing a physical amplitude but do propagate as virtual
particles. They interact with the gauge fields through the term [MFn in Sghost.

We now turn to exponentiating the factor 6 (F [A] ). The simple way, sufficient for

our purpose, is to make use of the relation

6(F) alim e-iF2/2a
CY+O

(1.22)

A more general result, replacing the constraint 6 (F [A] ) by the weighted constraint

Jdc e-ic2/2a  &(F[A]  -c) (1.23)

where c is independent of A, yields

&(F-c)  -)e -iF2 /2a f 1.24)

with CY now being an arbitrary parameter (the gauge parameter), in particular not restricted
in value to the limit CY  -+ 0. It is clear that the right-hand-side of (24) no longer implies

.
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the constraint F = 0. The constraint (22) is obviously a special case of (24) which does
imply F = 0. Recall that the constraint (24) or (22) is imposed on each and every space-

time point, so (24) suggest the gauge fixing action

Sgaf.  [Al  = - jîd4x  (F[Al)’  /2a. (1.25)

Combining (14), (20),  (24) and (25) then leads to the effective action

SeffIA,5,nl  [A.:.1 = Sefl IA1 + s qhost[AíS,~l [A...] + Sqf [Al  (1.26a). .-’

and the generating functional with a fixed gauge

Z[Ol = j[dAl [@I [dt71 e
iS,ff[A E,TII

(1.26b)

Finally, many formal relations are more easily derived from a generating functional
with sourceJg(x), defined as

Z[Jl = S[dAl [dtl [dql  e
iS,ff[A, t ,v, Jl ,

(1.27a)

Seff[A,  t ,717  Jl = Seff[A, t, 771 + / d4XíI  5’  * All (1.27b)

A class of widely used (Lorentz) oovariant gauges is specified by

F[A]  =  a# (1.28)

When the condition F = 0, realized in the limit (Y -+ 0 in (24), is chosen, this gauge is
analogous to the Lorentz gauge in quantum electrodynamics. The ghost action associated
with (28) is

ëghost =  jd4x [a[6abapa,  - igfabc(  #A; + A; #)].7, b

In the limit a--, 0, apA; = 0, so

;+i ëghost = Jd4xi t,(6 ab 13, - igfabcAc)  aP nb~

(1.29)

(1.30)

the ghosts are still coupled to the gauge field through the [A,apn term. There is therefore

no simplification when the limit (Y + 0 is chosen. The gauges fixed by (28) with (Y having
various special values have been given names associated with their earliest proponents:

OL = 0 is the Landau gauge; (Y = 1 is the Feynman gauge; Q = l/3 is the Yennie gauge.

The axial gauges.3 form a class of gauges characterized by the usage of a constant

vector n. ~. This singles out a special direction in space time, so such gauges are not Lorentz

coveriant. The simplest of the axial gauges has

F [ A ]  = n ApP-
which has the ghost action

(1.31)
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Sghost = J- d4X [ a [ 6 ab np a, - igfabC  nl-l $1 Vb Cl .32)

Significant in (32) is the absence, due to the fact that nP is a constant instead of an (deriva-

tive) operator, of a term corresponding to the EA,a p,, term in (29). Thus in the limit

CY + 0 n Ap = 0, so that
’  cc-

;r(: Sghost = Jd4x EanpaPna (1.33)

is independent of gauge fields. This means that for axial gauges in the limit LY -+ 0 ghosts

are decoupled from the rest of the theory, and the factor

lim I[dt I [dsle
iSghost = const

CYAO

becomes just an insignificant normalization constant for the generating functional.

It is clear from the discussion above that for an axial gauge to be ghost-free there

are two necessary conditions:

(i) The constraint must not involve any derivative operator acting on the gauge field;

(ii) The value for the gauge parameter must be taken in the limit Q -+ 0.

An example for an axial gauge constraint containing the derivative and therefore not

ghost-free even at 01 + 0 is4

FM1 = n,a~n,~*

giving a ghost action

(1.34)

Sghost = -(d4x [(n,aîga  )(n,a ëna)  +gfabcAFEa(  a%b)  1 . (1.35)

In the rest of these lectures, by axial gauge we shall mean a gauge constrained by

(3 I), for which the limit (Y -+ 0 will always be taken. Thus

Si$al[A]  = lihJd4x [-~~Pv*~~v - $ (nU*g)ë]

= lim -!- Jd2 x [Ap
Q-F0 2 - .  ( a*gp, --a,av  -+nPnv)g

- g( apc1_Av  -a&). (4í1 (1.36)

from which one can read off the kinetic energy, or the coefficient of the term quadratic

in A, in thl: momentum representation,

niO)ab  E ,abx(O)  = -i6ab(p26Pv_p
/JL P*

p +Ln n )
PV cylly

(1.37)
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and the three and four-vertices

3$$fbc = gfabc VhJp-qX, + $(g-r)h + Qh(r-p)p  1 (1.38)

4r(OWcd
PvPa = -ig’  [fabefcde(6pp  6,, -_61-to6vp)  t ( ;*ì,ìI  + (,ì+Z )I ( 1 . 3 9 )

The reciprocal of n(0)ab
I.t V

gives the free propagator

A(O)ab  - &ab
tiv

+(n2 -cypí) -I%_?_ 1 (1.40)
(p- n)Z

As is well known, rt is much easier to evaluate Feynman integrals and to discuss
most formal properties of gauge theories in Euclidean space. Unless otherwise mentioned,

we shall work in this space in these notes. In practice working in the Euclidean space
means replacing the metric gLlv by the Euclidean metric

.

gl-lv +6
clv = (1, 1, 1, 1) (1.41)

For Feynman integrals, Minkowski space can be reached by analytic continuation after
the integrals have been evaluated.

The singularity in A(') .m the limit (Y --f m is directly related to the divergence of the

generating functional for ygauge invariant action. For in this limit the gauge fixing action
vanishes. Another way of recognizing this singularity is to observe that the matrix

p2gp&J - p,pv
has a nuIl determinant.

In perturbation theory the propagator (40) and the three and four-vertices (38)

and (39) are the only quantities needed for computation. Among these quantities only

h(O) depends on (Y,  being finite at ~1 = 0. Therefore the limit QI + 0 can be taken at this

st!Le,  thus making the theory ghost free. The fact that fiî)  diverges in this limit may

appear worrisome. I-iv 1Later (see 5 6) we shall show that the term 7 nVnv inn(ë)  is totally
decoupled from the rest of the theory. Whether it diverges or not is therefore of no
significance.

For completeness we give the propagator in the covariant gauges defined by the
constraint (28):

A(ë) covariant gauge = i
PV

---Ly)*]
P2

2. REGULARIZATION AND DIMENSIONAL REGULARIZATION

(1.42)
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2.1 Need for Regularization

The class of processes involving the creation and annihilation of virtual particles

is what sets quantum field theory apart from the classical theory. A typical such process
is the vacuum polarization represented by the Feynman diagram in Fig. 1

where the arrows represent the flow of momenta. Using the propagator and the three-

vertex given in (1.40) and (1.38) respectively to compute this diagram (see (6.8)) entails

the evaluation of the following. integral, among others,

FIG. 1

I(p) =  j-d44
1

(P-qYq2
(2.1)

Simple power counting shows that I(p) is (logarithmically) divergent  at q -+ 00,  or

ultraviolet (W) divergent, rendering the integral meaningless. One way to interpret the
existence of such divergences in quantum field theories is to think of such theories as being
incomplete in the region of infinitely large momentum, or at distances very close to zero.
A procedure known as renormalization has been developed to control W divergences
in quantum field theories in such a way that physical occurrences at finite momenta

are precisely described independently of what may happen at infinite momentum. The
fust step in this procedure is to regularize, or regulate, divergent integrals such as (1).

Loosely speaking, to regulate a divergent integral is to isolate the infinite and regular

parts of the integral in a well-defined way. It is clear that such a separation is not unique,
for if

I=CO+a

is a separation, then

I = (oQ+ b )  +  ( a - b )

is also a separation. This means that there can be more than one viable regularization
method. On the other hand, if a renormalization program is to be meaningful it must
give results describing physical occurrences that are independent of the regularization
method.

One of the oldest and sometimes still used regularization methods is due to Pauli
& Villars.’  It entails the replacement

i.. .___ . . .



L

H.C. LEE

1 1 1------_+--f-
(P-q)2 (P-d2 (P-d2 +M2

100

(2.2)

for some or all factors in the denominator of an integral so that the integral (1) may be

formally defined in the limit
1

I(p) def;rW j-d4 q[--- -
1 1

][ë__._ I (2.3)
(P-d2 (p-q>2 +M2 q2 q2 +M2

The integral on the right-hand-side can be rewritten as

M4 J-d4 q
1

(p-q)2  Np-q)2  + M21  q2 (q2 +M2)

which manifestly does not diverge as q * 00; it is finite for all finite values of M.
Another regularization method is the cut-off method

I d4qK(P,q)  -Am I
At+m q2<AZ

d4 q K(P, s>.

(2.4)

(2.5)

Such methods, although useful under certain circumstances, have shortcomings arising
from their undesirable algebraic and/or analytic properties. For example distributivity

J d4q(A + B) = 1 d4q A + J d4q B

and partial fraction

(2.6)

8 d4q
1 1 1- -

( A - l - a ) ( A + b )  = a-b ’ d4q(A+b

are sometimes lost in the Pauli-Villars  method and the

invariance,

1)
A + a

(2.7)

shift operation, or translational

I d4q A(q) = I d4q A(q;+q,) (2.8)

is lost to the cut-off method. In the above equations A and B are functions of q, a and b

are constants and q,, is a fixed momentum. An even more severe defect suffered by both

methods is that they do not preserve gauge invariance. Technically the methods are also

very cumbersome. As a general rule the evaluation of a ìmassive integralî such as ë(4)
is always considerably more tedious than that of a ìmassless integralî such as (1).

2.2 Dimensional Regularization

A very powerful method, known as dimensional regularization,4  based on the

principle of analytic continuation, exploits the possibility of defining integrals in a

continuous dimensional space. In dimensional regularization (dim. reg.), instead of
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evaluating an integral such as

I[S; 21 - Id4q S(q), (2.9)

one considers as a function of the continuous (possibly complex) variable w the integral

I[S; o 1 s J d2w q S(q) (2.10)

and defines

ILS; 21
dgf

l i m  I[S; wl (2.11)
w+2+e

The method is useful because divergent Feynman integrals defined as in (11) become
functions having poles at w = 2 in the complex w-plane, which therefore have well-defined

mathematical properties.
Because dim. reg. is an analytic method, it has very good algebraic properties. In

particular the method admits

commutivity: AJB= J A B (2.12a)

distributivity. ((A+B) = j-A + JB (2.12b)

associativity: /(ABC) = j-(AB)C + j-A(BC) (2.12c)

shift operation : JdZU q A(q) = J dzw q A(q + q,,) (2.12d)

The following illustrates how

putation.

all of the above can be exploited to simplify a com-

Pi S dq q,/ Np-q)2q2 I = dq p-q/[...1 (comm.)

=+-idq[p2+q2  -(p-q)ë]  /[ ...I

=+ { Jdq p2/[...] +Jdqqí/[  . . . I - SWp-d2  / [ . . . ] } (dist.)

=+p2 /dql(p-q?)q2  +  4. Sdq/(p-q)2  - +Sdq/q2

=  (p2/2)  I dq/(p-q)2  q2 (shift)

(ass.)

(2.13)

Hereafter, where there is no risk for confusion, we will often use the shorthand Jdq for
(d2Wq.  The last line in (13), having a scalar integrand, is easier to compute than the
original integral with 2 vectnrisl  integrand. The manipulations employed in (13), although

standard for finite and well-defined integrals, are in general suspect for divergent integfals.
In particular they are not allowed when w = 2, nor are they proper for the nonanalytic
Pauli-Villars  and cut-off regulariiations  described earlier.
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A crucial property of dim. reg. is that it preserves the gauge invariance of

gauge theories. This and reasons given earlier concerning its superior algebraic properties
explain why the method has been used exclusively ti the proof of the renormalizability

of nonAbelian gauge theories.
Powerful as it is, dim reg. still has some deficiencies:

- Fíormally  the method cannot regulate ëtadpoleí integrals (see below);
- The method does not distinguish ultraviolet (UV) from infrared (IR) divergences;
- The method is not powerful enough to regulate some integrals.in  the axial gauges.

2.3 Tadpoles

Tadpoles are Feynman diagrams containing loops but having only one vertex

connected to external legs. Conservation of momentum then dictates that the integrand

for the corresponding loop integral cannot depend on any external momentum. The

simplest tadpole is a l-loop diagram with one external leg, as shown in Fig. 2.

FIG. 2. A tadpole.

This diagram has the simplest integral for Yang-Milk theory in the Feynman gauge (a = 1)

1 def
Sd4q-;;;i = lim Jdzw q  I=I(o)

W+ZY q2

(2.14)

As will be described in detail in 5 3, the way to proceed is to first identify a region in the
w plane in which I(w) is well-defined, evaluate the integral in that region, and then analyti-

cally continue the result to the limit o * 2. Now simple power counting tells us that

I(0) is

- UV divergent (at q 2+ 9 when Re(w) > 1 ,

- IR divergent (at q2 +O)when Re(w) < 1 ,

so no region in the o-plane exists in which I(o) is regular. Therefore dim. reg, cannot be
employed to regulate I(o). This result is general: the set of integrals

IN = I d4q k-12)N
cannot be regulated by dim. reg. for any N. Therefore, if dim. reg. is used as a regulariza-
tion method, a supplementary ansatz  must be given to deal with tadpoles. Conventionally
the definition

--_&
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/ d*Oq (q2)N d%f  0 (dim. reg.) (2.15)

has been adopted. In Ej 4 we shall show rigorously that this definition, although surprising

at first sight, is an appropriate one. A rigorous theory of similar integrals is well known to
mathematicians.30

2.4 Infrared and Ultraviolet Divergences

In theories with massless  particles Feynman integrals may be IR divergent as well

as UV divergent. These divergences arise for different reasons and are to be treated

differently. Infinities of the UV type are to be absorbed into renormalization constants
for wavefunctions and coupling constants whereas IR infinities are to be cancelled by
their counter-parts arising from radiation of real, low energy gauge bosons. For this
reason it is sometimes desirable to separate the two types of infinities. In dim. reg., all

infinities arising from integration manifest themselves as identical poles having the form
l/(w-2) in the w-plane (2~ is the generalized number of dimensions). The separation of

UV from IR singularities is therefore generally not straightforward.
A commonly used technique for isolating IR singularities is to assign masses mi to

particles with which the singularities are associated. In this way UV singularities remain

as poles in the w-plane whereas IR singularities are converted to logarithmic singularities

Iln mi in the limit mi + 0. While effective, this technique replaces massless  integrals by

massive ones thus invariably making them more difficult to evaluate. Because giving

masses to massless  gauge bosons also destroys the gauge invariance of the original theory,
Ward-Takahashi identities are often lost as a tool for checking the calculation.

The inseparability of UV and IR singularities in dim. reg. is intimately related to the

value assigned to tadpole integrals in that method. Later in 3 5 we shall show that in many
cases the vanishing of tadpoles result from the cancellation between the two types of

singularities.

2.5 Axial Gauge Singularity and the Principal-Value Prescription

In axial gauges the factor p*n appearing in the denominators in two of the terms for
the propagator (1.40) gives rise to a third kind of singularity in some Feynman integrals.
An example of such an integral is

J-d44 ’(p-q>* (9 .n)*
(2.16)

which, in addition to being UV divergent, has an additional singularity associated with
the possibility that the quantity q * n vanishes.

Unlike UV and IR singularities, the axial gauge (AG) singularity is purely an artifact

of gauge fixing and is void of physical meaning. It is nevertheless very real from the mathe-
matical point of view and must be dealt with if any computation is to be done in an

axial gauge.

-.,L.
I,.
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Until recently the most successful and widely used method to handle the AG

singularity was the principal-value prescription,7 m which negative powers of the factor
q . n are defined as the limit

(9. n)-N dgf 1 lim7 [(q . n + ip)-N +  ( q  .n -in)-N 1 .
L r/-to

(2.17)

Combined with dim. reg., integrals involving such factors are then defined as

J d4q S(q)(q .n>-N dgf

1
qín-i’= lim Re( a )N-l

(N-l)! n+o a~
{ J$e’  d2ëJ  q S(q)

(q-n)* +77*
> . (2.18)

The evaluation of the right-hand-side, involving two limiting processes, is usually a tricky
and difficult task. We shall give an example of it later.

3. GENERALIZATION AND ANALYTIC CONTINUATION

.

We shall now introduce a new regularization method which we call analytic
regularization (an. reg.). In essence it is a generalization of dim. reg. designed to remove

the shortcomings of that method mentioned earlier. The term analytic regularization
has been used for some older methodsí employing techniques similar to those employed

here for the new method. The older methods were abandoned partly because they were
incomplete, and more importantly because the analytic technique employed in the method

was given an incorrect physical interpretation. We shall return to discuss the old method
in a more appropriate context later.

To understand an. reg. properly it is important to have a clear understanding of the

two important steps used in the method, generalization and analytic continuation, which

will be discussed below. Luckily, both are well established subjects in the theory of

functions, relieving us of any need for detail and rigor in our treatment.
Consider a function fi formally defined on a set S of discrete points Xi which can

be divided into two subsets, SA and Sg,

s = SAusg

such that fi is welldefined if Xi belongs to SA but is illdefined if Xi belongs to SR.
An example for such a function is the set of integrals

fN - jd2Nq
1

(P-d2 9*
(3.1)

formally defined over the 2Ndimension integration (Euclidean) space. The set S of

points in this case contains the set of half integers l/2,  1, , . . In writing fN the notion
that the left-hand-side must also be a function of p* is suppressed. Upon inspection

-one finds that fN is UV divergent when N > 2, is IR divergent when N < 1, and is regular
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only when N = 3/2. That is,

-SA= (312) (3 2)

SR = (l/2, 1, 2, 5/2, . . . } )

Thus, as i t  stands,  fN is meaningful c,nly when N = 3/2. To make sense of fN
with N E SB the integral in (1) must be regularized.

This can often be accomplished by first generalizin,0 the definition of the original

function. Instead of considering fi on the set Xif S, we consider the function f(x)

formally defined for the continuous variable (which may be complex) x in the region R.

The generalization is therefore

fi -, f(X)

xi(points) + x (continuous variable)

S (set) + R (region) (3.3)

Obviously, if the generalized function is to have anything to do with the original one, R

must contain S,

ScR. (3.4)

The mapping (3) satisfying (4) is given schematically in Fig. 3 where R is shown to contain

at least two regions RA and RR satisfying

R  IRAe RR, RAZA, RR=R (3.5)

such that f(x) is well defined if x E RA and illdefined if x E RR. Furthermore, for

point: xi E R, f(xi) must be formally identical LO fi

f(Xi) _ fi ) Xif S CR. (3.6)

the

It is clear that (6) does not uniquely define f(x), since the original definition of fi says
nothing about points not belonging to S. It follows that for any set of fi infinitely many

generalizations are possible. This also explains why there have been so many regularization

methods for divergent Feynman integrals.
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Returning now to our example (l), one of the possible generalizations for fN is

precisely that used in dimension regularization, where the set of half-integers N is

generalized into the continuous complex variable o :

fN +f(o) = JdZW q
1

(P-d2 q2 ’
N-+~EC’ (3.7)

and the region to which w belongs is the l-dimensional complex space Cl. Since normally

integration is defined only for integerdimension spaces, one must specify what is meant

by the notation Jd2 w q in (7). The definition given to it in dim. reg., which is also the

one we shall adopt, is specified via the generalized gaussian integral

Jd2wq e-aq2 dgf ( r /a)u . (3.8)

and this is sufficient for one to do all Feynman Integrals, as far as the portion  relating to

continuous dimensions is concerned.

By power counting, the integral is well-defined at least in the line section
1 < Re(w) < 2. It is therefore meaningful to compute the integral. The result, in con-
junction with (8) (see a later section for technical detail), is.

Jd2Wq  ’
(P-S)2  cl2 =

.U(p2)w-2 [r (w -1)]2 r(2 -6J>/r  (20-2)

= g(w) >- l<Re(W)< 2. (3.9)

Note however that the right-hand-side of the equation, g(w), is well-defined even beyond
the region specified in (9). In fact g(w) is regular everywhere in C’  except when w is

equal to any integer. It is important to realize that formally f(w) is not identical to g(w).
For power counting shows that f(o) is illdefined at least when Re(w) < 1 and 2 < Re(w),

while from the analytic property of the gamma function r(z) (poles for nonpositive
integral values for z) g(w) is regular everywhere for w E C’  except when o = 0, + 1, +2,

. . . , in which case it has single poles; g(o) is well-defined everywhere in C’  . At least
in the region 1 < Re(o) < 2, f(w) is well-defined and equal to g(o). Therefore, according
to the principle of analytic continuation, the region in which g(w) may be used to repre-
sent f(w) can be extended to cover the whole region in which g(o) is welldefined, that

is for all of C’  . Thus, g(w) is a representation for f(w) for w E Cl. With this under-
standing, the distinction between f(o) and g(w) may now be forgotten, and the restriction

given in (9) on the region of validity can be neglected.

After the two-step process of generalization and analytic continuatiqn, g(w) can
now be used as a representation for the original sometimes ill-defined set of integrals

fN in (1), as follows:

(3.10)
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r;.. ildi::i-side  has a pole at w = 1 reflecting the IR divergence of f1 and poles at

_;. . reflecting CV divergences of f2, f, , . . . . However, the representation is

~1;~: ,ë!  all positive halt-integer values for o even as fN at N = l/2 and N = 5/2, 7/2, . . .

ill-i, _ : ined. This is important: a representation derived via generalization and analytic

(. F:’  !i i:jli OP an ill-defined function need not be singular; it can be regular! The right-
>.1 (ii‘  (10) has at most pole singularities, which have welldefined analytic

>, it is therefore said to be a reprrtlatiation  of the left-hand-side.
i:, : rëlati~;:!:~  iti ::wee;l f~, l-(~) and g(a) are summarized in the following diagram.

l - - - - - - I

FIG. 4. Regulartiatior.  of the Furiction  .fdíì_g
1

(Pd2 cl2

It is clear that in the analytic method the representation function g(w) plays a pivotal
,I c;-I For without it the crucial analytic continuation which allows one to avoid the

i: 1..,.s,,> !rities in the original function cannot be carried out, leaving the regularization
ë-I<  ,. ._, incomplete. However, for instances where only the formal existence of a repre-

: :t!1:,:: is needed, the key point then becomes whether there is a region for the
/ ,/ ;.._1 lLí;l: variabIe in which the generalized function f(w) is welldefined. For if there

ë_ CLICI; a region, then the value of the integral must be an explicit (albeit perhaps
; :.. / : :ë:  function of w in that region. One can then identify this function with g(w)

that it is arhcnable  to analysis and analytic continuation.

-sample  disi :,:sed above gives the basis for dim. reg. In the following we give
ë, / .I.ë! example in which a certain type of singularity is regulated by generalizing the

; ëI ’  f)f ;1n expression. The method used in this example later will be exploited to
c axi: gau;:: singularity That V;,IS  mentioned in section 2.3; it is the starting

ë.i,  \ , , ,e: dcvr:!dp  dur anaiytic  regularization.
i i,iisider the set of integrals

tëN  :? s:, dt _-L._
(t-s)N

N= . . . . -l,O,l,...

O<s<l,
(3.11)
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which is ill-defined when N = 1, 2, . . . . For N = 1, iI I:. regulated by tlit: +
prescription

fl
dgf

lim (
E+O J ì6’

dt
t  J’ )----=

1 -s

S+E t-s
Rn ( -

s )

This jump-over-the-singularity ansatz is sometimes, called the principal-value preskp’

but it actually cannot be extended to cases for N Z 2. The correct principalvaiL;+:
prescription is

fN
dgf 1

2 lim J’  d t
1

ë17+0  0 [(Gs>ti7)lN  + c*c*

leading to the re,alt

fN = lim
1

n+o ( N - l ) !
Re(i -

a  )N-l
Rn (

l-s-tin

at7 s+i7)
)

(3.13)

(3.I.LF/

from which one obtains

l - s
fI = S!n(-) (as before)

S

(3.15)

and so on. Although the computation involved in (14) is elementary it is nevertheless
clear that evaluating fN for large N can be very time-consuming.

We now do it the adytiC way. We generalize fN into

f ( v )  - J:, dt(t-#’  , vf c’ i.; .1 6)

For Re(v) > - 1, the left-hand-side of (16) is welldefmed, so

f( v) = --&(l-s)l+v  - (-s>ltv 1 ) Re(v)  >-1 (3.17)

The right-handside is however regular in the whole C’ space, including in the limit u 2 -1.

when it is equal to Qn(-’ -’ ) (recall the relation $I xe = 1 t &n(x)  + O(E*)), agreeing with

(12). Therefore by analy?ic  continuation,

g(v)---& [(l -s)ltv-  (-s)l+V  I ) V-E c’ (3.18)

is a representation of f(v) in all of C’  . The analytic regularization for fN is therefore

W .
fN -2 $yN g(v) (3.19)
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so that
1 -s

f, = Qn (-) )
S

fN = -&(l-~)ë-~  +(-)Nsl-N],  N = . . . -1,0,2,3  ,... (3.20)

The reader can verify for himself that (14) and (20) actually give identical results. He will

also find that the time needed to evaluate (14) increases sharply with N, whereas the

evaluation of (20) is trivial. Note that in both cases the regulated fN is not only well-
defined but also regular for all values of (integer) N, contrary to what the original defini-

tion may suggest. Here we see a pattern that will emerge again later: (a) the principal-

value prescription and analytic regularization give identical results for apparent singularities

of the type contained in fN of (1 1); (b) the regulated function is regular.
The two-step process regulating fN analytically is shown in Figure 5.

F1G.  5. Regularization  o f  Ji dt _-_--
(&

4. ANALYTIC REGULARIZATION OF THE CLASS
OF TWO-POINT INTEGRALS

In the last section we have demonstrated the complete analogy between dim. reg.
that was used to regularize (3.1) and the regularization of (3.11). Each is but a special

application of the analytic technique based on the two-step process of generalization and
analytic continuation. We now apply this method, which we shall call analytic regulari-
zation, to regulate a whole class of two-point integrals - by an n-point integral we mean
an integral with n-l external momenta. The class of integrals is defined by

F(K,M,N,s)-  Jd4qt(p-q)21K(q2)M(q.n)2N+s,  s=Oor 1,

K, M, N integers
(4.1)
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and the generalized form of the class is

110

s(W,K,  /.L, lí,S)  = J dZW s[(p-q)2  lK (q2F%v0  2v+s, (4.2)

W, K,p,Vf c' .

It is clear that when u = s = 0, K and P = integers and w = 2, S reduces to (two-point)
Feynman integrals in the covariant gauges; when K , p, 2ui-s = integer and u = 2, S reduces

to integrals in the axial gauge and when K = 0, ~1, v integer and w = 2, S reduces to tadpole
integrals. The feature distinguishing (2) from a generalized integral in dim.reg. is the

generalized continuous exponents K , p and v. The obvious motivation for such an

extended generalization is that,if a representation is found for (2), then the whole class
of two-point Feynman integrals, in whatever gauge, can be simply evaluated by substitu-
tion. Later we shall also see that by seeking a more general representation, the three short-
falls of dim. reg. discussed in 5 2 concerning tadpoles, the separation of IR and UV singu-

larities and the axial gauge singularity are all avoided.
We first examine the analytic properties of the S-integral and find it to be

(i) UV div. when Re(w+K+@V) Z 0

(ii) IR div. (at pq=O) when when Re(W+K ) GO

(iii) IR div. (at q=O) when when Re(w+p+v+s) < 0

(iv) Axial-gauge singular when Re( v+s) <-

A representation for S exists if there is at least one region in C4

{ w , K , p, u, s } lives) where the integral exists. One such region

thepoint{w,K,~,u,s}=  (2,-1,-1,-l,  1 }. Forat thispoint

Cd+K+C(+V=-l<O

W+K= 1> 0

o+p+v+s= l>O

2u + s = o> -l/2

l/2 (4.3)

x Z, (the space in which

is the neighbourhood of

which is outside all the regions in which S is illdefined. Therefore the integral exists and

all that remains is to find a representation for it in this neighborhood. Once the represen-
tation is obtained it can be analytically continued to the whole hyperspace C4 x Zz.

To evaluate the integral (l), two stock formulas will be used:

(1) Euler representation:

za = 1
I -t -(y-  1 ,-zt dt

r(-cv)  0
, Re(z) > 0. (4.4)

This representation will be used for exponentiating each and every factor in the integrand

in (1).
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(2) Gaussian integral in continuous dimensions:

I d20 q(q.  n)S e-cuq2  +2b *q - r(q .n)’

=  (t,W (.ì;rn*  )’ (---&#2 exp
iEb2 _ WN2

+yn’
1 la} (4.5)

This relation, first derived by Capper & Leibbrandt, and being a generalization of (3.8),

is needed because of the presence of the factor (q - n)2 ë+’  in (2); the integrand is not rota-

tionally invariant (in 2w- dimension Euclidean space; or not Lorentz invariant in

Minkowski space). Eq. (5) is most easily derived in a ìcylindricalî coordinate system
where the vector nP is identified with the z-direction. In this system any vector aP can

be decomposed as

aP = (Z, a n ) ,  an = a .n/(n2)% , X2 = a2 - a n (4.6)

and a scalar product is given by

a-b = 1-b + a,b, (4.7)

Then

J dzw q(q.  n>S e-aq2  + 2b . q - +f(q *n>’

--
= ~~2 >S/2 Jd2W-lq  e-ë-fq2  +2b.q / d s  -[(a +Yn2 hi

qn qn e
-2bnqnI  ( 4 . 8 )

from which (5) is easily verified using standard techniques and (3.8).
Readers interested in the details of how the representation given below is derived

should consult the Appendices. The result is9

with

2 >3

* G3,3 (y

1+&j,  1+(Y1,1+v  ;
G0,

PI ;
l/25 1, IYI 1,

. G:::(+ I 1+v, 1+v-/?i ; v+s+1/2
o ),

> v-QIO, V-Q1  ; \Y\ 2 1

a0 =  -( u+ji+U+S), oLl=  W+K+p+V  , fll=  U+K+V

y=(p.n)2 /p2n2

(4.9a)

(4.9b)

(4.10)
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The symbol G is a Meijer G-function. lo It is a known generalization of the hypergeometric
function which can be straightforwardly evaluated. The analytic property of a G-function
is most transparent in its contour integral representation

m n

1
[ & r(bi-t)l  jzl r(l-7-t)

=- s27ri  L
dt yt

-f; r(l-bit t )  ~
i=m+l j=n+l

r(aj-t>

(4.11)

where the contour L encloses all poles contained in [ ] but not any others.
Although (9) is derived for the neighbourhood around w, K, 1-1, Y, s = 2, -1, -1,

-1, 1 , it can be shown” (although we shall not do it here) that the representation S is
analytic everywhere in C4 x Z, with, at most, poles possibly when any of the conditions
below are met.

a0 = integer > 0 (4.12a)

a1 = integer > 0 (4.12b)

p1 - u = integer < 0 (4.12~)

or

v+s+1/2  = i n t e g e r <  0  . (4.12d)

From (9) and (2) we see that (12a,  c) are associated with the two types of IR divergences
in the integral while (12b) corresponds to the UV divergence. Condition (12d), corres-

ponding to the axial gauge singularity is realized only if v is a half-integer. But since in the
Feynman integral (1) the primal variable N corresponding to v is always an integer, the
representation (9) is free of axial -gauge singularities. This result is reminiscent to the

regularization of the integral (3.11): the original integral is singular and ill-defined but

the regulated representation is completely regular and well-defined.
The regularization of the Feynman integral (1) is summarized in Figure 6.
The power of the generalized representation is demonstrated by considering several

special cases :

0 Two-point integrals in covariant gauges (V = s = 0).

/ dZWq
1 _ ~1~(~2)~~-/3r(~-ol)r(w-(3)  r (-W+CN

MP-4í1”  (cl2 f- I?( a)r(P )r(2w--~-o)
(4.13)

This result reduces to (3.9) when (Y = /3=  1, as it must. However, the representation

(13) means all integrals of this type, for any values for OL and fl , can now be trivially

-1-.
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evaluated.

(W.r.8l.w)  * (z+c.Y.N(.N)

FIG. 6.

ii) Tadpole integrals. Note that in (13) the representation has a nil value when either
(Y or /3 is a nonpositive integer. That the integral is symmetric with respect to
cy ++ S (the RHS is manifestly so) is a result of the integral being invariant under

shifting of the integrated variable. The integral is a tadpole integral when CY  = 0.
Thus tadpole integrals are just a subclass of a class of nil-valued ,integrals. The genera-
lized class of tadpole integrals includes

S(~,K,p,v,s)  =  0 , K = integer > 0

S(W,K,M,N,S)  = 0, M and N = integers > 0 (4.14)

Note how the power of analytic continuation has been exploited to derive the

result (14). Recall in section 2 it was said that tadpole integrals cannot be defined in
dim. reg. because a region does not exist in the w-plane for which such an integral

is regular. The more general an. reg. allows one to go beyond the w-plane to find a
region (in C4 x Z,) of existence for the generalized integral. After a representation

for the generalized integral is found one then returns to the w-plane by analytic

continuation, where one can verify that the integral is indeed nil-valued.

Some readers may wonder how a tadpole can be nil-valued when it may at the

same time be UV and IR divergent. The question will be answered in § 5 when we
learn how to separate the two types of divergences.

iii) Two-point integrals in the light-cone gauge. The lightcone gauge is a special case
of the axial gauge defined by the auxiliary constraint

n2 = 0 (4.15)

-_.. _
.I.
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It is a very physical and therefore interesting gauge yet it is notorious for being
difficult to regulate. The difficulty originates in the condition (15) which admits
a nontrivial solution for the vector nC1  only in a non-Euclidean space; in Minkowski

space with a metric gPV = (1, -1, -1, -1) one such solution is n~ =(l,O,O, 1). Since

the integral (2) is evaluated in Euclidean space, one must either do the calculation

anew for the light-cone gauge, or one may use the already derived result and reach
Minkowski space by analytic continuation. As it turns out our result (9) allows for

the second option. First we see that (9a) is appropriate for Euclidean space since the

inequality

(p-n)’  =  pzn2cosz0  < p2n2 (4.16)

must always be satisfied in such a space, enforcing the condition y = (p - n)’ /p2 n2 <

1. Conversely, the condition Iyl > 1 for (9b) is never satisfied in Euclidean space,

but can be satisfied in Minkowski space. The result (9b) is obtained from (9a) by

analytic continuation.12 In particular, the constraint (15) is reached in the limit

l/Y -to + (4.17)

in which case (9b) is reduced to the surprisingly simple result

I dZWq
1

[(p-q)ëlcy  (q2P  (q-n>”

Ta (p”  y-cw-0 (p-n)+ r (G-(Y)~(G-S-v)r(-w+o[V  )= , (ní=O)  ( 4 . 1 8 )
r(a)r(p )r(2w-a-p-v)

for which the similarity to (13) is readily recognized. The light-cone gauge, with its
many peculiar properties, is discussed in more detail inks 7, where we also give a re-
presentation based on the recently devised Mandelstam prescription.13

iv) Exponent derivatives. The analyticity of the representation (9) admits the straight-
forward evaluation of two-point integrals with logarithmic factors in the integrand.
Specifically from the relation

aE = 1 + ERna + 0( e2)

follows

a jaK Qnia =  l i m  (-) ak
K+K aK

so that one may derive

Jd2Wq(p-q)2Kq2M(q.  n)2N+s Rnk [(p-q)2 ] Qnm(q’ ) Qnp (q-n)

(4.19)

(4.10)
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= l im ( d)k ($)m ($)” _fdzw q(p-qyK qîp  (q.n)2v+S
K+K aK

cl+M
v+N

= l im (
K+K

-$)m (+;” S(a,K,p,V,s) (4.21)

Thus Feynman integrals with logarithms are just ìexponent derivativesî14  of genera-

lized Feynman integrals without logarithms. Through the representation S, exponent

derivatives become normal derivatives.
The potential usefulness of exponent derivatives, although not much explored,

is suggested by its occurrence in perturbation field theory. In perturbation theory,
Feynman integrals associated with N-loop calculations have integrands with up to
(n-l) powers of logarithms, and the evaluated integrals have up to N powers of logar-

ithms. Such terms will appear on the right-hand-side of (2 1) when k + m + Q = N- 1.

They arise from taking exponent derivatives of the factor (~ë)ìë+~+p~  in S. In
fact every term, including all proper infinite parts, generated for the two-point

function from the multi-loop perturbation expansion can be expressed as an exponent

derivative of S, while infinite terms which must not appear in the expansion (such

as UV infinite terms with a logarithmic dependence on pí)  are never generated in
any exponent derivative of S.” This raises the speculative but interesting question

whether the two-point function can be expressed as the solution of a differential

equation having the exponents as variables. Such a solution will in general be.

a polylog, or a polynomial containing powers of logarithms as well as the usual power

terms.

5. SEPARATING UV AND IR SINGULARITIES

In an. reg. divergences of the two-point integral occurs as poles in C4 necessarily but
not sufficiently when one of the conditions (4.12a, b, c) are met. In terms of the
generalized variables these conditions are

O+K+/.l+V = integer > 0

w+p+v+s = integer < 0

W+K<O

In Feynman integrals o =2andk,p,v

w= 2+E

K =  K+P,

( UV div.)

( 1 R div. at q = 0)

(IR div. at q = p)

and s are integers.

p= M+o,

v = N,

(5.la)

(5.lb)

(5.lc)

Near these integers we write

(5.2)
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and define

E r= ~+K+/A+v-(2+K+M+N)  = E+P+U,

EO
=  w+l.c+v+ -(2+M+N+s) =  E+U,

es= U+K-(~+K)  =E +p. (5.3)

When the conditions (la, b, c) are satisfied, S has the single poles 1 /er , 1 /e. and 1 /f3  ,

respectively. 3ecause the three epsilons are distinguishable, the three poles representing
the UV and the two kinds of IR singularities can be separately identified. It is now in-

structive to make a comparison with dim. reg. In that method the exponents K and M

(as well as N) are fixed integers, not generalized variables, and the small parameters p

and u are by definition identically zero. Then the three E’ S are all identically equal to E

El  = E. = E3E E, ((Jim. reg .) (5.4)

meaning that in dim. reg. it is impossible to identify the origin of poles in the

representation.”

.

Later we shall see that Ward-Takahashi identities of Green functions are true only
if S is evaluated in the w-plane (Cí with K, 1-1,  v integer); the identities do not in general
hold when S is evaluated in C4, in particular not in the (w , K , p)-hyperplane  C3 . Naturally
once we have descended from C4 to C’  the E’ S cease to be different. However, because
the paths OI descent for the E’ S are all different, each of the eís  can be tagged during the
descent so that, even though when in C’  the three E’ S have idnetical values, their separate

identities can be retained.
We have shown that we can distinguish e. from es, if needed. But normally it is

unnecessary to separate the two as the following example shows. Consider the integral

I = Jd4q
1

(P-q)* q”

which is IR divergent at q = 0 and therefore is expected to have a pole of 0( 1 /e. ). But by

changing the dummy variable q to pq we have

I = Jd4q ’
(P-q)4 q*

which is now IR divergent at q = p andítherefore hab a pole of 0(1/c3).  Since the two inte-

grals are identical we must take a limiting process such that this identity is upheld. This
means that in (3) we must have p = u, so that

e. = Z3 =e+p.

This suggests the following strategy for evaluating two-point integrals

(5.5)
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An. reg. - generalize point (d=4, K, M, N) onto C4 to find
representation S

point in C4 but keeping separate
identities for UV and IR singularities by setting
w=~+E,K=K+P,~=  M+p,  Y= N

Recover gauge invariance by descending from C4 to w-plane,
taking the limit p + 0, E+ small. S has poles of 0( l/~i )

and 0( 1 /eO ) representing UV and IR singularities respectively

In this program (the necessity for taking the last step is explained in 5 6), the covariant
gauge integral at the third stage is given by

j-d4 q (p-q)î KqZM+  .ë+e  (p’  )2+K+M+E1 F(2 +KtEO  )p(2+M+e,, )

. r(-2-K-M-e1 )/I?(-K)Ií(-M)r  (4+K+M+2e,  ) (5.7)

The right-hand-side is symmetric under K++ M, as it should.

The general axial gauge (2N+s # 0) integral, for lyl =G 1, is given by

Jd4q(p-q)2K qZM(q. n)2Nts +

IT 2+E  (Pí) *+K+MtN+e nZN (p*n)S l?(N+s+1/2)
-+

(-K-e1 +Eo)

* {
r(2tN+KtE,  )p(2+M+N+Ste,  )I?(-2-K-M-N-El)

l?(s+1/2)r(-M-e1  +e,,)r(4SK+M+2Nts+2eo )

* SF2 (

2tMtN+s+E,  , -~-K-M-N-E,,  - N

s+1/2  ) -1 -K-N- Ed I Y)

+ r(-2-K-N-e0 ) r(2tK+e0 ) 2+K+ste0
r(KtN+st5/2+  E,, ) r(-N) ’

- _-..--
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.SFZ (
4+K+M+2N+s+2e, , -M-e1 +eO , ~+K+E,,

K+N+s+5/2+2+e0  ,  3+K+N+e, I
y)) (5.8)

where the G-function in (4.9) has been decomposed into a sum of two hypergeometrfc

functions16 by evaluating the contour integral (4.1 1).

We now give a few examples.

The formula

I?(e-Q)  =
(-Jz  r(l-E)r(l+E)

Er(l+ Q-E)

(9 ( 1-) [ 1 +E~(l+Q)+O(EZ)l
= r(l+n) E

(5.9)

where the $ -function satisfies the recurrence relation

$(z+n) = l/z + l/(z+l)  +. . .+ l /(z+n-1) + 9(z), (5.10)

will be used repeatedly.

(I) F(-1, -1 , 0,O). This integral, appearing in the evaluation of the one-loop self-energy

(see Fig. 7) is easily evaluated using (7). The result
v

F(-1 , -1 , 0,O)  = J d4 q(p-q)-  2q-2

-flT 2+E (p2jEl r2(1+Eg)r(-E1)/r(2+2E, )

1= -712 t- +y+ IZnn .+ Qnp* -2+0(e)]
El

(5.11)

FIG. 7.

w h e r e  y = G(l)  =0.5,77  . . . is the Euler-Maschemni constant, has a UV pole. The three
terms in the expressionl/el  ,,, + y + Rnn always appears ëin the same combination. In
calculations related to field theory the integral usually is multiplied by an extra phase-

space factor (2~)~ + (2n)Y2  o, so that a divergent integral typically has the expansion

$-Jaíq  . . . + +&
lr*

+y--ëQn4n+Qnpí+...)
El >o

I
(5.12)

In the renormalization program, infinite ga;s of the self-energy is absorbed into the
wavefunction renormalization, so that the renormalized self-energy is finite. In practice,
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a Feynman integral for a renormalized quantity is just the integral minus its infinite part.

The process of removing the infinite part from a divergent integral is called subtraction.
In the minimal subtraction scheme” (MS) only the UV pole term 1 /el is removed. In the

MS schemer6 the combination 1 /er + y - !Zn4n is removed altogether.

For convenience, we define the quantities

l / e , , ,  = l/cO,i +y +9nn (5.13)

The basic motivation for separating the two types of singularities is that in the renor-

malization program only UV singularities need be subtracted. The removal of IR singulari-

ties in field theory is not a completely understood subject. It is generally believed, and

proven in (Abelian) quantum electrodynamics,lg that a process becomes free of IR singu-

larities if all possible ways of emitting soft, massless gauge bosons (photon in QED) are

included in the process.

(2) F(0, -2, 0, 0) (jyl < 1). Returning now to (1 l), we notice that when pí+O,  the ex-

pression has a logarithmic singularity. In the special case when p = 0 the integral reduces

to a tadpole integral

F(0, -2,O, 0) = J d4q q*

+n2+e(~Z)~i  r(2+%)r(f,)r(-~~)/[r(-~~  +EO)r(2-e1+eo)r(2+2eo  )I

=  n2(1/e0 - l/er) . (5.14)

In the limit p = 0, e1 = e. = E, so that the representation is identically zero (it is actually

proportional to p), giving the usual result for a tadpole integral. The important point is
that the integral vanishes as a result of the cancellation between a UV and an IR pole. In
other words, if a distinction needs to be made between these two types of poles, then the

tadpole integral is not zero. This point is not always realized by those using dim. reg.,

augmented by the definition that tadpole integrals are nil-valued (see (2 .15)),  as a regulari-

zation tool.

(3) F(-2, -1, 1, 0). This inegral is encountered when evaluating the one-loop three-

vertex of Fig. 8 in the axial gauge. Because N = 1, and l/P(-N)  = l/Ií(-1)  = 0, the second

term in the { } bracket in (8) vanishes. Power counting (consult (1)) tells us that the inte-

gral is both UV and IR divergent. Substituting the appropriate integers into (8) yields

FIG. 8.

L-



H C. LEE 120

’F(-2,-l,  1,0)-t
Z+e(pZ)en~p(3/2)r(l+  Eg)r(2+eO)r(-E1)

r(l/2)r(2-  el+ EO)r (l-e I+EO)r (3+2 d ’

2+eo ) - El) -1
~Fz ( Y>

112, -fo

=  :;lía;  (nPí)e  { 1 + E[ G(2)-2$(3)1  } (-ë)  [l +
(2+E)E

El (- EON

7r2n2= - 7(1/e, - Jy/e, + 6y - 2 )
(5.15)

The infinite part due to the UV divergence is -ti n2 /16e, whereas if UV and IR singulari-
ties were not distinguished it would have had an additional multiplicative factor (1-4~).

6. GAUGE INVARIANCE AND WARD IDENTITIES

Because of the gauge invariance of gauge theories, an infinite set of identities, Ward2’

identities for short, exists among various Green functions (n-point functions). A typical
Ward identity relates the partial derivative of an (n+l)-point function to a linear combina-

tion of n-point functions. Because Ward identities are in general nontrivial equalities,

they can be gainfully exploited, among other purposes, to check the consistency of
intricate and lengthy computations. For example Ward identities are often used for testing

the viability of a regularization method.
The older analytic regularizations mentioned at the beginning of these lectures are

known to violate gauge invariance and therefore not to uphold Ward identities in general.

In the analytic regularization expounded by Speer,21 quantum field theory is regulated

by modifying propagators, replacing, say (for massless  particles) (p-q>* by (p-q)2 ë.

A X-dependent theory with such modified propagators is free of UV singularities in the

complex h-plane, except for poles at h = -1; the theory of interest is recovered in the limit
x + -1. However, since the structure of a Lagrangian with a propagator having a

continuous exponent is not known, the gauge transformation is not welldefined for
theories with X # -1. Specifically, formal Ward identities - formal because they involve

divergent integrals - derived for the real theory are not satisfied in the regularized h # -1
theories. In this sense Speerís analytic regularization, as well as other analytic methods
similar to it, does not preserve gauge invariance.

The crucial difference between our method and the old analytic regularizations lies
in two important aspects: (a) the new method is a technical hybrid of dim. reg. and the
generalization of exponents used in the old analytic method; (b) the generalized

dimension and exponents are viewed strictly as a means for regulating divergent integrals,
rather than regulating the theory, of which only the four-dimensional one (or whatever
integer dimension, as the case may be) is of interest.

Having a generalized dimension is important; we shall see that Ward identities are
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upheld if and only if (the representations of) Feynman integrals are evaluated in the

o-plane (p = u = 0, see (5.2)).
For a Yang-Mills theory described by the generating functional Z[J] in the axial

gauge (see (1.28)) i

Z[J] = j- idA e
iSeff[A,  Jl (6.1)

the simplest Ward identities, which are the only ones we shall consider, are derived by

considering the variation of Z[ J] under the infinitesimal gauge transformation

(6.2)

(the local functions Aa are infinitesimal),

6Z[J]  = J [dA] (1-a; gac + gfabC A: (x)] [- $ n. Aa(x + J;(x)1  }

* exp(iSeff  [A, J I 1 AC(x) . (6.3)

An m-point Ward identity is obtained by taking (m-l) functional derivatives of 6 Z[J]

with respect to the source Ja(x) at (m-l) localities, and then evaluating the result at J = 0
inthelimitol+O:

lim { zi’ *
Q3.O

6 Jai(Xi)

@ZIJl)}J=o  = 0 (6.4)

The two-point identity, after some mampulation and transformation to momentum space,

has the form before the limit (Y + 0 is taken,

P  .n
PxTT~~  (~1 = i -g-- nP 3 PA%,(O)(P) (6.5)

IThp is the self-energy to all orders (in g) and fl~is the zeroth order, or free, self-energy

given in (1.37),  from which the second equality sign in (5) is derived. Define

lT:, - IT,,, -Trg (6.6)

to be all the radiative corrections to the self-energy (it will be at least of 0(g2 )) then from

(5) we have the tranversality condition

(6.7)

The longitudinal part of fl^, proportional to nhnp/a is of no importance. First
(0)of all the fact that it appears only in nxp and nowhere else means that it is decoupled

from the rest of the theory. Secondly it vanishes whenever it is connected to an external
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(a)

FIG. 9.

(b)

gauge field, since the resulting factor n - _A is zero-valued due to the constraint (1.3 1).

Therefore it need not concern us when (5) appears to diverge in the limit 01+ 0.

At the one-loop level, ni, is given by the two diagrams in Fig. 9. Diagram (b) is a

tadpole, which we shall take to be zero-valued,

intending for the moment not to distinguish the UV and IR singularities. Diagram (a)

is given by

=_&ab gzczm S d4 9 [I&r (p, -9, n-p)AE!  (q)p~,,+P,P%  9) ~+~),(p-dl  a=o
uu

. (6.8)
where the 3-vertex p and A(ë) are given in 5 1 and CZ , defined by

GabCz  = facd fbcd (6.9)

is the value of the Casmir operator for the adjoint  representation of the gauge group;
for SU(N), CZ = N. The one-loop self energy, being a rank-2 tensor, involves integrals
with tensorial integrands such as

(6.10)

for which we do not have a generalized representation. The way to evaluate such
integrals22 is to realize that any n-rank tensorial integral can be expressed as a linear

combination of products of n-rank tensors constructed from 6,,, pcl and ìI_1  and scalar

(or invariant) integrals. For x$)the expansion (actually true to any order in g) may be

written as

r(l)(p) = -i [A, p2 6
x/J h/J + J42I-y Pee + A, P’  (px nC1 + p, nh )/(p - n>

+ A4p4 nx nP /(pa n>’ 1 (6.11)

where Ai are scalar functions of p2, n2 and p - n, and are expressible in terms of the four

scalar integrals ai, i = 1,2,3,4  defined by

-ia, (1)
=  TTQ QJP2

-- __
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-ia, = r(l)
h/l pxpg /p4

-ia, = n(l)hP ~~3 /(pm n)’  lp’

-ia, = @$n, nP /(p.  n)’ (6.12)

From this example the general procedure for expanding a tensorial integral in terms

of scalar integrals becomes clíear. Let T, be an n-rank tensorial integral labelled by OL

(i.e., OL = hp. . . ), and e(ë),  i = 1, 2, . . . be the compIete set of n-rank tensor operators

(one of which is phpP.  . . .) Then the scalar functions Ai in the expansion

T,= bed) Ai
i

can be expressed in terms of the scalar integrals

ai E Fiji)  T
(Y CY’

( not summed over)

Substituting (14) into (13) yields

a. = c ,(i) ,f-J co
1

j a
,(y Aj S x(U-ë>ij  A j

J

(6.13)

(6.14)

(6.15)

so that

8Ai = f Uij aj . (6.16)

In this program, the operations of tensor algebra and the regularization of divergent inte-

grals are completely separated, so that it is not necessary to generalize the algebra
originally defined in, say, 4dimension space to one in 2wdimension space. This implies

that, among other things,

&Ah = 4 (6.17)

rather than 6hx = 20 as in 2wdimension space. Thus, for the task at hand, the matrix

Ufor(ll)and(12)isa4x4matrix,with

(U-1)I,  = hhP hhP = 4 (not 2~) (6.18)

The scalar integrals ai can now be reduced to a form suitable for representation.
For example, suppose

T&-+  T PV
= $dìq  snv

(P-q)’  cl2
(6.19)
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and

Then

,(O
a

+ ,(i) =
PU p, pv

ai = (p.n)j-d4q  ìí
(P-SY q2

+

=  (p-n)  [$Jd4q (p_i)2  q2

(6.20)

/ d4  q t P2 +q2 -(P-d’  I

(P-d’  q2

1 1
++d4q- - -

( P - 0  2
ld4q -$ I

(6.21)

The last two terms on the second-to-last line cancel, being equivalent by the shift
operation.

In evaluating (11) and (12) we will also encounter integrals such as

I = Sd4qK(p,d
1

(9 4 [(P-d l nl
(6.22)

. The standard technique to be used here is partial fraction:**

1 = /d4qWw) pen q - n

=--&- Jd4q[Kb,  q)/(q*n)  + Up, p-s)/(s*n>  1 (6.23)

where the second kernel in [ 1 comes from changing variable cl -+ P.-q. This technique

can be applied repeatedly if necessary.
We are now ready to explain why it is necessary to take athe last step in (5.6), i.e.,

sending p = u = 0 in (5.2), if Ward identities are to hold. The reason is that many of the
manipulations used to reduce the integrals to forms suitable for generalized representation
are only applicable to primal integrals - integrals vith only integer exponents. It follows

that Ward identities are true only for expressions involving primal integrals - integrals with

all K , p, and v being integers. This is why Speerís analytic regularization does not uphold
Ward identities, whereas our method does, provided the representation for the integrals
are evluated for integer exponents as charted out in (5.6).

In the axial gauge the actual computation reducing the AiíS  in (11)  to linear combina-
tions of primal integrals is rather lengthy3i, and the resulting expressions are too long to
be given here. However, computations involved in (12), (16) (i.e. computing the reciprocal
of U-l), and manipulations analogous to (21) and (23) can all be carried out with the
aid of algebraic computer programs such as SCHOONSCHIP, REDUCE II or MACSYMA.
Let US simply take for granted that the AiíS  have been thus calculated. Then, substitutine



YANG-MILLS THEORIES IN AXIAL AND LIGHT-CONE GAUGES, ANALYTIC

125 REGULARIZATION AND WARD IDENTITIES

(11) into (7) we have

ipAn = (A, +A, +A3)p2pp +(A3 +&)P4nfi  /(Pen) = 0 (6.24)

implying that the AZíS  must satisfy

A,+A, =-AS=&. (6.25)

Remarkably, the Aiís  we nave computed reduce to linear combinations of primal integrals

that satisfy (25) identically, provided we let all tadpole integrals be zero. Recall that

tadpoles vanish exactly only if the associated exponents are integers; so we see once again

the necessity of setting (I = p 0 (see (5.2)).

Because the Ward identities (25) are satisfied at the integral level - i.e., before the
integral has been evaluated - it is clear that they are still satisfied when the scalar integrals

are generalized to 2wdimension,  regardless of the value of w. This strengthens our
conviction that algebraic manipulation and. regularization are two operations that can,
and should, be separated.

With the A;ës  satisfying the Ward identities (25), (11) can be rewritten as1

(6.26)

Nhp G[P~ -p*q /(P-N  EP~ -p2np  I( (6.27)

It is clear that both of the tensors Px,, and NAP  are  perpendicular  to  ph so
(26) is guaranteed to satisfy the transversality condition (7).

When all the integrals are evaluated we find

g*c*  1To =--
32r* 1-c [ 3 e

2(l-*)-Qn(
44C

y),,,, +f*)-7 +9.

8
+  2cz +  ( - -

r
8  t2t J2-yl

I:$+ 2C +  Qn($)(7 - r’ - 9 . )
1 - f

1 16_- - -
2 ( l

5+ 3ë-

where 1 /e is defined as in (5.13),

z= 2 2 (l)Qy"
Q=O (3/2)Q

[Qny- J/(1+2)  +$(3/,2+2)1,  Iyl Q 1

(6.28)

(6.29)
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is proportional to the finite integral S(2, -1, -1, -1, 1) = ~1~  y Z/(p sn), 5‘  = l/y. Note that

only rO, the radiative correction to the zeroth order self-energy has an infinite part. We

do not at this stage know whether this is a UV or an IR infinite term, however.

To find out the origin of the infinite term, we use the limiting process described

in the last section (see (5.6)) to delineate the two types of singularities. In this calculation

we must also take into account the contribution from diagram (b) of Fig. 8, since tadpoles

do not vanish when UV and IR poles are counted separately. The result of this calculation

is as follows: (a) the relations (25) are no longer manifestly satisfied at the integral level,

but are satisfied when the primal integrals are evaluated; this probably.implies  that there

exist identities among primal integrals of which we are not yet aware. (b) The values for

x0 and fl, are identical to those in (28), except that the pole term l/e in (29) must now

be replaced by 1 /e 1 ; the self-energy has only a UV infinite part, but is IR finite.
Thus, following the usua1 renormalization procedure, we can remove this infinite

part by adding to the original Lagrangian a counter-term corresponding to the kinetic

energy,

ììì@  AA;e = -
16n2 3~ p--v

_a A )2
V--P

We now briefly discuss the verification of the three-point

derived from first taking two functional derivatives of 6 Z[J] and then taking the Fourier

(6.30)

Ward identity,

(6.3 1)

transformation. Computation of the general one-loop three-vertex function involves the ’

evaluation of three-point integrals, for which we do not have a generalized representation.
We therefore examine only the special case, with q = -p, r = 0. The Ward identity of
interest is

%I p)
hClv  (P,-P,  0) = g irl:’  (P) (6.32)

where a factor of fabc has been removed from both sides. The three-vertex is represented

FIG. 10.
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by the diagrams in Fig. 10.

It can be expanded as described in (13) to (16) so that again only scalar two-point integrals
need be evaluated. Again we find that: (a) if UV and IR singularities are not separated,
then the Ward identity is manifestly satisfied at the primal integral level; (b) if they are

separated, then the identity is satisfied when the integrals are evaluated (through the

generalized representation), and l-ë(l) has only UV infinite parts; all IR singularities having
cancelled among themselves. The result31 is

(26~~ pv -6Pv ph - 6h,,pP  ) + finite parts (6.33)

implying for the general case

rl:i (P, q, r) = $--& $$)v (p, q, r) + finite parts (6.34)

In the MS schemeî, the wavefunction renormalization constant Z, and the vertex

renormalization constant Z1 are defined respectively via

(0)
(rhgv  -rhpv)inf = (zl - 1) rf$

From (28) and (34), we see thatíat  the one-loop level

g2c2  11- -Z, = Z, = 1 + 16nz  3E1

(6.35a)

(6.35b)

(6.36)

The equality of Z, and Z3 is special to axial gauges, but not generally true in nonaxial

gauges.
To conclude this section, we have demonstrated that when properly applied, analytic

regularization preserves gauge invariance. The key point is that after using the generalized
representation S(o, K, p, v, s) to evaluate Feynman integrals F(K, M, N, s) we must take
the limit K + K, ~1 + M. We also showed that we can use the limiting process to separate

UV singularities from IR singularities without violating Ward identities. The method used
here to isolate algebra from the analysis for regularization also strongly suggests that even

though the regularization employs dim. reg., it may not be necessary to generalize the

algebra to 2wdimension space. This conjecture is certainly true for the limited cases

studied here, but a more extensive investigation is needed before it can be taken as general-

ly valid. In view of the recent controversy on the question whether super-symmetric

theories can be quantized because a regularization obeying all supersymmetries may not

exist, the task of searching for a regularization that works independently of algebra

I_. __
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becomes more urgent.

7. THE LIGHT-CONE GAUGE

7.1 Principal-Value Prescription

The light-cone gauge231s a special axial gauge constrained by the additional condition

nz = 0 (7.1)

Since only a nil-vector has zero-norm in Euclidean space the constraint (1) can be non-
trivial only in a non-Euclidean space, such as Minkowski space. Conventionally,

integrals in the axial gauge have been derived (mostly using the principal-value prescrip-
tion) in Euclidean space, in which (1) cannot be met, so that the integrals had to be

derived anew for the light-cone gauge, and this had led to the belief that the light-cone
gauge is not a special case of the axial gauge.

In our analytic method, which gives results equivalent to those derived from the

principal-value prescription, the representation for the generalized integrals, although
derived in Euclidean space, is sufficiently analytic to admit continuation back to
Minkowski case, so that the representation for lightcone gauge integrals actually is a.
special case of the representation for axial gauge integrals.

In recent years the light-cone gauge, in spite of being especially singular, has gained
increased popularity because it is (a) ghost-free; (b) at least superficially simple; and (c)
physical. It is ghost-free because it is an axial gauge. It is superficially simple because,

compared to (1.40), the propagator simplifies to

(7.2)

As well, we have already shown in 5 4 that two-point integrals in the light-cone gauge are

enormously more simple than the general axial gauge integrals (see (4.18)).
Another feature adding to the attractiveness of the light-cone gauge is that it allows

one to work explicitly with only two of the four components of the gauge field. Let us

first choose nF to be (in Minkowski space with metric (1, -1, -1, -1))

np = (l,O, 0,1)/o (7.3)

Now any vector al-( can be decomposed into the two components

a+ = (a0 + aî)/fl (7.4a)

and the two-component vector that lives on the xy-plane

a = (0, aí,  aí,  0) .

Similarly a contravector have components

(7.4b)
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a, = (a0 + as)/fl = aT ,

ai = -aí, i=1,2.

(7Sa)

(7.5b)

The scalar product is

2
a* b  = apbl-l = a+bf + a-b- +  izl ai bi

= a+b-+ a-b+-a.b

In particular

+a-n=a.

The light-cone gauge condition therefore reads

ì.Aa  = Aa+ = 0.

(7.6)

(7.7)

(7.8)

The component Aa- can also be eliminated from the theory by making use of the equation

of motion

ax aif-_a _-___=
aLa- I-1 aA;-

-apa Aa-gfabcAba+Acp  = 0+ I-(

yielding

Aa- = a ’ Aai + gfabc
1_Abi a+ ACi

a+ (a +Y

(7.10)

(7.11)

This means that the theory, which has a four-component gauge field A to start with,

can in the light-cone gauge be reduced to a-theory involving explicitly only two of the
components.

The reduced theory26 has a particularly simple free boson propagator

A!Q)ab = i ëab  ’  ij
?1 P2

i,j= 1,2 (7.12)

but has somewhat more complicated 3 and 4 vertices:

3 rijk(ì)abc  (p, q, r) - gfabc I?;:)  (p, q, r)

= gfabc { Sij [(p-q)k  - (P-q)’  3 I

+ 6jk [(q-r)i  - (q-r)+ -$
P

I + 6 ki [CT-P)j  -b-p>+ +-I > (7.13)
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+ 6. 6. 1 +  permuta t ionsik JQ 1 (7.14)

One may choose to use for computation either the Feynman rules (12-14) or (7)
and (1.38, 39). The final result should be equivalent. Because we want to compare our

light-cone gauge calculation with the results in Ej 6, we choose to use the latter set of
Feynman rules, in which case the Aa’ fields are not eliminated.

We first describe how the result (4.18) is derived by analytic continuation. We shall
consider n* = 0 as a limit of n* -+ O+. In this limit y = (p sn)’  /p’  n2 -+ m+, so our starting

point is (4.9b),

S(W,K,&V,S) =  .  ..xG.ë:  (l/y  1 .  . . > . lyl >
>

Near 1 /y = 0, schematically i6

G:>:(I/yl..  .) = y” 3F2(. . .I l/y) + yW+K+P 3FZ(
>

+Y-0/l-u-s
3F2(. .  .  1 l / y )

..Il/Y)

(7.15)

where the (three different sets of) variables for the 3F2 functions have been suppressed.

The RHS is well-defined only in regions of C? x Z, space where w +K +p < 0 and
-o-~-2~s < 0. Two regions in which these conditions as well as the conditions for which
the original integral exists (see (4.12)) are the neighborhoods of {w , K , p, u, s } = { 2,

-l,-2,0,I}and{2,-l,-3,1,1}.  In any such region, in the limit l/y + O+,

Y0 3F2(. . . l/Y) -+ 1 ;

the second and third terms on the RHS of (15) vanish, so that

S(O,K,/.l,lí,CJ)  -+ L(O,K,/.l,F  = 2 V  +S)

E
#J(P2)ëJ+K+P (p*Ilf  r (W+K )r(Cd+/.L+ti)r  (-W-K-P)

r(-K)r((-C()r(2o+K+I1+V)
3 (7.16)

which is equivalent to (4.18). Now, the RHS of (16) is well-defined in all of C4 x Z,
with at most pole singularities, so by the principle of analytic continuation it is a reure-
sentation for S in the whole space, when l/y = O+, i.e., when n* = 0.

We now discuss the Ward identities in the light-cone gauge, first without attempting
to separate UV and IR singularities. We find that again both the two and three-point

identities are manifestly satisfied at the primal integral level, provided tadpole integrals

are discarded (their representation (16) are nil-valued). The one-loop self-energy22  , which

has the form (6.26), is simple enough to be given here,
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g2c2

T[O = 32n2- - ( - 4 L  - 6Lo  +  8L_I >

v, = g ( 1 2 L  +4L, - 8L_,) (7.17)

with

L, = 71 -ë(pn)-V  L(o,-1, -1,V) (7.18)

The full expressionî for Ií{,$ (p, -p, 0) is still too lengthy to be given here but its con-

traction satisfies the three-point identity (6.32) and therefore also has the form (6.26).
So far nothing sets the lightcone gauge apart from the other axial gauges except its relative

simplicity. Its peculiarity is exposed only when the integrals in (17) are scrutinized.
When we evaluate the integrals in (17) using (16), we find

Lo= -l/e + 2

L2= -1/3e +  13/18

L_,= - {$(++Qnp2)++ [(r+Qnpí)’  - n.761 > (7.19)

where l/e is defined in (5.13). This result is unusual in two important aspects:

(i) The integral L_, contains a double pole of 0(1/eî)  and a logarithmic single pole of

O(!Znp’  /E). The latter is particularly bothersome because it cannot be removed by
a local counterterm.

(ii) The functionfi, has an infinite part. This means that a counterterm in addition to

(6.30) and having the form aPApaVAV  is needed for renormalization; riPdependent

terms are not needed because n * A = 0.

The first point casts the renormalizability of light-cone gauge in dobt, insofar as the usual
method of using counterterms is concerned. Whether a viable renormalization scheme can
be found for our regularization of the light-cone gauge is a question that has not yet been

answered.
The strange result for the light-cone gauge can be understood by examining more

closely the analytic continuation used to derive (16) from (15). For any finite value of
l/y, the integral may be finite even when more than one of the three terms on the RHS
of (15) have infinite parts. An example is the integral L_, , for which the first term in (15)
is responsible for the poles given in (19), including the double poles. For finite l/y all of
these poles are however cancelled by poles contained in the second and third terms in (15);
the integral is finite in axial gauges with n2 # 0, see (6.29). In the limit l/y + O+, the
second and third terms are discarded  (see discussion following (16)) and the cancellation
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effect is lost. The key point here is that a representation with drastically different analytic

properties is obtained if the limit l/y + O+ is taken before all others. As an independent

check of the correctness of (16) (in the particular limiting process under discussion) an

identical result can be derivedz4 by setting nz = 0 at the outset and taking steps analogous

to those described in Appendix B. Integrals evaluated from (16) also agree, as expected,

with

(i)

(ii)

(iii)

7.2

those computed using the principal-value prescription according to (2.18).
Some of the peculiar properties of (16) are:

The conditions for having pole singularities are different from those of the general

case :

(a) UV sing. when a+K +/J > 0

(b) IR sing. (q=O) when w+/J+v< 0

( c )  IRsing. (q  =p> when W+K < 0 (7.20)

Only (c) is the same as before (see (5.1). It follows that in this regularization power

counting is lost, explaining why the integral corresponding to L_, in the axial gauge
is finite (see (6.29), but has single and double poles in the light-cone gauge;

UV and IR singularities are indistinguishable. This shows up when one attempts to
separate UV and IR singularities in the three point Ward identity; the UV-infinite
and IR-infinite terms do not separatelv satisfy the identity (they do in axial gauge

with n* # 0);

ìUnrenormalizableî singularities of order 0(1/e* ) and O(!?n  p2 /e) appear in one-
loop calculations, as noticed earlier.

The Mandelstam Prescription

In view of the undesirable properties of the regularization (16), there have been

recent attempts to find new regularizations that may have better properties. One such is

proposed by Leibbrandt*’  where

1 def -(4-n’  + i I&l q4)
-= (7.21)
9. n (4 4) + 3’  q;

(The scalar product q - n = q4n4 + ìq  - ?i in Euclidean space, and the light-cone condition

r-r2 = 0 is satisfied by setting n4 = ?r i I ìn  I). The prescription retains power counting, has

only single poles and has been shown to satisfy the two-point Ward identity at the one-

loop level, but is Lorentz-noninvariant.
Another Lorentz-noninvariant prescription, devised by Mandelstam,13  uses the

replacement

1 1 def . 1

--7 [q+]q+ = $2 q+ + iq-n
(7.22)
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where q’  is defined as in (4a) and n is a small c-number to be set to zero after integration.
Mandelstam used this prescription to prove the finiteness of the N = 4 supersymmetric

Yang-Mills theory. Despite appearances, the two prescriptions (21) and (22) have been

shown to be equivalent .32

Recently Capper et a1.26  showed that the light-cone gauge integral L(2, -1, -1, -1) in
the Mandelstam prescription is finite, in sharp contrast to the result (19) obtained in the

principal-value prescription. We are therefore motivated to find a representation for the

generalized class of two-point lightcone gauge integrals based on Mandelstamís

prescription. As explained in Appendix C, in this prescription it is necessary to evaluate
the integral in Minkowski space.

We define the generalized integral as

MCë-ë,  K, p,v) l i m  J dzW q[(p-q)2  + in)ë(](q’  +in)P(q++inq-)v ( 7 . 2 3 )
n+o Minkowski

for which we find the representation (for derivation see Appendix C)32

= MO  G;;:  (’  1
l+V,  1 - W - K  ; 1

z 0, W+/_l+U,  -W-K -/.i  ;I’
IZI 21

MO =
i(ne-in >” (p2)ëJ+K+P  (p+)v

r(-K)r(-/l)r(-V)r(2Cd+K+/.l+V

z  s 2p+p-/p2 (7.24)

where p’ are the light-cone variables in (4a). This result has some simlilarity to the one
given in (4.9) but the two are obviously not identical. In particular the extra phase factor
of ie-lnm in (24) comes fromí the fact that (23) is defined as an integral in Minkowski

space. Aside from this phase factor, the two sets of results are expected to be identical
when v is a non-negative integer N. Indeed one can show that

M(w,K  ,P ,N>O) =
i(n e-in)W(p )a+K +P (p+>”  r(w+K)r(w+~+N)r(-o-~-K)

r(-K)r(-p)r(h+K+p+  N)
(7.25)

which is identical to L(w,K ,P,V = N) of (16)  to within a Ghase  factor. This implies that
the Mandelstam prescription still does not obey normal power counting for v = N > 0,
since UV divergence is determined by the abnormal condition O+P +v = integer > 0.

We now examine the especially interesting integral with K =P= v = -1, which is the one
(and only one) integral in the principal-value prescription to become a regular but non-
terminating series in the axial gauge ((6.29)) and to have a double gale and other peculiar
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properties discussed earlier in the light-cone gauge (( 17)). In the Mandelstam prescription,
from (24), we find it to be finite

in2 lr2 1
z) Qnz 2F1 ( 1,l-=-P+ { --~Pn2z+z-ë[,F2(1j1í21/3 7 2

IZI 2 1, (7.26)

in accordance with power counting. The one-loop correction to the self-energy can now

be read off from (17),  (19) and (26), remembering that L, and Lo are the same in the two

prescriptions, and that L_, is to be replaced by (26). We find for the infinite parts

gîc,  1 1
(TTo),f  =  x 3E 9

g2 c2 4(IT1 )inf = ~ E . (7.27)

Of interest is that (no)inf is identical to its counterpart in the axial gauge in the limit

y -+ 00 (see (6.28)). Still present is the infinite part in fi, , necessitating an extra coun-
terterm for renormalization.

(0

(a

(iii)

(iv)

This

We briefly summarize some other results:

The three-point Ward identity is separately satisfied for the UVdivergent, IRdiver-
gent and finite parts;
As in the axial gauge, infinite parts in both rrpv and phpr, are all of UV origin; all
IR singularities cancel among themselves;

The infinite parts of pxpctv are not the same as in (6.34);

The renormalization constants Z1 and Z3 are not equal, contrary to (6.36).

suggests that in the Mandelstam prescription, the light-cone gauge may still require

an unusual renormalization program; our calculation shows that the theory in this gauge

is probably not multiplicatively renormalizable.

Noted added: Very recent results 32 have demonstrated that the Zight-cone  gauge in

the Mandelstam prescription requires only the normal renormalization

program, and that Z1 = Z3, provided one works in. them two-component
theory described in Eqs. (8-14).

8. RENORMALIZATION, THE /3-FUNCTION,  AND ASYMPTOTIC FREEDOM

Although many quantities in gauge theories are gauge-dependent, the physics

described in such theories must be gauge-independent. One of,the gauge-independent
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properties in nonAbelian theories is asymptotic freedom.27 The coupling constant g for
the interaction in an asymptotically free theory becomes vanishingly small in the limit

when the momentum h characterizing a physical event is increasingly greater than a certain

fixed momentum scale ho, rendering the theory interaction-free. This property can be

expressed as

x ho+-ëf” g2(h) + 0. (8.1)

The fixed momentum scale h,, can only be determined experimentally.
Asymptotic -freedom is a result of radiative renormalization effects symptomatic

of all fieId theories. The calcuIations we have already done in the last two sections for
the one-loop corrections for the self-energy 7rTctV  and the three-vertex rhPv are sufficient

for the discussion of this topic. We shall show that although the self-energy and the

threeívertex  are not renormalized the same way in axial gauges as they are in covariant

gauges, the tw classes of gauges yield identical quantitative results for asymptotic

freedom.
For theories that are multiplicatively renormalizable (for the E&t-cone  gauge see

note at the end of 8 7) the behaviour of g as a function of h is characterized by its logari-

thmic derivative with respect to h, known as the fl-function

(8.2)

the X-dependence of g comes via the wavefunction renormalization constant Z, and the

vertex renormalization constant Z1 which are related to g and the bare coupling constant

go by

go = gz, zy2 =gzg

where Z1 and Z,defiied by

(8.3)

(8.4)

(the superscript t denotes the transverese part of TPV, see §6),  embody radiative correc-
tions which we have calculated to lowest order in gz in 6 5 6 and 7. From (6.28, 34)

these renormalization constants are the same in the axial gauge (n’ # 0).

z, = z, = 1 +
gíC,  11 1
7 3 1~ + Qn(pí/X*)  +
16n

+ ( X-independent regular parts)]. (8.5)
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We have for the first time explicitly displayed the dependence of the logarithmic term

on the scale momentum h. For a massless theory where there are no other momentum

to serve as a dimensionful scale, it is clear, from dimensional arguments, that X must

enter in this way. Our calculations have shown that there are no other terms in Zi that
are dimensionful - the variable y = (p n)* /p* n*in the axial gauge is dimensionless. For

massive theories there may be terms such as rnz /Aí, but their logarithmic derivatives

always vanish in the asymptotic limit h + m.

In Cj 5 we pointed out that, in radiative corrections, the logarithmic and pole terms

always occur in the same linear combination as in (5) (see also (5.12)). The origin of this

correlation lies in the expansion

(p*/h)e [++O(tO )] = [l +eQn(p2/h2)+0(e2)l  [$+e(eí)l

= $ +Qn(p*/h*)  +O(eî) (8.6)

This implies that for the purpose of calculating the p-function to lowest order in g* , only

the infinite parts of the renormalization constants are needed, since

dZ.
X-1 = -2

aZi

a x a(l/e> .

Let us define the coefficients, b, b1 and b3 via

(Zg)infinite  = -(+ bg*) +

(z I, An finite = (b1,ag2)+

then from (3) and (5), for the axial gauge

llC*
byM=(bl)yM = (b )yM = ~ + o(g2), (afialii?%e)

(8.7)

(8.8)

(8.9)

(8.10)

where the subscript YM denotes contribution from Yang-Mills fields only. The significance
of this relation, arising from the equivalence of the renormalization constants Z, and Z, ,
is that in the axial gauge the renormalization of the self-energy alone determines the

/3-function. This relation does not in general hold in nonaxial  gauges. Indeed, to lowest

order for covariant gauges**

(br )YM

13
(b3)YM 32n~ 3

= cí(_-a), (covariant gauges) (8.11)
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where (Y is the gauge-fixing parameter (see (1.24)); the inequivalence of bI and b3 results
from the existence of ghosts. However, from (3), (8) and (1 l),

b
llC2 +- -

Y M  - 481r2
we 1 , (gauge independent) (8.12)

showing that the coefficient b is a gauge-independent quantity.

We now proceed to demonstrate asymptotic freedom. Because g, is independent of
h, we obtain from (2), (3), (7) and (12), the gauge-independent P-function

p(g) = 2g z;l wg/aW>l

= -bg3 + O(g5)

Because C2 > 0 and therefore bYM > 0 to lowest order, the negative sign in (13) implies

asymptotic freedom. For if there exists a momentum h, for which g2 is sufficiently small

for the leading term in (13) to dominate when X >> X0 , then the solution for g2 (X)

in the asymptotit region (h/h, >> 1) is

gî(X)  =  [b12n(  X2/ h?J-’ (8.14)

Asymptotic freedom as prescribed by (1) then follows. We emphasize that the constant

momentum scale X0 is not calculable in the theory; its empirical value29  is 250 +

150 MeV/c.
We. now briefly discuss what roles fermions, which we have ignored so far, play in

asymptotic freedom and why an Abelian theory such as quantum electrodynamics is not

asymptotic-free. The fermionic contributions to the renormalization constants can also

be calculated from the diagrams in Figs. 8 and 9, but with all internal (gauge field) lines
replaced by fermion lines. The gauge independent result is2’

(8.15)

where Nf is the number of fermion species. Significant is the contrast between the signs

in (15) and (11): whereas byM > 0, bfermion  1( 0. The total value for b is thus

- Nf)

This means Llat a theory with Nf fermions is asymptotically free only if

llC2
Nf-<--

2

(8.16)

(8.17)

A nonAbelian theory such as quantum chromodynamics, with gauge group SU(3) and
C2 = 3, is therefore asymptotically free if
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- <16I (for W3)color) (8.18)

On the other han$ any Abelian  theory must not be asymptotically free , since C2 = 0
(see (6.9); the structure constant is zero for an Abelian group) and Nf> 0.

APPENDIX A - INTEGRATION IN EUCLIDEAN AND MINKOWSKI SPACES

For invariant integrals, where all quantities involved in the integrand are scalar

products, the only thing that matters in deciding whether the integration space should be
Euclidean or Minkowskian is the possible range of values for the norm of a vector. For this
determines how factors appearing in a Feynman integral can be exponentiated.

Exponentiation is generally necessary before integration in a generalized continuous
dimensional space can be carried out. The only formula needed for this task is probably
also the most useful formula for evaluating Feynman integrals; namely Eulerís formula

.

,P =’ --$-$;dt  t-p-  ,-zt , Re(z) >0 , Re(p) < 0. (A.1)

The constraint Re(z) > 0 is of special interest to us.
In Euclidean space the norm of a vector not being nil is always positive definite

P 2 =pp,Pc,  >o, (A.21

so one can use (A.l) simply by replacing the z there by p* (or p* +m* for massive inte-

grals).
In Minkowski space with metric (1,

definite,

P 2 = PI.1  pp = p; _ ìp”  )

one must use (a.1) in a more round-about

(pí)u  d$f l i m  [p’  +in ]p
77+0+

= lim ip [-i p' +q ]p
q+0+

-1, -1, -l), because the norm of a vector is inde-

(A.3)

way:

1íî
= bm - s _ dt t-pí-ëeip2t-qt

7)+o+  P(-/J) O
, (Minkowski). (A.4)

One can see how the small TJ  > 0 term is needed to satisfy the first constraint for (A.l);

the limit n + O+ is to be taken after integration.

--._  L _
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APPENDIX B - DERIVATION OF (4.9)

The integral

~=S(W,K,P,V,S) = /d 2wq[(P-9)2  lK (s2)ë1  ((9 n>* IV ( 4  ëG (B.1)

is evaluated in Euclidean space. Use (A.l) to exponentiate the three factors (p-q)*,  q*

and (q * n)* separately, and then use (4.8) to do the q-integration to. obtain

s = so J; &j-;du j-dvt%-V-l  v-K-1+S  (t+v)W-1/2

x (t + u ltys++17 exp[(&I (t - &)I 9

S, Z nW(p*n)s(nZ)V(p2)(Y1  / [I?(-K)F(-p)r(-v)l,

y=(p-nY /Pzn2 ,

G3.2)

Now transform the variables

u= h? )

t = X(1---7)4  )

v = AU-TN-()  . (B.3)

The Jacobian is a(u, t, v)/a(h,T,t  > =X2 and the ranges for integration are (0, 1) for

r and < and (0, -) for h . The h-integration is easily done - again using (A. 1) - to obtain

X
I

’  drT
0

-v-1 ( l - 7 )v+s-l/2 [l + y7(1- E)/E Iîí (B .4)

where a0 = -w-p-v  -s and fll = G-+-K +v as well as al are the same parameters given in

(4.10). The T-integration can be identified as a hypergeometric function 3 F, (see Luke,”

Sec. 3.6.(l); p. 57), which can be expressed as a G-function G$ (Luke, Sec. 5.2.(14);

p. 147) so that after a further transformation

v = (1 -O/C  > 03.5)

we have

S = s, I?( v+s+1/2& dvv
-a()-1

(1 +v)-P1+ao
l+v ;

G:::  (yv j l;;;*_, > u3.6)

-
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The integral is known , yielding (Luke, Sec. 5.6( 18); p. 165)

s  = Sor(v+s+lD) 1+a,, 1+(Y1, lfv;

P( P1- QO) G:::(yl  0,  p1 ; 1 1 2 - s > (B.7)

which is the result for 1yI < 1 given in (4.9a). The result (4.9b)  for lyl > 1 is obtained by
analytic continuation (Luke, Sec. 5.4.(3);  p. 150).

The reference used in (5.8) and (7.15) for expanding the G-function in terms of
hypergeometric functions is (Luke, Sec. 5.2.(7); p. 145).

APPENDIX C - DERIVATION OF (7.24)

Mandelstamís prescription for the light-cone gauge is devised explicitly for integration

in Minkowski space, so according to (7.22) and (A.4),  we define

M(w,K,I~>v) ;T Jd2wq[(p-q)2  +in lK (q” +inY (q++inq-)y (C.l)
+

the evaluation of which always depends on a generic integral over the whole xy-plane

I rlim S dxdy(x +i 7)~)~  e2i(ax+by+cxy)  , Re(c)  > 0.
7j+0+

(C.2)

In order to exponentiate the factor (x + igy)V with the aid of (A.l) we integrate over the

upper and lower-half y-plane separately and obtain

I= = lim
c I(- V) n+o+ s-o dt tWV  -’  e-77 t 50 dy

x [iv e2ibyg(y + & +-a-) + (-i>” e-2iby 6 (y + tc _ f) 1 (C.3)
C

where the &-functions are from the x-integrations. The result for (C.3) is easily shown to
be proportional to a confluent hypergeometric function 1 F1 (-V;  I-Y ; 2iab/c) (Luke, Sec.
3.1.( 18); p. 40). However, for our purposes we write

I-_?- (2ia)+ e-2iab/c
cl?(-Y)

l i m  ,-I dt t-V-l ,2iabt/c-nt  _
q+o+  cl

(C.4)

Now use this result to derive the equivalent of (4.8) for Mandelstamís prescription in Min-

kowski space

J(c, p , )  z l i m  I dzo q(q++inq-)v  ei(cq -2píq)
7p0+

= . . . j-d+-ë)  q dq+ dp- . . .
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i
=- (2.?_)U  (-zip-)-U  e-i@ c J i dt tY -1 ,2ip+p- t/C

I?(+) o
(C.5)

The light-cone decomposition of vectors was explained in (7.4-6). We now return to (C.l)

and exponentiate the first two factors according to (A.4) to find

iKí/J
M = lim lm dr { 1 ds rmK-l  S-P-~ e-n(r+s) eip r J(~+s, rp,).

r(-V)r(-K)  n+o+ 0
(C.6)

After substituting (6) into 15),  changing variables

r  = h(l-E)

s = hE

and integrating over h (from 0 to -), we obtain

M =
i(n e-iî)W(p2)a~2p-)-VT(-cu3

N-K )0-p) r(-v) I
PI-1

;dF r;

x  ëdtt+-l  [l t  zt(l-,$)/Elîl
. 5 0

(C.7)

WV

where a0 = -o- cc and z = 2píp-/p2. This integral is identical in form to (B.4),  and can

be evaluated following the same steps as those given in (B.5-7), yielding (7.24) for lzl  <
1. The result for IzI > 1 is again obtained by analytic continuation
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