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The application of the principles of generalization and
andytic continuation to the regularization of divergent Feynman
integrals is discussed. The technique, or analytic regularization,
which is a generalization of dimensiona regularization, is used
to derive analytic representations for two classes of massless two-
point integrals. The first class is based on the principa-value
prescription and includes integrals encountered in quantum field
theories in the ghost-free axial gauge (n - A= 0), reducing in a
specia case to integras in the light-cone gauge (N * A =0, n*=
0). The second class is based on the Mandelstam prescription
devised especially for the light-cone gauge. For some light-cone
gauge integrals the two representations are not equivaent. Both
classes include as a sub-class integrals in the Lorentz covariant
TégaugesT. The representations are used to compute one-loop
corrections to the self-energy and the three-vertex in Yang-Mills
theories in the axia and light-cone gauges, showing that the two-,
and three-point Ward identities are satisfied; to illustrate that
ultraviolet and infrared singularities, indistinguishable in dimen-
siond regularization, can be separated analyticaly; and to show
that certain tadpole integrals vanish only because of an exact can-
cellation between ultraviolet and infrared singularities. In the axia
gauge, the wavefunction and vertex renormalization constants,
Zyand Z,, are identical, so that the o-function can be directly
derived from Z; (i.e. from the self-energy), the result being the
same as that computed in the covariant E-gauges. Preliminary
results suggest that the light-cone gauge in the Mandelstam pre-
scription, but not in the principal value prescription, has the same
renormalization property of the axia gauge.

*Lectures given at the Physics Centre, National Taiwan University, Taipei, 1984, March and April.

0. INTRODUCTION

a hese notes are based on lectures given at the Physics Centre, National Taiwan
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University, in March and April, 1984, and at a number of other places in China and Japan
in May.

The lectures deal at a pedagogical level with topics related to the need for, and
methods employed in the regularization of divergent Feynman integrals in quantum field
theories. The major part of these notes is devoted to the development and application
of a new anaytic regularization technique.

Although reeularization involves relatively simple mathematical concepts and
techniques, it is not unusual that a student does not learn about renormalization — perhaps
the single most important topic setting quantum field theory apart from its classical
counterpart — because he is intimidated by divergent integrals he encounters but cannot
deal with. With the advent of the method of dimensiona regularization, the evaluation
of divergent Peynman integral has for the most part become routine. In these lectures
we discuss a recently developed generdlization of this method that we cal analytic regulari-
zation. In essence it is a hybrid of an older method bearing the same name and
the dimensional method. In developing the analytic method the two-step procedure of
generdization and analytic continuation is given specid emphasis. Among the advantages
of taking such a systematic approach is the reward of finding representations for classes
of Feynman integrals that are extremely easy to evaluate. The power of this approach
is especially manifest in dealing with integrals of Yang-Mills theories in the ghost-free
axial and light-cone gauges.

An often sought after property of a regularization method is the preservation of
symmetries in the associated field theory, some examples of which are gauge invariance,
the Becchi-Rouet-Stora invariance and supersymmetries. With this goal in mind, these
notes follow a program whereby the operations of tensor algebra and the regularization
of integrals are separated as much as possible. In such a program only formally invariant,
or scaar, integrals need be regularized. From the point of view of such an approach, the
dimensional method is a purely formal technique which need not be associated with
Tdoing physics in 2w dimensionsT. Thus the trace of the Euclidean metric is equal to
the dimension d (an integer), not to the generdlized dimension 2w (@ continuous variable).
This approach is the generalization of the one known in the literature as dimension
reduction. Although we believe it shows great promise, in these notes we have only
shown that it preserves guage invariance, a least at the one-loop level.

The reader is assumed to have a rudimentary knowledge of Yang-Mills theory and
the functional method, which are discussed briefly in Section 1. The bibliography —
we make no pretense for it being complete — given at the end of these notes provides the
reader with material for further reading on these topics.

Section 2 is composed of a short review of what is meant by regularization and why
it is needed in quantum field theory, and an introduction to the most powerful regulari-
zation method devised until recently — dimensional, regularization — as well as some older
regularization methods.
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In Section 3 we go back and discuss with examples in some detail the two principles,
generalization and analytic continuation, on which dimension regularization is based.

In Section 4 the two principles are used to devise the method of analytic
regularization which in essence is a generalization of dimension regularization. The new
method, being more powerful than its precursor, is then used to derive the representation
of a complete class of Feynman integral involving only one external momentum (i.e.,
two-point integrals). This class includes akial gauge integrals which are previously known
to be notoriously difficult to evaluate; with the aid of the new representation their
evaluation is aways straightforward and often trivial.

Section 5 demonstrates one of the many advantages that analytic regularization has
over dimension regularization: the analytic separation of ultraviolet and infrared
singularities.

In Section 6 it is shown that with the new method, Ward-Takahashi identities remain
true, meaning that local gauge invariance is preserved.

In Section 7 we discuss a very special kind of axia gauge, the light-cone gauge. This
gauge has simplifying features based on the properties of a null-vector (nT = 0), which can
exist only in a Minkowski space (but not in an Euclidean space). The materia presented
in this section represents the status of light-cone gauge at the time when the lectures
were given. Work done since then, which has increased our understanding of this gauge
significantly, will be published elsewhere.

We make contact with physics in Section 8, where it is shown how asymptotic
freedom, a gauge independent property of non Abelian theories, results from radiative
Processes.

My gratitude to Michael Milgram is best expressed by saying that without his colla
boration all of the work reported here would not have been done. | am thankful
to George Lebbrandt for his help during the early phase of work and for his continuing
interest. |1 thank Kuo-Lung Chang for the invitation to National Taiwan University and the
Faculty, especially Ting-Wei Chiu, of the Physics Department for its hospitality during
my stay there, where these notes were first drafted. | thank the Physics Departments
of Cheng-Kung University (Tainan), Hiroshima University, Tokyo University (Komaba)
and the Ingtitute for Fundamental Research (Kyoto), where parts of these lectures were
given, for hospitaity. Last but not least, | thank Margaret Carey for carefully preparing
these notes.

This work was partially supported by a grant from the National Science Council
(Taipei).
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In the functional method, the sourceless (J = 0) generating functional for a Yang-Mills
theory with fields Aj is given by

Z[ J=0] = ZI0] = f[dA]e!SIA] (1.1)
where

S= fd?x £ (1.2)
is the action,

£ Fy B | (13

is the Lagrangian density, and the field tensor is

The gauge fidd A“ transforms as a vector of the gauge group G. The components of such
vectors will be labeled by the indices a, b, .... The scaar product and the cross product
in (3) and (4) are defined respectively as

A+ B = A%B? (A x B)® = £35C AP pC (15)

where f3PC are structure constants of G. The symbol JIdA] or the path integra, in (1)
is meant to integrate over all possible values of each gauge field Aﬁ(x) at each space-time
point X. In the following, we will often drop all labels of the gauge field and simply
express it as A.

The group G is defined by the set of ¥gauge’ transformations leaving the action
S invariant. Let h be an element of G, h< G. Then under the action of h,

A~ ah
S[A] - s{Ah] = s[a7. (1.6)

The transformations are gauge transformations, which are local because h is a function of
space-time. Clearly if the number of elements in G is N then S is N-fold degenerate. For
Yang-Mills theories G is a Lie group which, being continuous, has an infinite number
of elements. Thus S has an infinite degeneracy. It follows that the generating function
Z[0] in (1) is not well-defined, since it contains an infinite factor proportiona to
hy =
heEGf [dAT} = [[dA] fdh (1-7)

As we shall see later, a symptom associated with this infinite degeneracy is that the propa-
gator derived from (2) will be singular.

In the path integral method, the infinite gauge degeneracy is removed by imposing
on the integral a functional constraint
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F[A] = 0 (L.8)

that breaks the gauge invariance, thus insuring that each infinite set of gauge equivaent
paths will be integrated over only once. This is a method first used by Faddeev and
Popov.T Here we follow Lee.?

Define the functional

a4 [A] = rdns (F[ah]) (1.9)

where fdh integrates over the group space for each A at each space-time point. [t is
clear that AF is invariant under the transformation A — Al We now insert the factor

1 = Ap[A] fdh s(F[AN]) (1.10)

into the right-hand-side of (1) to obtain

Z[0) = J[dA]Ag[A]{ fdh s(F[AR])} &ISAT (1.12)

Because f[dA] integrates over al possible values of A, including those covered by gauge
transformations, and because f[dA],AF[AJ and S[ A] are dl gauge invariant, we may
change variable

A > ab” (1.12)
and rewrite (11) as
Z{0] = [[dA] Ag(A] 8(F[A]) 512 fan (1.13)

to isolate the infinite normalization fdh mentioned earlier. We now redefine Z{0] by
removing from it this infinite factor, so that

Z10] = [{dA]AR[A]s (FIA])eSIA] (1.14)

is now well-defined; in a manner dictated by F[A] , the integral takes only one path among

each sat of gauge equivalent paths. This equation will not be suitable for computation

in perturbation theory until the two factors Agp[A] and 6 (F[A]) are exponentiated.
For the first factor, we recall the identity

of -,
Jdx 8(f(x)) = (=) (1.15)
ax f:O

and write
'A‘I; [A] = fdhs(F[AM])

M= T rdn s(F {a%0}"])

>

fl
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det™! ‘ SF(A

5h
F=0

1 | SFIAL 5A
5A sh

F=0

=det™ (MF) (1.16)
The matrix Mg has elements

<x,a|Mg| y,b>=84(x-y) Db (x) (1.17)

3 A% (x)
where
Dﬁb(x) = 5o, —igft®a AL (1.18)
is the covariant derivative associated with gauge transformations under G. Eq. (16) also
reads
Ap[A] = det(Mp) . (1.19)

But a determinant can be expressed as a path integral of anticommuting fields.? Let
such fields be ¢ and n; then one may write

det(Mp) = f[d ] {dn] ¢ Sghost (1.20)

Sghost [A£, 11 = JdxLapoq = [d*x £ (Mp)R0 ny (1.21)

g and n are caled ghosts (fields) because they do not represent physical particles, but
owe their existence purely to the constraint (8). Ghosts do not appear as external legs
in any Feynman diagram representing a physical amplitude but do propagate as virtual
particles. They interact with the gauge fields through the term ¢Mpn in Sghost'

We now turn to exponentiating the factor 6 (F [A] ). The simple way, sufficient for
our purpose, is to make use of the relation

6(F) alim eif 12 (1.22)

>0
A more general result, replacing the constraint & (F [A] ) by the weighted constraint
fdcedc?2a s(FIA] ) (1.23)
where ¢ is independent of A, yields
5(F-c) ~eiF 12a ( 1.24)

with « now being an arbitrary parameter (the gauge parameter), in particular not restricted
in value to the limit « = 0. It is clear that the right-hand-side of (24) no longer implies
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the constraint F = 0. The constraint (22) is obviously a special case of (24) which does
imply F = 0. Recdl that the congtraint (24) or (22) is imposed on each and every space-
time point, so (24) suggest the gauge fixing action

Sg.f. [Al = - [fd*x (F[A])? 2«. (1.25)
Combining (14),(20), (24) and (25) then leads to the effective action

SerflAsg,n] [A] = S [A]l + sghost[A,s,nJ (A1 + S, ¢ [A] (1.262)

and the generating functional with a fixed gauge

lseff[A5 E,TYJ

Z[0] = f[dA] [d] [dn] e (1.26b)

Findly, many forma relations are more easily derived from a generating functional
with source J#(x), defined as

iSeprlA£,n,

Z[J) = f[dA] [d¢] [dn] e (1.27a)

SerflA, &,n, I = SepelA, £, 0] + [ d*x TH- A (1.27b)
A class of widely used (Lorentz) oovariant gauges is specified by

F[A] = 8, A* (1.28)

When the condition F = 0, redized in the limit « ~ 0in (24), is chosen, this gauge is
analogous to the Lorentz gauge in quantum electrodynamics. The ghost action associated
with (28) is

eghost = 4P x £ (82054 5 — iglOU(IHAS + A1 0] b (1.29)

In the limit « - 0, a“AZ =0, 0

lim ggnog = Jd*x £, (8203, — igfPCAS) 3k ny (1.30)

A»0

the ghosts are till coupled to the gauge field through the SAua“n term. There is therefore
no simplification when the limit « - 0 is chosen. The gauges fixed by (28) with « having
various special values have been given names associated with their earliest proponents:
a= 0 is the Landau gauge; o =1 is the Feynman gauge; a«=1/3 is the Yennie gauge.

The axia gauges.3 form a class of gauges characterized by the usage of a constant
vector n,,. This singles out a special direction in space time, so such gauges are not Lorentz
coveriant. The simplest of the axia gauges has

FIA] = n, Ak (1.31)

which has the ghost action
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Sypoge =/ d*xE, (530 n# 3, — ig*®® o AL Tny (1.32)

ghos

Significant in (32) is the absence, due to the fact that n, is a constant instead of an (deriva
tive) operator, of a term corresponding to the EAua“n term in (29). Thus in the limit
a—*O,n/‘L}f‘__= 0, so that

lim Sghost = "X EgnH 3,7, (1.33)

is independent of gauge fields. This means that for axia gauges in the limit «— O ghosts
are decoupled from the rest of the theory, and the factor

iS
lim f(dg, [dn]e1 ghost — onst
=0

becomes just an insignificant normalization constant for the generating functional.
It is clear from the discussion above that for an axia gauge to be ghost-free there
are two necessary conditions:

(i) The constraint must not involve any derivative operator acting on the gauge field;
(i) The vaue for the gauge parameter must be taken in the limit «—> 0.

An example for an axial gauge constraint containing the derivative and therefore not
ghost-free even a o 0is*

F[A] =n akn A" (1.34)
giving a ghost action
Sghost = ~J*x [(n, 3kE, )(n,d "ng) +ef*PCAS £, (Hnp) . (1.35)

In the rest of these lectures, by axia gauge we shal mean a gauge constrained by
(3 1), for which the limit & > 0 will always be taken. Thus

Seif (Al

1 1
: 4 R MY . AH 2
clxlgfdx[ 4f#vF 20[(nu At )]

1 1
. 2 u 2 . _ 14
IIT ——2 fd2 x [A* (o 8w a# 3, - n,n, A

2
(0,8, ~0,A)  (A¥ xAY) ——— (8, xA, )] (136)

from which one can read off the kinetic energy, or the coefficient of the term quadratic
in A, in the momentum representation,

' _ 0 . .ab l
ﬂﬁ?)ab = 5abﬂf‘l}) = -is2%(p? 5uv—p# D, +—; nunv) (1.37)
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and the three and four-vertices

O)abc _
(x gfabe ¢ (8yu(P-a), +8,,,(8-1)\ +8,,(r-p), 1 (1.38)
F(O)abcd _ d bec b «d
4 oo = 2[fabefc e(5#p va 5“05,,/,) t (Vﬁp) + (Vﬁo )] (1.39)

The reciproca of ﬂl(lg)ab gives the free propagator

. ab
Aab = sab A(0) _ 187
uy v

pr U0

n, + n
_i%f#ﬂnz —ap?) Pe P 1 (1.40)

v (p-n)?

As is wel known, it is much easier to evaluate Feynman integrals and to discuss
most formal properties of gauge theories in Euclidean space. Unless otherwise mentioned,
we shall work in this space in these notes. In practice working in the Euclidean space
means replacing the metric g, by the Euclidean metric

gy > 8,,= (1L, 1,1, 1) (1.41)

For Feynman integrals, Minkowski space can be reached by analytic continuation after
the integrals have been evaluated.

The singularity in A(O)V.m the limit a - is directly related to the divergence of the

generating functional for a gauge invariant action. For in this limit the gauge fixing action
vanishes. Another way of recognizing this singularity is to observe that the matrix

P*8,, —Pyb,

has a null determinant.
In perturbation theory the propagator (40) and the three and four-vertices (38)

and (39) are the only quantities needed for computation. Among these quantities only

ELO) depends on «, being finite a a= 0. Therefore the limit « > 0 can be taken at this
stage, thus making the theory ghost free. The fact that ﬂ{o) diverges in this limit may

appear worrisome. Later (see § 6) we shall show that the term —1—n#n mT[(O) is totaly
decoupled from the rest of the theory. Whether it diverges or not is therefore of no
significance.
For completeness we give the propagator in the covariant gauges defined by the
constraint (28):
A(0) covariant gauge =i5_ab_[ pupu

py— (1 —a)

(1.42)
uy p? p?

2. REGULARIZATION AND DIMENSIONAL REGULARIZATION
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2.1 Need for Regularization

The class of processes involving the creation and annihilation of virtual particles
is what sets quantum field theory apart from the classical theory. A typical such process
is the vacuum polarization represented by the Feynman diagram in Fig. 1

where the arrows represent the flow of momenta. Using the propagator and the three-
vertex given in (1.40) and (1.38) respectively to compute this diagram (see (6.8)) entails
the evaluation of the following. integral, among others,

FIG. 1

!

p) = fd*q———
® =1 (p-qFq?

2.0
Simple power counting shows that I(p) is (logarithmically) diversent at q = =, or
ultraviolet (W) divergent, rendering the integra meaningless. One way to interpret the
existence of such divergences in quantum field theories is to think of such theories as being
incomplete in the region of infinitely large momentum, or at distances very close to zero.
A procedure known as renormalization has been developed to control W divergences
in quantum field theories in such a way that physical occurrences at finite momenta
are precisely described independently of what may happen at infinite momentum. The
first step in this procedure is to regularize, or regulate, divergent integrals such as (1).

Loosely speaking, to regulate a divergent integral is to isolate the infinite and regular
parts of the integra in a well-defined way. It is clear that such a separation is not unique,
for if

] =0 + 3
is a separation, then
| =(ot+ b) + (a-b)

is also a separation. This means that there can be more than one viable regularization
method. On the other hand, if a renormalization program is to be meaningful it must
give results describing physical occurrences that are independent of the regularization
method.

One of the oldest and sometimes still used regularization methods is due to Pauli
& Villars.’ It entails the replacement



HC LEE 100

| ! |
(p-)> (p-a* (p-q)? +M?

2.2)

for some or al factors in the denominator of an integral so that the integral (1) may be
formaly defined in the limit

1) %" tim [t g L L
p = m q —_ - = 23
Moo (p-q)* (p-qFf +M?* ¢ q* +M? (23
The integral on the right-hand-side can be rewritten as
1
M4 1d? g (2.9)

(p-9)?[(p-9)? + M2]q? (q* +M?)

which manifestly does not diverge as q ~ <°; it is finite for all finite values of M.
Another regularization method is the cut-off method

, 44 qK(p, q). (2.5)

d* q K(p, lim f
Jd"qK(p Q)%A)m <A

Such methods, athough useful under certain circumstances, have shortcomings arising
from their undesirable algebraic and/or anaytic properties. For example distributivity
fd*q(A +B) = fd*q A + fd*q B (2.6)

and partial fraction

1 1 ! 1
- - @ = 44 —
Cala)(A+b) ab! VYA T Al

a4 (2.7)

are sometimes lost in the Pauli-Villars method and the shift operation, or translational
invariance,

fd*q A(g) = Jd*qAlq+aq,) (2.8)

is lost to the cut-off method. In the above eguations A and B are functions of ¢, a and b
are constants and q, is a fixed momentum. An even more severe defect suffered by both
methods is that they do not preserve gauge invariance. Technically the methods are aso
very cumbersome. As a generad rule the evaluation of a Wmassive integral ¥ such as (4)
is dways considerably more tedious than that of a ¥nassless integra ™ such as (1).

2.2 Dimensional Regularization

A very powerful method, known as dimensional regularization,* based on the
principle of analytic continuation, exploits the possibility of defining integrals in a
continuous dimensional space. In dimensional regularization (dim. reg.), instead of
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evaluating an integral such as

I[S; 21 =/ d*q g(q), (2.9)
one considers as a function of the continuous (possibly complex) variable w the integral
I[S;w]=[4d** q 9q) (2.10)
and defines
def
IS; 21 = lim I[S; w] (2.11)
Wr2+e€

The method is useful because divergent Feynman integrals defined as in (11) become
functions having poles at w =2 in the complex w-plane, which therefore have well-defined
mathematical properties.

Because dim. reg. is an analytic method, it has very good algebraic properties. In
particular the method admits

commutivity: AfB= J A B (2.12a)
distributivity. J(A+B) = fA + [B (2.12b)
associativity: J(ABC) = f(AB)C + [A(BC) (2.12¢)
shift operation :  [d*¥ q A(q) =/ d** q A(q + q,) (2.12d)

The following illustrates how all of the above can be exploited to simplify a com-
putation.

p, S dq a,/l(P-)*a*] = dq p-q/[...] (comm.)
=;— fdalp® +q* ~(p-a)*1 /[ -]
=%{qup2/[---]+quq2/[ o= fda(p-?/[--- 1} (dist)
=—;—p2 Sda/(p-q*)q? + '; Jda/(p-q9)* — ;—qu/q2 (ass.)
= (p?/2) f da/(p-q9)* q* (shift) (2.13)

Hereafter, where there is no risk for confusion, we will often use the shorthand fdq for
fd2“q. The last line in (13), having a scalar integrand, is easier to compute than the
original integral with avectorial integrand. The manipulations employed in (13), athough
standard for finite and well-defined integrals, are in general suspect for divergent integfals.
In particular they are not allowed when «w = 2, nor are they proper for the nonanaytic
Pauli-Villars and cut-off regularizations described earlier.
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A crucial property of dim. reg. is that it preserves the gauge invariance of
gauge theories. This and reasons given earlier concerning its superior algebraic properties
explain why the method has been used exclusively iri the proof of the renormalizability

of nonAbelian gauge theories.
Powerful as it is, dim reg. still has some deficiencies:

—  Formally the method cannot regulate €tadpoleT integrals (see below);
- The method does not distinguish ultraviolet (UV) from infrared (IR) divergences;
— The method is not powerful enough to regulate some integrals in the axial gauges.

2.3 Tadpoles

Tadpoles are Feynman diagrams containing loops but having only one vertex
connected to external legs. Conservation of momentum then dictates that the integrand
for the corresponding loop integral cannot depend on any external momentum. The
simplest tadpole is a I-loop diagram with one external leg, as shown in Fig. 2.

FIG. 2 A tadpole.

This diagram has the simplest integral for Yang-Milk theory in the Feynman gauge (a = 1)

1 def 1

[d*q— =lm [d*® q —=(w) (2.14)

q W2+ q
As will be described in detail in § 3, the way to proceed is to first identify a region in the
w plane in which I(w) is well-defined, evaluate the integral in that region, and then analyti-
cally continue the result to the limit «w~ 2. Now simple power counting tells us that
1(0) is

— UV divergent (at q2-°9 when Re(w)= 1,
—1IR divergent (at q>-0) when Re(w) < 1,

s0 no region in the o-plane exists in which (o) is regular. Therefore dim. reg, cannot be
employed to regulate 1(0). This result is generd: the set of integras

Iy=/d*q @)N

cannot be regulated by dim. reg. for any N. Therefore, if dim. reg. is used as a regulariza-
tion method, a supplementary ansatz must be given to deal with tadpoles. Conventionaly
the definition
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[ d2@q @»N def o (dim. reg) (2.15)

has been adopted. In§ 4 we shal show rigoroudly that this definition, although surprising

a first sight, is an appropriate one. A rigorous theory of similar integrals is well known to
mathematicians.3®

2.4 Infrared and Ultraviolet Divergences

In theories with massless particles Feynman integrals may be IR divergent as well
as UV divergent. These divergences arise for different reasons and are to be treated
differently. Infinities of the UV type are to be absorbed into renormalization constants
for wavefunctions and coupling constants whereas IR infinities are to be cancelled by
their counter-parts arising from radiation of real, low energy gauge bosons. For this
reason it is sometimes desirable to separate the two types of infinities. In dim. reg., all
infinities arising from integration manifest themselves as identical poles having the form
1/(w-2) in the w-plane (2w is the generalized number of dimensions). The separation of
UV from IR singularities is therefore generally not straightforward.

A commonly used technique for isolating IR singularities is to assign masses mi to
particles with which the singularities are associated. In this way UV singularities remain
as poles in the w-plane whereas IR singularities are converted to logarithmic singularities
2n mi in the limit mi - 0. While effective, this technique replaces massless integrals by
massive ones thus invariably making them more difficult to evaluate. Because giving
masses to massless gauge bosons also destroys the gauge invariance of the origina theory,
Ward-Takahashi identities are often lost as a tool for checking the calculation.

The inseparability of UV and IR singularities in dim. reg. is intimately related to the
value assigned to tadpole integrals in that method. Later in § 5 we shall show that in many
cases the vanishing of tadpoles result from the cancellation between the two types of
singularities.

2.5 Axia Gauge Singularity and the Principal-Vaue Prescription

In axial gauges the factor p*n appearing in the denominators in two of the terms for
the propagator (1.40) gives rise to a third kind of singularity in some Feynman integrals.
An example of such an integra is

1
4
T ot @y (219
which, in addition to being UV divergent, has an additional singularity associated with
the possibility that the quantity g *n vanishes.

Unlike UV and IR singularities, the axial gauge (AG) singularity is purely an artifact
of gauge fixing and is void of physica meaning. It is nevertheless very rea from the mathe-
matical point of view and must be dealt with if any computation is to be done in an
axial gauge.
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Until recently the most successful and widely used method to handle the AG

singularity was the principa-value prescription,” i which negative powers of the factor
g . n are defined as the limit
Ndef L

lim ((q-n+in™N + (q .n-in)N1. (2.17)
2 oo

(q-n)

Combined with dim. reg., integrals involving such factors are then defined as
J d*q S(q)(q -myN 9¢f

Q°n‘i77 }

- O \N-1 4
_— d2w -
lim Re( —) {wlf;lef q ) (Q-m)? 472

(N-I)! ns0 07N (218)

The evauation of the right-hand-side, involving two limiting processes, is usualy a tricky
and difficult task. We shall give an example of it later.

3. GENERALIZATION AND ANALYTIC CONTINUATION

We shall now introduce a new regularization method which we call analytic
regularization (an. reg.). In essence it is a generdization of dim. reg. designed to remove
the shortcomings of that method mentioned earlier. The term analytic regularization
has been used for some older methodst employing techniques similar to those employed
here for the new method. The older methods were abandoned partly because they were
incomplete, and more importantly because the anaytic technique employed in the method
was given an incorrect physical interpretation. We shal return to discuss the old method
in a more appropriate context later.

To understand an. reg. properly it is important to have a clear understanding of the
two important steps used in the method, generalization and analytic continuation, which
will be discussed below. Luckily, both are well established subjects in the theory of
functions, relieving us of any need for detail and rigor in our trestment.

Consider a function fi formally defined on a set S of discrete points Xi which can
be divided into two subsets, SA and Sg,

S = SAU SB
such that fi is welldefined if Xi belongs to SA but is illdefined if Xi belongs to Sg.
An example for such a function is the set of integrals

!

f = deNqi
N (p-a)* ¢*

(3.1
formally defined over the 2Ndimension integration (Euclidean) space. The set S of

points in this case contains the set of half integers 1/2,1,... In writing fy; the notion
that the left-hand-side must also be a function of p? is suppressed. Upon inspection

one finds that fy is UV divergent when N > 2, is IR divergent when N <1, and is regular
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only when N =3/2. That is,

S, = {32} (3.2)
Sg = {1/2, 1, 2, 5/2,---},

Thus, as it stands, fy is meaningful cnly when N =3/2. To make sense of fy
with N € Sy the integral in (1) must be regularized.

This can often be accomplished by first generalizing the definition of the original
function. Instead of considering fi on the set x;<€ S, we consider the function f(x)
formally defined for the continuous varigble (which may be complex) x in the region R.
The generdization is therefore

fi = f(X)
xi(points) - X (continuous variable)
S (set) = R (region) (3.3)

Obvioudly, if the generalized function is to have anything to do with the original one, R
must contain S,

SCR. (3.4)

The mapping (3) satisfying (4) is given schematically in Fig. 3 where R is shown to contain
a least two regions R 4 and Rp satisfying

R DRA@ RB, RAD SA’ RBD SB (35)

such that f(x) is well defined if x €R, and illdefined if x € Rp. Furthermore, for the
point: x; € R, f(xi) must be formally identical to fi

f(Xi) =fj, X;€ SCR. (3.6)

It is clear that (6) does not uniquely define f(x), since the original definition of fi says
nothing about points not belonging to S. It follows that for any set of f; infinitely many
generdlizations are possible. This aso explains why there have been so many regularization
methods for divergent Feynman integrals.
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Returning now to our example (1), one of the possible generalizations for fy is
precisely that used in dimension regularization, where the set of half-integers N is
generalized into the continuous complex variable w:

iy ~f(w)=/d?¥ q N->weC! (3.7)

(p-qf q* ’
and the region to which w belongs is the I-dimensional complex space C!'. Since normally
integration is defined only for integerdimension spaces, one must specify what is meant
by the notation fd?“q in (7). The definition given to it in dim. reg., which is aso the

one we shall adopt, is specified via the generalized gaussian integral

[ d2wq eaa® def (7w, (3.8)
and this is sufficient for one to do al Feynman Integrals, as far as the portion relating to

continuous dimensions is concerned.

By power counting, the integral is well-defined at least in the line section
1 <Re(w)< 2. It is therefore meaningful to compute the integral. The result, in con-
junction with (8) (see a later section for technical detail), is.

1
fdzqu_ 1@ PHY I (w-D]*T(2 —w)/T Qw=2)

= glw), 1<Re(w) < 2. (3.9

Note however that the right-hand-side of the equation, g(w), is well-defined even beyond
the region specified in (9). In fact g(w) is regular everywhere in C! except when w is
equal to any integer. It is important to realize that formally f(w) is not identical to g(w).
For power counting shows that f(o) is illdefined at least when Re(w)< 1 and 2 < Re(w),
while from the analytic property of the gamma function 1'(z) (poles for nonpositive
integral values for z) g(w) is regular everywhere for w& C! except when w=0, +1,+2,
., in which case it has single poles;, g(o) is well-defined everywhere in C'. At least
in the region 1 <Re(w) < 2, f(w) is well-defined and equal to g(o0). Therefore, according
to the principle of analytic continuation, the region in which g(w) may be used to repre-
sent f(w) can be extended to cover the whole region in which g(o) is welldefined, that
is for all of C'. Thus, g(w) is a representation for f(w) for weC!. With this under-
standing, the distinction between f(o) and g(w) may now be forgotten, and the restriction
given in (9) on the region of validity can be neglected.
After the two-step process of generalization and analytic continuation, g(w) can
now be used as a representation for the original sometimes ill-defined set of integrals
fN in (1), as follows:

def |
N ol)linNg(w) (3.10)
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ri..  hamd-side has a pole at w =1 reflecting the IR divergence of f, and poles at
. reflecting UV divergences of f,,fs,.... However, the representation is

alas-t @l positive halt-integer values for w even as fyyat N =1/2 and N =5/2,7/2,...

il-u.:ined. This is important: a representation derived via generalization and analytic
~ nionof an ill-defined function need not be singular; it can be regular! The right-
oi (10) has at most pole singularities, which have welldefined analytic
s, it is therefore said to be a regularization of the left-hand-side.
v elations Lo tween Iy, 1(w) and g(w) are summarized in the following diagram.
-

1, fa¥g — o, N =172, 1, 32, o+
(p-9)"q"
sgulartoss e % Gens:zlfzation
1
ty = JaP —2eg vec
(»-9)"g

2
- ‘u(Pz)szP("m n2-w 1< Re(w) €2
T(2e-2)

Y Analytic Continuatiocn

2 2 2
o s inen)remy e

T(2w2)

lim
el

4 ot ot NG 1
FIG. 4. Regularization of the Fuaction fd“"q @ 'L
It is clear that in the analytic method the representation function g(w) plays a pivota
For without it the crucial analytic continuation which alows one to avoid the
writies in the original function cannot be carried out, leaving the regularization
. incomplete. However, for instances where only the forma existence of a repre-
ation is needed, the key point then becomes whether there is a region for the
: fizzd! variable in which the generalized function f(w) is welldefined. For if there
«uch a region, then the value of the integra must be an explicit (albeit perhaps
1} function of w in that region. One can then identify this function with g(w)
that it is aimienable to analysis and analytic continuation.
cxample disc 1:sed above gives the basis for dim. reg. In the following we give
.t example in which a certain type of singularity is regulated by generalizing the
«*of an expression. The method used in this example later will be exploited to
¢axial gauge singularity that was mentioned in section 2.3; it is the starting
Wi -2 develop our anatytic regularization.
tonsider the set of integrals

o
NE fy de i gh N=e oL (3.1
0 <s <1,
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which is ill-defined when N =1,2,.... For N =1,{;1.. regulated by the..
prescription
def 1
f; T lim
! el+o ( —g+ t-s

This jump-over-the-singularity ansatz is sometimes, called the principal-value prescrip
but it actually cannot be extended to cases for N > 2. The correct principal-vaiue
prescription is

def
fN — lim — . .~ T cc
150 fo syl ©° (3.13)
leading to the re.alt
. a N-1 |-s-tin
fy = lim Re(i — _
NT I Ny R ) () (.14
from which one obtains
l-s
fi = 2n( ) (as before)
f, = 1 +L) (3.153
2 = l1-s s Y

and so on. Although the computation involved in (14) is elementary it is nevertheless
clear that evaluating fy for large N can be very time-consuming.
We now do it the analytic way. We generdlize fyy into

|
f(v) = fb dt(t-s)”, v€ C! (3.16)
For Re(v) > -1, the left-hand-side of (16) is welldefmed, so
f(v) = —[(1 PPt Re(v) >-1 (3.17)
The right-handside is however regular in the whole C!' space, including in the limit » = -1.

when it is equal to Rn( ) (recall the relation hm x€ = 1t etn(x)+ 0(e?)), agreeing with
(12). Therefore by analync continuation,

g(r) = [(1 ! T— ()1 1, ye (3.18)
14

is a representation of f(v) in all of C'. The analytic regularization for f is therefore

def
fy 2 lim (v (3.19)

Vs> =N
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so that
1-s
f1. = Qn( ):
1 1-N N .I-N
fag= —— [(1-s + (- S I, N=...-1,0,2,3,... 3.20
N= TR A9 ) (3.20)

The reader can verify for himself that (14) and (20) actually give identical results. He will
also find that the time needed to evaluate (14) increases sharply with N, whereas the
evaluation of (20) is trivial. Note that in both cases the regulated fy; is not only well-
defined but also regular for al values of (integer) N, contrary to what the origina defini-
tion may suggest. Here we see a pattern that will emerge again later: (@) the principal-
value prescription and analytic regularization give identical results for apparent singularities
of the type contained in fy of (1 1); (b) the regulated function is regular.

The two-step process regulating fy andyticaly is shown in Figure 5.

* Regularization Y Ceneralizarion

1
() = f g e-n)Y, vect
[s]

=R LSS R P Ead B MO BT

Y Analytic Continuation

L s s {a-o™ - (oY), ved
l‘v

lim
v+ <N

FIG. 5. Regularization of [ é dt (t_ls)N
4. ANALYTIC REGULARIZATION OF THE CLASS
OF TWO-POINT INTEGRALS

In the last section we have demonstrated the complete analogy between dim. reg.
that was used to regularize (3.1) and the regularization of (3.11). Each is but a specia
application of the analytic technique based on the two-step process of generdization and
analytic continuation. We now apply this method, which we shall call analytic regulari-
zation, to regulate a whole class of two-point integras — by an n-point integral we mean
an integral with n-I externa momenta. The class of integrals is defined by

F(K, M, N,s) = [d*q [(p-a)* 1% (@M (q-n)?N*S,s=00r 1,

(4.2)
K, M, N integers
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and the generdized form of the class is

S(w, k,u, v,8) = [ d2¥ q[(p-qP 1* (@) (q-n) 25 (4.2)

w, k, e Ch

It is clear that when » =s = 0, <xand u = integers and w= 2, S reduces to (two-point)
Feynman integras in the covariant gauges, when « u,2v+s= integer and w = 2, S reduces
to integrals in the axial gauge and when «=0, u,v integer and w= 2, S reduces to tadpole
integrals. The feature distinguishing (2) from a generalized integral in dim.reg. is the
generalized continuous exponents « u and ». The obvious motivation for such an
extended generalization is that,if a representation is found for (2), then the whole class
of two-point Feynman integrals, in whatever gauge, can be simply evauated by substitu-
tion. Later we shall also see that by seeking a more general representation, the three short-
fals of dim. reg. discussed in § 2 concerning tadpoles, the separation of IR and UV singu-
larities and the axia gauge singularity are al avoided.
We first examine the analytic properties of the S-integra and find it to be

(i) uv div. when  Re(w+k+utv)=> 0

(i) IR div. (at pq=0) when when Re(w+x)<0

(i) IR div. (a q=0) when ~ When  Re(w+tutvr+s)< 0

(iv)  Axial-gauge singular when  Re( v+s)<-1/2 (4.3)
A representation for S exists if there is at least one region in C* xZ, (the space in which
{w,« u,v,5} wes where the integral exists. One such region is the neighbourhood of
the point{w,x,u,v,s}={2,-1,—1,—1, 1}.For at thispoint

wH+k tu+r=-1<0

w+k=1>0

w+pu+trv+s=1>0

2v+s = 0> -1/2
which is outside al the regions in which S is illdefined. Therefore the integral exists and
al that remains is to find a representation for it in this neighborhood. Once the represen-

tation is obtained it can be analytically continued to the whole hyperspace C*x Z,.
To evauate the integral (1), two stock formulas will be used:

(1) Euler representation:

1 - i
e P et dt | Re >0 (4.4)

This representation will be used for exponentiating each and every factor in the integrand
in (2).
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(2) Gaussian integral in continuous dimensions.
[d*®q(g-n)S e®d’ T2b-q-7(g-n)’

v(b+n)?
+vn?

Trw( b'n S ¢4

v1/2 2
exp { {b*—
o a+m? oty pi

L/} (4.5)

This relation, first derived by Capper & Leibbrandt, and being a generdization of (3.8),
is needed because of the presence of the factor (q - n)** 7 in (2); the integrand is not rota-
tionally invariant (in 2w- dimension Euclidean space; or not Lorentz invariant in
Minkowski space). Eq. (5) is most easily derived in a ¥cylindrical ™ coordinate system
where the vector n,, is identified with the z-direction. In this system any vector a, can

K !
be decomposed as
1 —
a“:(E, an), an=a-11/(112)/2,212=a2 -an (4.6)
and a scalar product is given by
a*b=7a-b+a,by (4.7)

Then
Fa*® q(g-nys em®a’ + 2b-q — (g -n)?
_ - 2
=(n2)s/2fd2w'l§€-aq2 +2b-q f dqn q; e—[(a+7n2 )an -2bnanl (4.8)

from which (5) is easily verified using standard techniques and (3.8).
Readers interested in the details of how the representation given below is derived
should consult the Appendices. The result is®

9% (Y (p-n)ST(v+s+1/2)

S(w>K1#’ V,S -
['(By o)l (B - a)T(-ag-a;-s)T(-v)
»3 Iteag, 1+g, . 14y
G, (|00 s ), <y (492)
1

_ )M (pen)? S T(vistl)2)
I(By —ag)T(B, =)l (-ag-a;s)I(-»)

52 1) 4y, 14v -8, ; v4stl/2
Gs,5ly > 4.9b
. 3, 3( y 0, V- aq, V—al; )s \y\ l ( )
with
Qo - "'( wtuty +S), o= wtktuty, B,= wtk+v

y=(p-n)*/p*n’ (4.10)
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The symbol G is a Mdijer G-function.'® It is a known generaiization of the hypergeometric
function which can be straightforwardly evaluated. The anaytic property of a G-function
is most transparent in its contour integral representation

a,...2,53n4].--2
Gl (y 1
m n
1 L reeor 1 rasy
=— J dyt (4.11)
27l L P q
) Tr F(l _bi+ t ) '_ﬂ’ F(aJ —t)
i=m+l j=n+l

where the contour L encloses all poles contained in { ] but not any others.
Although (9) is derived for the neighbourhood around w,x,u,v,s= 2, -1, -1,
-1, 1 , it can be shown” (athough we shall not do it here) that the representation S is

analytic everywhere in C*x Z, with, a most, poles possibly when any of the conditions
below are met.

oo = integer 2 0 (4.12a)

a, = integer 2 0 (4.12b)

B,-v = integer < 0 (4.12¢)
or

v +s+1/2= integer< O . 4.12d)

From (9) and (2) we see that (12a, c) are associated with the two types of IR divergences
in the integral while (12b) corresponds to the UV divergence. Condition (12d), corres-
ponding to the axial gauge singularity is realized only if » is a half-integer. But since in the
Feynman integral (1) the primal variable N corresponding to v is aways an integer, the
representation (9) is free of axial gauge singularities. This result is reminiscent to the
regularization of the integral (3.11): the origina integral is singular and ill-defined but
the regulated representation is completely regular and well-defined.
The regularization of the Feynman integral (1) is summarized in Figure 6.

The power of the generalized representation is demonstrated by considering several
special cases:

i)  Two-point integrals in covariant gauges (v =s= Q).

”_ ! 1@ ()P (w-a)(w-B) T (-w+a4B)

d
F e @ P (T (F) T Qara-p)

(4.13)

This result reduces to (3.9) when a«=g=1, as it must. However, the representation
(13) means al integrals of this type, for any values for « and g8, can now be trividly




113

YANG-MILLS THEORIES IN AXIAL AND LIGHT-CONE GAUGES, ANALYTIC

REGULARIZATION AND WARD IDENTITIES
evaluated.
FOMN,e) = S a%lto-a) 2%a DMig m B, X u,n sntegers
s =0orl
vell-defined when K = H = N = =3 = -1
“+ Regularization + Generalization
) St v = [0 2% D @2 fa s Jectal
exists in isolated regions including the
neighbourhood of {u, &, i v,6 = {2,-1,-1,~1,1}
- S(W, K, B,V,s)
W Analytic Continuation
S(w, €, 1 v,8) = right-hand-side of (4.9); well-defined
everywhere in [ ZZ wvith pole singularities
pET Y
(w,x, 4, V) * (24X, H,K)
FIG. 6.
Tadpole integrals. Note that in (13) the representation has a nil value when either

o« or § is a nonpositive integer. That the integral is symmetric with respect to
a+ B (the RHS is manifestly so) is a result of the integral being invariant under
shifting of the integrated variable. The integral is a tadpole integra when «= 0.
Thus tadpole integrals are just a subclass of a class of nil-valued integrals. The genera-
lized class of tadpole integrals includes

S(w, K,u,v,s) = 0, K = integer >0
S(w,k,M,N,s) = 0, M and N = integers > 0 (4.14)

Note how the power of analytic continuation has been exploited to derive the
result (14). Recall in section 2 it was said that tadpole integrals cannot be defined in
dim. reg. because a region does not exist in the w-plane for which such an integra
is regular. The more general an. reg. alows one to go beyond the w-plane to find a
region (in C* x Z,) of existence for the generalized integral. After a representation
for the generalized integral is found one then returns to the w-plane by analytic
continuation, where one can verify that the integral is indeed nil-valued.

Some readers may wonder how a tadpole can be nil-valued when it may at the
same time be UV and IR divergent. The question will be answered in § 5 when we
learn how to separate the two types of divergences.

iii) Two-point integrals in the light-cone gauge. The lightcone gauge is a specia case

of the axia gauge defined by the auxiliary constraint

2= 0 (4.15)
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It is a very physical and therefore interesting gauge yet it is notorious for being
difficult to regulate. The difficulty originates in the condition (15) which admits
a nontrivia solution for the vector n, only in a non-Euclidean space; in Minkowski
space with a metric gy = (1, -1, -1, -1) one such solution is nu=(1,0,0, 1). Since
the integral (2) is evaluated in Euclidean space, one must either do the calculation
anew for the light-cone gauge, or one may use the aready derived result and reach
Minkowski space by analytic continuation. As it turns out our result (9) alows for
the second option. First we see that (9a) is appropriate for Euclidean space since the
inequality

(p-n)? = p?n?cos?f < p?n? (4.16)
must aways be satisfied in such a space, enforcing the condition y = (p-n)?/p*n*<
1. Conversely, the condition |yl = 1 for (9b) is never satisfied in Euclidean space,

but can be satisfied in Minkowski space. The result (9b) is obtained from (9a) by
analytic continuation.!? In particular, the constraint (15) is reached in the limit

iy »o* (4.17)

in which case (9b) is reduced to the surprisingly simple result

[ :
T -0 (@*)F (q-nY

W2 YwoB s oyY - - )
_ T T T ()l (e ) Teotat ) s o4 1)

F(a)T(B)T2w-a-8-v)

for which the similarity to (13) is readily recognized. The light-cone gauge, with its
many peculiar properties, is discussed in more detail ini§ 7, where we also give a re-
presentation based on the recently devised Mandelstam prescription.!?

Exponent derivatives. The analyticity of the representation (9) admits the straight-
forward evaluation of two-point integrals with logarithmic factors in the integrand.
Specificaly from the relation

a€= 1+ efna + 0 €?) (4.19)
follows
Konda = 1im () ak (4.10)
K-)K oK

so that one may derive

[ a9 qp-q)2Kq2M(q- n)2N*S 90K [(p-q)? ] en™(q? ) @ ? (q-n)
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. d k o m 3 ¢

= lim (=—) (=) (=) [d* q(p-q@* @* (q-n)?***
k»K 8K ou v
M
p>N

9 k a9 m a 2«

= lim (—) (—/—) ( S(w,k,1,v,s) (4.21)
KK . 0K ou ov
u>M
v> N

Thus Feynman integrals with logarithms are just ¥exponent derivatives”'* of genera-
lized Feynman integrals without logarithms. Through the representation S, exponent
derivatives become norma derivatives.

The potential usefulness of exponent derivatives, although not much explored,
is suggested by its occurrence in perturbation field theory. In perturbation theory,
Feynman integrals associated with N-loop calculations have integrands with up to
(n-I) powers of logarithms, and the evaluated integrals have up to N powers of logar-
ithms. Such terms will appear on the right-hand-side of (2 1) when k + m + £= N- 1.
They arise from taking exponent derivatives of the factor (p*)® ™% in s In
fact every term, including all proper infinite parts, generated for the two-point
function from the multi-loop perturbation expansion can be expressed as an exponent
derivative of S, while infinite terms which must not appear in the expansion (such
as UV infinite terms with a logarithmic dependence on p?) are never generated in
any exponent derivative of S.!'' This raises the speculative but interesting question
whether the two-point function can be expressed as the solution of a differential
equation having the exponents as variables. Such a solution will in general be.

a polylog, or a polynomia containing powers of logarithms as well as the usua power
terms.

5. SEPARATING UV AND IR SINGULARITIES

In an. reg. divergences of the two-point integral occurs as poles in C* necessarily but
not sufficiently when one of the conditions (4.12a, b, c) are met. In terms of the
generalized variables these conditions are

wtk+putv = integer =0 (UV div) (5.12)
wtpu+v+s = integer <0 (1Rdiv.atq=0) (5.1b)
w+k <0 (IR div. a q =p) (5.1¢)

In Feynman integrals w = 2 and «, u, v and s are integers. Near these integers we write

w= 7 + € = + 0
w=M+o, (5.2)
kK = K+ p, vy = N,
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and define

6= wtrktuty —2+K+M+N) =e+pto,

€ = wtutv+ —2+M+N+s) = € +o,

€3 = w+K—(2+K) =€ tp. (53)

When the conditions (Ia, b, ¢) are satisfied, S has the single poles 1 /e;, 1 /ep and 1 /es,
respectively. Because the three epsilons are distinguishable, the three poles representing
the UV and the two kinds of IR singularities can be separately identified. It is now in-
structive to make a comparison with dim. reg. In that method the exponents K and M
(as well as N) are fixed integers, not generalized variables, and the small parameters o
and ¢ are by definition identically zero. Then the three e'sare al identicaly equa to e

€, = € = €, = €, (dim. reg .) (5.9)

meaning that in dim. reg. it is impossible to identify the origin of poles in the
representation.”

Later we shall see that Ward-Takahashi identities of Green functions are true only
if S is evaluated in the w-plane (CT with «,u,v integer); the identities do not in general
hold when S is evaluated in C*, in particular not in the (w ,«, u)-hyperplane C*. Naturally
once we have descended from C®to C'the e’ scease to be different. However, because
the paths o1 descent for the £’ sare al different, each of the e’s can be tagged during the
descent so that, even though when in C' the three £’ shave idnetical values, their separate
identities can be retained.

We have shown that we can distinguish €, from €5, if needed. But normally it is
unnecessary to separate the two as the following example shows. Consider the integral

| = fd*q ———
fda (p-q) ¢

which is IR divergent a q = 0 and therefore is expected to have a pole of O( 1 /e, ). But by
changing the dummy variable q to pg we have

| = fd* 1
= Q>

(p-9)*q*

which is now IR divergent at q = p and T therefore hag a pole of 0(1/e;). Since the two inte-
grals are identical we must take a limiting process such that this identity is upheld. This
means that in (3) we must have p =0, so that

€g = 23 =€+ p. (5.9)

This suggests the following strategy for evaluating two-point integrals




YANG-MILLS THEORIES IN AXIAL AND LIGHT-CONE GAUGES, ANALYTIC
117 REGULARIZATION AND WARD IDENTITIES

F(K, M, N, s)w

An. reg. — generalize point (d=4, K, M, N) onto C* to find
' representation S

t S(w & ,u,v,8)

Evalution at specific point in C* but keeping separate
identities for UV and IR singularities by setting
w=2+e,k=K+p, u=M+p,v= N

Y

S(2te,K+p,M=p,N,s)

Recover gauge invariance by descending from C* to w-plane,
taking the limit o~ 0, e~ small. S has poles of O( 1/e,)

and O( 1 /ey ) representing UV and IR singularities respectively

S(2+e, K, M, N,s)

In this program (the necessity for taking the last step is explained in §6), the covariant
gauge integral at the third stage is given by

F& g (o) Kg2Mo 246 (7 HRAMY ep (0 4 Kt )P (2 4+ M +eo)
- D(-2-K-M-¢,)/TC-K)I' (-M)T (4+K+M+2¢ ) (5.7)

The right-hand-side is symmetric under K+ M, as it should.
The general axial gauge (2N+s# 0) integral, for |y|<1, is given by

fd*q(p-q)*K ¢M(q. n)?Nts |

L2te (p? )2+K+M+N+e nzN (p'n)s I' (N+s+1/2)
(_K" 61 + 60 )

) { F(2+N+K+teg )T(2+M+N+S+ey )I(-2-K-M-N-¢€4)
L(s+1/2)T(-M-¢€, te )T (4+K+M+2N+s+2 ¢, )

2+M+N+s+ey, 2-K-M-N-¢,, -N

BERP s+1/2 1 -K-N- €, 1Y)

F(-2-K-N-¢0 ) TQ+K+ep) 24K 4ste,
L(K+N+s+5/2+ ¢, ) I'(-N)
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+K+M+2N+s+2 , M-, teo , 2+K+e
-3k, (4 Sreco £t ° y)} (5.8
K+N+s+5/2+2+¢; , 3+K+N+e¢g

where the G-function in (4.9) has been decomposed into a sum of two hypergeometrfc
functions'® by evaluating the contour integral (4.1 1).
We now give a few examples.

The formula
_ (D rd-e)r(l+e)
Fle—f) = el(1+ 2-¢)
= )" ( 1)[1+enb(1+52)+0(ez)] (5.9)
r(1+2) e«

where the ¢ -function satisfies the recurrence relation

Y(z+n) = l/z + 1/(z+ D)+ ...+ l/(z+n-1) + ¥(2), (5.10)
will be used repeatedly.

1) K1, -1, 0,0). This integral, appearing in the evaluation of the one-loop self-energy

v

(see Fig. 7) is easily evaluated using (7). The result
F(-1,-1,0,0)=/d*q(p-q) *q™
> 22T ()8 M (146 )T (-6, ) /T (242 ¢ )

|
= g [——+y+ nn + np®> —2+0(e)] (5.11)
€1

FIG. 7.

where y=¢(1)=0.577... is the Euler-Maschereni constant, has a UV pole. The three

terms in the expressionl/e;,, + v+ 2nr always appears €in the same combination. In
calculations related to field theory the integral usually is multiplied by an extra phase-

space factor (2m)™~ (27)?% so that a divergent integral typically has the expansion

1 1 1

T” fd*q...~» 6.2 (€—+ vy—8fndn+2enp>+...) (5.12)
1,0

i

In the renormalization program, infinite arts of the self-energy is absorbed into the
wavefunction renormalization, so that the renormalized self-energy is finite. In practice,
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a Feynman integra for a renormalized quantity is just the integral minus its infinite part.
The process of removing the infinite part from a divergent integral is called subtraction.
In the minimal subtraction scheme” (MS) only the UV pole term 1 /e, is removed. In the
MS scheme!® the combination 1 /e, + vy —2ndn is removed atogether.

For convenience, we define the quantities

l/e,,, =1/eg,s t v+ 0w (5.13)

The basic motivation for separating the two types of singularities is that in the renor-
malization program only UV singularities need be subtracted. The remova of IR singulari-
ties in field theory is not a completely understood subject. It is generally believed, and
proven in (Abelian) quantum electrodynamics,'® that a process becomes free of IR singu-
larities if all possible ways of emitting soft, massless gauge bosons (photon in QED) are
included in the process.

(2) F(0, -2, 0, 0) (lyl < 1). Returning now to (1 1), we notice that when p*—0, the ex-
pression has a logarithmic singularity. In the specia case when p = O the integral reduces
to a tadpole integra

F(O’ _250, O) = fd4q q-4

- n*te (Pz)el P(2+e )T ()T (- €)/[T(-€; +eo)T(2-€1teo) (2+2¢ )]
= n¥(1l/eq —1/ey). (5.14)

In the limit p=0, e;=€, =€, SO that the representation is identically zero (it is actualy
proportional to p), giving the usua result for a tadpole integral. The important point is
that the integral vanishes as a result of the cancellation between a UV and an IR pole. In
other words, if a distinction needs to be made between these two types of poles, then the
tadpole integral is not zero. This point is not always realized by those using dim. reg.,

augmented by the definition that tadpole integrals are nil-valued (see (2 .15)), as aregulari-
zation tool.

(3) F(-2, -1, 1, 0). This inegral is encountered when evaluating the one-loop three-
vertex of Fig. 8 in the axia gauge. Because N =1, and 1/T'(-N) =1/I'(-1) = 0, the second
term in the {} bracket in (8) vanishes. Power counting (consult (1)) tells us that the inte-
gral is both UV and IR divergent. Substituting the appropriate integers into (8) yields

FIG. 8.



H C. LEE 120

2@ MD(3/2) I (1+ €0)T (2+€0 ) (- €1)

b L O e @ et el (e tea)l GF2ep)
2teq,-€q, -1
3Fs ( y)
1/2, -60

™ n? (2+e)e

_ 2\€ -1 P

= Jr 3 ™) {1+e[w(2)—2w(3)]}(—é)1[1 t a2
a2 (5.15)

= - T (l/e, - 4yle, + 6y — 2)

The infinite part due to the UV divergence is -7*n*/16e, whereas if UV and IR singulari-
ties were not distinguished it would have had an additional multiplicative factor (1-4y).

6. GAUGE INVARIANCE AND WARD IDENTITIES

Because of the gauge invariance of gauge theories, an infinite set of identities, Ward?®
identities for short, exists among various Green functions (n-point functions). A typical
Ward identity relates the partia derivative of an (n+l)-point function to a linear combina-
tion of n-point functions. Because Ward identities are in general nontrivial equalities,
they can be gainfully exploited, among other purposes, to check the consistency of
intricate and lengthy computations. For example Ward identities are often used for testing
the viability of a regularization method.

The older analytic regularizations mentioned at the beginning of these lectures are
known to violate gauge invariance and therefore not to uphold Ward identities in generd.
In the analytic regularization expounded by Speer,?! quantum field theory is regulated
by modifying propagators, replacing, say (for massless particles) (p-q)~ by (D-CI)”‘.
A X-dependent theory with such modified propagators is free of UV singularities in the
complex h-plane, except for poles a A= -1; the theory of interest is recovered in the limit
xr— -1. However, since the structure of a Lagrangian with a propagator having a
continuous exponent is not known, the gauge transformation is not welldefined for
theories with X # -1. Specifically, formal Ward identities — formal because they involve
divergent integrals — derived for the red theory are not satisfied in the regularized \ # -1
theories. In this sense Speer¥s analytic regularization, as well as other analytic methods
similar to it, does not preserve gauge invariance.

The crucial difference between our method and the old analytic regularizations lies
in two important aspects. (&) the new method is a technica hybrid of dim. reg. and the
generalization of exponents used in the old analytic method; (b) the generalized
dimension and exponents are viewed dtrictly as a means for regulating divergent integrals,
rather than regulating the theory, of which only the four-dimensional one (or whatever
integer dimension, as the case may be) is of interest.

Having a generalized dimension is important; we shall see that Ward identities are
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upheld if and only if (the representations of) Feynman integrals are evaluated in the
o-plane (p=0 = 0, see (5.2)).

For a Yang-Mills theory described by the generating functional Z[J] in the axial
gauge (see (1.28)) ,

iSefrlA, I

Z{J]1= [ [dA] e 6.1

the simplest Ward identities, which are the only ones we shall consider, are derived by
considering the variation of Z[ J under the infinitesma gauge transformation

5 A, =3,At(A xA) (6.2)
(the local functions Ad(x) are infinitesimal),
5Z13) = fLdAl{1-3% 5% + gfab¢ AE )] [——i—n-Aa(x)n“ + 12001
"exp(iSqrr[A, J | YAS(X) | (6.3)

An m-point Ward identity is obtained by taking (m-l) functional derivatives of §Z[J]

with respect to the source J3(x) a (m-l) localities, and then evaluating the result a J = 0
in the limit a - O:

8 VAR =0 .
‘le*ng { TT T(?5 [ ])}J=0 (6.4)

The two-point identity, after some mampulation and transformation to momentum space,
has the form before the limit = O is taken,

ATy @ = i 2 0, = By T (@) 6.5)

HM is the self-energy to al orders (in g) and H—M‘is the zeroth order, or free, self-energy
given in (1.37), from which the second equality sign in (5) is derived. Define

M, =T -5 6.6)

to be dl the radiative corrections to the self-energy (it will be at least of 0(g?)) then from
(5) we have the tranversality condition

ATl (@) = 0 . (6.7)

The longitudinal part of ]TM proportlonal to mn, /e is of no importance. First

of all the fact that it appears only in TT)\ and nowhere else means that it is decoupled
from the rest of the theory. Secondly it vanlshes whenever it is connected to an externa
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N[
N
x

(a) (b)

FIG. 9.

gauge field, since the resulting factor n - A is zero-valued due to the constraint (1.3 1).
Therefore it need not concern us when (5) appears to diverge in the limit a - 0.

At the one-loop level, ﬂ)t\u is given by the two diagrams in Fig. 9. Diagram (b) is a
tadpole, which we shal take to be zero-valued,
intending for the moment not to distinguish the UV and IR singularities. Diagram (a)
is given by

1 b
S (<O = 7T

=-50 =% (gz](T:)24fd“q[I‘>\ng(p -q,9- p)A( )(q)I‘ma'(-p p-q, Q)A( )(p D] =g
(6.8)
where the 3-vertex T and A(9) are given in § 1 and C,, defined by
530, = gacd gbed (6.9

is the value of the Casmir operator for the adjoint representation of the gauge group;
for SU(N), C, = N. The one-loop self energy, being a rank-2 tensor, involves integrals
with tensorial integrands such as

9y

d4
fda (p-9)*q?

(6.10)
for which we do not have a generalized representation. The way to evaluate such
integrals®*? is to realize that any n-rank tensorial integral can be expressed as a linear
combination of products of n- rank tensors constructed from & uv Py and n, and scalar
(or invariant) integrals. For ]T the expansion (actualy true to any order in g) may be
written as

]T(I)(p) =+ [A, P"8y, + Ay P, + A P (pyn, +p, 1 )/(p-0)
+A,p" ny n, /(p-n)* 1 (6.11)

where A; are scalar functions of p*, n*and p- n, and are expressible in terms of the four
scalar integrals a;,i=1,2,3,4 defined by

1 = ﬂl 57\#/p



YANG-MILLS THEORIES IN AXIAL AND LIGHTCONE GAUGES, ANALYTIC
123 REGULARIZATION AND WARD IDENTITIES

-ia, = T Py B, /P*
-ia, = H&L) pyny /() /p?

-ia, =TTy m, n, /(p-n)? (6.12)

From this example the genera procedure for expanding a tensoria integral in terms
of scalar integrals becomes clear. Let T, be an n-rank tensorial integral labelled by «

(e, a=2Ap...), and G(i), i =1, 2, ... bethe complete set of n-rank tensor operators
(one of which is p)\pu..). Then the scalar functions A; in the expansion

Te= 209 A (6.13)
can be expressed in terms of the scalar integrals
;= &(Oil)Ta. ( not summed over) (6.14)

Substituting (14) into (13) yields

_ @) 50, 1y.. i
a; = zj o) o VA= z‘;(JU‘ )i Al (6.15)
so that
A=% Ui g . ] (6.16)
J

In this program, the operations of tensor algebra and the regularization of divergent inte-
grals are completely separated, so that it is not necessary to generalize the algebra
originally defined in, say, 4dimension space to one in 2wdimension space. This implies
that, among other things,

5yy = 4 (6.17)

rather than 8y~ 2w as in 2wdimension space. Thus, for the task at hand, the matrix
Ufor (11) and (12) is a 4 x 4 matrix, with

The scalar integrals a; can now be reduced to a form suitable for representation.
For example, suppose

n
T T, = [digq wl 6.19
R (p-q9)* q? (6.19)
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and
o~ o = p,p, o2
Then
p-q 1 [p*+q*-(p-q)° |
= . d*q——— = — [d* 2 2
3 = (p-n)f To-97q® 2 [d%a (P-a)°q
p? 1 1 1 L
= e[ fdqg——mrst[dq — -5 [dq¢ =]
(prn) [ 5 ) q(p—q)2 ¢ 2 /d'q (Pao 2 /&a q’
(p *n)p? L
_ PO S 6.21
7 1R e o

The last two terms on the second-to-last line cancel, being equivalent by the shift
operation.

In evaluating (11) and (12) we will aso encounter integrals such as

1
= fd 6.22
JEaR®. e o (622

The standard technique to be used here is partia fraction:**

1 1 1
[ = (d*qK(p, [ +
Sd*q K(p,q) o laon | p-a)n

= —ﬁ—}; S d*q[X(p, q)/(q*n) + K(p, p-q)/(q*n)] (6.23)
where the second kernel in {] comes from changing variable cl = p-q. This technique
can be applied repeatedly if necessary.

We are now ready to explain why it is necessary to take the last step in (5.6), i.e,
sending p=¢ =0in(5.2), if Ward identities are to hold. The reason is that many of the
manipulations used to reduce the integrals to forms suitable for generalized representation
are only applicable to primal integrals — integrals vith only integer exponents. It follows
that Ward identities are true only for expressions involving primal integrals — integrals with
al x .u,and v being integers. This is why SpeerTs analytic regularization does not uphold
Ward identities, whereas our method does, provided the representation for the integrals
are evluated for integer exponents as charted out in (5.6).

In the axial gauge the actual computation reducing the A;’sin(11) to linear combina-
tions of primal integras is rather lengthy3!, and the resulting expressions are too long to
be given here. However, computations involved in (12), (16) (i.e. computing the reciprocal
of U), and manipulations analogous to (21) and (23) can al be carried out with the
aid of algebraic computer programs such as SCHOONSCHIP, REDUCE |l or MACSYMA.
Let us smply take for granted that the A;’s have been thus calculated. Then, substitutine
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(11) into (7) we have

ipy ID(p) = (A, +A, +A) D7D, +(As AP, /(M= 0 (6.22)

implying that the A:’s must satisfy

AL +A, = -A, = A, . (6.25)

Remarkably, the A;’s we nave computed reduce to linear combinations of prima integrals
that satisfy (25) identically, provided we let all tadpole integrals be zero. Recal that
tadpoles vanish exactly only if the associated exponents are integers; so we see once agan
the necessity of setting ¢=p 0 (see (5.2)).

Because the Ward identities (25) are satisfied at the integra level — i.e, before the
integral has been evaluated — it is clear that they are still satisfied when the scalar integrals
are generalized to 2w-dimension, regardless of the value of «. This strengthens our
conviction that algebraic manipulation and regularization are two operations that can,
and should, be separated.

With the A;’s satisfying the Ward identities (25), (11) can be rewritten as

W&)(p) = -i(oPyy +T Ny )y To = Ay, MTi=-A;s, (6.26)
P\y = P*8y, — DD,
Nyu =lpy —p*ny /(-m)]p, —p*n, /(p- n)] (6.27)

It is clear that both of the tensors PM and N?\u are perpendicular to py so
(26) is guaranteed to satisfy the transversality condition (7).
When all the integrals are evaluated we find

gC: 1 62 44¢

22 4
. = — - ) —_— — 2y _ — ——
To B! 56 (T8 W)@ =68 447 — =+ —o~

2
+ 2t 4+ ?(--8 +2§—§2

)Z]

n-2% L 02 v mcya-¢ "9 )

327 1-t 3 3 f
1 16 9
-— " "5+ t—- —)Z 6.28
>3 ¢~ )7 (6.28)
where 1 /e is defined asin (5.13),
oo L
z=2 5 UV [eny - ¢(1+82) +¥3BR2+)], Iyl < 1 (6.29)

=0 “(3/2),
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is proportional to the finite integral S(2, -1, -1, -1, 1) =«*y Z/(p-n),¢{= lly. Note that
only Mo, the radiative correction to the zeroth order self-energy has an infinite part. We
do not at this stage know whether this is a UV or an IR infinite term, however.

To find out the origin of the infinite term, we use the limiting process described
in the last section (see (5.6)) to delineate the two types of singularities. In this calculation
we must aso take into account the contribution from diagram (b) of Fig. 8, since tadpoles
do not vanish when UV and IR poles are counted separately. The result of this calculation
is as follows. (a) the relations (25) are no longer manifestly satisfied at the integra leve,
but are satisfied when the prima integrals are evaluated; this probably implies that there
exist identities among primal integrals of which we are not yet aware. (b) The values for
Tlo and [T, are identical to those in (28), except that the pole term I/e in (29) must now
be replaced by 1 /e, ; the self-energy has only a UV infinite part, but is IR finite.

Thus, following the usual renormalization procedure, we can remove this infinite
part by adding to the original Lagrangian a counter-term corresponding to the kinetic

energy,

~

g£C 11 ,
A 2o (a8, - 3,A)) (6.30)

We now briefly discuss the verification of the three-point Ward identity,

abce

Ay PAT) =8 abe [TT:,, (a) —ﬂﬁv(r)] (6.31)

ipy T
derived from first taking two functiona derivatives of §Z[J] and then taking the Fourier
transformation. Computation of the general one-loop three-vertex function involves the
evaluation of three-point integrals, for which we do not have a generalized representation.
We therefore examine only the special case, with q =-p,r= 0. The Ward identity of
interest is

. 1 1
ipy ngu)v (r,-p,0) =g U(W) (P) (6.32)

where a factor of f2°¢ has been removed from both sides. The three-vertex is represented

R |r
x

X))

FIG. 10.




YANG-MILLS THEORIES IN AXIAL AND LIGHT-CONE GAUGES, ANALYTIC
127 REGULARIZATION AND WARD IDENTITIES

by the diagrams in Fig. 10.

It can be expanded as described in (13) to (16) so that again only scalar two-point integrals
need be evaluated. Again we find that: (@) if UV and IR singularities are not separated,
then the Ward identity is manifestly satisfied at the prima integra level; (b) if they are
separated, then the identity is satisfied when the integrals are evaluated (through the
generalized representation), and r(D has only UV infinite parts, al IR singularities having
cancelled among themsdves. The result®!is

g’C, 11

r{1) (p,-p,0) = T gé‘l(z%\#py-%yp)\—%\pp#) + finite parts (6.33)
m

TAMY

implying for the general case

(1 _ &G 11 (0)
Py @0 = g3 Dy

(p, g, r) + finite parts (6.34)

In the MS schemeT, the wavefunction renormalization constant Z; and the vertex
renormalization constant Z; are defined respectively via

0
(Wﬁu —UELOV)t dinf = (Z; = 1) ”;(w)t (6.352)
(quu—Fg\%)u)inf =(Z,-D F(x%)u (6.35b)

From (28) and (34), we see that at the one-loop level
(6.36)

The equality of Z, and Z, is special to axial gauges, but not generally true in nonaxial
gauges.

To conclude this section, we have demonstrated that when properly applied, analytic
regularization preserves gauge invariance. The key point is that after using the generalized
representation S(w,«,u, vV, S) to evduate Feynman integrals F(K, M, N, s) we must take
the limit «» K, u=> M. We also showed that we can use the limiting process to separate
UV singularities from IR singularities without violating Ward identities. The method used
here to isolate algebra from the analysis for regularization also strongly suggests that even
though the regularization employs dim. reg., it may not be necessary to generalize the
algebra to 2wdimension space. This conjecture is certainly true for the limited cases
studied here, but a more extensive investigation is needed before it can be taken as general-
ly valid. In view of the recent controversy on the question whether super-symmetric
theories can be quantized because a regularization obeying all supersymmetries may not
exist, the task of searching for a regularization that works independently of algebra
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becomes more urgent.

7. THE LIGHT-CONE GAUGE
7.1 Principal-Value Prescription
The light-cone gauge®is a specia axia gauge constrained by the additional condition

n* =0 (7.1)

Since only a nil-vector has zero-norm in Euclidean space the constraint (1) can be non-
trivial only in a non-Euclidean space, such as Minkowski space. Conventionally,
integrals in the axia gauge have been derived (mostly using the principal-value prescrip-
tion) in Euclidean space, in which (1) cannot be met, so that the integrals had to be
derived anew for the light-cone gauge, and this had led to the belief that the light-cone
gauge is not a special case of the axia gauge.

In our analytic method, which gives results equivalent to those derived from the
principal-value prescription, the representation for the generalized integrals, although
derived in Euclidean space, is sufficiently analytic to admit continuation back to
Minkowski case, so that the representation for lightcone gauge integrals actualy is a
special case of the representation for axial gauge integrals.

In recent years the light-cone gauge, in spite of being especialy singular, has gained
increased popularity because it is (a) ghost-free; (b) at least superficialy simple; and (c)
physical. It is ghost-free because it is an axial gauge. It is superficialy simple because,
compared to (1.40), the propagator simplifies to

©ab _ 8% o BmtRm

limA 8 &/ 2 %
mas pz( pVI! p'n (7.2)

a>0
As well, we have dready shown in § 4 that two-point integrals in the light-cone gauge are
enormously more simple than the general axial gauge integrals (see (4.18)).
Ancther feature adding to the attractiveness of the light-cone gauge is that it alows

one to work explicitly with only two of the four components of the gauge field. Let us
first choose n, to be (in Minkowski space with metric (1, -1, -1, -1))

n#=(1,0, 0,1)// 2 (7.3)
Now any vector a* can be decomposed into the two components
at = (a° + a3)/\/§_ (7.42)

and the two-component vector that lives on the xy-plane

a= (0, a*,a?, 0). (7.4b)

Similarly a contravector have components
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a = (atas)l/2=a", (7.5a)
a;= -af, i=1,2. (7.5b)

The scalar product is

a- b =abl= a bt +a b+ iél 3 bl
=a%  +abt-a-b (7.6)
In particular
a-n=a'. (7.7)

The light-cone gauge condition therefore reads
n-A% = A%t =0, (7.8)

The component A%" can aso be diminated from the theory by making use of the equation
of motion

ar ot
o e T o 2 AL-gfPC AP G ACH = 0 (7.10)
u
yielding
. 1 . .
Ad- = 3+ A8l + gfabe WAM 3t Al (7.12)

This means that the theory, which has a four-component gauge field A to start with,

can in the light-cone gauge be reduced to a-theory involving explicitly only two of the
components.

The reduced theory?® has a particularly simple free boson propagator

5ab 5 -
(0)ab _ . i 3 ij=1,2 (7.12)

Ai_] 5

but has somewhat more complicated 3 and 4 vertices.
- 0
;0 (p, g, 1) =200 (p, 4, 1
T
= g% {55 [(p-)y — (p-0)" —§- |

> "
85 [0 - (gn)+ —Pi; J+ 8 1; [(r=p); - (x=p)" —q’;ﬂ } (7.13)
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(O)abcd qTS+
ke 0, q 1 9 =-ig? (£20efede o 5j 8 kg

(p+q)T (r+s)T

+ 88 1o+ permutations } (7.14)

One may choose to use for computation either the Feynman rules (12-14) or (7)
and (1.38, 39). The fina result should be equivalent. Because we want to compare our
light-cone gauge calculation with the results in § 6, we choose to use the latter set of
Feynman rules, in which case the A%* fields are not eiminated.

We first describe how the result (4.18) is derived by anaytic continuation. We shall
consider n*= 0 as a limit of n2~0%. In this limit y =(p-n)?/p*n®>e"T, so our starting
point is (4.9b),

S(w,x,u,v,s):...xG;’z(l/y| B lyl =1

Near 1 /y =0, schematically *¢
G2A(1fy1..) = YO (.t lly) + yHHE (1)

Ty HEES SRy (7.15)

where the (three different sets of) variables for the ;F, functions have been suppressed.
The RHS is well-defined only in regions of C*x Z, space where w+k+u<0 and
~«w-u-2v-s < 0. Two regions in which these conditions as well as the conditions for which
the original integral exists (see (4.12)) are the neighborhoods of {w ,K,/J,V,s}={ 2,
-1,-2,0, 1} and {2,-1,-3,1,1}. In any such region, in the limit Iy - 07

YO F G Yy > 1
the second and third terms on the RHS of (15) vanish, so that
S(OJ,K,IJ,V;U)_’L(UJ,K,#,;=2V +S)

_ n@ @)@ (peny T(w+0)T (wtps)T (-w-k-p)

= — , (7.16)
PP () TRtk + ptv)

which is equivalent to (4.18). Now, the RHS of (16) is well-defined in all of C*x Z,
with a most pole singularities, so by the principle of analytic continuation it is a repre-
sentation for S in the whole space, when Ify =O+, i.e, when n*=0.

We now discuss the Ward identities in the light-cone gauge, first without attempting
to separate UV and IR singularities. We find that again both the two and three-point
identities are manifestly satisfied at the primal integral level, provided tadpole integrals
are discarded (their representation (16) are nil-valued). The one-loop self-energy??, which
has the form (6.26), is simple enough to be given here,
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gz
o =-3-2§’5 4L — 6Ly + 8L,)

g2C2
T, = o (12L +4L,—8L_)) (7.17)
with
L, = a7 (p-n)” L(o,-1, -1,¥) (7.18)

The full expressionT for F{il),(p, -p,0) is ill too lengthy to be given here but its con-
traction satisfies the three-point identity (6.32) and therefore also has the form (6.26).
So far nothing sets the lightcone gauge apart from the other axial gauges except its relative
simplicity. Its peculiarity is exposed only when the integrals in (17) are scrutinized.

When we evauate the integrals in (17) using (16), we find

L,=-lle + 2

L,=-1/3¢ + 13/18
1 1 2 1 232 2
L= - {— (5 +mp?)+ = [(7+8np?)* — 6] } (7.19)

where |/e is defined in (5.13). This result is unusua in two important aspects:

(i) The integral L_, contains a double pole of 0(1/€*) and a logarithmic single pole of
0(¢np?/e). The latter is particularly bothersome because it cannot be removed by
a local counterterm.

(i) The function[]; has an infinite part. This means that a counterterm in addition to

(6.30) and having the form 2 #A“aVAV is needed for renormaization; n,-dependent
terms are not needed because n + A =0.

The first point casts the renormalizability of light-cone gauge in dobt, insofar as the usua
method of using counterterms is concerned. Whether a viable renormalization scheme can
be found for our regularization of the light-cone gauge is a question that has not yet been
answered.

The strange result for the light-cone gauge can be understood by examining more
closely the analytic continuation used to derive (16) from (15). For any finite value of
Ily, the integral may be finite even when more than one of the three terms on the RHS
of (15) have infinite parts. An example is the integral L_,, for which the first term in (15)
is responsible for the poles given in (19), including the double poles. For finite I/y all of
these poles are however cancelled by poles contained in the second and third terms in (15);
the integral is finite in axial gauges with n*# 0, see (6.29). In the limit I/y 07, the
second and third terms are discarded (see discussion following (16)) and the cancellation
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effect is lost. The key point here is that a representation with drastically different analytic
properties is obtained if the limit l/y ~0% 1s taken before al others. As an independent
check of the correctness of (16) (in the particular limiting process under discussion) an
identical result can be derived* by setting n?= 0 at the outset and taking steps analogous
to those described in Appendix B. Integrals evaluated from (16) also agree, as expected,
with those computed using the principal-value prescription according to (2.18).

Some of the peculiar properties of (16) are:

(i) The conditions for having pole singularities are different from those of the general

case:

(@ UV sing. when wtk+p =0

(b) IR sing. (¢ =0) when wtutrv < 0

(c) IRsing. (g =p) when wtk < O (7.20)

Only (c) is the same as before (see (5.1). It follows that in this regularization power
counting is lost, explaining why the integral corresponding to L_, in the axial gauge
is finite (see (6.29), but has single and double poles in the light-cone gauge;

(i) UV and IR singularities are indistinguishable. This shows up when one attempts to
separate UV and IR singularities in the three point Ward identity; the UV-infinite
and IR-infinite terms do not separatelv satisfy the identity (they do in axia gauge
with n?# 0);

(iii) ¥Unrenormalizable™ singularities of order 0(1/e?) and O(%n p?/e) appear in one-
loop calculations, as noticed earlier.

7.2 The Mandelstam Prescription

In view of the undesirable properties of the regularization (16), there have been
recent attempts to find new regularizations that may have better properties. One such is
proposed by Leibbrandt®® where

1 def 3-8 + i lnlq,)

= (7.21)

q'n (G-n)* + A%q’

(The scalar product g -n=qsn, + §- & in Euclidean space, and the light-cone condition
n?= 0 is satisfied by setting n, =% Inl). The prescription retains power counting, has
only single poles and has been shown to satisfy the two-point Ward identity at the one-
loop leve, but is Lorentz-noninvariant.

Another Lorentz-noninvariant prescription, devised by Mandelstam,'?® uses the
replacement

1 1 def 1

= lim ——— (7.22)
ns0+ O+ + 19 7
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where g* is defined as in (4a) and n is a small c-number to be set to zero after integration.
Mandelstam used this prescription to prove the finiteness of the N = 4 supersymmetric
Yang-Mills theory. Despite appearances, the two prescriptions (21) and (22) have been
shown to be equivalent .32

Recently Capper et al.?® showed that the light-cone gauge integral L(2, -1, -1, -1)in
the Mandelstam prescription is finite, in sharp contrast to the result (19) obtained in the
principal-value prescription. We are therefore motivated to find a representation for the
generalized class of two-point lightcone gauge integrals based on Mandelstam®s
prescription. As explained in Appendix C, in this prescription it is necessary to evauate
the integral in Minkowski space.

We define the generaized integrad as

M(w, K, 11,v) T!ignM{mkows(lp -q)? + in)¥(@ +im* (@F +ing)? (7.23)

for which we find the representation (for derivation see Appendix C)**

l-w-p, l+wtrtu+r | 1+v;

M= M z? G | e ), lzl<l
I+tv, 1-w-k ;1
= Mo G3,3(__| 0 wobiby s s ) 12131
o = iCreTT R 1T (p Ty
* T TR T(-p) D) Qutk+uty
z =2 p/p’ (7.24)

where p* are the light-cone variables in (4a). This result has some simlilarity to the one
given in (4.9 but the two are obviously not identical. In particular the extra phase factor
of ie™« in (24) comes fromT the fact that (23) is defined as an integral in Minkowski
space. Aside from this phase factor, the two sets of results are expected to be identical
when v is a non-negative integer N. Indeed one can show that

i(m 7Y 9 (p YOTK T (oY T (i )T (wt ptN)T (<0 -p=)

M N>0) =
(w, k0, ) D) (-)TQRw+k+ut N)

(7.25)
which is identical to L{w,x,u,»=N) of (16) to within a phase factor. This implies that
the Mandelstam prescription still does not obey normal power counting for »=N > O,
since UV divergence is determined by the abnormal condition w+u+v= integer > 0.

We now examine the especiadly interesting integral with x=u=»= -1, which is the one
(and only one) integral in the principal-value prescription to become a regular but non-
terminating series in the axial gauge ((6.29)) and to have a double pole and other peculiar
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properties discussed earlier in the light-cone gauge (( 17)). In the Mandelstam prescription,
from (24), we find it to be finite

in? 1,1
2R

M2, -1,-1,-1) = z) —8nz 2F1(1’21‘Z)], 1zl <1,

T S S - 1, 1,1 1,1
=_1p,_{—3—-—2—52n22+z’[3F2( 2,2 z) — fnz ,F,( 2’2)]},

z] > 1, (7.26)

in accordance with power counting. The one-loop correction to the self-energy can now
be read off from (17), (19) and (26), remembering that L, and L, are the same in the two
prescriptions, and that L_; is to be replaced by (26). We find for the infinite parts

2
gC, 11
(ﬂo )mf = 161{2 36 >
_ g2C; 4
(M dine = g7 (7.27)

Of interest is that (m,)j,¢ is identical to its counterpart in the axial gauge in the limit
y > (see (6.28)). Still present is the infinite part in [[;, necessitating an extra coun-
terterm for renormalization.

We briefly summarize some other results:

(i) The three-point Ward identity is separately satisfied for the UV-divergent, IR-diver-
gent and finite parts;

(i) As in the axial gauge, infinite parts in both L and Ty\up e al of UV origin; al
IR singularities cancel among themselves,

(ili) The infinite parts of T' ,,, are not the same as in (6.34);

(iv) The renormalization constants Z, and Z, are not equal, contrary to (6.36).

This suggests that in the Mandelstam prescription, the light-cone gauge may still require
an unusua renormalization program; our calculation shows that the theory in this gauge
is probably not multiplicatively renormalizable.

Noted added: Very recent results® have demonstrated that the light-cone gauge in
the Mandelstam prescription requires only the normal renormalization
program, and that Z,=Z,, provided one works inthe: two-component
theory described in Egs. (8-14).

8. RENORMALIZATION, THE g-FUNCTION, AND ASYMPTOTIC FREEDOM

Although many quantities in gauge theories are gauge-dependent, the physics
described in such theories must be gauge-independent. One of'the gauge-independent
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properties in nonAbelian theories is asymptotic freedom.?” The coupling constant g for
the interaction in an asymptotically free theory becomes vanishingly small in the limit
when the momentum A characterizing a physical event is increasingly greater than a certain
fixed momentum scale A4, rendering the theory interaction-free. This property can be
expressed as

1 2 - 0. 8.1
)\ng(x) (8.1

The fixed momentum scale A, can only be determined experimentally.

Asymptotic freedom is a result of radiative renormalization effects symptomatic
of all field theories. The calculations we have already done in the last two sections for
the one-loop corrections for the self-energy = v and the three-vertex Pyuy € sufficient
for the discussion of this topic. We shall show that although the self-energy and the
three-vertex are not renormalized the same way in axia gauges as they are in covariant
gauges, the two classes of gauges yield identical quantitative results for asymptotic
freedom.

For theories that are multiplicatively renormalizable (for the light-cone gauge see
note at the end of § 7) the behaviour of g as a function of A is characterized by its logari-
thmic derivative with respect to A, known as the §-function

6(g) = x;f;p_. (8.2)

the X-dependence of g comes via the wavefunction renormalization constant Z; and the
vertex renormalization constant Z, which are related to g and the bare coupling constant
go by

3/2_
g,=8Z, Z, / =gZ, (8.3)

where Z, and Z,defined by

t 0)t
Wuv = Z, ﬂ;(w)

G
F)\uv =1 F)\uv

&4

(the superscript t denotes the transverese part of N#V; see §6), embody radiative correc-
tions which we have calculated to lowest order in g2in§§ 6 and 7. From (6.28, 34)
these renormalization constants are the same in the axia gauge (n?# 0).

g2C, 11 1

= = —_ 2 2
Z,=Zy= 1+ o5 [+ @A) +

+ ( X-independent regular parts)]. (8.5)
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We have for the first time explicitly displayed the dependence of the logarithmic term
on the scale momentum A. For a massless theory where there are no other momentum
to serve as a dimensionful scale, it is clear, from dimensional arguments, that A must
enter in this way. Our caculations have shown that there are no other terms in Zi that
are dimensionful — the variable y = (p -n)?/p*n?in the axia gauge is dimensionless. For
massive theories there may be terms such as m?/A?*, but their logarithmic derivatives
aways vanish in the asymptotic limit A — .

In§ 5 we pointed out that, in radiative corrections, the logarithmic and pole terms
aways occur in the same linear combination as in (5) (see aso (5.12)). The origin of this
correlation lies in the expansion

(o' /N [—i+0(e° )] = [1 +efn(p?/A%) +g(€?)] [—1;+6(e°>1
1
= —ten(p*/A*) +6(e%) (8.6)

This implies that for the purpose of caculating the p-function to lowest order in g, only
the infinite parts of the renormalization constants are needed, since
3Z; _ dZ:;

=_7 1
sy (8.7)

Let us define the coefficients, b, b; and bs via

1 1
(Zginfinite = ~(— b8") —~ (8.8)

1
2y, Dinfinite = ©4,58") — (8.9)

then from (3) and (5), for the axia gauge

11C .
bym = (bidym = (bs Jym = 78—7;2 + O(g*), (axial gauge) (8.10)

where the subscript YM denotes contribution from Yang-Mills fields only. The significance
of this relation, arising from the equivalence of the renormalization constants Z, and Zs
is that in the axial gauge the renormalization of the self-energy aone determines the
B-function. This relation does not in general hold in nonaxial gauges. Indeed, to lowest
order for covariant gauges**

(bsd)ym Eor (— —a), (covariant gauges) (8.11)




YANG-MILLS THEORIES IN AXIAL AND LIGHT-CONE GAUGES, ANALYTIC
137 REGULARIZATION AND WARD IDENTITIES

where « is the gauge-fixing parameter (see (1.24)); the inequivalence of b, and b; results
from the existence of ghosts. However, from (3), (8) and (1 1),

. 111G,

YM 4842 + O(g), (gauge independent) (8.12)
T

showing that the coefficient b is a gauge-independent quantity.
We now proceed to demonstrate asymptotic freedom. Because g, is independent of
A, we obtain from (2), (3), (7) and (12), the gauge-independent P-function

B@) = 28 Z, [2Z,/3(1/e)]

=-bg® + 0(g°)

Because C,> 0 and therefore by > 0 to lowest order, the negative sign in (13) implies
asymptotic freedom. For if there exists a momentum X, for which g? is sufficiently small
for the leading term in (13) to dominate when X >> A,, then the solution for g* (X)
in the asymptotit region (A/A, >> 1) is

g2(2) = [b&n(A?/ AD]™ (8.14)

Asymptotic freedom as prescribed by (1) then follows. We emphasize that the constant
momentum scale A, is not calculable in the theory; its empirical value*® is 250 #
150 MeV/c.

We. now briefly discuss what roles fermions, which we have ignored so far, play in
asymptotic freedom and why an Abelian theory such as quantum electrodynamics is not
asymptotic-free. The fermionic contributions to the renormalization constants can also
be caculated from the diagrams in Figs. 8 and 9, but with al internal (gauge fidd) lines
replaced by fermion lines. The gauge independent result is?®

- Ng
bfermion = (P1)fermion = (P3)fermion = — 4 (8.15)

where Nf is the number of fermion species. Significant is the contrast between the signs
in (15) and (11): whereas by = 0, bermion < 0- The total value for b is thus

- 1 11C,
b = bypm * bfermion = 472 ( 5 T Nf) (8.16)

This means t.'at a theory with Ny fermions is asymptotically free only if
11C,

Ng< (8.17)

A nonAbelian theory such as quantum chromodynamics, with gauge group SU(3) and
C,= 3, is therefore asymptotically free if
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<16 (for SUB)ep1op) (8.18)

On the other hand, any Abelian theory must not be asymptotically free , since C, = 0
(see (6.9); the structure constant is zero for an Abelian group) and N¢> 0.

APPENDIX A — INTEGRATION IN EUCLIDEAN AND MINKOWSKI SPACES

For invariant integrals, where al quantities involved in the integrand are scalar
products, the only thing that matters in deciding whether the integration space should be
Euclidean or Minkowskian is the possible range of values for the norm of a vector. For this
determines how factors appearing in a Feynman integral can be exponentiated.

Exponentiation is generally necessary before integration in a generalized continuous
dimensiona space can be carried out. The only formula needed for this task is probably
also the most useful formula for evaluating Feynman integrals, namely Euler¥s formula

o1 - -
P2t T e Re) >0, Re(n)<O. (A1)
The congraint Re(z) > 0 is of specid interest to us.

In Euclidean space the norm of a vector not being nil is always positive definite

P* = pyp, >0, (A2)

so one can use (A.l) smply by replacing the z there by p? (or p>+m? for massive inte-
grals).

In Minkowski space with metric (1, -1, -1, -1), because the norm of a vector is inde-
definite,

>2

=p, P =p - P, (A.3)

2

P

one must use (a.1) in a more round-about way:

9 1im [p? +in I
n>0*

lim i# [ p* +n I*

nsot
L e eumigip?tont i i

= hm+ F(_“)S , dt tH7elP , (Minkowski). (A.49)
n>o0

One can see how the smal n > O term is needed to satisfy the first constraint for (A.l);
the limit n 0% is to be taken after integration.
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APPENDIX B — DERIVATION OF (4.9)
The integra
S=S(w, x,u,v,8) = £d*¥ql(p-qF 1* (@®H [(qn)* ) (4 'n)® (B.1)

is evaluated in Euclidean space. Use (A.l) to exponentiate the three factors (p-q)?,q?
and (g - n)? separately, and then use (4.8) to do the g-integration to. obtain

S=5, _f: dtj:du j:dvt“"u'v'l yH-1ts (t+v)°‘"1/2

vy
t+u+tv

x (t+u +v)5+‘/7exp[(—t—:—v) (t — ),

So = n9(p -n)’(m® ) (p*)*t / [T )T ()T (-»)],

y=(p-np /p*n?,

a, = wtgtputr . (B.2)

Now transform the variables

u = At
t = Ml-7)E
v = a(l-7)1-¢) . (B.3)

The Jacobian is 3(u, t, v)/a(A,r,£)=7? and the ranges for integration are (0, 1) for
r and £ and (0, ) for A. The h-integration is easily done — again using (A. 1) — to obtain
B1-

o - 1

1 -
s=sol‘(-a1)5;dsz (1-%) x

« e et a2 yras (B4
|
where aq = -w-p-v-s and §; = wtk +v aswell as «, are the same parameters given in
(4.10). The T-integration can be identified as a hypergeometric function ;F, (see Luke”
Sec. 3.6.(1); p. 57), which can be expressed as a G-function G;zz (Luke, Sec. 5.2.(14);
p. 147) so that after a further transformation

we have

= -ao-1 -Byt Itag, 1+7;
S = §T(rs+1/2) f7 dw ® @an G o1 ) BO
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The integral is known , yielding (Luke, Sec. 5.6( 18); p. 165)

SeL(v+st+1/2) 5.3 Itag, lta,, 1+v;

S= G
(8- ag) 3’3(y 0, 8,; 112-s

(B.7)

which is the result for |y|< 1 given in (4.9a). The result (4.9b) for |y|> 1 is obtained by
analytic continuation (Luke, Sec. 5.4.(3); p. 150).

The reference used in (5.8) and (7.15) for expanding the G-function in terms of
hypergeometric functions is (Luke, Sec. 5.2.(7); p. 145).

APPENDIX C — DERIVATION OF (7.24)

Mandelstam¥'s prescription for the light-cone gauge is devised explicitly for integration
in Minkowski space, so according to (7.22) and (A.4), we define

M,k ,1,7) Tgi;g [d*ql(p-q)? +in I¥ (& +inf (¢T+ing?¥ (C.)

the evaluation of which always depends on a generic integral over the whole xy-plane

| =lim [ dxdy(x +i ny)? e*1(@XFDYFEXY) Re(c) > 0, (C2)
>0

In order to exponentiate the factor (x +iny)” with the aid of (A.l) we integrate over the
upper and lower-half y-plane separately and obtain
ki

[ = lim §o dt t7-lent (™ d
CI‘(-V)nI-)nt}SO © .fo y

. t . t
X [i7e2DY 5(y + — +oa) + (i e2by s(y+ — _ ] (C3)
2¢ ¢ 2c ¢
where the &-functions are from the x-integrations. The result for (C.3) is easily shown to

be proportional to a confluent hypergeometric function ;F,(-»; I-v; 2iab/c) (Luke, Sec.
3.1.( 18); p. 40). However, for our purposes we write

(2ia)” e2iab/c lim 'gl dt -»-1 e2iabt/c-nt

c(-v) N0t 00 (C4)

Now use this result to derive the equivalent of (4.8) for Mandelstam¥s prescription in Min-
kowski space

J(c, p,) = |In;l fdzw q(q++inq_)"' ei(CQ‘zp'Q)
n-»0

= ...fdz(‘“"l) g dg+ dp- ...
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- e pyreircf ; dt ¢ -1 ¢2ip™p” t/C (C.5)
r(-v) c

The light-cone decomposition of vectors was explained in (7.4-6). We now return to (C.l)
and exponentiate the first two factors according to (A.4) to find

eyl - - .
M=—— 1im dr (~ ds r-lgp-len(r4) D T 5445 rp)).  (C.6)
0

LW T(-k) nrotJon
After substituting (6) into f5), changing variables
r=x1-¢)

and integrating over A (from 0 to =), we obtain

i(m e'iﬂ)w(pz )OL ‘(2p')"’1'(—a,) . Bi-1 _a(; 1
M = d 1-
P (k)T (-p) T(-v) .’.o £ & (1-%)

XSU‘dtt""l[l t zt(1-¢)/ £ 1% (C.8)

where ay = -w-u and z = 2p*p7/p*. This integra is identical in form to (B.4), and can
be evaluated following the same steps as those given in (B.5-7), yielding (7.24) for |z|<
1. The result for |z|> 1 is again obtained by anaytic continuation
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