H.C. LEE

Theoretical Physics Branch, Chalk River Laboratories, AECL Research
Chalk River, Ontario, Canada K0J 1J0
and Department of Applied Mathematics, University of Western Ontario
London, Ontario, Canada N6A 5B9

ABSTRACT

We summarize recent results¹ on a functor that maps tangles to commutants of a quasitriangular Hopf algebra. In certain cases, images of (1,1)-tangles are new Casimir operators of the algebra whose eigenvalues are link invariants. Some applications to physics are briefly discussed.

1. A Functor Mapping Tangles to a Quantum Algebra

- 1.1. Tangles. An oriented (n,n)-tangle T is the disjoint union of n open oriented strands and an arbitrary number of oriented closed strands embedded in a cylinder in a 3-manifold, with all the n tails of the open strands held fixed on the ceiling of the cylinder and all the n tips held fixed on the floor. A link is a (0,0)-tangle. A tangle diagram is a regular two-dimensional projection of T. It is composed of positive (X) and negative (X) crossings and edges (\downarrow) . An ambient (regular, resp.) isotopy class of tangle diagrams is defined by the equivalence relations generated by the three (two, resp.) Reidemeister moves², I, II and III (II and III, resp.) on tangle diagrams, generalized for oriented tangle diagrams. Henceforth the adjectives "oriented" and "diagrams" will normally be suppressed.
- 1.2. Quasitriangular Hopf algebra. A quasitriangular Hopf algebra ${}^{3-5}$ is a noncommutative, noncocommutative Hopf algebra $\{\mathcal{A}, S, m, \Delta, \epsilon\}$ (resp. algebra over $\mathbb{C}[\![\eta]\!]$, antipode, multiplication, comultiplication, counit) equipped with a universal invertible R-matrix $\mathcal{R} \in \mathcal{A} \otimes \mathcal{A}$, $\mathcal{R}^{-1} = (S \otimes id)\mathcal{R} = (id \otimes S^{-1})\mathcal{R}$, satisfying $\forall \alpha \in \mathcal{A}$: (i) $m(id \otimes S) \triangle (\alpha) = m(S \otimes id) \triangle (\alpha) = \epsilon(\alpha) \mathbf{1}$; (ii) $(T \circ \triangle(\alpha))\mathcal{R} = \mathcal{R} \triangle (\alpha)$; (iii) $(\Delta \otimes id)\mathcal{R} = \mathcal{R}_{13}\mathcal{R}_{23}$, $(id \otimes \Delta)\mathcal{R} = \mathcal{R}_{13}\mathcal{R}_{12}$ (iv) $\mathcal{R}_{12}\mathcal{R}_{13}\mathcal{R}_{23} = \mathcal{R}_{23}\mathcal{R}_{13}\mathcal{R}_{12}$. We call the algebra $\mathcal{U} \supset \{\mathcal{A}, \mathcal{A} \otimes \mathcal{A}, \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}, \cdots\}$ a quantum algebra, and define $\mathcal{U}_{\Delta} \supset \{\mathcal{A}, \triangle \mathcal{A}, (id \otimes \triangle) \triangle \mathcal{A}, \cdots\}$. Let \mathcal{I} be the linear subspace spanned by ab ba, $\forall a, b \in \mathcal{A}$. Let \mathcal{A}_0 be the quotient space \mathcal{A}/\mathcal{I} , then $Sp: \mathcal{A} \to \mathcal{A}_0$ is a linear map such that Sp(ab) = Sp(ba), $\forall a, b \in \mathcal{A}$. We consider Sp as part of the structure of \mathcal{U} . For generic η , \mathcal{R} is sometimes an infinite formal sum in $\mathcal{A} \otimes \mathcal{A}$, which is well

 The functor V. A functor V for tangles is a mapping of ambient [T] or regular [T], classes of tangles to an algebraic structure. It turns out that, in order to construct V it is also necessary to identify the wrong-way edges in a tangle. For a generic tangle, one way to do this is to examine the Seifert circles in a tangle¹; on each such circle there is one and only wrong-way edge, denoted by \(\(\lambda \), resp.) if it is on a clockwise (counterclockwise, resp.) Seifert circle. It can be shown that every tangle is regularly isotopic to a partially closed braid, called a braid-tangle. The wrong-way edges on a braid-tangle are just the edges that (partially) close the braid. Henceforth we denote T as a tangle with its wrong-way edges identified and marked as > or <. We treat the edges and crossings as single or crossed arrows. Let α , β , ... be arrows. The tensor product $\alpha \otimes \beta$ is the disjoint union of the two arrows. The multiplication p adjoins two arrows: $p(\alpha \otimes \beta) = \alpha \beta$. Successive multiplications yield an open string of arrows: $p_{12}(p_{13}(\alpha \otimes \beta \otimes \gamma)) = p_{12}(\alpha \gamma \otimes \beta) =$ $\alpha\gamma\beta$. Given an open string $\tau=\alpha_1\alpha_2\cdots\alpha_k$, denote a closed string $\hat{\tau}_{\{\alpha\}}$ to be the class $\{\alpha_{s_1}, \alpha_{s_2}, \cdots, \alpha_{s_k} | (s_1, s_2, \dots, s_k) \in \{all\ cyclic\ perm.\ of\ (1, 2, \dots, k)\}\}$. We define a functor V whose actions on the arrows in T are: $V(\downarrow) = 1$; V(4) = v; $\mathcal{V}(\) = v'; \mathcal{V}(\X) = R; \mathcal{V}(\X) = R'; \mathcal{V}(\alpha \otimes \beta) = \mathcal{V}(\alpha) \otimes \mathcal{V}(\beta); \mathcal{V}(\alpha \beta) = \mathcal{V}(\alpha) \mathcal{V}(\beta) = \mathcal{V}(\alpha) \mathcal{V}(\beta)$ $m(\mathcal{V}(\alpha) \otimes \mathcal{V}(\beta)); \ \mathcal{V}(\hat{\tau}) = Sp(\mathcal{V}(\tau_{\bullet})) \in \mathcal{A}_{0}, \ \tau_{\bullet} \in \hat{\tau}. \ \text{Let } \{T\} \ \text{be the set of all tangles}$ and $[T_l^{(n)}]_r$ be a regular isotopy of (n,n)-tangles with l closed strands. Then $\mathcal V$ is a functor for regular isotopic tangles:

$$\mathcal{V}: \{T\} \to \mathcal{U}, \ \mapsto \mathcal{V}[T_l^{(n)}]_r = \mathcal{V}(T) \in \mathcal{A}^{\otimes n} \otimes \mathcal{A}_0^{\otimes l}, \ \forall T \in [T_l^{(n)}]_r. \tag{1}$$

1.4. Representation of \mathcal{V} . Let V be the vector space supporting \mathcal{A} and let $\pi \in End(V)$ be an irreducible representation of \mathcal{A} . Then $\pi(\lambda) = \lambda_{\pi} 1_{\pi}$. Suppose $\lambda_{\pi} \neq 0$. Define $h_{\pi} \equiv \lambda_{\pi}^{-1/2} \pi(v)$, $h_{\pi}' \equiv \lambda_{\pi}^{-1/2} \pi(v)'$, $\mathcal{R}_{\pi} \equiv (\pi \otimes \pi) \mathcal{R}$, etc. Let Tr_{π} be the matrix trace in π . Then \mathcal{V}'_{π} defined as \mathcal{V} with the set $\{\mathcal{R}, \mathcal{R}', v, v', Sp\}$ substituted by $\{\mathcal{R}_{\pi}, \mathcal{R}_{\pi}', h_{\pi}, h_{\pi}', Tr_{\pi}\}$ is obviously a functor that sends $[T_{l}^{(n)}]_{r}$ to $(\pi(\mathcal{A}))^{\otimes n}$. Note that $Sp: \mathcal{A} \to \mathcal{A}_{0}$ but $Tr_{\pi}: \mathcal{A} \to \mathbb{C}$. Furthermore, if w(T) is the writhe number of a tangle T, then $\mathcal{V}_{\pi}[T] \equiv \lambda_{\pi}^{w(T)/2} \mathcal{V}'_{\pi}(T)$ is an invariant for ambient isotopic tangles.

2. Commutants and Tangle Casimir Operators of Quantum Algebras

2.1. The quantum algebra $\tilde{\mathcal{U}}$. Consider a more restrictive type of \mathcal{U} denoted by $\tilde{\mathcal{U}}$, which is a quantum algebra with properties: (i) Generated in the Chevalley basis by $\{H_i, X_i^+, X_i^-; i = 1, \ldots\}$, with the H_i 's generating the Cartan subalgebra;

- (ii) $\triangle H_i = H_i \otimes 1 + 1 \otimes H_i$, $\triangle X_i^{\pm} = X_i^{\pm} \otimes q^{H_i/2} + q^{-H_i/2} \otimes X_i^{\pm}$; (iii) $S(H_i) = -H_i$, $S(X_i^{\pm}) = -q^{H_i/2}X_i^{\pm}q^{-H_i/2}$. Examples of $\tilde{\mathcal{U}}$ include $\mathcal{U}_q(g)$ over $\mathbf{C}[\![\eta]\!]$, $q \equiv e^{\eta}$, where g is a simple complex Lie algebra, or is the graded sl(M|N).
- 2.2. Every $V[T]_r$ almost commutes with $\tilde{\mathcal{U}}_{\triangle}$. Let $\sigma: T_l^{(n)} \to S_n$ be the natural mapping of tangle diagrams to the symmetry groups. The map does not depend on the number l of the closed strands in $T_l^{(n)}$. Let $\triangle^{\{1\}} = \triangle$ and define, for $n \geq 2$, $\triangle^{\{n\}} = (id \otimes id \cdots \otimes \triangle) \triangle^{\{n-1\}} = (id \otimes (n-1) \otimes \triangle) \triangle^{\{n-1\}}$. By definition, $\mathcal{A}^{\{n\}} \equiv \triangle^{\{n-1\}} \mathcal{A} \in \tilde{\mathcal{U}}_{\triangle} \subset \tilde{\mathcal{U}}$. Then, for any $T_l^{(n)}$,

 $\left(\triangle^{\iota^{\{n-1\}}}(\alpha)\otimes 1^{\otimes \iota}\right)\mathcal{V}[T]_r = \mathcal{V}[T]_r\left(\sigma(T)\circ\triangle^{\iota^{\{n-1\}}}(\alpha)\right)\otimes 1^{\otimes \iota}, \quad \forall \alpha\in\mathcal{A}. \quad (2)$ This generalizes the coboundary condition $(\mathcal{T}\circ\triangle(\alpha))\mathcal{R}=\mathcal{R}\triangle(\alpha)$.

- 2.3. Commutants of $\tilde{\mathcal{U}}_{\triangle}$. Let $\mathcal{P}: [T_l^{(n)}] \to S_n$ with $\mathcal{P}[T_l^{(n)}]$ acting on $V^{\otimes n}$. Then $[(\mathcal{T}_n \circ \mathcal{V}[T_l^{(n)}]_r)\mathcal{P}^{-1}(T_l^{(n)}), \triangle^{\{n-1\}}(\alpha) \otimes 1^{\otimes l}] = 0, \quad \forall \alpha \in \mathcal{A}. \tag{3}$
- 2.4. Tangle Casimir operators of $\tilde{\mathcal{U}}_{\triangle}$. For T a (1,1)-tangle with l closed strands, we call $\mathcal{V}[T]_r$ a tangle Casimir operator of $\tilde{\mathcal{U}}_{\triangle}$; it commutes with $\mathcal{A}\otimes 1^{\otimes l}$. As an example, for $T_{trefoil}$ the tangle that closes to a trefoil, $\mathcal{V}[T_{trefoil}]_r = a_s b_t a_r v b_s a_t b_r$ commutes with \mathcal{A} . Generally, in an irreducible representation π of $\tilde{\mathcal{U}}$, for T a (1,1)-tangle with any number of closed strands,

$$\mathcal{V}_{\pi}[T] = Q_{\pi}[T]\mathbf{1}_{\pi},\tag{4}$$

where $Q_{\pi}[T]$ is a C-valued eigenvalue.

2.5. Link invariants are eigenvalues of tangle Casimir operators. Let T be a (1,1)-tangle and \hat{T} its closure, which is a link. Then $Q_{\pi}[T]$ is a link invariant for $[\hat{T}]$ if (a) $Tr_{\pi}(h_{\pi}) \neq 0$, or (b) the multiplicities in the decomposition of $\pi \otimes \pi$ are not greater than one and \mathcal{V}_{π} is sufficiently nontrivial. Condition (a) is met by all representations of $\mathcal{U}_q(g)$, g a simple complex Lie algebra as well as g = sl(n|m), $n \neq m$, for generic q. It is not met by $\mathcal{U}_q(sl(m|m))$. Condition (b) is met by all the fundamental representations of the quantum algebras mentioned above.

3. Some Applications in Physics

3.1. Conserved topological charges in 2d QFT. Recently it has been shown^{7,8} that some integrable quantum field theories in two dimensions have explicit quantum algebra symmetries. Such systems should have an infinite number of conserved quantities, called topological charges, one for each distinct tangle Casimir operator. In representations of the quantum algebra that satisfy the conditions in §2.5, these conserved topological charges should be link invariants.

- 3.2. The Alexander-Conway polynomial. For the fundamental 2×2 representation of $\mathcal{U}_q(sl(1|1))$, $Tr_{\pi}(h_{\pi}) = 0$ so $\mathcal{V}_{\pi}[L] = 0$ for all links. But Q_{π} satisfies^{9,10} the skein relation, $Q_{\pi}[\times] + (q q^{-1})Q_{\pi}[L] Q_{\pi}[\times] = 0$, and therefore gives the Alexander-Conway polynomial¹¹.
- 3.3. Quantum holonomy and Chern-Simons theory in 3d. Recently it was shown that in a quantum gauge theory, the group-valued quantum holonomy, $\Phi(C_x) = \langle P \exp(i \oint_{C_x} A dx) \rangle$, where C_x is a closed contour with initial point $x \in C$, is gauge invariant and x-independent. This implies that for the Chern-Simons theory in three dimensions, $\Phi(L_x)$ is a link invariant. Earlier Witten has already shown that the the Wilson loop, or character-valued $W_{\pi} = Tr_{\pi}(\Phi[L])$ is a link invariant. Thinking of L_x as a (1,1)-tangle, the pair $\{\Phi[L_x], W_{\pi}[L]\}$ to 3d CST is what $\{\mathcal{V}[L_x], \mathcal{V}_{\pi}[L]\}$ of §2.3, 2.4 is to a quantum algebra. If in an irreducible π ,

 $\pi(\Phi[L_x]) = P_{\pi}[L]\mathbf{1}_{\pi}$, then $W_{\pi}[L] = P_{\pi}(L)Tr_{\pi}(\mathbf{1}_{\pi})$. An application of this result is that for the gauge group SL(M|M), $W_{\pi}[L] \equiv 0$ while $P_{\pi}[L] \neq 0$ is the Alexander-Conway polynomial⁹.

3.4. Quantum spin chains. For a (2,2)-tangle $T^{(2)}$, $\check{\mathcal{H}} \equiv \mathcal{P}(T^{(2)})\mathcal{V}_{\pi}(T^{(2)})$ commutes with $\pi \otimes \pi(\triangle \mathcal{A})$. Consider a tensor space of length N and let $\check{\mathcal{H}}_{i,i+1}$ act on the i^{th} and $i+1^{st}$ spaces. Then the Hamiltonian for an open quantum spin chain with nearest neighbor interaction, $H = \sum_{i=1}^{N-1} \check{\mathcal{H}}_{i,i+1}$, is $\check{\mathcal{U}}_{\triangle}$ invariant and satisfies the first requirement for H to be exactly soluble¹³. (Exact solubility^{14,15} also requires that $\check{\mathcal{H}}$ satisfies the Yang-Baxter equation^{16,17}.) More generally, for any (n,n)-tangle T, define $\check{\mathcal{H}}^{(n)} \equiv (\mathcal{T}_n \circ \mathcal{V}_{\pi}[T])\mathcal{P}^{-1}(T)$, then the Hamiltonian for an open quantum spin chain with $(n-1)^{th}$ nearest neighbor interactions, $H^{(n)} = \sum_{i=1}^{N-n+1} \check{\mathcal{H}}_{i,i+1,\cdots,i+n-1}^{(n)}$, is $\check{\mathcal{U}}_{\triangle}$ invariant. As well, being itself $\check{\mathcal{U}}_{\triangle}$ invariant, $\check{\mathcal{H}}^{(n)}$ also satisfies one of the basic requirements for being a transfer matrix.

For π being the fundamental 2×2 representation of $\mathcal{U}_q(sl(2))$, $\pi \otimes \pi = \underline{3} \oplus \underline{1}$, and $\check{\mathcal{H}}$ has two eigenvalues ϵ_3 and ϵ_1 . Expressed in terms of Pauli matrices,

$$H_{sl(2)} = \frac{1}{q^{-1}+q} \left((\epsilon_{\underline{3}} - \epsilon_{\underline{1}}) H_{PS} + \frac{q^{-1}+q}{4} (3\epsilon_{\underline{3}} + \epsilon_{\underline{1}}) \right), \tag{5}$$

where $H_{PS} = \sum_{i=1}^{N-1} (\sigma_i^+ \sigma_{i+1}^- + \sigma_i^- \sigma_{i+1}^+ + \frac{q^{-1}+q}{4} \sigma_i^3 \sigma_{i+1}^3 + \frac{q^{-1}-q}{4} (\sigma_i^3 - \sigma_{i+1}^3))$ is the soluble Hamiltonian of Pasquier and Saleur¹³ for an open spin chain. The infinite classes of (2,2)-tangles have, in this case, projected onto two degrees of freedom that affect $H_{sl(2)}$ trivially: (i) an global scale factor; and (ii) a constant term. In particular, H_{PS} has no dependence on the eigenvalues. Hence the Hamiltonian derived from any (2,2)-tangle (whose image in $\mathcal{U}_q(sl(2))$ has two nondegenerate eigenvalues) is soluble; changing the Hamiltonian associated with one tangle to a Hamiltonian

The situation for $U_q(sl(1|1))$ is similar: $\pi \otimes \pi = 2 \oplus 2'$ and,

$$H_{sl(1|1)} = \frac{1}{q^{-1}+q} \left((\epsilon_{\underline{2}} - \epsilon_{\underline{2}}') H_{FW} + \frac{q^{-1}+q}{2} (\epsilon_{\underline{2}} + \epsilon_{\underline{2}}') \right), \tag{6}$$

where $H_{FW} = \sum_{i=1}^{N-1} (\sigma_i^+ \sigma_{i+1}^- + \sigma_i^- \sigma_{i+1}^+ + \frac{1}{2} (q^{-1} \sigma_i^3 + q \sigma_{i+1}^3))$ is the Hamiltonian for free-fermions¹⁸. We see that the $\mathcal{U}_q(sl(2))$ and $\mathcal{U}_q(sl(1|1))$ symmetries for open quantum spin chains are extremely robust. This probably will not be the case for higher representations of these quantum algebras and for larger quantum algebras.

This work is supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada. The author thanks the hospitality of the Institute of Theoretical Physics, CAS, Beijing, where part of this work was carried out.

Bibliography

- H.C. Lee, Int. J. Mod. Phys., A7, Supp. 1B (1992) 581-610; Commutants and new Casimir operators of quasitriangular Hopf algebras, (to be published).
- 2. K. Reidemeister, Knotentheorie, (Chelsea, 1948).
- 3. V.G. Drinfel'd, Proc. Int. Cong. Math., Berkeley, 1 (Academic Press, 1986) 798-820.
- M. Jimbo, Lett. Math. Phys., 10 (1985) 63-69.
- L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Algebraic Analysis, 1 (1988) 129-139.
- V.G. Drinfel'd, Soviet Math. Doklady, 32 (1985) 254-258.
- C. Gomez and G. Sierra, Nucl. Phys., B352 (1991) 791-828.
- B. Bernard and A. LeClair, Comm. Math. Phys., 142 (1991) 99-128.
- 9. H.C. Lee and Z.Y. Zhu, Phys. Rev., D44 (1991) 942-945.
- L. Kauffman and H. Saleur, Comm. Math. Phys, 141 (1991) 293-328.
- J.W. Alexander, Proc. Nat'l Acad. Sci. (USA), 9 (1923) 93-95; J.H. Conwsy, Computational problems in abstract algebra, (Pergamon, New York, 1970) 329.
- E. Witten, Comm. Math. Phys., 121 (1989) 351-399.
- 13. V. Pasquier and H. Saleur, Nucl. Phys., B330 (1990) 523-556.
- 14. P.P. Kulish and E.K. Sklyanin, J. Phys., A24 (1991) L435-L439.
- L. Mezincescu and R.I. Nepomechie, Mod. Phys. Lett., A6 (1991) 2497-2508.
- 16. C.N. Yang, Phys. Rev. Lett., 19 (1967) 1312-1314.
- 17. R.J. Baxter, Exactly solved models in statistical mechanics, (Academic Press, 1982).
- 18. C. Fan and F.Y. Wu, Phys. Rev., B2 (1970) 723-733.