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ABSTRACT

We summarize recent results' on a functor that maps tangles to commutants
of a quasitriangular Hopf algebra. In certain cases, images of (1,1)-tangles
are new Casimir operators of the algebra whose eigenvalues are link invari-
ants. Some applications to physics are briefly discussed.

1. A Functor Mapping Tangles to a Quantum Algebra

1.1. Tangles. An oriented (n,n)-tangle T is the disjoint union of n open oriented
strands and an arbitrary number of oriented closed strands embedded in a cylinder
in a 3-manifold, with all the n tails of the open strands held fixed on the ceiling
of the cylinder and all the n tips held fixed on the floor. A link is a (0,0)-tangle.
A tangle diagram is a regular two-dimensional projection of T'. It is composed of
positive ( X ) and negative ( £ ) crossings and edges (|). An ambient (regular, resp.)
ssotopy class of tangle diagrams is defined by the equivalence relations generated by
the three (two, resp.) Reidemeister moves?, I, II and III (II and II], resp.) on
tangle diagrams, generalized for oriented tangle diagrams. Henceforth the adjectives
“oriented” and “diagrams” will normally be suppressed.

1.2. Quasitriangular Hopf algebra. A quasitriangular Hopf algebra®~® is a noncom-
mutative, noncocommutative Hopf algebra {A, S, m, A, €} (resp. algebra over
C|[n], antipode, multiplication, comultiplication, counit) equipped with a univer-
sal invertible R-matrix R € A® A, R™! = (S§®id)R = (id ® S~ ')R, satisfying
Va € A: (i) m(id® S)A(a) = m(S®id)A(a) = e(a)l; (ii) (T o A(a))R = RA(a);
(151) (A ® 1d)R = R13Ras, (id @ A)R = Ri1sRiz (iv) R1aR1sRas = RaaR13Rua.
We call the algebra 4 D {A, A@A, A®A® A, ---} a quantum algebra, and
define Ua D {A, LA, (1d® A)AA, ---}. Let T be the linear subspace spanned by
ab — ba, Va,b € A. Let Ao be the quotient space A/Z, then Sp: A — A is a linear
map such that Sp(ab) = Sp(ba), Va,b € A. We consider Sp as part of the structure
of U. For generic n, R is sometimes an infinite formal sum in A ® A, which is well
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defined provided C[n] is given an n-adic topology®. In U, there are two invertible
elements v = m((id® S)R) and v' = S(v) = m((S ®@id)7T o R) that satisfy Va € A:

vav~! = 3'2(0); viav' ! = 5’(“); [W' =v'v = Aa] =0,

1.3. The functor V. A functor V for tangles is a mapping of ambient [T] or regular
[T], classes of tangles to an algebraic structure. It turns out that, in order to
construct V it is also necessary to identify the wrong-way edges in a tangle. For a
generic tangle, one way to do this is to examine the Seifert circles in a tangle'; on
each such circle there is one and only wrong-way edge, denoted by § (4, resp.) if
it is on a clockwise (counterclockwise, resp.) Seifert circle. It can be shown! that
every tangle is regularly isotopic to a partially closed braid, called a braid-tangle.
The wrong-way edges on a braid-tangle are just the edges that (partially) close the
braid. Henceforth we denote T' as a tangle with its wrong-way edges identified and
marked as p or {. We treat the edges and crossings as single or crossed arrows.
Let a, B, ... be arrows. The tensor product a ® 3 is the disjoint union of the
two arrows. The multiplication p adjoins two arrows: p(a ® 8) = af. Successive
multiplications yield an open string of arrows: pia(p13s(a® 8 ®7)) = pra(ay®B) =
ayB. Given an open string 7 = ajaz---ax, denote a closed string 7(4) to be
the class {a.,a,, -~ @, |(51,82,...,8:) € {all cyclic perm. of (1,2,...,k)}}. We
define a functor V whose actions on the arrows in T are: V(|) = 1; V(4) = v;
V(b) =v5V(X) =R V(K ) = R;V(a®B) = V(a)@V(8); V(aB) = V(a)V(B) =
m(V(a) ® V(B8)); V(7) = Sp(V(7.)) € As, 7s € 7. Let {T} be the set of all tangles
and [T,(")].- be a regular isotopy of (n,n)-tangles with [ closed strands. Then V is a
functor for regular isotopic tangles:

V:{T} = U, - V[T™), = V(T) € 4%" ® A, vT € [T(™),. (1)
1.4. Representation of V. Let V be the vector space supporting A and let = €
End(V) be an irreducible representation of A. Then x(A) = Axly. Suppose A, # 0.
Define hy = Ar " 2x(v), he' = Ax?x(v)', Re = (x @ 7)R, etc. Let Tr, be the
matrix trace in v. Then V, defined as V with the set {R, R',v,v’, Sp} substituted by
{Rx, R’ hix, he', Try } is obviously a functor that sends [T{™)], to (x(4))®". Note
that Sp: A — Ag but Tr,: A — C. Furthermore, if w(T') is the writhe number of a
tangle T, then Ve[T] = Ax*“{T/?VL(T) is an invariant for ambient isotopic tangles.

2. Commutants and Tangle Casimir Operators of Quantum Algebras

2.1. The quantum algebra U. Consider a more restrictive type of & denoted by
U, which is a quantum algebra with properties: (i) Generated in the Chevalley
basis by {H:, X;', X;"; 1 = 1,...}, with the H;’s generating the Cartan subalgebra;
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(i) AH: = Hi®1+ 1@ Hi, AXE = X @ ¢M/? 4 g H2 @ XF; (id1) S(H;) =
~H;, S(X*) = —gHi/2XFq~Hi/2, Examples of U include Uy(g) over Cln], ¢ = ",
where g is a simple complex Lie algebra, or is the graded sl(M|N).

2.2. Every V|T|. almost commutes with Up. Let a:T;(") — S, be the natural
mapping of tangle diagrams to the symmetry groups. The map does not depend

on the number | of the closed strands in T,("). Let AU} = A and define, for
n>2 A" = (id@id--- @ A)AI 1)} = (id®(n-1) § A)Aln-1}, By definition,
Al = Aln-1} 4 € U, C U. Then, for any T,("),

(A'{"—'}(a) ® 10') V(T), = V[T), (cr(T) o A""‘”(a)) @18, VacA (2
This generalizes the coboundary condition (7 o A(a))R = RA(a).

2.5. Commautants of Up. Let P: [T,(")] — Sp with ‘P[T,(")] acting on V®", Then
(T o VI P T(™), 80N @) @12 =0,  Vae A (3)

2.{. Tangle Casimir operators of Upn. For T a (1,1)-tangle with I closed strands,
we call V[T, a tangle Casimir operator of Up; it commutes with A® 1%, As an
example, for Ty, s0i the tangle that closes to a trefoil, V[Tiresoitlr = a.biarvb,a:b,
commutes with A. Generally, in an irreducible representation = of %, for T a
(1,1)-tangle with any number of closed strands,

v..[T] = Q'lT]ln (4)
where Q,[T| is a C-valued eigenvalue.

2.5. Link invariants are eigenvalues of tangle Casimir operators. Let T be a (1,1)-
tangle and T its closure, which is a link. Then Q[T] is a link invariant for [T if (a)
Tre(hx) # 0, or (b) the multiplicities in the decomposition of 7 ® x are not greater
than one and Vy is sufficiently nontrivial. Condition (a) is met by all representations
of Uy(g), g & simple complex Lie algebra as well as g = sl(n|m), n # m, for generic
g- It is not met by Ug(sl(m|m)). Condition (b) is met by all the fundamental
representations of the quantum algebras mentioned above.

3. Some Applications in Physics

3.1. Conserved topological charges in 2d QFT. Recently it has been shown™® that
some integrable quantum field theories in two dimensions have explicit quantum
algebra symmetries. Such systems should have an infinite number of conserved
quantities, called topological charges, one for each distinct tangle Casimir operator.
In representations of the quantum algebra that satisfy the conditions in §2.5, these
conserved topological charges should be link invariants.
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3.2. The Alezander-Conway polynomial. For the fundamental 2 x 2 representation
of Uy(sl(1]1)), Tre(hx) = 0 so Vx[L] = 0 for all links. But Q. satisfies®'® the
skein relation, Q[ X] + (¢~ ¢7")@x(}!] — Q=[] = 0, and therefore gives the
Alexander-Conway polynomial’’.

3.8. Quantum holonomy and Chern-Simons theory in 3d. Recently® it was shown
that in a quantum gauge theory, the group-valued quantum holonomy, #(C;) =
(Pexp(i §,_Adz)), where Cs is a closed contour with initial point z € C, is gauge
invariant and z-independent. This implies that for the Chern-Simons theory in three
dimensions, #(L,) is a link invariant. Earlier Witten'? has already shown that the
the Wilson loop, or character-valued W, = T'r,.(®[L])) is a link invariant. Thinking
of L, as a (1,1)-tangle, the pair {®[L.], Wx[L]} to 3d CST is what {V[L.|, V«[L]}
of §2.9, 2.4 is to a quantum algebra. If in an irreducible =,

7(®(L.]) = Pe[L]1y, then W[L] = Pe(L)Trx(1.). An application of this result
is that for the gauge group SL(M|M), W|[L] = 0 while Px[L] # 0 is the Alexander-
Conway polynomial®.

8.4. Quantum spin chains. For a (2,2)-tangle T(?), H = P(T(?))Y,(T?) commutes
with = ® m(A.A). Consider a tensor space of length N and let H; ;4 act on the i**
and i+1** spaces. Then the Hamiltonian for an open quantum spin chain with near-
est neighbor interaction, H = YN ', ;,,, is U, invariant and satisfies the first
requirement for H to be exactly soluble'®. (Exact solubility’*'% also requires that
7 satisfies the Yang-Baxter equation'®!?.) More generally, for any (n,n)-tangle T,
define H(™) = (T;, 0 V4[T))P (T), then the Hamiltonian for an open quantum spin
chain with (n — 1)** nearest neighbor interactions, H(®) = >N "+ 7:[(.."::_,'_"“"_"
is Uy invariant. As well, being itself % invariant, 7(®) also satisfies one of the
basic requirements for being a transfer matrix.

For m being the fundamental 2 x 2 representation of Ug(sl(2)), T @x =3B 1,
and H has two eigenvalues €; and ¢;. Expressed in terms of Pauli matrices,

Haoy = 745 (s — @) Hps + 75936 + @), (5)

where Hps = Y07 (o o, + 070, + ’._;i""?"?«n + ’-:—_’(”1‘ —0},,)) is the
soluble Hamiltonian of Pasquier and Saleur'? for an open spin chain. The infinite
classes of (2,2)-tangles have, in this case, projected onto two degrees of freedom that
affect H,(3) trivially: (i) an global scale factor; and (i) a constant term. In partic-
ular, Hpg has no dependence on the eigenvalues. Hence the Hamiltonian derived
from any (2,2)-tangle (whose image in 2,(s!(2)) has two nondegenerate eigenvalues)
is soluble; changing the Hamiltonian associated with one tangle to a Hamiltonian
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associated with another tangle amounts to renormalizing the Hamiltonian in such
a way that the structure of the energy spectrum is unchanged.
The situation for Ug(sl(1]1)) is similar: 7 ® 7 = 2@ 2' and,

Hyam = #5 ((61 — &) Hpw + L3%%(eg + ‘a'))a (6)
where Hpw = SN (o} o5, + 070k, + Y(g 2o} + go},,)) is the Hamiltonian
for free-fermions’®. We see that the Uy(sl(2)) and Uy(sl(1|1)) symmetries for open
quantum spin chains are extremely robust. This probably will not be the case for
higher representations of these quantum algebras and for larger quantum algebras.
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