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Shannon information in the genomes of all completely sequenced prokaryotes and eukary-
otes are measured in word lengths of two to ten letters. It is found that in a scale-
dependent way, the Shannon information in complete genomes are much greater than
that in matching random sequences — thousands of times greater in the case of short
words. Furthermore, with the exception of the 14 chromosomes of Plasmodium falci-
parum, the Shannon information in all available complete genomes belong to a univer-
sality class given by an extremely simple formula. The data are consistent with a model
for genome growth composed of two main ingredients: random segmental duplications
that increase the Shannon information in a scale-independent way, and random point
mutations that preferentially reduces the larger-scale Shannon information. The infer-
ence drawn from the present study is that the large-scale and coarse-grained growth
of genomes was selectively neutral and this suggests an independent corroboration of
Kimura’s neutral theory of evolution.

Keywords: Genomics; Shannon information; statistical analysis; molecular evolution;
genome growth.

1. Introduction

Shannon information1 has been widely used in many diverse fields related to infor-
mation. In the study of information in DNA sequences, it has been applied, for
instance, to sequence alignment2 and to the discovery of the DNA motif.3 But it
seems not to have been applied to the field of comparative genomics. This could be
for a number of reasons. The availability of a large number of completely sequenced
genomes is a relatively recent phenomenon. The high heterogeneity of complete
genomes may make comparison difficult. For instance, how is the 0.58 million bases
(Mb) genome of Mycoplasma genitalium to be compared with the 3000 Mb genome
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of Homo sapiens? Within a genome different sections such as coding and noncoding
regions are thought to have varying amounts of information. What section should
be used to represent the genome? There is also the question of Shannon information
itself, which as a broadly defined concept may be applied in many different ways
and a definitive way to use it for comparative genomics has not been established.

In this paper, we devise a method to measure the Shannon information in a
complete genome relative to that in a matching random sequence and apply it
to all extant prokaryotic and eukaryotic complete genomes. The method is scale-
dependent and highly sensitive to the amount of repeats in the sequence. The
results are surprisingly unequivocal. We find that in spite of the wide diversity
of the genomes in length, base composition and internal structure, the Shannon
information in complete genomes (relative to random sequences) is uniformly very
large for shorter words, in a way so regular that all the studied genomes except
one — that of the malaria causing protozoan Plasmodium falciparum — can be
put into a single universality class defined by an exceedingly simple formula; the
fourteen chromosomes of Plasmodium belong to a related but distinct small class.
By inquiring into how these results could have possibly come about we arrive at a
simple model for genome growth and discuss its implications.

2. Mathematical Background

2.1. Shannon entropy and information

Consider a set F of occurrence frequencies for τ types of events,

F =

{
fi ∈ N

∣∣∣∣∣
τ∑

i=1

fi = L

}
≡ {fi|L}. (1)

The Shannon’s uncertainty,1 or entropy, for the set is

H(F) = −
∑

i

(fi/L) log(fi/L) (2)

This quantity has maximum value Hmax = log τ when all the occurrence frequencies
are equal: fi = f̄ = L/τ . Shannon suggested the notion of information as a measure
of decrease in uncertainty and there are many ways this notion may be applied.
Here we are interested in cases when most of the fi’s are non-zero and for such
cases we define a Shannon information (called Divergence in Gatlin4) in F as

R(F) ≡ Hmax − H(F) = log τ − H(F). (3)

2.2. Relation to relative spectral width

From a set of occurrence frequencies F , we can construct a distribution S =
{
nf ∈

N|∑f fnf = L
}
, where nf satisfying

∑
f nf = τ is the number of events with

frequency f . If f is considered as light frequency — discrete in this case — and
nf as light intensity, i.e., number of photons, then S can be considered analogously
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to a standard optical spectrum. We shall consider S and F as interchangeable and
shall refer to either as a spectrum. In terms of nf , the Shannon entropy is

H(F) = H(S) = −
∑

f

(nff/L) log(f/L).

Using the relations
∑

i(nff/L) = 1 and log τ = −log(f̄ /L) we can rewrite Eq. (3)
compactly as

R(F) = R(S) =
∑

f

(nff/L) log(f/f̄) (4)

where, as before, f̄ is the mean frequency. This form of R(F) lends itself to be
expressed in terms of important spectral properties of F , especially when F is a
well-defined unimodal spectrum. In that case, we write f = f̄(1 + x) and expand
log(1 + x) in a power series in x to obtain

R(F) =
∞∑

n=2

(−1)n 1
(n − 1)n

〈xn〉, (5)

where 〈xn〉 is the quantity xn averaged over the spectrum, or the nth moment of F .
The leading term on the right-hand-side of Eq. (5), 〈x2〉, is just the square of the
relative spectral width, σ, of F , namely, the ratio of the standard deviation ∆ of the
occurrence frequency to its mean f̄ : σ≡∆/f̄ . Equation (5) is particularly useful
when σ is small, and is further simplified when F is symmetric with respect to it
mean. Then odd moments vanish and we have

R(F) ≈ σ2

2
+

σ4

12
+ O(σ6), (sym. unimodal) (6)

where the approximation 〈x4〉≈ σ4 was used. This expression gives one a heuristic
understanding of the Shannon information in a unimodal spectrum: there is no
information when the spectrum is extremely narrow, that is, when all types of events
occur with almost the same frequency. Conversely, so long as σ < 1, the broader
the spectrum the higher the Shannon information. We remark that our definition
of Shannon information is not intuitively useful for cases when the occurrences
concentrate in a few types of events. Such situations do not arise in the systems —
complete genomes — we are here interested in.

2.3. k-spectrum from a DNA sequence

Consider now a single strand of DNA and view it as a linear text written in the four
bases, or chemical letters, A, C, G, T. For a sequence of L nucleotides (nt) we denote
by Fk the set of occurrence frequencies {fi|L}k; the notation is the same as used
in Eq. (1) except that here, the extra subscript k signifies that fi is the occurrence
frequency of the ith k-letter word, or (overlapping) k-mer, in the sequence. In
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this study we are not interested in the order of the k-mers. The frequencies are
obtained by sliding a window of width k across the genome, one letter at a time,
and recording the number of times each k-mer is seen through the window.5,6 (For
simplicity, we treat the genome as being circular, which is not always true but true
for many microbial genomes. Otherwise fi should sum to L − k + 1 instead of L.
The difference is negligible in any case because L is of the order of 1 million and in
many cases much greater whereas k ≤ 10.) Given Fk we can construct a k-spectrum
giving nf , the number of k-mers occurring with frequency f . The number of event
types is now τ = 4k, so fi and nf satisfy the sum rules

∑
i 1 =

∑
f nf = 4k and∑

i fi =
∑

f fnf = L, and the mean frequency is f̄ = 4−kL. To simplify language
we will refer to Fk also as a k-spectrum. To insure good statistics we do not want k

to be so large that f̄ is less than one. Since the canonical size of microbial complete
genomes is 2 Mb and 410 is just over 106, the maximum k we consider in this study
is 10.

2.4. Shannon information in random sequence

The k-spectrum Fk obtained from a random sequence Q with even base composition
is a set of frequencies of random events of equal likelihood. If the mean frequency f̄ is
a very large number, which we assume to be the case, then Fk (more properly, Sk)
will be nearly a Poisson distribution with half-width ∆ran = (bf̄)1/2, where b =
1− τ−1 is a binomial factor. Thus the relative spectral width σran = (bτ/L)1/2 falls
off as L−1/2 with increasing L and, from Eq. (6), R(Fk) ≈ bτ/2L. That is, the
Shannon information in a random sequence diminishes as 1/L with increasing L.
This is but a simple manifestation of a well-known effect in statistics: the average
of some measure of a random system gains sharpness as the system gains size, and
achieves infinite sharpness in the large-system limit.

2.5. n-replica and root-sequence

There is a simple way for Q to grow and escape the large-system rule. Suppose we
replicate Q n times to generate a sequence Q′. We call Q′ an n-replica of Q and Q a
root-sequence of Q′. If n is much less than L, then to a high degree of accuracy, the
set of occurrence frequencies for k-mers in Q′ is F ′

ks = {nfi|nL}k. Then f̄ and ∆
for the k-spectrum of F ′

ks will both increase by a factor of n, hence its relative
spectral width will remain unchanged. Thus, although Q′ is n times longer than Q,
the Shannon information in F ′

k for any k will be the same as that in Fk, instead of
being n times smaller. Conversely, the Shannon information in Q′ is n times greater
than that in a random sequence having the same length as Q′.

2.6. Random mutation and homologous insertion

We thus have the notion of replication as an undesigned way for a sequence to
gain length and “gain” Shannon information. Here, gaining means not losing in
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absolute magnitude, as compared to the change in a random sequence when it
gains length. Replication is a special case of a general way of gaining length by
insertions of homologous segments. The latter is the last step in a common mode
of mutation known as replicative transposition, where a segment of the genome
is first copied and then inserted back into the genome at another site. Whereas a
random mutation would generally decrease the Shannon information in a sequence,
replicative transposition is an exception.

3. A First Look at Genomes

3.1. Length and base composition of genomes

Genomes vary greatly in their “profiles” — lengths and base compositions.
An empirical fact is that genomes are almost always compositionally self-
complementary, meaning that on a single strand the numbers of A’s and T’s are
approximately equal, as are the numbers of C’s and G’s. Therefore, for simplicity,
we characterize the base composition of a genome by a single number, p, the per-
centage content of (A+T). In the complete genomes or chromosomes of genomes
studied in this work, the length spans a range of about 0.2 to 300 million base
pairs and p spans a range of about 0.25 to 0.82 in complete genomes. We say two
sequences match if they have the same profile.

3.2. A view of genomic and random k-spectra

The black curve in Fig. 1 is the 6-spectrum of the genome of the p ≈ 0.5 hyperther-
mophile Pyrobaculum aerophilum,7 with the occurrence frequencies of the 6-mers
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Fig. 1. 6-spectra of the genome of P. aerophilum (black) (p ≈ 0.5) and its random match (gray).
The frequencies have been normalized to that of a 1Mb sequence. For better viewing only, the large
fluctuation in the actual spectra have been smoothed out by forward and backward averaging,
hence ordinates nf need not be integers.
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normalized to correspond to a 1Mb sequence. The spectrum as shown has been
smoothed out by forward and backward averaging (over twenty-one frequencies).
Without this averaging, the spectrum has large fluctuations that would obscure the
nature of its overall shape. In what follows, all computations are based on the real,
not the smoothened, spectrum. The gray curve in Fig. 1 shows the 6-spectrum of
the random match of the genome, obtained by thoroughly scrambling the genome
of P. aerophilum. A random match can of course also be generated using a random
number generator. When this is done a totally different sequence would be obtained
which nevertheless would have a 6-spectrum practically identical to the gray curve
in Fig. 1. (This is because a k-spectrum does not specify which k-mer has a certain
occurrence frequency; it only specifies how many k-mers have frequency f .)

3.3. Shannon information in a p = 0.5 genome

Given a k-spectrum Fk we have from Eqs. (2) and (3) Hmax(Fk) = 2k ln 2. The
Shannon entropy and information in the k-spectra, k = 2 to 10, of the genome
of P. aerophilum and its random match are given in Table 1. The column under
the heading Rex gives the expected Shannon information in the k-spectrum of a
random sequence:

Rex = b′k4k/2L, b′k = 1 − 1/2k−1. (7)

Here b′k is used instead of the binomial factor b = 1 − τ−1 given previously. This
is a semi-empirical value used to partly compensate for the fact that the random
sequence is not completely random because (i) it is made to be approximately
compositionally self-complementary (as most genomes are), and (ii) its percentage
(A+T) content, or p, is fixed to be 0.5. Table 1 shows that Rex is in excellent
agreement with the actual Shannon information computed from a p = 0.5 random
sequence.

Table 1. Shannon entropy H and information R in units of ln 2 in the k-
spectra of the genome sequence of P. aerophilum and its random match. Rex

is the expected information in the random match.

Random match P. aerophilum

k H/ ln 2 R/ ln 2 Rex/ ln 2 H/ ln 2 R/ ln 2

2 3.9999 5.90 E−6 5.77 E−6 3.973 2.66 E−2

3 5.9999 3.72 E−5 3.46 E−5 5.933 6.65 E−2

4 7.9999 1.72 E−4 1.62 E−4 7.881 1.18 E−1

5 9.9993 7.26 E−4 7.53 E−4 9.821 1.79 E−1

6 11.999 2.94 E−3 2.90 E−3 11.75 2.74 E−1

7 13.988 1.18 E−3 1.17 E−3 13.66 3.35 E−1

8 15.955 4.78 E−2 4.71 E−2 15.53 4.69 E−1

9 17.798 2.02 E−1 1.88 E−1 17.26 7.33 E−1

10 19.408 5.92 E−1 5.24 E−1 18.59 1.41 E−0
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We make several remarks concerning Table 1. (i) For both sequences the
Shannon entropy is in every case very close to its maximum value, 2k ln 2. (ii)
The Shannon information is very small, minuscule in the case of the smallest k’s,
compared with the Shannon entropy. That is, in most cases the Shannon informa-
tion as defined in Eq. (3) is a tiny signal buried in a huge background. (iii) The
ratio of the genomic Shannon information to its random match is very large for the
small k’s and decreases rapidly with increasing k. For instance, the ratio is about
4600, 100 and 2, respectively, at k = 2, 6 and 10. This, according to Eq. (6), implies
that the spectral widths of the genomic k-spectra are about 68, 10 (see Fig. 1) and
1.4 times their random counterparts. We have tested this phenomenon on many
p ≈ 0.5 genomes and in every case the remarks made above apply substantially.
We thus conclude that in so far as such sequences are concerned, our definition of
Shannon information seems to be well suited for delineating genomes from random
sequences.

3.4. Reduced Shannon information

We have seen that the Shannon information in genome and random sequences alike
is a very small signal compared to Shannon entropy, but the Shannon information
in a genome tends to be much larger than that in its random match. A better
sense of the magnitude of the Shannon information in a sequence is obtained by
measuring it relative to the Shannon information in the random match. Let Q be
a genome sequence with p ≈ 0.5, Fk be its k-spectrum and F ′

k be the k-spectrum
of the random match of Q. From our discussion above we expect its k-spectrum
to be unimodal, similar to the black curve in Fig. 1. We define a reduced Shannon
information in Fk as the ratio of the Shannon information in Fk to that expected
in F ′

k:

M(0)
R (Fk) ≡ R(Fk)/Rex(F ′

k) = 2R(Fk)f̄ /b′k. (8)

Obviously, if Q is itself a random sequence, then MR is expected to be unity in
any of its k-spectra.

3.5. Case when genome is compositionally biased

The situation is slightly more complicated for genomes with p deviating significantly
from 0.5. Figure 2 shows the 6-spectra from the genome of Chlamydia muridarum8

(black) and its random match (gray). Both have p ≈ 0.6. Whereas the genomic
spectrum is still unimodal, the random spectrum is composed of several sharp
peaks. These are caused by the biased composition in the sequence. To see this, we
denote by m-set the subsets Fk,m of k-mers with m (A+T)’s, m = 0 to k. Owing
to the biased composition, the mean occurrence frequencies of the subsets Fk,m are
spread out:

f̄m(p) = L
(p

2

)m (q

2

)k−m

= f̄2kpmqk−m, (9)
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Fig. 2. 6-spectra of the genome of C. muridarum (black) and its random match (gray). The
frequencies have been normalized to that of a 1Mb sequence and, for better viewing the large
fluctuation in the actual spectra have been smoothed out by forward and backward averaging.

where q = 1 − p and f̄ = L/4k. For p = 0.6, this gives f̄m = 64, 96, 144, 216, 324,
482 and 729, for m = 0 to k, respectively. Peaks at these positions, except the one at
64, are discerned in the spectrum for the random sequence shown in Fig. 2. (Notice
that f̄m(p) approaches f̄ when p approaches 0.5.) The narrowness — because they
are Poisson distributions with large means9,10 — of the corresponding subspectra
causes the k-spectrum of the random match to appear as the superposition of
k + 1 separate sharp peaks as shown in the gray spectrum in Fig. 2. Apparently,
for the genome the subspectra are sufficiently broad and overlapping such that no
individual peak is discernible in its k-spectrum.

The overall variance (standard deviation squared) of the k-spectrum of a random
sequence is determined by the spread of the subspectra which, when the widths of
the individual subspectra are ignored, is given by

∆2
k(p) = τ−1

∑
m

τm

(
f̄m − f̄

)2

= f̄ 2
(
2k

(
p2 + (1 − p)2

)k − 1
)
. (10)

For k = 6, this gives 126 which is close to the width of 132 of the 6-spectrum of C.
muridarum (normalized to 1Mb). That is, the difference in Shannon information
in the genome and its random match is no longer reflected in these widths. Rather,
the difference lies in the widths of the subspectra of the m-sets. Table 2 gives the
Shannon information in the subspectra of the m-sets in C. muridarum and in its
random match. The measured Shannon informations (column 5) in the m-sets of
the random match are close to their expected values b′k/f̄m (column 6). The values
of the Shannon information in the genomic subspectra, in absolute magnitudes and
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Table 2. Shannon information in the m-set of k-mers, Fk,m, from
the genome C. muridarum and its random match. Frequencies are
normalized to that of a 1Mb sequence. Eq. (15) is a universal
formula given later in the text.

RCmur Rrandom

k, m f̄m Measured Eq. (15) Measured Expected

2, 1 60,000 1.96 E−2 2.00 E−2 2.88 E-6 4.17 E−6

3, 2 18,000 4.36 E−2 2.93 E−2 2.22 E-5 2.08 E−5

4, 2 3,600 8.18 E−2 7.18 E−2 1.94 E−4 1.21 E−4

5, 3 1,080 1.10 E−1 0.92 E−1 5.19 E−4 4.34 E−4

6, 3 216 1.53 E−1 1.84 E−1 2.98 E−3 2.24 E−3

7, 4 64.8 1.95 E−1 2.42 E−1 9.98 E−3 7.65 E−3

8, 4 13.0 2.84 E−1 4.77 E−1 5.82 E−2 3.83 E−2

9, 5 3.89 4.53 E−1 6.17 E−1 1.82 E−1 1.28 E−1

9, 7 8.75 3.91 E−1 2.74 E−1 7.97 E−2 5.70 E−2

10, 6 0.97 0.93 E−0 0.80 E−0 6.66 E−1 5.15 E−1

10, 8 2.62 6.87 E−1 3.55 E−1 2.87 E−1 1.98 E−1

relative to their respective random counterparts, are both similar to those seen in
Table 1. Therefore we generalize the definition for MR given in Eq. (8) to be the
weighted average over the reduced Shannon information in the m-sets:

MR(Fk) ≡ L−1
k∑

m=0

LmM(0)
R (Fk,m), (11)

where M(0)
R (Fk,m) is as defined in Eq. (8), but with Fk replaced by Fk,m and f̄

replaced by f̄m, and

Lm = 2k(k, m)f̄m (12)

is the number of k-mers in the m-set. Here (k, m) is the binomial satisfying∑
m(k, m)pk(1 − p)k−m = 1. The Shannon information in an m-set is given by

Eq. (3) except that τ in the equation is replaced τm = 2k(k, m), the number of
types of k-mers in the m-set. [Note that

∑
m Lm = L, and f̄m averaged over the

m-sets gives f̄ :

τ−1
∑
m

τmf̄m = 4−k
∑
m

Lm = 4−kL = f̄ , (13)

which verifies that f̄ is the mean frequency regardless of base composition.] In
practice, to circumvent large fluctuations in R(Fk,m) induced by small unevenness
in the A/T (or C/G) contents — this can occur when f̄m is very large at k = 2 and
3 — each frequency was divided by a factor (2k/pm(1 − p)k−m)

∏
s pms

s , where ms

is the number of the sth type of base in the k-mer and
∑

s ms = k.
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3.6. Tests with control sequences

The reduced Shannon information [Eq. (11)] is defined such that its expected value
for the k-spectrum of any random sequence is expected to be one, provided the
length of the sequence is greater than 4k. We test this with three sets of control
sequences: a “random” set, a “century” set, and a “common-root” set. Sequences in
the control sets are matches of sequences that form subsets — called targets — of
genomes (see below) comprising 262 complete genomes: 135 prokaryotic complete
genomes (the prokaryotes) and 127 complete chromosomes of 10 eukaryotes (the
eukaryotes). The random set is comprised of 135 random matches of the prokary-
otes. The century set is comprised of 135 100-replicas of random root-sequences that
targets the 135 prokaryotes. In this case, for every target of length L and (base)
composition p there is a sequence constructed by replicating one hundred times a
random sequence of length L/100 and composition p. The common-root set is com-
prised of 262 replicas of 300 b random root-sequences that targets the combined 262
prokaryotes and eukaryotes. In this case, for every target of length L and composi-
tion p, there is a sequence — an L/300-replica — constructed by replicating L/300
times a random sequence of length 300 and composition p.

The diamond symbols in Fig. 3 give reduced Shannon information versus
sequence length from the k-spectra, k = 2 to 10, of sequences in the three control
sets. The figures in panels (A) and (B) have 1,215 data points each (135 sequences
times nine k values). Panel (C) has about 2300 data points (262×9, excluding data
for which genome length is less than 4k). The MR averaged over all sequences and
all k’s are as expected: 1.03±0.12 and 101±12 in panels (A) and (B), respectively.
In (C), MR is proportional to L as expected; the averaged value for (300/L)MR

is 1.02 ± 0.13. (The ◦ symbols in (C) are genome data; see below.) These results
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Fig. 3. Reduced Shannon information MR in the k-spectra, k = 2 and 3 (gray diamonds) and
4 to 10 (black diamonds), of sequences in three control sets whose compositions are explained in
the text. (A) The random set (135 sequences); MRave = 1.03 ± 0.12. (B) The century set (135
sequences); MRave = 101 ± 12. (C) The common-root set (262 sequences); (300/L)MRave =
1.02± 0.13. Also in (C) are the MR (multiplied by a factor of 3) for k = 2 from the genomes (135
prokaryote and 127 eukaryotes).



July 13, 2005 18:12 WSPC/185-JBCB 00118

Shannon Information in Complete Genomes 597

gives us confidence in the normalization used in equations Eq. (8) and Eq. (11) for
defining the reduced Shannon information.

4. Information in Whole Genomes

4.1. Length and base composition of genomes

Complete genome sequences used in the present study were downloaded from
the genome FTP site of the (USA) National Center for Biotechnology Informa-
tion. The 135 complete microbial genomes (the prokaryotes) were downloaded
on October 9, 2003 from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ and the 127
chromosome sequences of ten complete eukaryotic (the eukaryotes) were down-
loaded on July 15, 2003 from ftp://ftp.ncbi.nih.gov/genomes/. The ten eukary-
otes (number of chromosomes in brackets) are A. thaliana (5), C. elegans
(6), D. melanogaster (6), E. cuniculi (11), H. sapiens (24), M. musculus (21),
P. falciparum (14), R. norvegicus (21; Chromosome Y missing), S. cerevisiae (16)
and S. pombe (3). The prokaryotes are relatively homogeneous in length — 0.4
to 7Mb — but highly heterogeneous in p — 26% to 0.75%. The reverse is the
case for the eukaryotes where length ranges from 0.2Mb (smaller chromosomes of
E. cuniculi) to 268Mb (R. norvegicus Chromosome I) and p ranges from 53% to
64%. The exception is Plasmodium whose p is 81 ± 1%.12

4.2. Shannon information in complete genomes

The reduced Shannon information in the k-spectra of the 135 prokaryotes and 127
chromosomes of eukaryotes are color- (gray scale) and symbol-coded by organ-
ism and shown in Fig. 4(A), where each piece of datum gives the MR in one
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Fig. 4. Reduced Shannon information, MR, from 135 complete microbial genomes and 127 eukary-
otes. Each symbol is the MR value of one k-spectrum from one complete sequence. Left panel, MR

color-coded (gray scale) by organism; right panel, MR color-coded by k, excluding data from 14
chromosomes of P. falciparum, where each “k-band” contains data from 248 complete sequences.
Data have been multiplied by factor of 210−k to delineate the k-bands for better viewing. Data
for which 4k > L, when MR ≈1 regardless of sequence content, have been discarded. Straight
lines in the plots are MR ∝ L lines.
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k-spectrum of a sequence. The values of MR in the figure have been multiplied by
a factor of 210−k to partition data into different k groups for better viewing. The
prokaryotic data are all shown as gray squares. Data for which sequence length is
less than 4k are deleted. For each organism, the data form separate k-dependent
bands running diagonally across the figure, where bands for smaller k’s give larger
values of MR. The data from human (24 chromosomes), mouse (21 chromosomes)
and rat (22 chromosomes) practically overlap when differences in sequence length
is taken into account. Since relative to human chromosomal structure, there are
large and numerous intra- and interchromosomal segment exchanges in the mouse
and rat chromosome,11 it is evident that Shannon information as applied in the
present analysis is insensitive to whatever mutations that may have caused closely
related organisms to diverge, from large chromosomal segment exchanges to gene-
modifying point mutations. The data in Fig. 4(A) indicate the eukaryotes and the
prokaryotes span a similar vertical range, about 2000 when the multiplicative fac-
tor of 210−k is removed. The only glaring exceptions to this similarity are the 14
chromosomes of the malaria causing parasite Plasmodium falciparum; they span a
noticeably smaller vertical range of about 13. In Fig. 4(B) the data in (A) exclud-
ing those from Plasmodium are repeated and color-coded by k to highlight the well
defined k-bands. Each band stretches over the full range of genome/chromosome
length spanning three orders of magnitude. The two straight MR ∝ L lines, sepa-
rated by a factor of 3.5 on the ordinate, are shown to give a sense of the linearity
of a k-band and the vertical spread of the data within a band.

4.3. Effective root-sequence length

The linear relation between MR and L implies that the effective root-sequence
length Lr(k), defined as Lr(k) ≡ L/MR, approximates a k-dependent but genome-
independent constant. Table 3 gives the values for Lr(k) extracted from MR aver-
aged over the prokaryotes (column 2), eukaryotes excluding Plasmodium (column 5),

Table 3. Effective root-sequence lengths Lr defined as length of sequence divided by reduced
Shannon information.

Prokaryotes

k Whole genome Coding Noncoding Eukaryotes P lasmodium

2 3.51 ± 2.17 E2 3.26 ± 1.91 E2 4.66 ± 3.74 E2 2.17 ± 1.26 E2 1.51 ± 0.35 E3

3 7.21 ± 3.91 E2 6.66 ± 3.37 E2 9.42 ± 6.36 E2 5.45 ± 2.98 E2 2.97 ± 0.22 E2

4 1.72 ± 0.84 E3 1.59 ± 0.73 E3 2.17 ± 1.25 E3 1.49 ± 0.74 E3 4.41 ± 0.30 E2

5 4.54 ± 2.10 E3 4.20 ± 1.87 E3 5.45 ± 2.85 E3 4.29 ± 2.00 E3 7.56 ± 0.56 E2

6 1.27 ± 0.57 E4 1.17 ± 0.51 E4 1.41 ± 0.70 E4 1.27 ± 0.55 E4 1.46 ± 0.12 E3

7 3.68 ± 1.67 E4 3.40 ± 1.52 E4 3.56 ± 1.76 E4 3.76 ± 1.51 E4 3.00 ± 0.28 E3

8 1.07 ± 0.49 E5 9.93 ± 4.48 E4 8.28 ± 4.01 E4 1.08 ± 0.40 E5 6.49 ± 0.68 E3

9 2.97 ± 1.34 E5 2.73 ± 1.22 E5 2.08 ± 0.61 E5 3.17 ± 1.05 E5 1.45 ± 0.16 E4

10 7.54 ± 2.95 E5 6.96 ± 2.66 E5 5.94 ± 0.37 E5 9.63 ± 2.97 E5 3.27 ± 0.40 E4



July 13, 2005 18:12 WSPC/185-JBCB 00118

Shannon Information in Complete Genomes 599

and the 14 chromosomes of Plasmodium. The prokaryotes and eukaryotes are very
similar but the Plasmodium set is different. The meaning of Lr(k) is this: if a
genome has Lr(k), then its reduced Shannon information (for k-mers) is the same
as that in a random sequence of length Lr(k), irrespective of the true length of
the genome. This is to be compared with the Shannon information in a random
sequence, which is proportional to the reciprocal of its length. In other words, if a
genome of length L is x times Lr(k), then the Shannon information in the genome
is x times that in a random sequence of length L. From Table 3 we have Lr(2), Lr(6)
and Lr(10) being approximately 300 b, 13 kb and 800 kb, respectively. Hence the
Shannon information in the 2-, 6- and 10-spectra of a genome approximately 2 Mb
long is about 6700, 1500 and 2.5 times that of a 2 Mb random sequence matching
the genome.

4.4. Universality classes of genomes

The data given in Table 3 are plotted as black symbols in Fig. 5: � for prokaryotes, �
for eukaryotes (Plasmodium excluded) and � for sequences formed by concatenating
the noncoding segments in prokaryotes. The relatively small standard deviation
in Lr(k) implies that there is a genome-independent, or universal, value for Lr(k).
These results are well summarized by the simple formula (Lr(k) in units of bases):

log Lr(k) = ak + B; 2 ≤ k ≤ 10, (14)

where a = 0.410± 0.030 and B = 1.58 ± 0.19.
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We refer to Eq. (14) as a universality class, whose mean is given by the straight
line in Fig. 5. (Gray symbols in Fig. 5 are results obtained from model sequences,
to be discussed later.) The universality class expressed by Eq. (14) includes all the
genomes studied except the fourteen chromosomes of Plasmodium, whose Lr

′s are
shown as •’s in Fig. 5 (A). This small group forms a separate class given by the
constants a = 0.146 ± 0.012 and B = 2.14 ± 0.05.

4.5. A universal formula

From Eq. (14), we extract a formula for the Shannon information in an m-set Fk,m

of a genome sequence of composition p in the main class:

R(Fk,m) ≈ 0.012(1− 21−k)e0.44k(2kpm(1 − p)k−m)−1. (15)

When p approaches 0.5 the formula collapses to

R(Fk) ≈ 0.012(1− 21−k)e0.44k. (16)

This last formula gives not only the Shannon information in a genome sequence
with p ≈ 0.5, it also gives the weighted average (over the m-sets) of the Shannon
information in any genome sequence in the main class. Note that Eq. (15) is inde-
pendent of L and Eq. (16) is independent of both L and p. Equation (15) was used
to produce the numbers given in column 4 of Table 2.

From the above and Eq. (6), we also obtain a formula for the relative spectral
width for Fk,m: σ(Fk,m) ≈ (2R(Fk,m))1/2 when the genome has p 	= 0.5, and
σ(Fk) ≈ (2R(Fk))1/2 for the whole k-spectrum when p ≈ 0.5. Note that σ(Fk)
cannot be used as an estimate for the relative spectral width of the k-spectrum of
a genome whose p deviates far from 0.5.

4.6. Coding and noncoding regions

About 85% of a prokaryote is comprised of coding regions, whereas coding regions
typically occupy less than half of an eukaryotic chromosome. Generally, coding
regions occupy a smaller the fraction the higher life form of the organism; coding
regions make up less than 2% of the human genome. Columns 3 and 4 in Table 3
give the Lr(k) for sequences obtained by concatenating the coding and noncoding
segments, respectively, in prokaryotes. There is a small difference in the two sets of
data but, on the level of accuracy maintained in the present discussion, on the whole
one may infer that no essential difference in MR between coding and noncoding
regions obtains.

This is not to say that statistical sequence similarity between coding and non-
coding sections is so great that no difference in Shannon information between them
may be measured. Quite the contrary. But there are several reasons why such a
difference tend not show in MR for the whole genome. First, most genes are pro-
tein genes and they are coded in three-letter codons. This implies that the greatest
difference between a coding and a noncoding segment will be detected when the
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sliding window used to count word frequencies slides three letters at a time. Our
sliding window slides one letter at a time. Second, differences between coding and
noncoding regions tend to cancel when viewed over the whole genome. An example
is the compositional self-complementarity on a single strand of a genome, in spite
of the fact that, as a rule, the contents of complementary bases in coding regions
are different. The reason that the difference cancels out over the entire strand is
because coding regions are more or less uniformly distributed on both strands, such
that on a single strand, there are as many positively oriented genes as there are
negatively oriented genes. Consequently, on a single strand the excess (if there is
any) in A’s in genes in one orientation will approximately be equal to the excess
in T’s in genes in the opposite orientation.

5. Interpretation of Results

5.1. Duplications increases MR uniformly

The existence of universality classes in reduced Shannon information implies that
the latter is a signature in complete genomes undiminished by the enormous diver-
sity in growth and evolution experienced by individual genomes. Since it is easy to
show that most biologically plausible models for genome growth and evolution do
not generate any class, even less so the observed universality classes, the existence
of the universality classes and their precise form provide powerful constraints on
models for genome growth and evolution. Our experience with robust signals in
systems composed of highly diverse members suggests a growth process in which
stochasticity plays a strong role.

The very large amount of reduced Shannon information in complete genomes, at
least for the shorter k-mers, is consistent with the hypothesis that genomes contain
very large amounts of duplications. The k = 2 band of genomic data in Fig. 4(B) is
reproduced as ◦’s in Fig. 3(C). It is extremely similar to the band of data (black and
gray 
’s) obtained from the common-root set of sequences composed of n-replicas
made from replicating random root-sequences 300 b long. The fact that 300 b is close
to the value of Lr(2)≈ 300 b of the main universality class hints at the possibility
that genomes are to a large extent n-replicas with a common root-sequence length
of about 300 b. However, the MR from n-replicas lacks the clear k-dependence
seen in the genome data and this rules out the possibility that genomes are simple
n-replicas. Some other mechanism is needed to generate the observed k-dependence
in MR.

5.2. Point mutations decreases MR differentially

An obvious candidate that may generate the observed k-dependence are small muta-
tions. For simplicity, we consider the effect of random point replacements on a
k-spectrum of an n-replica. Suppose d is the average distance between two adjacent
mutation sites. When the total number of mutations is very small, d � 10 (10 is the
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maximum k in the present study), the effect of the mutations on the k-spectrum
will be negligible to give MR ≈ n. Conversely, when the number of mutations is
very large, d � 1 and all traces of replication in the n-replica will be obliterated
reducing the n-replica to a random sequence yielding MR ≈ 1. In between, when d

is of the order of k, the mutation will affect the k-spectra in such a way that the MR

in a k-spectrum of a larger k will suffer a higher degree of reduction. Presumably,
given an n-replica, there may be an appropriate number of mutations whose effect
is to generate a k-dependence in MR similar to that observed in Fig. 4.

6. Model for Genome Growth

6.1. A minimal model

Based on the above considerations, we devised a number of simple growth models
having the two main ingredients: a large number of random segmental duplications
to create large values for MR; a suitable number of random point replacements to
generate the observed k-dependence in MR. In addition, the model must have the
flexibility allowing the growing genomes to diverge at any stage and the robustness
to prevent the Shannon information from depending on the diverging events. Here
we report the results obtained from a stochastic replicative transposition (SRT)
model in which an initial random sequence of length L0 is grown to full length via
duplications of randomly selected segments (in the sequence) of random lengths
that are then reinserted into the sequence at randomly selected sites.10 After full
growth, the sequence is subjected to random point replacements at a rate of r

mutations per nucleotide. The replacements have the same compositional bias as
the target sequence. Having the mutations all occur after the completion of growth
does not necessarily reflect the actual workings of nature; indeed there is an infinite
number of ways single mutations may be admixed with duplications. Rather the
scheme is adopted in this paper simply to limit the number of parameters in the
model.

The lengths l of the duplicated segments are given by a distribution on which the
results have a weak dependence. Here we simply use a square distribution having
the range 1≤ l ≤ lx. A χ2 procedure based on comparing empirical values of Lr(k)
with those computed from a set of twenty model sequences that match twenty
randomly selected prokaryotic genomes was used to determine optimal values for
the parameters L0, r and lx. The χ2 is observed to have a strong dependence on L0

favoring very short initial sequence lengths and weaker dependence on lx and r. We
find that the best results for the prokaryotes are obtained when L0 = 8, lx = 250
and r = 0.95 (details of this search will be reported elsewhere). The initial sequences
are compositionally self-complementary but otherwise random. Hence an L0 = 8
sequence can only have p = 0, 0.25, 0.5, 0.75 or 1.0. Because p and 1-p sequences in
our model are mathematically equivalent, the initial sequences are chosen to have
p = 0.25 or 0.5. Two measures was taken to shorten computation time, neither
of which is expect to qualitatively affect the presented results. Firstly, because
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lx � L0, an initial sequence is first replicated to a length just greater than lx before
it is subjected to growth by stochastic segmental duplication. Secondly, for model
eukaryote sequences, lx is taken to be 10,000 once the sequence grows beyond 2 Mb.

6.2. Results from model

Using the optimal parameters (L0 = 8, lx = 250 and r = 0.95) we generated
248 model sequences whose profiles more or less match those of the genomes/
chromosomes in the main universality class and computed MR and Lr(k) for the
model sequences. The 
 in Fig. 5 summarize results for Lr(k). Each symbol in
the figure is obtained by averaging over 248 sequences; standard deviations from
the mean are given by the error flags. It is fair to say that the extremely simple
model accounts for the k-dependence and universality of the data very well. A
general property of sequences generated by the model is that a correct value for
MR of a k-spectrum guarantees a correct shape for that spectrum.10 The plotted
5-spectra in Fig. 6, where the spectra from the model sequences are given in light
gray and those from three genome sequences in black (dark gray curves are from
the random matches) indicate the typical agreement between model and genome
spectra. All curves have been smoothed by forward and backward averaging for
better viewing; the value shown at each frequency is the average over twenty-one
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frequencies. Without averaging, the genomic spectra will show large fluctuations
whereas the model will show much smaller fluctuations. This is an indication that
textually, the genome is much rougher, or inhomogeneous, than what our simple
model produces. We emphasize that it is not a trivial task to generate a sequence
whose k-spectra are genome-like for all k’s; it is far easier to generate sequences
that do not have the observed properties of genomes than it is the opposite.

The 14 model Plasmodium chromosomes are similarly generated as the main
group except that L0 = 80 and r = 0.20. The results are shown as ◦ in Fig. 5. On
the surface, the larger L0 and smaller r for Plasmodium suggest that, compared
to other organisms studied, this organism experienced either less duplication or
significantly fewer point (or small) mutations per site, or both, than genomes in
the main class. The real cause for the distinctiveness of Plasmodium may be far
more complex. Among the eukaryotes studied, Arabidopsis, which belongs to the
main class, is phylogenetically the least remote from Plasmodium.12 ,13 It will be
interesting to see how closer taxonomic relatives of Plasmodium13 are classified
by MR.

7. Discussion

7.1. Universality in diversity

Our main findings concerning Shannon information in complete genomes revealed
two important facts: (i) for short k-mers Shannon information in complete genomes
is uniformly very large, even enormous; and (ii) the Shannon information in com-
plete genomes unequivocally exhibits a universality that coexists with the huge
diversity of species. We have found a simple, coarse-grain model for genome growth
and evolution that can account for both phenomena: very early on, when they were
much less than 300 b long, genomes started to grow mainly by stochastic segmental
duplication followed by (or admixed with) small mutations. The model allows a
genome to diverge at any stage during its growth such that, in principle, all the
genomes studies could have had a single common ancestor. The simplicity of the
model and the maximally stochastic nature of the growth mechanisms may underlie
the robustness of the results and explain the emergence of the universality classes in
the presence of a huge diversity of species. As a computational device, the composi-
tional bias and complementarity in the model sequences are generated by the bias
in the replacement mutations. The proposed model should be viewed as a crude
prototype for a realistic model for genome growth and evolution. In particular, it
does not explain the origin of compositional bias. The model will need to be refined
when it is confronted with finer textual details in the genome.

7.2. Why is Plasmodium different?

We need to examine the data and our model in greater detail to ascertain whether
the genome Plasmodium is truly fundamentally different from all other genomes. In
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particular, in view of the fact that the genome of Plasmodium has the most biased
base composition among all completed genomes, we need to conduct a detailed
study of the p-dependence of MR. The case of Plasmodium raises several questions:
(i) Why is the MR of Plasmodium different? (ii) (If Plasmodium is truly different
then) Are there other organisms in the Plasmodium class? (iii) Are there more than
the two universality classes reported here in existence? (iv) What are the biological
causes of different classes?

[Note added in revision. We have noticed that Plasmodium becomes less
anomalous and conspicuous if the normalization factor of Rex(F ′

k) is removed from
the definition of M(0)

R (Fk) in Eq. (8). This considerably lowers the significance but
does not eliminate the Plasmodium problem while not changing the observed uni-
versality and our proposed explanation of it. Details of this finding will be reported
elsewhere.]

7.3. Neutral theory of evolution

Whereas the complete genomes studied vary greatly in coding regions as a percent-
age of the whole genome (from 85% in microbes to less than 2% in H. sapiens), the
universal genome property reported here seems not to depend on that percentage.
Indeed we have shown that in prokaryotes, there is no discernible difference between
the reduced Shannon information of the coding and noncoding regions (Fig. 5). In
the context of our growth model, our findings appear to imply that the majority
of the individual fixed duplications and replacements during genome growth do
not act differently in the two regions. If we assume that coded words other than
genes such as binding sites, regulatory signals, and microRNA’s14 collectively do
not occupy a dominant portion of the noncoding region in eukaryotes, then we may
assume that the fixed events in the noncoding region were selectively neutral and
hence, by inference, so were essentially all the fixed events. This notion of selective
neutralism, based as it is on the present whole-genome analysis, seems to indepen-
dently corroborate Kimura’s neutral theory of molecular evolution,15,16 a theory
that was based on the investigation of polymorphisms of genes.

7.4. Genomes are rich in duplications

Independent from our contention that large Shannon information in a genome sug-
gests a large amount of random duplications over the entire genome, there are many
other evidence of duplications in genomes: the existence of many transposable ele-
ments; the large amounts of repeats in both prokaryotes17 and eukaryotes18–21: the
preponderance of paralogs (genes) and pseudogenes in all life forms;22–24 chromo-
some segmental rearrangements that seem to characterize mammalian11 and plant25

radiations. Our proposed growth model may at least be taken as a starting point
for an explanation of all these phenomena.
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7.5. Random segmental duplication as a result of natural selection

We have learned from this study that the reduced Shannon information (MR) in
a genome increases when it adds homologous sequence to itself. Hence stochastic
duplication is a highly efficient process for a sequence to increase its MR in a
non-directed fashion. Lifeless random segmental duplication may have eased the
path to the rise of life. A larger MR implies a wider distribution of occurrence fre-
quencies of oligonucleotides and the consequential concomitant rapid appearance of
large numbers of over- and under-represented oligonucleotides, which would make
easier — there will be less entropic resistance — the task of endowing some such
oligonucleotides with biological meaning by natural selection at a later date. Ran-
dom segmental duplication also makes good evolutionary sense after the rise of the
earliest codes. For sometimes such duplications will copy a segment in which is
embedded a coded sequence, say a proto-gene, which can later evolve by natural
selection into a new gene in the host genome. This mode of generating new genes
will be enormously faster than having a new gene evolved entirely from scratch,
and may provide a basis for explaining why genes have been duplicated at such a
high rate,23 perhaps up to about 1% per gene per million years,18 and evidently
causing the human genome to expand by 15 to 20% in the last fifty million years.21

Thus having random segmental duplication as a major mode of genome growth
makes the rapid rise and evolution of life easier to understand, and may itself be
a consequence of natural selection. This is consistent with the propositions that a
growth strategy with a reliance on duplication may have the effect of enhancing the
rate of evolution.26,27
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