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A hybrid of dimensional and analytic regularization is used to regulate and uncover a
Meijer’s G-function representation for a class of massless, divergent Feynman integrals in an
axial gauge. Integrals in the covariant gauge belong to a subclass and those in the light-cone
gauge are reached by analytic continuation. The method decouples the physical ultraviolet
and infrared singularities from the spurious axial gauge singularity but regulates all three
simultaneously. For the axial gauge singularity, the new analytic method is more powerful and
elegant than the old principal value prescription, but the two methods yield identical infinite
as well as regular parts.

1. INTRODUCTION

Dimensional regularization |1-4] is a powerful tool for regulating the ultraviolet
[1] and infrared [2] divergent integrals intrinsic to quantum field theories. Because
the method preserves gauge invariance and at the same time provides the easiest way
to isolate the infinite part as well as the leading logarithmic term of divergent
Feynman integrals, from its conception it has been extensively used in the study of
renormalization [1-5] and the dominant asymptotic behaviour of gauge theories in
perturbation calculations [6].

The analytical properties of a dimensionally regulated integral do not appear to
have been fully explored, however, particularly for integrals in an axial gauge |7].
which are especially difficult to evaluate. The chief advantage in choosing an axial
gauge is that the Faddeev—Popov ghosts |8| that are otherwise required to uphold
Ward identities [9] in non-Abelian theories are decoupled from the physical fields.
This greatly simplifies calculations and makes practicable otherwise intractable
calculations in theories such as quantum gravity. Other advantages of the axial gauge
are that it yields mass factorization [10], and in hard quantum chromodynamic
processes, a judicious choice of the special planar gauge [11] causes virtual gluons to
be effectively physical, i.e., transversely polarized.
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The price one pays for the convenience of the axial gauge is that integrals
involving the propagator now have, in addition to the ultraviolet and infrared
divergencies that they may otherwise possess, unphysical or “spurious”™ singularities
that are associated only with the axial gauge. In the literature, integrals that suffer
from such axial gauge singularities have been generally (but not exclusively)
regularized with the principal value prescription [12]. Recently it has been shown
|13, 39] that this prescription, used in conjunction with the method of dimensional
regularization, yields well-defined and consistent results for the infinite parts of axial
gauge integrals of two-point functions in Yang—Mills theories and quantum gravity at
the one-loop level. The prescription, however, is sufficiently cumbersome that the
evaluation of any axial gauge integral is a substantial undertaking. Moreover, the
evaluation of the finite (or regular) parts of these integrals, other than the leading
logarithmic term, is difficult with this prescription.

In this paper we propose a method, based on dimensional regularization (the
dimension of space-time is generalized to a continuous variable) and analytic
regularization (exponents are generalized to continuous variables) {14], for
calculating a very general class of massless divergent integrals in the axial gauge:
integrals in the covariant gauge, which are free from spurious singularities, constitute
a subset of the class. Specifically, in our method spurious singularities are dealt with
by analytic regularization, not by the principal value prescription. It will be
demonstrated that the proposed new method is more powerful and elegant than the
old one. At the same time, by means of constructing an axial gauge “‘regulator™ for
the principal value prescription it will be shown that both methods yield identical
results, for the finite as well as the infinite parts.

On the broader perspective of regularization in general, not restricted to that of
axial gauge singularities, we observe that analytic regularization and dimensional
regularization, for singularities that can be regularized by the two methods separately.
yield identical results, apart from certain terms that can be identified and subtracted.
One type of singularity that cannot be regularized by dimensional regularization
alone but can be regularized by the other method is the axial gauge singularity. We
have not encountered any type of singularity that can be regulated by dimensional
regularization but not by analytic regularization. In this sense, at least for the
evaluation of the class of integrals considered, dimensional regularization is in fact
redundant. It must be emphasized that we do not advocate the replacement of dimen-
sional regularization by analytic regularization. The reason is obvious, for in
situations where the former method works, it is much the superior one requiring the
generalization of only one integer—the number of dimensions—into a continuous
variable. The latter method requires the generalization of several integer exponents.
On the other hand, because dimensional regularization has some known limitations
|1, 3. 4, 15] arising from the ambiguity of doing algebra in continuous dimen-
sions—the most famous one being that related to the Bell-Jackiw—Adler anomaly
[16]——the recognition that analytic and dimensional regularization are equivalent, as
far as regulating integrals is concerned, is important; since analytic regularization
does not affect the algebra, it is clear that (for situations where dimensional
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regularization will work) one should do all the algebra in four dimensions to reduce
the integrand to a function of scalars in Euclidean (or Minkowski) space before
regulating the integral by dimensional regularization. This is precisely the strategy
adopted in the recently proposed method of dimensional reduction [17]. This being
the case, we further demonstrate that it is unnecessary to restrict this method to
spaces of less than four dimensions [17]. The fact that we regulate only Feynman
integrals also allows us to demonstrate that our analytic regularization preserves
gauge invariance. This is in contrast to Speer’s [14] analytic method of regulating
propagators which has the appearance of not preserving gauge invariance [3]. In this
paper we shall concentrate on understanding the formal properties of analytic
regularization. The subject of gauge invariance will be dealt with separately [18],
when it will be demonstrated explicitly that analytically regularized radiative
corrections satisfy Ward identities.
The class of integrals we shall study is defined by

Ssu(p. 73 k10, 5) = [ dq[(p — @)*@") (@ - M)+, (1.1)

where w, x, u, v are arbitrary, continuous variables, s=0 or 1, p is an external
momentum and n is an external vector used to define the axial gauge condition
A-n=0; A4 is the gauge field. For simplicity we choose to work in a (2w-
dimensional) Euclidean space; Minkowski space is reached by analytic continuation
[19]. Whenever the situation allows, we shall suppress the subscript and/or some of
the variables of the function on the left-hand side of (1.1). Thus we may write
S,.(p, 1), S(p,n), or simply S, which we shall call an S-integral. The class of
integrals (1.1) is the generalization of the class of “primal” four-dimensional integrals
S.(p,n; K, M, N,s) with integer exponents. Our main result is the discovery of a
closed-form expression for the S-integrals that is a well-defined and analytic function
of w, x, i, v and the scalar products p?, p - n and n’.

When w =2 and , ¢ and v are integers, the S-integrals reduce to primal integrals
in perturbation calculations at the one-loop level for two-point functions in massless
Yang-Mills theories and quantum gravity [13). The subset with v==s=0 are the
corresponding integrals in covariant gauges. Our motivation for letting the exponents
K, 4 and v be continuous is:

(a) It is necessitated by the method of analytic regularization.

(b) Having k, u and v continuous allows us to generate and regulate integrals
with integrands containing powers of In(p —q)? Ing® and In(g-n)?, by taking
partial derivatives of the S-integral with respect to x, 4 and v, respectively. Such
integrals arise in multi-loop calculations.

(¢) Integrals with noninteger exponents may appear in nonperturbation
calculations even when they do not appear in perturbation calculations [20].

If our sole purpose were to regulate the axial gauge singularity (by analytic
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regularization) it would only be necessary to generalize the exponent v; singularities
associated with the exponents x and u can be more expediently regulated by dimen-
sional regularization. However, by generalizing all x, 4 and v we are able to establish
the relation between analytic regularization, dimensional regularization and dimen-
sional reduction discussed earlier.

The rest of the paper is organized as follows. In Section 2 we present our main
result, relating the S-integrals to a Meijer’s G-function [21] which is a transcendent
of hypergeometric functions and is a well-defined, analytical function of w, k. g, v
and y= (p - n)*/p’n’. The derivation, details of which are given in two Appendices,
is naturally divided into two steps: the first regulates the S-integral to “canonical”
form (Appendix A), and the second identifies the canonical integral as a Meijer’s
G-function (Appendix B). The divergent nature of the primal S-integral is revealed in
the contour integral representation of the G-function by pinches of the contour at
certain values of the variables. It will be shown that the infinite part is a certain
power of p* times a terminating polynomial in y, and the finite or regular part is the
sum of a terminating polynomial plus an explicit series in p if | y| < 1, or a different
series in 1/y if | y| > 1, plus logarithmic terms. In the case of covariant gauges. lL.ec.,
when v=s =0, all series collapse to a form independent of y, as expected, since this
integral must be independent of n. The G-function representation treats the cases of
space-like (n* < 0) and time-like (n* > 0) gauges equally well. Two special gauges,
corresponding to the limits y =0 and y — + o0, are treated as special cases of the con-
tinuation.

In Section 3 and Appendix C we show that our analytic regularization of axial
gauge singularities yields a result which is identical to that given by the principal
value prescription [12]. We show, by explicit construction, that the principal value
prescription for an integral with axial gauge singularities of arbitrary order yields a
result that can be compactly expressed as a polynomial in a differential operator
operating on a sum of G-functions.

To illustrate the power of the G-function representation, in Section 4 we present
several analytic examples. The G-function representation also provides new insights
concerning covariant gauge integrals and tadpole integrals. We classify all primal
S-integrals and present their infinite and finite parts compactly in Table 1. Section 5 is
a summary.

2. ANALYTIC REPRESENTATION OF THE S-INTEGRAL

2.1. General Considerations

The integral under scrutiny may be formally treated as a function of several
complex variables. To justify this approach, consider the integral defined by

Sy Pk, v, 5) = [ dq(@)*(q - n)’ (g - n)*)"[(p —~ 9)*)". (2.1)
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where the integration extends over a Euclidean space generalized to 2w dimensions
[1,3,4] in a manner discussed in Appendix A. To guarantee that this integral has
meaning, it suffices to choose (continuous) w compatible with arbitrary (continuous)
variables (u, v and k with s = 0 or 1) such that the integral representation (2.1) exists.
In comparison and contrast to ’tHooft and Veltman [1], who regularize only
ultraviolet divergencies, it is not sufficient to demand that Re(w) be arbitrarily large
and negative; in the definition (2.1) there exist infrared and axial gauge (spurious)
singularities with which to contend. However, a region in (w, u., v, x)-space exists
such that (2.1) is well defined. So, it is enough [22] to devise a representation for the
integral (2.1) valid for a larger range of the variables but with some overlap with the
region of existence.
In Appendices A and B, the following result is derived:

nw(pZ)w+u+x+u(n2)u F(S +v+ %)(p . n)s
=) I(—v)I(—x)IT2w+2v+u+ K +5)

S, (D s ac, i, v, 8) =

l—-w—uy—v—s,o+p+v+r+1L,v+1;

XGﬁji(y O,w+v+K;3—s )’(2'2)

where y = (p - n)*/p’n?, and G is Meijer’s G-function [21], a compact notation for a
function which can be represented either as a contour integral (2.7) or as a sum of
two generalized hypergeometric functions. In the derivation of (2.2) a number of
conditions are required ((B.6) and (A.8)), which collectively delineate the region in
which the integral (2.1) exists. The conditions are

—1—s5<Re(») <0, (2.3a)
Re(u) < 0, (2.3b)
Re(x) < 0, (2.3¢)
<L (2.3d)
“ut+tK+s

—Re(v) + Max (Re (—s —u, — 3

) ) < Re(w) < —Re(u + v + k). (2.3¢)
Of course, the right-hand side of (2.2) is well defined for all values of the variables
and the conditions (2.3} may be dispensed with.

Since k, 4, v and w are thought of as being independent (real) variables. it is
convenient to introduce some simplifying notation:

k=K +p, (2.4a)
u=M + o, (2.4b)
y= N —+ T, (2.40)

w=2+E, (2.4d)
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where K, M and N are integers and p, o, T and ¢ are variables which will eventually
be made arbitrarily small. Furthermore, we define the indices

Q= —U—V—5—w, (2.5a)
A =K+Uu+7v+ w, (2.5b)
a; =v, (2.5¢)
Bi=a,=x+v+w, (2.5d)
composed of integer parts:
Ayg=—M—N—5-2, (2.5e)
A =K+M+N+2, (2.50)
A,=N, (2.58)
B =K+ N+2, (2.5h)
and epsilons:
o=ty + A, =0+ 1+¢, (2.51)
g =—a,+A,=—p—0—1T—¢, (2.5))
&,=—a, +A,=—T, (2.5k)
ey=f —B =p+1+e (2.51)

in terms of which
n(pHY(n®)*:(p - n) Ta, + 5 + 1)
TG, —a) I'(B, —a) [{—ay,—a, —s) I'(—a,)

l+ag, l +a, 1 +a,:
0.8,:3—s )

S =

X G (y (2.6)

The G-function is symmetric under any permutation among ¢,, a, and a,. S has less
symmetry because of the factors in (2.6) exterior to the G-function; aside from the
factor (p*)®1, S is symmetric under the interchange a,« a,. The factor (p®)":
reflects the overall dimension of § save the unimportant factor (p - #)*. From (2.1)
and (2.5a—c), the indices a,, @, and a, can be recognized as labelling the infrared.
ultraviolet and axial gauge singularities, respectively, of the original S-integral, and
shall be referred to as such. Significantly, with one exception, w appears in (2.6) only
via the indices of (2.5), i.e., in linear combinations with x, 4 and v, and always with a
relative coefficient +1. The exception is the factor 7*, which has no bearing on the
singular properties of S; unless otherwise mentioned. we shall ignore this factor in
our discussion.
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2.2. Regularization

Consider the primal integral S,(p, n; K, M, N, s), whose integral representation
(2.1) may or may not exist. The S integral (2.1) with arbitrary parameters is a
generalization of the primal integral, and may be analytically continued to all values
of the parameters using (2.2). We define the regularized primal integral to be the
right-hand side of (2.2) in the limit ¢, p, 6, 7> 0.

The regularization process is intimately connected with the manner in which p, o, 7
and ¢ are set to zero. In the first place we wish to regularize the axial gauge
singularity (g - n=0) which lies on the path of integration. To achieve this, we use
analytic regularization (A.1) by letting v become a continuous (complex) variable,
and requiring that v lie in the range (2.3a) in which (2.1) is defined—the axial gauge
singularity becomes integrable. In the final result (2.2) we consider values of v outside
the original range of definition, a process justified by the principles of analytic
continuation which allows us to uniquely continue a function defined over a region,
but not over a set of isolated points (integers) [22]. It is significant that this
procedure is independent of w, reflecting the fact that the axial gauge singularity is
spurious. The result (2.2) is a meromorphic function of v although the original
integral is singular if A, < —(s + 1)/2. In (2.2) the G-function is singular whenever v
is a nonnegative integer, but this singularity is cancelled by the zero of 1/I(—v). So,
S has no singularities when v is an integer and the limit 7 — Q can be evaluated before
all others—the spurious singularity has been regulated away. However, because v is a
continuous variable it is permissible to take derivatives with respect to v in order to
evaluate exponent derivatives [20]—integrals with integrands containing powers of
In(g - n)%.

The regularization of the infrared and ultraviolet divergencies is somewhat more
complicated, since these are end-point singularities and are therefore closely
connected with the dimensionality of the integral. We regularize these divergencies,
respectively, by initially choosing

and analytically continuing the result (2.2) in either w (dimensional regularization) or
u and x (analytic regularization) or both (hybrid).

In the method of dimensional regularization [1-4] one is limited to regulating the
axial gauge singularity with the principle value prescription [12] (cf. Section 3).
Insofar as the other singularities are concerned, one sets p =0 =0 at the outset,
performs analytic continuation in w by letting £ - 0 and identifies the terms of O(1/¢)
as the infinite parts of S. This method does not permit the computation of derivatives
with respect to x, 4 and v, nor the evaluation of integrals with M and K outside the
limits given in (2.3b,c}—M and K must be negative integers in dimensional
regularization.

In the method of analytic regularization {14], which must be invoked if exponent
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derivatives are desired, ¢ =0 at the outset and the infinite parts of S appear as
O(1/c) and/or O(l1/p) terms. As described earlier, the would-be axial gauge
singularities of O(1/7) do not appear.

In practice we choose the hybrid regularization which possesses the power of
analytic regularization—it allows the simultaneous regularization of infrared,
ultraviolet and axial gauge singularities—but retains the simplicity of dimensional
regularization: allow all ¢, p, 0 and 7 to be nonzero until after the S integral and/or
exponent derivatives have been evaluated, then set p=0=1t=0 and evaluate the
limit £ - 0.

A fundamental observation can now be made by inspecting the G-function in (2.6):
all singularities of § due to divergencies of the original integral arise from
singularities of the G-function—poles in the complex (w, k, u, v) space—that occur
whenever the difference between one of the top three parameters and one of the first
two bottom parameters is a positive integer. The fact that S depends on ¢, p and ¢
through the indices of (2.5) assures that coefficients of the O(1/¢) terms and those of
the O(1/p) and O(1/0) terms in S are the same, although those of higher-order (O(1),
0O(¢), O(p), O(o), etc.) terms may differ. This is expected because there is no unique
generalization of a function defined over a set of integers. For example, any regular
function proportional to p, g, T or ¢ can be arbitrarily added to S with no effect on S,
but with a profound effect on its exponent derivatives.

Finally, we consider the G-function in (2.2) as a function of y. The analytic
continuation of a G-function outside the circle | y| < 1 is well defined. and in the case
considered the result is another G-function valid for | 1/y] < 1. In particular the point
1/y=0"% corresponding to the case n> =0" is accessible. This special case leads to
representations useful in the light-cone gauge, to be discussed in Section 2.5.

2.3. Contour Integral Representation for |y| < 1

We may write the G-function in its contour integral representation |23],

_ mP)TTT ) s+ v+ 3)(p - )’
CI(—u) T () T(—k) T2v + 4 + K + 5 + 2w)

(2.7)

1 - (=0 Howod+v+r—t) INu+v+s+wo+t) I'(—u—v—k—w+1) IN—v+1)
X —J dty i .
2mi Jy I'(G+s+t)

where the contour L encloses the poles of the first two gamma functions and excludes
the others. The situation is depicted schematically in Fig. 1. Note that inside the
contour one string of poles of the integrand in (2.7) is fixed at the nonnegative
integers whereas a second (f,) string of poles approaches all but a finite number of
the first only when v and « are integers and ¢ — 0.

Exterior to the contour, we find “fixed” (independent of ¢) poles of the integrand
pinching the contour as 70 and “moving” (e-dependent) poles also pinching the
contour as p, o, t and ¢ approach zero. Such pinches will be reflected as pole
singularities of the contour integral at ¢ =p =0 =171= 0. In addition there exist both
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FiG. 1. Pole structure of the contour integral in (2.7) for the case 4,=0, 4, =—2, 4A,=1 and

B, =1, corresponding to S(p, n: —2,—3, 1,0) with {y| < 1.

fixed and moving zeros from the gamma functions exterior to the contour integral,
acting to reduce the overall degree of singularity of S. The result is that § has simple
poles at e =p=0=0 in the ¢, p, o plane, verifying our earlier claim that S is free
from axial gauge singularities and is regular at 7= 0.

Alternatively, § may be viewed as a function of the indices of (2.5), as in (2.6). If
we further define

E3 =&y + &5, (2.8)

then we find S has simple poles at ¢; = 0 in the ¢;-planes, i = 0, 1, 3. From Fig. 1, we
observe that pinches in the contour have their genesis in three strings of exterior poles
(g, o, and «,) extending to the left and two strings of interior poles (one labelled §,,
the other being the nonnegative integers) extending to the right. A first kind of pinch
singularity of the contour integral occurs whenever Re(a;) >0 (i=0,1,2) and a
second kind occurs whenever an ¢; pinches §,. The singularities generated by the «a,
(axial gauge singularity), a, — 5, and a, — §8, pinches are cancelled by corresponding
zeros of the gamma functions exterior to the contour integral (see (2.6)). The three
surviving singularities appear as poles of S and reflect the physical divergencies in
the original integral (2.1)}—infrared (a, and @, — f,) from singularities of the integral
at ¢ =0 and g = p, and ultraviolet (a,).
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By studying the interaction between the pinches and zeros as they coalesce, it is
possible to demonstrate that the singularities of S are at most simple poles in the
{w. k., u,v) space. The “overlap region™ where the pinches reside contains a finite
number of poles. Thus writing the integral in the form

I(y,p.n)

S,(pon)= Y + R(y, p. n), (2.9)

i=0,1.3 €

where I,(», p. n) are the numerators of the divergent (or infinite) part and R(y. p. n)
is the regular (or finite) part. we see that I,(y, p, n) is a function of y with a finite
number of terms, since only pinches in the overlap region contribute to it. The regular
part R may consist of an infinite series in 1 restricted to | 3| < 1 due to poles of the
integrand starting at t > Max{(4,,4,,4,,0) and extending to 1 — 400, plus a finite
number of higher-order derivative terms surviving from the overlap region. /; and R
are also regular functions of the epsilons with leading O(1) terms.

2.4. Contour Integral Representation for |y| > |
From the theory of G-functions {24] it is possible to analytically continue the
representation (2.2) into Minkowski space, i.e., the region | y| > 1. The result is
_ ﬂw(pl)w+u.+;c(p'n)21‘+sr(s+v+%)
') (I« rRo+2v+u+x+s)
L [14+wv]l—-—w—k;i
XG§‘§<~ +v W—K3+V+s )
Ay 10w —p—Kk w0+ pu+20+s:

(2.10)

which has the contour integral representation

_ ﬂw(pZ)ququx(p . ’Z)va+s F(S-f- p+ %)
() I M=) T 2v+u+x+s+2w)

« LJ Q! N(—1) IN(—u—r—w—1) ['(u+2v+s4+w—t) I'(—v+1) T'{k+w+1)
P, 4 T(3+v+s—1)

27i
(2.11)

illustrated schematically in Fig. 2. The same comments hold as for (2.7) except that
L now encloses three strings of interior poles extending to the right, and excludes two
strings of moving and fixed exterior poles extending to the left. Again there is an
overlap region pinching only a finite number of poles, so the contribution to the
divergent terms J,(y, p, n) can at most contain a finite sum of 1/y terms.

Since finite sums are their own analytic continuation, it follows that all represen-
tations of I,(y, p, n) valid for | y| < 1 will be valid for | y| > 1; the same is true for the
finite number of survivors from the overlap region that contribute to R(y, p, n); these
terms will contain factors of 1/y and In y. It is thus sufficient to evaluate the analytic
continuation of any infinite series in R(y, p, n) to obtain representations for S,_(p, #;

595/157/2-8
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FiG. 2. Pole structure of the contour integral in (2.11) for the case 4,=0,4,=2,4,=1,8B,=1
corresponding to S(p, n; —2, =3, 1,0) with | y| > L.

K, 4, v,s) valid for all values of y. This is done explicitly by example in Section 4.1,
and in general in Section 4.3.

2.5. The Points y=0 and y = o

The special gauge, specified by the condition p - n =0 (n” # 0) corresponding to
the point y = 0, has recently become popular in nonperturbative studies of infrared
properties of the gluon propagator [25]. The point y = +c0 corresponds to the well-
known light-cone gauge {26] specified by the condition n? =0 (p - n #0).

From (2.6) it is seen that the limit y=0% is well defined in the region
w + k + v > 0 while the limit y = 4+ 00 is well defined in the region —g —2v — s < w <
—u — k. These regions then provide bases for analytic continuation to obtain well-
defined representations of the S-integral for the special p-n=0 and light-cone
gauges. The results

S(P, n; K, U, v, S) Ip-n=0
@ (ph)e et (n?) M(v+3) HNw+k+v) HNw+u+v) T(—o—k—u—v)

=9 , (212
* I Q) T(—x) () TRao+rc+u+2v) (2.12)

S(p, 13K, 41,9, 8) |y2cs
_ ne(pHet 4 (p - n)* TS Mw+k) M@+u+2v+s) IN(—w—K—p) 2.13)

I'—x) I'(—u) T'Rw+k+u+2v+s)
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are remarkably simple compared to the complexity of (2.2). Equation (2.12) was
previously obtained by Alekseev [27].

Not surprisingly, due to the additional analytic continuation needed to obtain
(2.12) and (2.13), the two special gauges have peculiar properties not shared by the
general axial gauge. These properties are discussed in detail elsewhere [28].

3. PrRINCIPAL VALUE PRESCRIPTION FOR THE AXIAL GAUGE SINGULARITY

In the last section the axial gauge singularity, together with the ultraviolet and
infrared divergencies, were analytically regularized; the regularized S-integral is
proportional to a G-function. In this section we shall show that when the axial gauge
singularity is treated with the principal value prescription, the resulting S-integral can
be expressed as the limit of a polynomial in a differential operator operating on a
series of G-functions, and furthermore, that this result is equivalent to the earlier one.

According to the principal value prescription [12] the axial gauge singularity
(N > 1) is regularized by the limiting process

1 AIN+s 1 1 N+ 1 N+
(__) ~— lim [(—— ) +(———. ) ] (3.1a)
q-n 2 no0 [ \g-n+in qg-n—iy
1 AN+s N ) 2N+S
= lim - A . n AN=21+s7_ .2 l( ) 3.1b
70 [(q n),._’_rlz J l_:__o (q ) ( ’7 ) 2[ ( )
R 1 N+s
= lim R — - n)*, 3.1
im RO | | @) (3.1¢)

where s=0 or 1 and R(n?) is a differential operator in 5°¢/0n* to be identified
shortly. The regularization of the axial gauge singularity of an S-integral using this
prescription thus involves the analysis of

S(p.n)= lim R(n*) T(p, n, n)
= lim R(r*) [ d*a(@*)"(@ - n)*((p — V)" (g - 0V + 1), (3.2)

where v can be taken to be an integer if desired.
The procedure of Appendix A is exactly applicable to the integral T(p, n, 1) save
that the term in square brackets in (A.7) becomes

(1 — AV ¢ Nt ;
(€4 (1 —&)] (D.v)[1+(1—r)(l~é)Dy] o)

in the notation of (B.2) and (A.9). Rewrite the binomial in (3.3) as a contour
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integral, a technique first employed by Capper and Leibbrandt [29], and transpose
with the double integral of (A.7). We find

(m)“(p*n)"(p - n)*(pPy=trts
I'(—u) I'(~v) I'(—x)

lf ST T s 43— 00 /p7n)"
2ni Jy 2w+ K +u+2v—2t+5)

T(p’ n, 772) =

X

t+l—s—py—v—w,o+l—t+u+v+r l+v—1t;
x 633 “ “ )

Ow+k+v—ti—s
(3.4)

using (B.5). The contour L stretches from —ico to +ioo enclosing the poles of
I'(v+1/2 + s —t) on the right because of (B.6a). As ry — 0 this displays a series of
singularities of the form (7?)"*!/2*5,... if Re(v) < — { —s. These singularities may be
removed by operating on T with

I(v+13+5s) 1 8 1 é
R(7Y) = ( = 2_)( N —_ 2__),
ey var wupyl C ke sk e SEYAN T g
(3.5)
where N+ s=[—v| (| | means greatest integer less than or equal to). This isolates

the desired behaviour arising from the pole of I'(—t) at t=0. Now set v=—N — s
and identify

R 14
R(n?) = f(]{:-)# )N U (—N—+—7+l 8—p72) (3.6)

That this operator is equal to the regulator of (3.1c) is verifiable by proving the
consequential result

r(r( ) ,lo ( NH_HZ%) ((q-rgc)zz.:)';z)””
:((‘1._(31)_217)2N+5;( VPN (2N+S> (3.7)

Expand the factor ((g-n)>+#?) " in the left-hand side of (3.7) as an infinite
series in n°/(q - n)* to obtain

(g-n) R(n*)(q-n)* +n°) V= (3.82)

— (__)N( . n)—ZN—s F(% _N) \7 F(N+ §+ k) FUV+ % + k)(—ﬂz/(q ) n)z)k
A d) - TN+ 5)TQ 1 h) k!

g-n IN+s 1 1 ) R
Z(m) o (_N’T_N_S;T;_n /(q'"))- (3.8b)



DIVERGENT FEYNMAN INTEGRALS 421

The result (3.8b) is obtained by identifying the series in (3.8a) as a hypergeometric
function, and applying Euler’s transformation [30] to arrive at a truncated series. The
right-hand side of (3.7} is easily cast into the form of (3.8b) whenever s =0 or s = |
by using the duplication and reflection properties of the gamma function.

With the operator R specified in (3.6), the regularization defined by (3.2) now
reduces to the result (2.2) because of (3.4)—the two procedures are equivalent. The
order of divergence in (3.4) as 7> — 0 is reflected in the pole structure of (2.2) as a
function of v—possible poles at negative integer values of v+ s + 1.

4. SOME EXAMPLES

We evaluate some special cases to illustrate the power of the G-function represen-
tation and to illuminate some properties discussed generally in Section 2. Other
examples are given elsewhere [20, 32] as are implications for renormalization and
nonperturbation theory. The factor 7¢ is isolated when § is singular, and is written as
n* when S is regular.

4.1. A Regular Integral

The case p=x=v=—1, s=1 is of some interest because w = 2 lies within the
window of convergence defined by (2.3); there is no analytic continuation except in .
nor any regularization. Consequently the integral will be well defined in w, x, g and v
and analytic in y. From (2.2) we have

2

n 1 0,0,0:
S:—— o . 2.3< . . ﬂ)
pznzr<2>(p n)Gis |y ’ 0,0; 1

and there is no necessity to take ¢ limits within the G-function because the contour is
not pinched. From (2.8) and utilizing the residue theorem for a dipole we find

4.1)

_—mp-mTG) T+
it TG

3
S p! [w(1+1)—w(7+1) +lny] (4.2)
and the series converges for | y| < I, albeit lackadaisically. An equivalent form for
this integral has been given by van Neerven |31] (Appendix C).
The analytic continuation to | y| > 1 given in (2.12) leads to

0,0;%)
0,0.0;

PLRIC)

(L
p.n 3.3 y
_ T = \[ o N ]
2 i~ TUr DIG_0) | ‘”(2 [ = w1+ D ~Iny

2

+ 2y (%) —y L+ D)~y (%—1) { (4.3)
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The series slowly converges for |y|> 1; v and y’ are polygamma functions
(digamma and trigamma, respectively). As 1/y —» 0%, the leading behaviour is

S(p,n)~In?y, (4.4)

demonstrating that the function R(y, p, n) of (2.10) is singular at the point n> =0,
although the leading pole structure in Fig. 2 and the condition (2.13) for this example
nominally imply (1/y°) behaviour. Thus special treatment will be required for this
integral in the light-cone gauge [28].

Explicit evaluations of all integrals with x =—1, M and N integer are given in
Ref. [32], and for a larger set of parameters in Ref. [40].

4.2. Covariant Gauge

Here we are interested in the case in which v=1s=0; S reduces to

S(pi k)= [ d*q(¢*)*|(p — 9’1" (4.5)

and all n-dependence vanishes. From contiguity relations between G-functions [21], it
is easy to extract a factor 1/v from the G-function in (2.2), write the sum of
contiguous G-functions as a contour integral [23] and set v=0. We find that all
residues vanish save the one at the origin and no limiting process is required. The
result is [4]

7 (p?)* 4 Mo + k) TNw + p) T—w —u — k)

I(—~u) T (=) T 2w + i + k) (4.6)

S(p;k,u) =

Note the symmetry with respect to interchange of ¢ and x, as expected from the
“shift” property of the integral representation (4.5). In addition, because of the order
of limits, it is obvious from (4.6) that

S(p; K, u)=0, K>0, (4.72)
S(pix,M)=0, M3>0. (4.7b)

This confirms a conjecture relating to the properties of tadpole diagrams [33],
S{(p; 0, M)=0, M>0. (4.8)
Because of the conditions (2.3b,c) and reasons given in Section 2.2, (4.7) and (4.8)

cannot be derived with the method of dimensional regularization alone. See Ref. [4]
for a more detailed discourse on this subject.
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4.3. The General Case

First of all, we note the generalizations of (4.7):

S(p,n; K, u,v,5)=0, K >0,

4.9)
S(p,nyx, M,N,s)=0, Mand N >0,

which are results unobtainable in dimensional regularization [13].

Because of the limited number of possible permutations in the overlap region (see
Section 2.3), it is feasible to classify any S-integral according to the arrangement of
the poles and zeros. We expand to first order in ¢, and introduce an encompassing
notation. Write

S(p, n)=13‘, (4.10a)
D
where £ is given in Table I,

T= nw(p2)2+M+K+N(n2)N(p . n)s r(% +N-|— S)

X [1+e(lnp® —2§(B, —A,) — 05(B, — 4,))], (4.10b)
D=I(B,—A)T(B,—A)T(—A,)) (-4, — A, —s) (4.10c)
and
I'(x) = I'(x), if x>0,
(4.10d)
=)/l —x), if x<0,
7(x) = . if x>0,
w(x) = w(x) if x> (4.10¢)
=y(l —x), if x<0.

The parameters 4, 4,, A, and B, are given in (2.5), and the “0” and “2” coefficients
are discussed in the footnote to Table I. The function g'”(b | a) appearing in Table I is
defined by
b-a
gblay=N gla, ) ¥(+a)y. (4.11a)

=0
where

f(Bl —a) H?:of(a —A)a—A4)),

LD = (=) — 4.11b

s h= Ia+ DIa+3+s)a+3+s)a—B,+ 1)a+1), ( )
with

¥, () =1, (4.11¢)

Yi(D=1+egB,— ) +e@(—Ay+ D) +&,5(—A4,+ 1), (4.11d)

Yo)=—1—e(lny —g(-=) + ¥(—A4, + ) —y(G +s + 1)
4+ 20(—Ay + 1) + 0g(—4, + 1)), (4.11¢)
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TABLE I
Evaluation of & in Eq. (4.10a)

Case Condition Infinite part® Regular part

Class A%:4,<0

Al B, =0>4,24, — Z{Ay,A,.B,— 1)
1

A2 A4,2B,>0>4, ?g“)(AoiBl) 2g'0'(Bl—HO)+gm(A0[Bl)
0
1

A3 A,20>B,>4, E—g(”(AolO) -2 (=1]B,)+g"7(4,10)
0

A4 A4y20>4, > B, - —£'7(4,(B,)— 0g"(4,10)

A5 0>A4A,2>4,>B, — -£'"(4,|B)
1

A6 Ay 20>4,>4,2B, :g(z’(AZIBl) g(O'(A1EA1+l)_Og(m(Ao|0)
3
1

AT A0>0>Az>Bl>A1 ?gm(Az‘Bl) _g(m(‘HAz+1)+g(3'(A0|0)
3

1
+—g“’(A0|0)
€

A8 A,>0>4,24,>B, ég‘z'(A,\Bl) —0g”(4, 4, + 1) —0g(4,0)
A9 0>A,>A >A4,>B, g%g'z’(Alel) -4, 14, +1)
AL0 0>d,24,>4,2B, E%g‘“(Al{Bl) 084,14, + 1)
ALl 054,35 4,3B, >4, Eijgm(AO\Bl) g =1 [ Ay + 1) = 26, | 4y + 1)
Al2 0>A4,>A4,>4,>B, E%g‘“(Al\B,) 024,14, + 1)

Class B®: 4,>0

]
Bl A, 2B, >0>A,>4, —2"4,8,) g (B, - 110)
3

Note. Symbols and notation: for 4;, B, and ¢, see (2.5); &, =¢, + &, ; for g’(a | b) see (4.11), for Z
see (4.12). In the limit p=0=1=0, ,=¢€; = ¢ and ¢, = —e. ¥ is the sum of infinite and regular parts.

“ The “infinite” part given here includes terms of O(1/¢) as well as those O(1) terms that are naturally
associated with the O(1/¢) terms.

® Class A cases all have 4, < 0, A, >4, and B, > A, if the position of 4, is not given; if 4, + 4, +
5§20, then ¥ =0. Class B cases all have 4,>0, 4,>4, and B, >A4,; if 4, > B, then ¥ =0.
Corresponding expressions for 4, > 4, are obtained by interchanging 4, and A4, and the coefficients 2
and O, and replacing ¢, by ¢,, in the table and in (4.10) and (4.11).

Table continued
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TABLE 1 (continued)

Case Condition Infinite part® Regular part

1
B.2 A, 2B,>4,20>4, s_g”)(Ao|O) g(o'(Bl“l‘Ao+l)
0

1
+—g"4,|B)
£;

1 1
B3 A,>A,>B,>0>4, (—+—)g“'(A0|B,) 28(B, —1|10)+ 284, |4, + 1)

&y &5
11
B4  A,>A,20>B,>4, (_+_)gm(A0|0) 26", [ Ay + 1)
&y &
1
B5 A4,20>B,>A4,24, e—g‘”(Az\O) —
3
B6 A,>0>A,>B, >4, — 25'(4,0)
B7 B, >A,>0>4,>4, — 2”4, 0)
1
B8 B, >A,>A,>0>4, —5'""(4,/0) g0, 14, + 1)
o
1
B9 B >4,24,20>4, e—g“’(A2|0) —
0
l 1 (98] )
BIO A>A4:>B,>0>4,  (—+—) g4, B) 2¢'(8,~ 10)
&y &
Ty
BAl A,>A4,>0>B,>4, (—+")g (4,]0) -
€y &
B2 A,>B,>A4,20>4, — 2¢"'(d,0)

i) = (P(D) + Po(D))/e
=B, =D+ (=) —y(-A,+ 1)~ g(-4, +1])
— (A, +D+y(G+s+)—Iny, (4.11f)

and the convention that g'(b|a)=0 if b <a; (), is Pochhammer’s symbol. The
function Z in Table I is defined by

Z(Ay, A\, B, — 1)=>g(a,) ¥;(l + a) ¥, if [yrI<1L,
! (4.12a)
=N g1 +d) Y+ d)(—y) ' it |yl>1,
!
where
a=Max(0,B,,4d,+ 1.4, + 1), (4.12b)

d=Max(0,1 — B, + 4,, 1 + 4,), (4.12¢)
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with

D= ()
T(B,— Ay + DT(=A4, + 1)

X 4.12d
TA+ DI +A,~A,+DI(0+A4,— A, + DTG +A4,+s—1) ( )

and
Y()=TwB,—A,+ D +y(l—4) -yl +D—y(l +4, -4, +])
—y(l+A,— A, + D+ w3 +4;,+s—D+In(1/y)]*
+7t 4y (B — A, + D+ —A4)—y' (1 +])
—y'(+4, A, + D)=y (1 +4,— A, +D—y'G+4,+s—1). (4.12)

Nonzero values for the functions in (4.10a) are given in TableI. Although it is
possible to extend Table I to higher orders in p, 7 and ¢ in order to calculate exponent
derivatives, we refrain from doing so because the general expressions rapidly become
unmanageably lengthy and complicated. However, the general evaluation may be
easily executed by computer (SCHOONSCHIP [34]) or by hand with some practice.
Most frequently encountered cases are explicitly tabulated in Ref. [40].

5. SUMMARY

In this paper we have presented a well-defined method of evaluating a class of
divergent integrals that arise in quantum field theory. All possible integrals belonging
to this class are summarized in Table I, and are easily evaluated [32]. For the axial
gauge, compared to the commonly used principal value prescription, the new method
embodies a simple, elegant, well-defined and, most important, mechanical technique.
At the same time, we have demonstrated that the new method generates the same
results as the older prescription. Thus, all results will retain the fundamental
properties deduced for the older methods—in particular, gauge invariance. This is
demonstrated explicitly elsewhere |18, 28].

Because of the inherent simplicity of our method, we are able to obtain a new
result for the light-cone gauge, yet reproduce known results for other, simpler gauges.
The new method also naturally isolates infrared from ultraviolet singularities [41].

APPENDIX A

In this and Appendix B, the main result (2.2) will be derived. We begin by
replacing three of the factors in (2.1) by an integral representation of the form

PAY I 1 ® —u—1_,—q2
(q%) =D jo t~le=% g Re(u)<0, (A.1)
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and transpose with the outermost integral to obtain

Sy,(P-niK, 1, v, 5)
B 1
- I(—u) I(—) I'(—«)

o oo [ve) )
J dzj duj dot ™ty e T T e TP, uL ),
0 0 0
Re{u.v. k) <0, (A.2)

where

J(tuv)= [ dq(q - n) exp(~q*( +0)+2Ap - q)v—(g-m W) (A3)
The above integral has been derived elsewhere [13]; it is equivalent to

i —aq? Lg—y(g-m?
sz"’q(q-n)se aq?+2Bp-g—yig-n)

() ) o ([ 225 o) ne

which has the feature that it reproduces the usual results whenever w is a positive
half-integer. In point of fact, we may always take w equal to a positive half-integer in
(A.3) and (A.4), provided 4. v and x are continuous variables, as follows from the
discussion in Section 2. Thus (A.2) becomes

Sy, (PsmiK, 4, v, 5)

nw(p_n)s oG o0 o t—u‘lu—-vp—lvﬂ»cfl+Y(t_+_l})l/lfw
= di| d d .
I—u) IN—v) I'(—x) Jo Jo ujo v (t+ v+ un®)!?*s

2,2 2 2
pv uv-(p - n) 5
— —pv|. A5
X exp [z+v (000 + v+ ) pb] (A.5)
Now transform the variables according to
t=(1—1)&
u=Ar/n’, (A.6)

v=A(1-1)(1 =)

and the scale integration (4, from O to oo) may be evaluated analytically using (A.1).
The eventual result is
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7 (n*) (p - n)'(p*) 4 IN(—w —u — v — k)
I(—u) I'(=v) I'(—x)

S2w(p5 n,K,u,v, S) =

1 1
XJ' dtf défﬁv_l(l—‘[)_1/2+U+S£7“‘71(1_é)w+u+l‘+s~l
0 0

X [E+ p(1 — E)|@trtren, (A7)
with

v=(p-n)}/(p'n?),

Re(w +u+v+x)<O0. (A.8)

The double integral in (A.7) is in the canonical form of an integral evaluated in
Appendix B, with the substitutions

a—-—(w+rx+u+2v+1),

B-o—3+v+s,

Yoo+ u+v4s—1, (A.9)
u-ru+1,

(w+u+v+rk

Comparing with our approach, Bollini er al. [14]| use a generalized Feynman
formula instead of the generalized exponentiation of {A.1). Like us, they use analytic
continuation to define divergent integrals. Speer |14]| regulates propagators (as
opposed to only integrals), uses (A.l) in a modified form—the lower limit of
integration is replaced by r and the limit r— 0% is considered—and does not
explicitly use the principle of analytic continuation. While Speer’s method may not
preserve gauge invariance, the fact that our method preserves gauge invariance is
demonstrated expilicitly elsewhere [18, 41].

APPENDIX B

We wish to evaluate the double integral
1 1
sz dgf dr T4 (1 — 1)P(1 — &) E74D¢, (B.1)
0 0

where

D,={+(1-8w. (B.2)
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Perform the transformation v = (1 — ¢)/&, and recognizing the 7 integral as the
integral representation of a hypergeometric function [35] obtain

C Ta+l+HIrp+1) = ¥ [ BV
f— s 1 34 Y=
&= @t il Jl) dv v'(1 + v)

X, Fi(—=Ca+l+lia+pf++2:—uvy). (B.3)

Express the hypergeometric function as a G-function [36] so that

U= IYi—jC:)(Oj dv (1 + o) 277706y (Uy (l)tCl :Z__Cﬁ B C). (B.4)

This integral is known [37], and the final result is

I 1 , f—n1l+0~a—C
O =T K PRI SRR S
if

Re(2+ 20 +a—pu)>0. (B.6a)
Re(y) > —1, (B.6b)
Re(u) < 1, (B.6¢)
Re(1 4+ 6)> 0, (B.6d)
Re(a + &) > —1. (B.6¢)

The conditions (B.6a—e) may be relaxed on the right-hand side of (B.5), since the
G-function is well defined for all values of its parameters.

APPENDIX C

We wish to show the equivalence of van Neerven's representation |31] for 7,,, =
(i/167*) S(p, ny —1.—1, —1.1) and our (4.1). According to van Neerven,
i 1
" 16nt pon

F(x). (C.1)

where

! 1 1+t
Fx)=2( dr 1 . l<x<o. 2
(x) f(, l+t2(x~l)n<1—t> cX<® (€.2)
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Identify the logarithmic term with a well-known power series in hypergeometric form
[38] and obtain

F(x):ZjOI dv(1—(1—x)v)"",F, (% 1;%;0) (C.3)

after an obvious transformation of variables. Now impose a linear transformation
(v —v/(v—1)) on the hypergeometric function and again transform the variables
(t = v/(1 — v)), obtaining
o 3
FO)=2 dr(l+x)"',F, (1, 1;?;—1). (C.4)
Q

Write the hypergeometric function as a G-function |36], and use a known integration
formula {37]. Thus

ré) ,,/110,0,0; 1
= * — —_— l N
Fly=— Gs.3<x 0’0;_1/2), —<1 (C.5)
demonstrating that
Ir3)p-n 0,0,0;
I (€6)

using y = 1/x. This is precisely (4.1), after allowing for the different normalization.
By the principles of analytic continuation, both representations are valid for all
values of y.
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