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A hybrid of dimensional and analytic regularization is used to regulate and uncover a 
Meijer’s G-function representation for a class of massless. divergent Feynman integrals in an 
axial gauge. Integrals in the covariant gauge belong to a subclass and those in the light-cone 

gauge are reached by analytic continuation. The method decouples the physical ultraviolet 
and infrared singularities from the spurious axial gauge singularity but regulates all three 
simultaneously. For the axial gauge singularity. the new analytic method is more powerful and 

elegant than the old principal value prescription, but the two methods yield identical infinite 
as well as regular parts. 

1. INTRODUCTION 

Dimensional regularization 11-41 is a powerful tool for regulating the ultraviolet 
111 and infrared 12 ] divergent integrals intrinsic to quantum field theories. Because 
the method preserves gauge invariance and at the same time provides the easiest way 
to isolate the infinite part as well as the leading logarithmic term of divergent 
Feynman integrals, from its conception it has been extensively used in the study of 
renormalization [l-5] and the dominant asymptotic behaviour of gauge theories in 
perturbation calculations 16 1. 

The analytical properties of a dimensionally regulated integral do not appear to 
have been fully explored, however, particularly for integrals in an axial gauge 17 I. 
which are especially difficult to evaluate. The chief advantage in choosing an axial 
gauge is that the Faddeev-Popov ghosts 181 that are otherwise required to uphold 
Ward identities 191 in non-Abelian theories are decoupled from the physical fields. 
This greatly simplifies calculations and makes practicable otherwise intractable 
calculations in theories such as quantum gravity. Other advantages of the axial gauge 
are that it yields mass factorization 1101, and in hard quantum chromodynamic 
processes, a judicious choice of the special planar gauge 1111 causes virtual gluons to 
be effectively physical, i.e., transversely polarized. 

* Theoretical Physics Branch. 
’ Applied Mathematics Branch. 

408 
0003.4916/84 $7.50 



DIVERGENT FEYNMAN INTEGRALS 409 

The price one pays for the convenience of the axial gauge is that integrals 
involving the propagator now have, in addition to the ultraviolet and infrared 
divergencies that they may otherwise possess, unphysical or “spurious” singularities 
that are associated only with the axial gauge. In the literature, integrals that suffer 
from such axial gauge singularities have been generally (but not exclusively) 
regularized with the principal value prescription [ 121. Recently it has been shown 
113, 391 that this prescription. used in conjunction with the method of dimensional 
regularization, yields well-defined and consistent results for the infinite parts of axial 
gauge integrals of two-point functions in Yang-Mills theories and quantum gravity at 
the one-loop level. The prescription, however, is sufficiently cumbersome that the 
evaluation of any axial gauge integral is a substantial undertaking. Moreover, the 
evaluation of the finite (or regular) parts of these integrals, other than the leading 
logarithmic term, is difficult with this prescription. 

In this paper we propose a method, based on dimensional regularization (the 
dimension of space-time is generalized to a continuous variable) and analytic 
regularization (exponents are generalized to continuous variables) 114 1, for 
calculating a very general class of massless divergent integrals in the axial gauge: 
integrals in the covariant gauge, which are free from spurious singularities, constitute 
a subset of the class. Specifically, in our method spurious singularities are dealt with 
by analytic regularization, not by the principal value prescription. It will be 
demonstrated that the proposed new method is more powerful and elegant than the 
old one. At the same time, by means of constructing an axial gauge “regulator” for 
the principal value prescription it will be shown that both methods yield identical 
results, for the finite as well as the infinite parts. 

On the broader perspective of regularization in general, not restricted to that of 
axial gauge singularities, we observe that analytic regularization and dimensional 
regularization. for singularities that can be regularized by the two methods separately, 
yield identical results, apart from certain terms that can be identified and subtracted. 
One type of singularity that cannot be regularized by dimensional regularization 
alone but can be regularized by the other method is the axial gauge singularity. We 
have not encountered any type of singularity that can be regulated by dimensional 
regularization but not by analytic regularization. In this sense, at least for the 
evaluation of the class of integrals considered, dimensional regularization is in fact 
redundant. It must be emphasized that we do not advocate the replacement of dimen- 
sional regularization by analytic regularization. The reason is obvious, for in 
situations where the former method works, it is much the superior one requiring the 
generalization of only one integer-the number of dimensions-into a continuous 
variable. The latter method requires the generalization of several integer exponents. 
On the other hand, because dimensional regularization has some known limitations 
11, 3, 4, 151 arising from the ambiguity of doing algebra in continuous dimen- 
sions-the most famous one being that related to the Bell-Jackiw-Adler anomaly 
I16]-the recognition that analytic and dimensional regularization are equivalent, as 
far as regulating integrals is concerned, is important; since analytic regularization 
does not affect the algebra. it is clear that (for situations where dimensional 
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regularization will work) one should do all the algebra in four dimensions to reduce 
the integrand to a function of scalars in Euclidean (or Minkowski) space before 
regulating the integral by dimensional regularization. This is precisely the strategy 
adopted in the recently proposed method of dimensional reduction [ 17 1. This being 
the case, we further demonstrate that it is unnecessary to restrict this method to 
spaces of less than four dimensions [ 17). The fact that we regulate only Feynman 
integrals also allows us to demonstrate that our analytic regularization preserves 
gauge invariance. This is in contrast to Speer’s (141 analytic method of regulating 
propagators which has the appearance of not preserving gauge invariance 131. In this 
paper we shall concentrate on understanding the formal properties of analytic 
regularization. The subject of gauge invariance will be dealt with separately 1181, 
when it will be demonstrated explicitly that analytically regularized radiative 
corrections satisfy Ward identities. 

The class of integrals we shall study is defined by 

S,,(P, n; K,,4 v, s> = i d2W(P - 4)2]N(42Y(4 * n)2“+s, (1.1) 

where w, K, ,LL, v are arbitrary, continuous variables, s = 0 or 1, p is an external 
momentum and n is an external vector used to define the axial gauge condition 
A . n = 0; A is the gauge field. For simplicity we choose to work in a (2w- 
dimensional) Euclidean space; Minkowski space is reached by analytic continuation 
[ 19 1. Whenever the situation allows, we shall suppress the subscript and/or some of 
the variables of the function on the left-hand side of (1.1). Thus we may write 
S,,(p, n), S(p, n), or simply S, which we shall call an S-integral. The class of 
integrals (1.1) is the generalization of the class of “primal” four-dimensional integrals 
S,(p, n; K, A4, N, s) with integer exponents. Our main result is the discovery of a 
closed-form expression for the S-integrals that is a well-defined and analytic function 
of w, K, ,u, v and the scalar products p2, p . n and n2. 

When w = 2 and K, ,U and v are integers, the S-integrals reduce to primal integrals 
in perturbation calculations at the one-loop level for two-point functions in massless 
Yang-Mills theories and quantum gravity 1131. The subset with v = s = 0 are the 
corresponding integrals in covariant gauges. Our motivation for letting the exponents 
K, p and v be continuous is: 

(a) It is necessitated by the method of analytic regularization. 

(b) Having K, ,U and v continuous allows us to generate and regulate integrals 
with integrands containing powers of ln(p - q)2, In q2 and ln(q . n)2, by taking 
partial derivatives of the S-integral with respect to K, ,U and v, respectively. Such 
integrals arise in multi-loop calculations. 

(c) Integrals with noninteger exponents may appear in nonperturbation 
calculations even when they do not appear in perturbation calculations 1201. 

If our sole purpose were to regulate the axial gauge singularity (by analytic 
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regularization) it would only be necessary to generalize the exponent V; singularities 
associated with the exponents K and ,U can be more expediently regulated by dimen- 
sional regularization. However, by generalizing all K, ,U and v we are able to establish 
the relation between analytic regularization, dimensional regularization and dimen- 
sional reduction discussed earlier. 

The rest of the paper is organized as follows. In Section 2 we present our main 
result, relating the S-integrals to a Meijer’s G-function 1211 which is a transcendent 
of hypergeometric functions and is a well-defined, analytical function of w, K. p, I' 

and y = (p . n)‘/p2n2. The derivation, details of which are given in two Appendices, 
is naturally divided into two steps: the first regulates the S-integral to “canonical” 
form (Appendix A), and the second identifies the canonical integral as a Meijer’s 
G-function (Appendix B). The divergent nature of the primal S-integral is revealed in 
the contour integral representation of the G-function by pinches of the contour at 
certain values of the variables. It will be shown that the infinite part is a certain 
power of pZ times a terminating polynomial in y, and the finite or regular part is the 
sum of a terminating polynomial plus an explicit series in j’ if 1 y 1 < 1, or a different 
series in l/~, if 1~~1 > 1, plus logarithmic terms. In the case of covariant gauges, i.e., 
when v = s = 0, all series collapse to a form independent of JJ, as expected, since this 
integral must be independent of n. The G-function representation treats the cases of 
space-like (n’ < 0) and time-like (n’ > 0) gauges equally well. Two special gauges, 
corresponding to the limits JJ = 0 and J f + $00, are treated as special cases of the con- 
tinuation. 

In Section 3 and Appendix C we show that our analytic regularization of axial 
gauge singularities yields a result which is identical to that given by the principal 
value prescription [ 121. We show, by explicit construction, that the principal value 
prescription for an integral with axial gauge singularities of arbitrary order yields a 
result that can be compactly expressed as a polynomial in a differential operator 
operating on a sum of G-functions. 

To illustrate the power of the G-function representation, in Section 4 we present 
several analytic examples. The G-function representation also provides new insights 
concerning covariant gauge integrals and tadpole integrals. We classify all primal 
S-integrals and present their infinite and finite parts compactly in Table I. Section 5 is 
a summary. 

2. ANALYTIC REPRESENTATION OF THE S-INTEGRAL 

2.1. General Considerations 

The integral under scrutiny may be formally treated as a function of several 
complex variables. To justify this approach, consider the integral defined by 

S,,(P, n; KY, v, sf = f d2”q(q2Y’(q. n)si(q. n)‘l”i(~ - d2jK. (2.1) 
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where the integration extends over a Euclidean space generalized to 2w dimensions 
[ 1, 3,4] in a manner discussed in Appendix A. To guarantee that this integral has 
meaning, it suffices to choose (continuous) cc) compatible with arbitrary (continuous) 
variables @, v and K with s = 0 or 1) such that the integral representation (2.1) exists. 
In comparison and contrast to ‘tHooft and Veltman 111, who regularize only 
ultraviolet divergencies, it is not sufficient to demand that Re(w) be arbitrarily large 
and negative; in the definition (2.1) there exist infrared and axial gauge (spurious) 
singularities with which to contend. However, a region in (0, ,L v, K)-space exists 
such that (2.1) is well defined. So, it is enough 1221 to devise a representation for the 
integral (2.1) valid for a larger range of the variables but with some overlap with the 
region of existence. 

In Appendices A and B, the following result is derived: 

s,,(P, n; K, lu, V, S) = ~ww)w+u+K+” (n2y qs + v + i)(p * ny 
r(-p) T(-V) r(-K) r(2W + 2V + ,U + K + S) 

l-ct-,L-v-S~,~+,U+V+K++,~+~; 

O,CO+V+K;;-S 
) > (2.2) 

where y = (p . n)‘/p2n2, and G is Meijer’s G-function [21], a compact notation for a 
function which can be represented either as a contour integral (2.7) or as a sum of 
two generalized hypergeometric functions. In the derivation of (2.2) a number of 
conditions are required ((B.6) and (A.8)), which collectively delineate the region in 
which the integral (2.1) exists. The conditions are 

- i - s < Re(v) < 0, (2.3a) 

ReC,u) < 0, (2.3b) 

Re(K) < 0, (2.3~) 

IV < 1. (2.3d) 

fi+K+S 
2 < Re(o) < -Re@ + v + K). (2.3e) 

Of course, the right-hand side of (2.2) is well defined for all values of the variables 
and the conditions (2.3) may be dispensed with. 

Since K, p, v and cc) are thought of as being independent (real) variables, it is 
convenient to introduce some simplifying notation: 

K=K+p, 

‘u==++, 

v=N+r, 

o=2+&, 

(2.4a) 

(2.4b) 

(2.4~) 

(2.4d) 



DIVERGENT FEYNMAN INTEGRALS 413 

where K, A4 and N are integers and p, u, r and F are variables which will eventually 
be made arbitrarily small. Furthermore, we define the indices 

a,=-/-v-s-w, (2.5a) 

a,-K+,D+v+W, (2Sb) 

a2 = v. (2Sc) 

/?, = a,, = K + V + W. (2Sd) 

composed of integer parts: 

A,=-M-N-s-2, 

A,=K+M+N+2, 

A,=N, 

B,=K+N+2. 

(2.5e) 

(2.5f) 

(2.5g) 

(2.5h) 

and epsilons: 

E,=-q,+A,,=a+r+~. 

c,=-a, +A,=-p-a-r-~. 

e2=-a,$A,=-r, 

Eh=P,-BI=p+5+E, 

(2.5i) 

Wj) 

(2.5k) 

(2.51) 

in terms of which 

7rw(p2)~1(n2)nL(p . 12)’ T(az + s + +) 

S=rCo,-a,)r(C)I-al)r(-a,,-ai-S)r(-a?) 

1 +a,, 1 +a,, 1 +az; 
o.p,:j --s 1. 

The G-function is symmetric under any permutation among a,, , a, and aI. S has less 
symmetry because of the factors in (2.6) exterior to the G-function; aside from the 
factor (p’)“l, S is symmetric under the interchange a, +-+ a,. The factor (p’)“’ 
reflects the overall dimension of S save the unimportant factor (p . )I)‘. From (2.1) 
and (2.5a-c), the indices ao, a, and a2 can be recognized as labelling the infrared. 
ultraviolet and axial gauge singularities, respectively, of the original S-integral, and 
shall be referred to as such. Significantly, with one exception, w appears in (2.6) only 
via the indices of (2.5), i.e., in linear combinations with K. ,D and v, and always with a 
relative coefficient il. The exception is the factor r?“, which has no bearing on the 
singular properties of S; unless otherwise mentioned. we shall ignore this factor in 
our discussion. 
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2.2. Regularization 

Consider the primal integral S,(p, n; K, M, N, s), whose integral representation 
(2.1) may or may not exist. The S integral (2.1) with arbitrary parameters is a 
generalization of the primal integral, and may be analytically continued to all values 
of the parameters using (2.2). We define the regularized primal integral to be the 
right-hand side of (2.2) in the limit E, p, u, t+ 0. 

The regularization process is intimately connected with the manner in which p, (T, r 
and E are set to zero. In the first place we wish to regularize the axial gauge 
singularity (q . n = 0) which lies on the path of integration. To achieve this, we use 
analytic regularization (A.l) by letting v become a continuous (complex) variable, 
and requiring that v lie in the range (2.3a) in which (2.1) is defined-the axial gauge 
singularity becomes integrable. In the final result (2.2) we consider values of v outside 
the original range of definition, a process justified by the principles of analytic 
continuation which allows us to uniquely continue a function defined over a region, 
but not over a set of isolated points (integers) 1221. It is significant that this 
procedure is independent of cc), reflecting the fact that the axial gauge singularity is 
spurious. The result (2.2) is a meromorphic function of v although the original 
integral is singular if A, < -(s + 1)/2. In (2.2) the G-function is singular whenever v 
is a nonnegative integer, but this singularity is cancelled by the zero of l/T(-v). So, 
S has no singularities when v is an integer and the limit r + 0 can be evaluated before 
all others-the spurious singularity has been regulated away. However, because v is a 
continuous variable it is permissible to take derivatives with respect to v in order to 
evaluate exponent derivatives 120]-integrals with integrands containing powers of 
In(q . n)“. 

The regularization of the infrared and ultraviolet divergencies is somewhat more 
complicated, since these are end-point singularities and are therefore closely 
connected with the dimensionality of the integral. We regularize these divergencies, 
respectively, by initially choosing 

a, > -s/z 

a, > -4% 

and analytically continuing the result (2.2) in either w (dimensional regularization) or 
,U and lc (analytic regularization) or both (hybrid). 

In the method of dimensional regularization [ 1-4 1 one is limited to regulating the 
axial gauge singularity with the principle value prescription [ 121 (cf. Section 3). 
Insofar as the other singularities are concerned, one sets p = u = 0 at the outset, 
performs analytic continuation in w by letting E + 0 and identifies the terms of 0( l/s) 
as the infinite parts of S. This method does not permit the computation of derivatives 
with respect to K, ,u and v, nor the evaluation of integrals with M and K outside the 
limits given in (2.3b,c)--M and K must be negative integers in dimensional 
regularization. 

In the method of analytic regularization 1141, which must be invoked if exponent 
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derivatives are desired, E = 0 at the outset and the infinite parts of S appear as 
0(1/a) and/or 0(1/p) terms. As described earlier, the would-be axial gauge 
singularities of 0( l/t) do not appear. 

In practice we choose the hybrid regularization which possesses the power of 
analytic regularization-it allows the simultaneous regularization of infrared, 
ultraviolet and axial gauge singularities-but retains the simplicity of dimensional 
regularization: allow all F, p, 0 and z to be nonzero until after the S integral and/or 
exponent derivatives have been evaluated, then set p = (T = r = 0 and evaluate the 
limit s + 0. 

A fundamental observation can now be made by inspecting the G-function in (2.6): 
all singularities of S due to divergencies of the original integral arise from 
singularities of the G-function-poles in the complex (u, ~,,u, v) space-that occur 
whenever the difference between one of the top three parameters and one of the first 
two bottom parameters is a positive integer. The fact that S depends on E, p and D 
through the indices of (2.5) assures that coefficients of the 0(1/c) terms and those of 
the 0( l/p) and 0( l/a) terms in S are the same, although those of higher-order (O( I), 
O(s), O(p), O(u), etc.) terms may differ. This is expected because there is no unique 
generalization of a function defined over a set of integers. For example, any regular 
function proportional to p, u, t or F can be arbitrarily added to S with no effect on S, 
but with a profound effect on its exponent derivatives. 

Finally, we consider the G-function in (2.2) as a function of y. The analytic 
continuation of a G-function outside the circle 1 yl < 1 is well defined, and in the case 
considered the result is another G-function valid for 1 l/~r] < 1. In particular the point 
I/J> = 0 + corresponding to the case n2 = 0 + is accessible. This special case leads to 
representations useful in the light-cone gauge, to be discussed in Section 2.5. 

2.3. Contour Integral Representation for 1 y/ < 1 

We may write the G-function in its contour integral representation (231, 

s = 71W(p’)W’~+K+‘(n’)L‘r(S + v + +)(p . n)$ 

r(-,U)T(--v)T(-K)r(b+P + K +S + 20) 
(2.7) 

x&i dry’ 
T(-t) r(W+V+K-t) r@+V+S+W+t) r(-;u-V-Kc--w+t) r(-V+t) 

L r(!+s+t) 

where the contour L encloses the poles of the first two gamma functions and excludes 
the others. The situation is depicted schematically in Fig. 1. Note that inside the 
contour one string of poles of the integrand in (2.7) is fixed at the nonnegative 
integers whereas a second (pi) string of poles approaches all but a finite number of 
the first only when v and K are integers and E + 0. 

Exterior to the contour, we find “fixed” (independent of E) poles of the integrand 
pinching the contour as r -+ 0 and “moving” (s-dependent) poles also pinching the 
contour as p, 0, r and E approach zero. Such pinches will be reflected as pole 
singularities of the contour integral at e = p = u = r = 0. In addition there exist both 
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KEY 

X...> INTERIOR POLES EXTENDING TO THE RIGHT 

e. .@ EXTERlOR POLES EXTENDING TO THE LEFT 

---a MOTION OF “FIXED” POLES WITH 3 -INTEGER 

./ MOTION OF MOVING POLES WITH C--r0 

--k CONTOUR OF INTEGRATION 

FIG. 1. Pole structure of the contour integral in (2.7) for the case A, = 0, A I = -2. Az = 1 and 

B, = 1, corresponding to S(p, n: -2, -3, I. 0) with j yl < 1. 

fixed and moving zeros from the gamma functions exterior to the contour integral, 
acting to reduce the overall degree of singularity of S. The result is that S has simple 
poles at E = p = u = 0 in the c, p, u plane, verifying our earlier claim that S is free 
from axial gauge singularities and is regular at t = 0. 

Alternatively, S may be viewed as a function of the indices of (2.5), as in (2.6). If 
we further define 

then we find S has simple poles at si = 0 in the &,-planes, i = 0, 1, 3. From Fig. 1, we 
observe that pinches in the contour have their genesis in three strings of exterior poles 
(a,,, a, and a*) extending to the left and two strings of interior poles (one labelled ,B, , 
the other being the nonnegative integers) extending to the right. A first kind of pinch 
singularity of the contour integral occurs whenever Re(ai) > 0 (i = 0, 1, 2) and a 
second kind occurs whenever an ai pinches p,. The singularities generated by the a2 

(axial gauge singularity), a,, -pi and ai - /3, pinches are cancelled by corresponding 
zeros of the gamma functions exterior to the contour integral (see (2.6)). The three 
surviving singularities appear as poles of S and reflect the physical divergencies in 
the original integral (2.1)Gnfrared (a0 and a2 - j?,) from singularities of the integral 
at q* = 0 and q =p, and ultraviolet (a,). 
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By studying the interaction between the pinches and zeros as they coalesce, it is 
possible to demonstrate that the singularities of S are at most simple poles in the 
(0. K. p, V) space. The “overlap region” where the pinches reside contains a finite 
number of poles. Thus writing the integral in the form 

(2.9) 

where Zi( y,p. IZ) are the numerators of the divergent (or infinite) part and R( J. p, n) 
is the regular (or finite) part. we see that I,(y,p, n) is a function of J with a finite 
number of terms, since only pinches in the overlap region contribute to it. The regular 
part R may consist of an infinite series in J’ restricted to 1~‘1 < 1 due to poles of the 
integrand starting at t > Max@, , A,, Al, 0) and extending to t + +co, plus a finite 
number of higher-order derivative terms surviving from the overlap region. li and R 
are also regular functions of the epsilons with leading O(1) terms. 

2.4. Contour Integral Representation for 1 y 1 > 1 

From the theory of G-functions [24] it is possible to analytically continue the 
representation (2.2) into Minkowski space, i.e., the region ]y] > 1. The result is 

s= 
7rypz)w+u+yp . ny”+s I-@ + 1’ + 4) 

T(-/I) r(-L’) r(-K) r(20 + 2V + ,U + K + S) 

I+&--w-K;j+V+S 

0.7-w-,PKK,O+,U+22v+s; 
(2.10) 

which has the contour integral representation 

s= 
nw(p2)w+u+yp~ n)2”+sr(s + v + 4) 

T(-P) T(-v) r(--K) r(2V + fi + K + S + 2cU) 

r(-f) r(-p-K-W--t) rf,B+2V+s+w-t) T(--v+t) r(K+~+t) 
z$+v+s-t) 

(2.11) 

illustrated schematically in Fig. 2. The same comments hold as for (2.7) except that 
L now encloses three strings of interior poles extending to the right, and excludes two 
strings of moving and fixed exterior poles extending to the left. Again there is an 
overlap region pinching only a finite number of poles, so the contribution to the 
divergent terms Zi(y, p, n) can at most contain a finite sum of l/y terms. 

Since finite sums are their own analytic continuation, it follows that all represen- 
tations of li(y,p, n) valid for 1 y / < 1 will be valid for 1 y 1 > 1; the same is true for the 
finite number of survivors from the overlap region that contribute to R(y,p, n); these 
terms will contain factors of l/y and In y. It is thus sufficient to evaluate the analytic 
continuation of any infinite series in R(y,p, n) to obtain representations for S,,(p, n; 
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” 3 v- 2 

<-..@ 
,,@ 

c 

KEY - 

x.,9 ,NTER,OR POLES EXTENDING TO THE RlCHT 

-G..@ EXTERiOR POLES EXTENDING TO THE LEFT 

- - MOTlON OF “FIXED” POLES WlTH 3 - INTEGER 

., MOTION OF MOYING POLES WlTH E --CO 

- CONTOUR OF INTEGRATION 

FIG. 2. Pole structure of the contour integral in (2.11) for the case A, = 0, A, = 2, A, = 1, B, = 1 
corresponding to S(p, n; -2, -3, 1.0) with 1 yl > 1. 

K, ,u, V, s) valid for all values of y. This is done explicitly by example in Section 4.1, 
and in general in Section 4.3. 

2.5. The Points y = 0 and y = 03 

The special gauge, specified by the condition p . n = 0 (n’ # 0) corresponding to 
the point y = 0, has recently become popular in nonperturbative studies of infrared 
properties of the gluon propagator [25]. The point y = +co corresponds to the well- 
known light-cone gauge 1261 specified by the condition B’ = 0 (p . n # 0). 

From (2.6) it is seen that the limit y = O+ is well defined in the region 
w + K + v > 0 while the limit y = +ao is well defined in the region -p - 2v - s < o < 
-p - K. These regions then provide bases for analytic continuation to obtain well- 
defined representations of the S-integral for the special p . n = 0 and light-cone 
gauges. The results 

s(P, n; K,P, V, S) Ip.+o 

-6 X”(P 1 
SO 

* W+K+u+Y(n2)” T(V+;) r(O+K+V) T(CO+,U+V) r(--w-K-/L-V), 

r(4) I-(-K) q-/L) r(2w+rc+p+2v) 
(2 12) 

s(P, n; K,EL, V, S> lnz=o 
= 7cyp*)“+K+u(p * n) 2”+s r(o+K) r(W+/l+2V+S) r(--W--K-/J) 

r(-K) r(-P) r(2W+K+P+2V+S) 
(2.13) 
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are remarkably simple compared to the complexity of (2.2). Equation (2.12) was 
previously obtained by Alekseev 1271. 

Not surprisingly, due to the additional analytic continuation needed to obtain 
(2.12) and (2.13), the two special gauges have peculiar properties not shared by the 
general axial gauge. These properties are discussed in detail elsewhere [28]. 

3. PRINCIPAL VALUE PRESCRIPTION FOR THE AXIAL GAUGE SINGULARITY 

In the last section the axial gauge singularity, together with the ultraviolet and 
infrared divergencies, were analytically regularized; the regularized S-integral is 
proportional to a G-function. In this section we shall show that when the axial gauge 
singularity is treated with the principal value prescription, the resulting S-integral can 
be expressed as the limit of a polynomial in a differential operator operating on a 
series of G-functions, and furthermore, that this result is equivalent to the earlier one. 

According to the principal value prescription 1121 the axial gauge singularity 
(N > 1) is regularized by the limiting process 

2,v+s 

+- lim 
: q-0 ~~q."l+in)?'~+'+jq."l~irlj?*+i] 

(3.la) 

= lim 
n-0 [ 

1 

(q . n)’ + rf I 

2.N t s N 
=y- (q. n)2,v-2/+s 

/Z 
(-r’)’ ( ‘“;; ‘) (3.lb) 

(3. lc) 

where s = 0 or 1 and R(q’) is a differential operator in y12ij/aq2 to be identified 
shortly. The regularization of the axial gauge singularity of an S-integral using this 
prescription thus involves the analysis of 

= $mo R(rf’) 1 d2wq(q2)u(q . n)“((p - q)‘)“((q . n)’ + 11’)“. (3.2) 

where v can be taken to be an integer if desired. 
The procedure of Appendix A is exactly applicable to the integral r( p. n. u) save 

that the term in square brackets in (A.7) becomes 

‘12r 
I 

5 
It+ ry(1 - c31C + (D,)3 1 + 

(1 - r)(l - 0 D, (3.3) 

in the notation of (B.2) and (A.9). Rewrite the binomial in (3.3) as a contour 
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integral, a technique first employed by Capper and Leibbrandt 129 1, and transpose 
with the double integral of (A.7). We find 

qp n $) = @>“(P’n’>“(P * n)s(P2)w+rr+a 
1 3 

r(-P) T(-v) P-K) 

’ hl, dr 
q-r> T(v + s + ; - t)(y2/p2n2)’ 

r(20 + K + ,Ll + 2V - 2t + S) 

x G::: c Y I 
t+l-----------o,w+l--+f+++K,l+v--t; 

O,w+K+V-Q-S ) 

(3.4) 
using (B.5). The contour L stretches from -ico to +ico enclosing the poles of 
T(v + l/2 + s - t) on the right because of (B.6a). As v2 + 0 this displays a series of 
singularities of the form (v~)“+“~ “,... if Re(v) < - 4 - s. These singularities may be 
removed by operating on T with 

where N+s= I-v] ([ 1 means greatest integer less than or equal to). This isolates 
the desired behaviour arising from the pole of I’+) at t = 0. Now set v = --N - s 
and identify 

R(v2) = 
That this operator is equal to the regulator of (3.1~) is verifiable by proving the 
consequential result 

N+l-ty2L (4 . nY 
aq2 ((4. n)’ + yly+s 

2lVts N 

\‘ WA4 * n)‘)’ . 
is 

(3.7) 

Expand the factor ((q . n)’ + v’))~-’ in the left-hand side of (3.7) as an infinite 
series in q2/(q . n)’ to obtain 

(q . njs R(v*)((q . 0)’ + v2)-N--s (3.8a) 

IIN + s + k) T(N + $ + k)(-v*/(q . n)2)k 
T(N + s) Z-(+ + k) k! 

n)’ . (3.8b) 
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The result (3.8b) is obtained by identifying the series in (3.8a) as a hypergeometric 
function, and applying Euler’s transformation 1301 to arrive at a truncated series. The 
right-hand side of (3.7) is easily cast into the form of (3.8b) whenever s = 0 or s = 1 
by using the duplication and reflection properties of the gamma function. 

With the operator R specified in (3.6), the regularization defined by (3.2) now 
reduces to the result (2.2) because of (3.4tthe two procedures are equivalent. The 
order of divergence in (3.4) as q2 + 0 is reflected in the pole structure of (2.2) as a 
function of v-possible poles at negative integer values of v + s + i. 

4. SOME EXAMPLES 

We evaluate some special cases to illustrate the power of the G-function represen- 
tation and to illuminate some properties discussed generally in Section 2. Other 
examples are given elsewhere 120, 321 as are implications for renormalization and 
nonperturbation theory. The factor 7cw is isolated when S is singular, and is written as 
T[’ when S is regular. 

4.1. A Regular Integral 

The case ,D = K = 1’ = -1. s = 1 is of some interest because LU = 2 lies within the 
window of convergence defined by (2.3); there is no analytic continuation except in ~7. 
nor any regularization. Consequently the integral will be well defined in w, K, ,U and v 
and analytic in I’. From (2.2) we have 

s= (4.1) 

and there is no necessity to take F limits within the G-function because the contour is 
not pinched. From (2.8) and utilizing the residue theorem for a dipole we find 

s = -n2(p. n) r (4)  \ -  r(l + 4 I  

p2n2 
7 7g.q” 

~(l+i)-~+~t++i) +lny] (4.2) 

and the series converges for 1~1 < 1, albeit lackadaisically. An equivalent form for 
this integral has been given by van Neerven 1311 (Appendix C). 

The analytic continuation to 1 yl > 1 given in (2.12) leads to 
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The series slowly converges for 1 y ] > 1; v and ly’ are polygamma functions 
(digamma and trigamma, respectively). As l/y + O+, the leading behaviour is 

S(P, n> - In* Y, (4.4) 

demonstrating that the function R( y, p, n) of (2.10) is singular at the point n2 = O+ , 
although the leading pole structure in Fig. 2 and the condition (2.13) for this example 
nominally imply (l/y’) behaviour. Thus special treatment will be required for this 
integral in the light-cone gauge 1281. 

Explicit evaluations of all integrals with K = -1, M and N integer are given in 
Ref. [32], and for a larger set of parameters in Ref. [40]. 

4.2. Covariant Gauge 

Here we are interested in the case in which v = s = 0; S reduces to 

(4.5) 

and all n-dependence vanishes. From contiguity relations between G-functions 1211, it 
is easy to extract a factor l/v from the G-function in (2.2), write the sum of 
contiguous G-functions as a contour integral (231 and set v = 0. We find that all 
residues vanish save the one at the origin and no limiting process is required. The 
result is ]4] 

S(p; K, Pu) = 
~w(P2Y+~+K T(o+K)r(W+~)r(--CU-----) 

z-(-p) q--K) q2w + p + K) 
(4.6) 

Note the symmetry with respect to interchange of p and K, as expected from the 
“shift” property of the integral representation (4.5). In addition, because of the order 
of limits, it is obvious from (4.6) that 

S(P; K cl> = 0, K> 0, (4.7a) 

S(p; K, M) = 0, M> 0. (4.7b) 

This confirms a conjecture relating to the properties of tadpole diagrams 1331, 

S(p; 0, M) = 0, Id> 0. (4.8) 

Because of the conditions (2.3b,c) and reasons given in Section 2.2, (4.7) and (4.8) 
cannot be derived with the method of dimensional regularization alone. See Ref. [4] 
for a more detailed discourse on this subject. 
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4.3. The General Case 

First of all, we note the generalizations of (4.7): 

S(P, n; K A v, s) = 0, K>O, 

S(p, n; K, M, N, s) = 0, MandN>O, 
(4.9) 

which are results unobtainable in dimensional regularization [ 13 1. 
Because of the limited number of possible permutations in the overlap region (see 

Section 2.3), it is feasible to classify any S-integral according to the arrangement of 
the poles and zeros. We expand to first order in E, and introduce an encompassing 
notation. Write 

S(p, n) = i .%‘, (4.10a) 

where .Y is given in Table I, 

T =  $~,(~2)2+M+“+” (n’>“(p . nY r(j + N + s) 
X [l + c&p2 - 2y/(B, -A,)-OOIL(B, -A,))], 

D =T(B, -A,)T(B, -A,)T(-A,)T(-A,-A, -s) 

(4. lob) 

(4.lOc) 

and 

F(x) = T(x), if x > 0, 

= (-)“/I-( 1 - x), if x < 0, 
(4.10d) 

V(x) = v(x). 

= w(l - x), 

if x > 0, 

if x<O. 
(4.10e) 

The parameters A,, A,, A, and B, are given in (2.5), and the “0” and “2” coefficients 
are discussed in the footnote to Table I. The function g”‘(b 1 a) appearing in Table I is 
defined by 

b-a 

where 

g”‘(b 1 a) = y g(a, I) Yi(l + a).v’. 
if0 

(4.1 la) 

s(a, 4 = C-Y)” - 
T(B, - a) nfEo F(a - Ai)(a -A,), 

r(a+ l)T(a+~+s)(a+~+s),(a--,f I),@+ I), 
(4.11b) 

with 

Yl#) = 1, (4.1 lc) 

Yu,(l)= 1 +EI(B,-Z)+E,~(-A,+I)+E,~~/(-A~+~). (4.1 Id) 

Y,(Z)=-l-~(lny-~j?--l)+tj-A,+I)-&+s+I) 

+ V-A, + Z) + OW(-A, + I)), (4.1 le) 
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TABLE I 

Evaluation of .B in Eq. (4.10a) 

Case Condition Infinite part’ Regular part 

A.1 B,=O>A,>A, 

A.2 A,ZB,>O>A, 

A.3 A,>O>B, >A, 

A.4 A,>O>A,>B, 

A.5 O>A,>A,>B, 

A.6 A,>O>A, >A,>B, 

A.1 A,>O>A,>B, >A, 

A.8 AO>O>Az>A,>B, 

A.9 O>A,>A,>A,>B, 

A.10 O>A,>A,>A,>B, 

A.11 O>A,>A,aB, >A, 

A.12 O>A*>A,>A,>B, 

B.l Az>B,>O>A,>A, 

Class A’: A, < 0 

Class Bb: A, > 0 

Z(A,,A,,B, - 1) 

Q”‘(B, - 1 IO) + go’& j B,) 

-g”‘(-1 / B,) + &“(A / 0) 0 

-g”‘(A 1 B ) ~ Og’“‘(A IO) 

&A, ) B,) 

0 

g”‘(A, j A, + 1) - Og”‘(A, IO) 

+“(-I 1 A, + 1) + ,$“(A, / 0) 

-Og”‘(A 1 A - 2 I + 1) Og”‘(A 0 IO) 

-&“(A, j A, + 1) 

-$“(-I IA,+ I)-2g”‘(A,IA,+ 1) 

-Og”‘(A, 1 A, + 1) 

g”‘(B, - 1 / 0) 

Note. Symbols and notation: for Ai, B, and ei see (2.5); Ed = Ed + E*; for g”‘(a I b) see (4.11). for Z 
see (4.12). In the limit p = o = r = 0, E,, = E, = E and E, = --E. %’ is the sum of infinite and regular parts. 

’ The “infinite” part given here includes terms of 0( l/c) as well as those 0( 1) terms that are naturally 
associated with the 0(1/&) terms. 

bClassAcasesallhaveA,<O,A,~A,andB,>A,ifthepositionofA,isnotgiven;ifA,+A,+ 
s>O, then F=O. ClassB cases all have A,>O, A,>A, and B,>A,; if A,>B, then F=O. 
Corresponding expressions for A, > A, are obtained by interchanging A, and A, and the coefficients 2 
and 0. and replacing c0 by E, , in the table and in (4.10) and (4.11). 

Table continued 
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TABLE I (confinued) 

Case Condition Infinite part” Regular part 

8.2 A2>B,>Ao>O>A, 

B.3 A,>A,>B,>O>A, 

8.4 AL>Ao>O>BI>A, 

B.5 A2>0>B,>A,>A, 

B.6 A?>O>A,>B, >A, 

B.7 B,>A,>O>A,>A, 

B.8 B,>A,>A,>O>A, 

B.9 B,>A,>A2&O>A, 

B.10 A,>Az>B,>O>A, 

B.ll A,>Az>O>B,>A, 

&?“‘(B, ~ 1 10) + 2g”‘(A> 1 A,, + 1) 

2g”‘(A, ) 0) 

$“(A: I 0) 

g”“(A2 !  A,, + 1) 

Zg”‘(B, - I IO) 

B.12 A,>B,>A,>O>A, 2g”“(A, 1 0) 

g”‘(B, - 1 IA, + I) 

=p(B,-l)+li/(--I)-q7--Ao+I)-IC/(-A,+l) 

-Vi/(-kt,+I)+~(?+s+I)-ln~,, (4.1 If) 

and the convention that g’(b 1 a) = 0 if b < a; ( ), is Pochhammer’s symbol. The 
function Z in Table I is defined by 

if 1.~ ,< 1, 
(4.12a) 

where 

=; &f(l+ d) !P4(I + d)(-y-‘-d, if j~‘j>l, 

a=Max(O,B,,A,+ l.A, + l), (4.12b) 

d=Max(O, I-B, +A,, 1 +A,), (4.12c) 
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with 

&(I) = (4)(-)‘-“o-” I 

T(B, -A, + I) l-(-A, + 2) 

and 

~4(z)=[~(~,-~-2+z)+~(z-~2)-~(l+z)-v(~+~1-~2+z) 

-w(~+A,-A,+Z)+yl(t+Az+s-Z)+ln(l/y)]2 

+ 7~’ + yl’(B, -A, + I) + y/‘(Z - A2) - ~‘(1 + 1) 

- t,v’(l+A,-A,+Z)--y’(l+Ao-A,+Z)--y’(i+A,+s-1). (4.12e) 

Nonzero values for the functions in (4.lOa) are given in Table I. Although it is 
possible to extend Table I to higher orders in p, r and u in order to calculate exponent 
derivatives, we refrain from doing so because the general expressions rapidly become 
unmanageably lengthy and complicated. However, the general evaluation may be 
easily executed by computer (SCHOONSCHIP [34]) or by hand with some practice. 
Most frequently encountered cases are explicitly tabulated in Ref. [4O]. 

5. SUMMARY 

In this paper we have presented a well-defined method of evaluating a class of 
divergent integrals that arise in quantum field theory. All possible integrals belonging 
to this class are summarized in Table I, and are easily evaluated 1321. For the axial 
gauge, compared to the commonly used principal value prescription, the new method 
embodies a simple, elegant, well-defined and, most important, mechanical technique. 
At the same time, we have demonstrated that the new method generates the same 
results as the older prescription. Thus, all results will retain the fundamental 
properties deduced for the older methods-in particular, gauge invariance. This is 
demonstrated explicitly elsewhere ] 18, 281. 

Because of the inherent simplicity of our method, we are able to obtain a new 
result for the light-cone gauge, yet reproduce known results for other, simpler gauges. 
The new method also naturally isolates infrared from ultraviolet singularities [41]. 

APPENDIX A 

In this and Appendix B, the main result (2.2) will be derived. We begin by 
replacing three of the factors in (2.1) by an integral representation of the form 

($)fi =&lom t-r-‘e-q*t dt, Reb) < 0, 
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and transpose with the outermost integral to obtain 

where 

J(t, u, u) = 1 d2”q(q . n)” exp(-q2(t + v) + 2(p . q) v - (q . n)’ u). (A.3) 

The above integral has been derived elsewhere I13 1; it is equivalent to 

I 
. d2wqtq . n)s ,-ucI~+~OP~Y~)I(~.~)~ 

which has the feature that it reproduces the usual results whenever o is a positive 
half-integer. In point of fact, we may always take w equal to a positive half-integer in 
(A.3) and (A.4), provided p, v and K are continuous variables, as follows from the 
discussion in Section 2. Thus (A.2) becomes 

n”(p . n)’ 

= f(-,ff) T(-V) r(-K) (t + L7 + un2)“2+s 

Xexp -- 
I 

gt,2 uvyp . ny 
t+z: (t+Il)(t+L~+un’)-P2U . 1 

(A.51 

Now transform the variables according to 

t = (1 - 5) CL. 

ll = /Zr/n2. (A.61 

tJ=L(l -r)(l -<), 

and the scale integration (A, from 0 to 03) may be evaluated analytically using (A. 1). 
The eventual result is 
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S,,(p, n; jc,p, v, s) = n”(n2)‘(p . n)“(p ) 
* w+u+~+~‘pW-p-v),--) 

r(-P) T(e) r(--K) 

x : d7 

I I 

: (j(7-“‘-‘(l -7)-1/2+L9+s p-1(1 -yJ+u+I~ts-l 

x [r+ ZV(1 - r)]W+M+CtK, (A.7) 

with 

Y = (P . 4’/(p’n’), 

if 

Re(w+++v++)<O. (‘4.8) 

The double integral in (A.7) is in the canonical form of an integral evaluated in 
Appendix B, with the substitutions 

a+-(o+K+,u+2v+ l), 

p+-;+v+s, 

y-ro+,D+v+s-1, (A.9) 

P-+Pu+ 1, 

Comparing with our approach, Bollini et al. [ 141 use a generalized Feynman 
formula instead of the generalized exponentiation of (A.1). Like us, they use analytic 
continuation to define divergent integrals. Speer 1141 regulates propagators (as 
opposed to only integrals), uses (A.l) in a modified form-the lower limit of 
integration is replaced by r and the limit r+ 0’ is considered-and does not 
explicitly use the principle of analytic continuation. While Speer’s method may not 
preserve gauge invariance, the fact that our method preserves gauge invariance is 
demonstrated explicitly elsewhere [ 18,4 I]. 

APPENDIX B 

We wish to evaluate the double integral 

(B.1) 

P-2) D,,=<+ (1 -<)ry. 
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Perform the transformation t’ = (1 - o/r, and recognizing the r integral as the 
integral representation of a hypergeometric function 13.51 obtain 

(B.3) 

Express the hypergeometric function as a G-function 136) so that 

This integral is known 137 1, and the final result is 

if 

Re(2+2<+cx-p)>O. (B.6a) 

Re(y) > -1, (B.6b) 

k(u) < 1, (B.6c) 

Re( 1 + P) > 0, (B.6d) 

Re(cx + <) > -1. (B.6e) 

The conditions (B.6a-e) may be relaxed on the right-hand side of (B.5) since the 
G-function is well defined for all values of its parameters. 

APPENDIX C 

We wish to show the equivalence of van Neerven’s representation 131 1 for Z,, , = 
(i/167?) S(p, n: -1. -1, -1. 1) and our (4.1). According to van Neerven, 

I 
i 1 

__ - F(x), “‘=16n2p.H 

where 

’ 
F(x)= 2 i dt 

1 

0 1 +t?(x- 1) 
In t l+t 1 

1-t’ 
1 <.u< co. (C.2) 
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Identify the logarithmic term with a well-known power series in hypergeometric form 
1381 and obtain 

I;(x)=2 ‘dU(l-(I-x)v)-‘,F, 
1 0 i 

+, 1;;;u 
i 

after an obvious transformation of variables. Now impose a linear transformation 
(v + v/(v - 1)) on the hypergeometric function and again transform the variables 
(t = u/( 1 - v)), obtaining 

cc F(x)= 2 
i 0 

dt(1 +Xf)-‘,F, 1, I;$-, . 
i 1 

(C.4) 

Write the hypergeometric function as a G-function 1361, and use a known integration 
formula (371. Thus 

F(x) = - e) G2,3 1 o,o,o; 

X 3,3 y ( I 1 o,o;-l/2 ’ 
$< 1, 

demonstrating that 

cc.51 

using y = l/x. This is precisely (4.1), after allowing for the different normalization. 
By the principles of analytic continuation, both representations are valid for all 
values of y. 

ACKNOWLEDMENTS 

We thank Graham Lee-Whiting for discussions on the regulator for the principal value prescription. 
We are especially thankful to George Leibbrandt for many informative discussions and communications. 

REFERENCES 

1. G. ‘THOOFT AND M. VELTMAN, Nuclear Phys. B 44 (19721, 189; C. G. BOLLINI AND J. J. GIAM~ 

BIAGI. NUOVO Cirnenlo B 12 (1972), 20; J. F. ASHMORE, Nuovo Cimento Lett. 4 (1972), 289. 

2. R. GASTMANS AND R. MEULDERMANS, Nuclear Phys. B 63 (1973). 271. 
3. G. LEIBBRANDT, Reu. Modern Phys. 47 (1975). 849. 
4. S. NARISON. Phys. Rep. 84 (1982), 263. 

5. N. N. Boco~rusov AND D. V. SHIRKOV, “Introduction to the Theory of Quantum Fields,” 
Interscience, New York, 1959; E. S. ABERS AND B. W. LEE, Phys. Rep. C 9 (1973). 1. 

6. A. J. BURAS. Rev. Modern Phys. 52 (1980), 199. 
7. R. DELBOURGO, A. SALAM, AND J. STRATHDEE, Nuovo Cimento A 23 (1974). 237; W. 

KONETSCHNY AND W. KUMMER, Nuclear Phw B 100 (1975), 106; B. HLJMPERT AND W. L. VAN 

NEERVEN, Phys. Len. B 101 (1981). 101. 



DIVERGENT FEYNMAN INTEGRALS 431 

8. R. F. FEYNMAN. Acra Phvs. Polon. 24 (1963). 697: L. D. FADDEEV AND V. N. POPOV. Phys. Lert. B 
25 (1967), 29; B. S. DEWITT. Phys. Rez,. 160 (1967). 1113: 162 (1967), 1195. 

9. .I. C. TAYLOR, Nuclear Phys. B 33 (1971). 436; A. A. SLAVNOV. Teoret. Mat. Fiz. IO (1972). 153 

IEnglish transl.: Theoref. Math. Phys. 10 (1972), 991. 

10. D. AMATI, R. PETRONZIO, AND G. VENEZIANO. Nuclear Phys. B 140 (1978). 54; R. K. EI.LIS. H. 

GEORGI, M. MACHACEK, H. 0. POLITZER. AND G. G. Ross. Phys. Left. B 78 (1978). 281; S. LIBBY 

AND G. STERMAN. Phys. Left. B 78 (1978). 618. 

I 1. YLJ. L. DOKSHITZER. D. I. DYAKONOV, AND S. I. TROYAN. Phys. Rep. 58 (1980). 1276. 

12. W. KUMMER, Acta Phys. Austriaca 41 (1975), 315. 

13. D. M. CAPPER AND G. LEIBBRANDT. Phys. Rev. 25 (1982). 1002. 1009. 

14. C. G. BOLLINI, J. J. GIAMBIAGI. AND A. GONZALES DOMINGUEZ. NUOL)O Cimento 31 (1964). 550; E. 

R. SPEER. J. Math. Ph.vs. 9 (1968). 1404. 

15. G. BONNEAU, Phys. Left. B 96 (1980). 147. 

16. S. L. ADLER, Phw. Rec. 177 (1969), 2426; J. S. BELL AND R. JACKIW. NUOL~O Cimenro il 60 ( 1969), 

47. 

17. W. SIEGEL, Phys. Left. B 84 (1979), 193; D. M. CAPPER, D. R. T. JONES. AND P. VAN 

NIEUWENHIJIZEN, Nuclear PhJjs. B 167 (1980). 479. 
18. H. C. LEE AND M. S. MILGRAM, preprint CRNL-TP-83.X11-14 (to be published). 

19. J. J. SCHWINGER, Proc. Nat. Acad. Sci. U.SA. 44 (1958), 956: K. OSTERWALDER AND R. 

SCHRADER, Phys. Ret!. LetI. 29 (1972), 1423. 

20. H. C. LEE AND M. S. MILGRAM, Phys. Left. B 132 (1983). 397. 
21. Y. LUKE. “The Special Functions and their Approximations,” Chap. 5. Academic Press, New York. 

1969. 

22. K. KNOPF. “Theory of Functions.” Part 1, Chap. 8, Dover. New York. 1945. 

23. Y. LUKE. op. cit.. Eq. 5.2(l). 

24. Ibid., Eq. 5.3( 1). 

25. J. S. BALL AND F. ZACHARIASEN. Nuclear Phvs. B 143 (1978), 148; S. MANDELSTAM, Phvs. Rez,. D 

20 (1979). 3223; R. DELBOIJRGO, J. Phys.‘G 5 (1979). 603; M. BAKER. J. S. BALL, AND F. 

ZACHARIASEN. Nuclear Phys. B 186 (1981), 53 1, 560; J. CORNWALL, Phys. Rer. D 26 (1982). 
1453; W. J. SHOENMAKER. Nuclear Phys. B 194 (1982). 535. 

26. D. J. GROSS AND F. WILCZEK, Phys. Ret). Letr. 30 (1973). 1343; H. D. POLITZER. Phjls. Rev. Lerr. 
30 (1973). 1345; J. M. CORNWAL.L, Phys. Rec. D 10 (1974), 500; W. KAINZ, W. KUMMER. AND M. 

SCHWEDA. Nuclear Phys. B 79 (1979). 484. 

27. A. I. ALEKSEEV. Yadernaya Fiz. 33 (1981). 516. 

28. H. C. LEE AND M. S. MILGRAM, preprint CRNL-TP-83.X11-13 (to be published). 

29. D. M. CAPPER AND G. LEIBBRANDT. unpublished and private communication; Y. LUKE. op. cif.. 
Eq. 3.6(28). 

30. Ibid.. Eq. 3.8(2). 

31. W. L. VAN NEERVEN, Z. Phys. C 14 (1982), 241. 

32. H. C. LEE AND M. S. MILGRAM, Phys. Left. B 133 (1983). 320. 

33. D. M. CAPPER AND G. LEIBBRANDT. J. Mafh. Phys. 15 (1974). 82. 86. 
34. H. STRUBBE, Comput. Phys. Comm. 8 (1974), 1. 

35. Y. LUKE, op. cif., Eq. 3.6(l). 

36. Ibid., Eq. 5.2( 14). 

37. Ibid., Eq. 5.6.2(18). 

38. Ibid., Eq. 6.2.1(15). 

39. R. DELBOURGO, /. Phvs. A 15 (1982). L165. 
40. M. MILGRAM AND H. C. LEE. J. Comp. Phvs., in press. 

41. H. C. LEE AND M. MILGRAM. preprint CRNL-TP-84.VIII-15 (to be published). 


