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In paper 1, [Ann. Phys. (N.Y.) 94 (1975)] the matrix elements of effective operators in an
intrinsic frame of the spherical shell model, that were determined by an iterative, renormali-
zation technique, were shown to be analytically equivalent to those from a deformed,
unrestricted Hartree-Fock model for the case of *Ne with a schematic quadrupole~
quadrupole Hamiltonian. This paper shows the numerical comparison of the results from
the renormalized spherical shell model and the projected, deformed Hartree-Fock model
in the laboratory frame with states of definite angular momentum. Good agreement is
found for the full iterative, renormalization results and those from the variation-after-
projection Hartree-Fock model.

1. INTRODUCTION

The standard spherical shell model calculations (SSSM) involve the description of
nuclear states in terms of configurations having a spherical core, from the filling of
the lowest single particle orbitals, with the remaining particles distributed among a
few valence orbitals (cf. [1]). The use of effective charges in the calculations for
quadrupole moments and transitions is but one indication, however, that the nucleus
has structure beyond that described by the model wavefunctions. If the object of a
shell-model calculation is to learn something about the structure of the nucleus,
then it is clearly as important to study the hidden structure buried in the effective
charge phenomena as it is to study the structure of the model wavefunctions them-
selves.

The attempts that have been made to supplement the model wavefunctions by a
systematic addition of low-order perturbation terms have not been completely
successful in explaining the origin of the effective charges and have never considered
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2 HARVEY, LEE, AND AMIOT

examples with more than two valence particles (cf. [2]). Such is the plethora of higher-
order perturbation terms that a study of contributions order-by-order would seem
doomed to failure.

In this series of papers our approach has been different. We attempt to recognize
a priori the physical structures that, for some nuclei, are believed to be missing from
the model wavefunctions, and then identify the types of perturbation terms that
describe these features. Necessarily we must be prepared to accept some types of
perturbation terms of very high order if these are seen to be important from the
physical point of view, just as we shall feel free initially to ignore some types of
low-order terms which do not seem to play a role in the phenomena under study.
Throughout our approach we always insist on a consistent renormalization: thus,
whatever perturbation terms are introduced into the calculation of effective operators,
similar terms must also be introduced into the calculation for effective interactions
to deduce the corresponding effects on the energy spectrum.

The big question of course is what physical properties are believed to be missing
from the standard spherical shell model wavefunctions. Here we turn to other models
for guidance. For some light nuclei, like 2*Ne, the unrestricted deformed Hartree-Fock
model has been remarkably successful in explaining the magnitudes of quadrupole
matrix without the use of effective charges and also a reasonably correct level density
within a band using the bare reaction matrix (cf. [3]). The success of this model seems
to hinge on the self-consistent generation of the deformed intrinsic state. Since 2'Ne
is also a typical spherical shell model nucleus, it is certainly relevant to ask what
series of perturbation terms must one consider within the framework of the renor-
malized spherical shell model that will recapture the self-consistency of the deformed
Hartree—Fock model.

In an earlier paper ([4], hereafter referred to as 1) we considered the deformation
in the intrinsic state for 2Ne for a simple schematic Hamiltonian of the form

H,=hy+ v (1.1
with
vo = hwex Z o) - Q(PIX ), (1.22)
0. = (H55)" 5 Y0, (1.26)
[Xiy] = ay + ao; - 0)) + a,(7; - 7)) -+ a,.(0;* 0)(7; " 75) (1.3)
and

h, is a spherical harmonic oscillator (fiw, = #2/mb,2).
The exchange mixture of v, was so chosen that

AT 943 — 3(A18 4 4%) = 8 (1.4)
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with
ATHL2SH — (TS X)) TS>
where | TS> is a two-body state with isospin 7 and spin S. With this particular

exchange mixture, the Hartree-Fock Hamiltonian for an N = Z nucleus has precisely
the structure of a deformed oscillator

hup = hy = hy — ha[8Qy + ¥(Q: + 0-5)] (1.5)
where
—8 = x{Qys (1.6a)
and
y = Qs + Q25 (1.6b)

The expectation values in Eq. (1.6) are taken with respect to the lowest many particle,
deformed eigensolution y, of 4, .

The study in I was restricted to the structure of the intrinsic state y, relative to
that part of it (y,) that lies in the standard spherical shell model space of closed s
and 1p shells and four particles in the (25, 1d) shell. The state x, is in fact the intrinsic
state of the leading representation in the (spherical) SU; model {5]. It was shown in I
(Eq. (4.7)) how, for an axially symmetric system like 2°Ne, the self-consistent condition
in Eq. (1.6a) could be recast into an equation representing the perturbation expansion
of {Q,>s with respect to the state y, . Thus the same equation can be interpreted either
as the self-consistent condition for the deformed Hartree—-Fock model or as the
perturbative equation for the renormalization of the quadrupole operator in the
spherical shell model. It was a relatively simple exercise therefore to examine the
equation term-by-term to identify the types of perturbation terms that are equivalent
to self-consistent deformation. Of course, since the Hartree-Fock state itself is an
approximation to the lowest eigensolution of H,, not every perturbation term need
appear in this “collective renormalization’ of the quadrupole operator. This selection,
however, is consistent with the spirit of our approach.

An interesting principle of “consistent renormalization’ was noted in I which, for
the schematic Hamiltonian of Eq. (1.1), allows certain classes of higher-order terms
to be easily generated from a few low-order terms. This is achieved by replacing all
quadrupole matrix elements within the valence space, as they appear within a pertur-
bation term, by their renormalized values. Since the renormalized value is not known
until the perturbation terms for the renormalized quadrupole operator have been
summed, it is clear that, in general, the solution can only be found iteratively. This
iterative solution is precisely equivalent to the self-consistency involved in the
generation of the deformation in the Hartree~Fock method. In I we introduced a
“black-dot” vertex renormalization to perturbation diagrams indicating that the
renormalized quadrupole matrix elements should be used. If only the first-order
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bubble perturbation terms are considered, then the black-dot vertex renormalization
is equivalent to building up the open-shell RPA series. As noted in I, however, it is
necessary to include also the black-box vertex renormalization of Barrett and
Kirson ([2] with particle-particle as well as particle-hole interactions) if agreement
with deformed Hartree-Fock is to be reached. The black-dot vertex renormalization,
together with the black-box, generate very exotic perturbation terms (cf. Fig. 11 in I).

In this paper we extend the results of I into the laboratory frame. Now the “model”
states for 2Ne are the band of states having good angular momentum J = 0, 2, 4, 6,
and 8 belonging to the leading (A = 80) representation of SU, . Using the series of
perturbation terms for “collective renormalization” we deduce the enhancements for
quadrupole matrix elements within the band and the renormalized energy spectrum.
Results of the calculation agree well with those from a variation-after-projection,
unrestricted, deformed Hartree-Fock calculation (VPHF).

The results of the VPHF calculation are presented in Section 2 prior to the dis-
cussions in Section 3 on the results of the renormalization in the spherical shell mode.
In the summary of Section 4 we briefly hint at how the procedures of these two papers
are being generalized for a realistic Hamiltonian.

We finish this introduction with a word of clarification with regard to the unusual
exchange mixture in Eq. (1.4). Most quadrupole-quadrupole interactions in the
literature have been used with a Wigner exchange mixture (a¢, = a, = a,, = 0) but
exchange contributions in two-body matrix elements are ignored: thus Mottelson [6]
has shown that the Hartree (no exchange) field of H, in Eq. (1.1) with Wigner
exchange has the structure of the deformed oscillator. Unfortunately it is not obvious
which exchange terms in the renormalized spherical shell model must corre-
spondingly be ignored to achieve the same result. For clarity therefore we have
resorted to the exchange mixture in Eq. (1.4) with which the exchange terms in the
Hartree-Fock field exactly cancel, thus leading once again to Mottelson’s result.
Now, however, we consider all exchange terms in the two-body matrix elements
of the renormalization perturbation series with the satisfaction that we have performed
a consistent calculation.

2. THE UNRESTRICTED, PROJECTED HARTREE-FOCK APPROACH

In the projected Hartree—Fock (PHF) method [3, 7] the energies E, of the lowest
eigenstates of H, are approximated by the expectation value of the Hamiltonian
with respect to a state ¢, of angular momentum J projected from the Hartree-Fock
state x; where y, is the lowest many particle solution of the Hartree-Fock Hamiltonian
hHF . Thus

hu_gxs = €xs, (2.1a)
gy = Plx,, (2.1b)
E; = (s | Hy | 4y). (2.10)
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Experience has shown [3] that a better estimate for the structure of each state
(especialyy for high J) is given by allowing the intrinsic state to vary in some collective
way for each J. In practise this is achieved by imposing some single particle (collective)
constraint AQ on the Hartree-Fock field, determining the solution y,(}) in terms of the
strength A of the constraint, and then minimizing the energy E,(A) with respect to A
for each J. The energies derived in this way yield the variation after projection
Hartree-Fock approximation (VPHF).

For the schematic Hamiltonian H, applied to 2Ne we follow Cusson and Lee [3]
by taking the constraint to be the g = 0 component of the quadrupole operator in
Eq. (1.2b). Thus

hH-—F(A) = ha + )\thQO = ha’ .

Since the Hartree-Fock field for H, has the structure of a deformed oscillator (A5),
that for the constrained system also has the deformed oscillator structure but with a
different deformation

8 = —x{Qps + A

Thus, for the Hamiltonian H,, the VPHF soluiton with Q, constraint is equivalent
to projecting J from the lowest many particle state of a deformed oscillator and then
varying the deformation of the oscillator to achieve a minimum for each J.

The PHF and VPHF calculations for *Ne with the Hamiltonian H, were done
using the computer code EVALIN written by Cusson and Lee [3]. Here the single
particle deformed oscillator states are approximated by an expansion over five major
shells of the orbits of the spherical oscillator 4, . Results of the variation calculation
are shown in Fig. 1 for a v, strength x = —0.003. Plotted on the abscissa is the
strength A of the Q,-constraint and, equivalently, the B-deformation of the con-
strained intrinsic state. The energy is given in units of #w, (~15 MeV for 2°Ne)
relative to the expectation value of 4, in the spherical shell model ({hy>, = 50 fiw,).

It is interesting to note the similarity of Fig. 1 with Fig. 3 of the paper by Cusson
and Lee [3] even though they used the “realistic” interaction of Saunier and Pearson [8]
in their constrained Hartree-Fock calculation. We see clearly, for example, the anti-
stretching feature whereby states of higher angular momentum prefer smaller
intrinsic deformations. Such a comparison gives confidence that the gross features
determining collective motion in the realistic calculation also exist in our simpler
schematic model and that later features of the renormalization calculation are also
meaningful.

For our schematic model, when the strength of the constraint A ~ —0.05 the
deformation arising from v, is canceled, i.e., the single particle field is that of the
spherical oscillator 4, . The spectrum at this point is shown on the extreme left-hand
side of the curves in Fig. 1 and represents the spectrum in the (bare) spherical shell
model with states arising from the projection of J from a many particle intrinsic
state of the spherical oscillator in a Cartesian representation having the same quantum
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FiG. 1. Energy of projected states of given J for the schematic Hamiltonian of Eq. (1.1) relative
to the expectation value of 4, in the spherical shell model configuration: <#,>, = 50 Aw, . On the
abscissa is shown the p-deformation of the constrained intrinsic state with the constraining parameter
A. The points of each curve on the vertical dashed line mark the spectra for the SSSM and PHF
approximation as marked. The VPHF spectrum is given by the minima for each curve.

distribution S, = >, (m(i) + 3), &k = 1, 2, 3, as the fully deformed intrinsic Hartree~
Fock state: m(i) is the number of quanta in the kth-direction on the ith particle.
The spherical shell model states generated in this way [5] are those belonging to the
leading (An) = (80) representation of the group SU, . Thus already we see in Fig. 1
that the effect of deformation is greater for the states for smaller angular momentum,
We must expect therefore that the renormalization of operators within the spherical
shell model that takes this deformation into account should be greater for the low
energy states.

3. THE RENORMALIZED SPHERICAL SHELL MODEL APPROACH

Bare Approximation

We choose as model Hamiltonian the spherical oscillator 4, , and hence the residual
interaction for the schematic Hamiltonian of Eq. (1.1) is identical to the quadrupole~-
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quadrupole potential v, of Eq. (1.2a). The model space for *Ne is chosen to consist
of configurations having closed 1s and 1p shells with two neutrons and two protons
in the (2s, 1d) shell. The potential v, acting within the model space is very similar to
the quadrupole—quadrupole potential of the SU, model and so we have approximated
the bare calculation by considering just the states of the leading (Ax) = (80) represen-
tation of SU, . These states have maximum orbital symmetry [44444] and hence total
intrinsic spin and isotopic spin § == 7 = 0. The (80) representation contains states
corresponding to the ground state band of 2°Ne having J = 0, 2, 4, 6, and 8.

The “bare” energy of states within the (80)-representation is found, by the method
of Elliott and Harvey [9], to have the form

((80)J | vg | (80)) = xfiew,[1088 — 12J(J + 1)]/7. (3.1)

The bare spectrum is shown in Fig. 2 (spectrum a) in units of #w, for x = —0.003
and is identical to the spectrum at the LHS of Fig. 1. Clearly a comparison between

ENERGY (UNITS OF fw,!
1
t
1]

L (a) (B) (c) (d) (e) (f) (2) () (i)

Fic. 2. Energy spectra for the schematic Hamiltonian of Eq. (1.1) (relative to <{Ay)¢) under
various approximations (a) bare (SSSM); (b) bubble (first order); (c) bubble + black-box vertex
renormalization; (d) black-dot renormalization of the bubble approximation; (¢) black-box and
black-dot; (f) black-box, black-dot, and intermediate bubble generation with the black-box taken
only to second order; (g) as in (f) but for all orders of the black-box vertex renormalization; (h) the
variation-after-projection Hartree-Fock approximation; (i) the projected Hartree—Fock approxi-
mation.
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the bare spectrum and the VPHF spectrum (Fig. 2h) shows that renormalization
due to deformation effects are considerable.

All isoscalar quadrupole reduced matrix elements will be compared to those
arising in the (80)-representation to define state-dependent enhancement factors €, ;
ie.,

(JI1Q11J’) = €,((80) || Q1 (80)J"). (3.2)
Reduced matrix elements are defined in the Wigner-Eckart theorem
(UM | Q.1 J'M)=(2M'q| IM)J || Q11 J)Q2J + 1)2.

Thus enhancement factors for the quadrupole matrix elements in the bare approx-
imation are all unity by definition. Those for the matrix elements in the VPHF
approximation (x = —0.003) shown in Fig. 3 (open circles joined by dashed lines)
range from 1.2 to 1.8.

Comparison of experimental data on B(E2)-transitions in **Ne with the bare model
having #w, = 414-1/3 reveals the need for phenomenological isoscalar quadrupole
enhancement factors with € ~ 2. We could have forced our model to yield such large
factors by increasing | x | but this would bring the calculation close to the unphysical

TRANSITION MOMENT
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Fic. 3. The magnitude of the reduced quadrupole matrix elements (J| Q | J') (dimensionless
units) in the various approximations (a)-(g) listed in Fig. 2. The points labeled (¢') refer to the black-
box, bubble, intermediate-bubble-generation approximation for which the energy spectrum is
exactly the same as (c). Note that all the transition matrix elements are positive while those for the
moments are negative. The results for the VPHF approximation are shown by the open circles
connected by the dashed lines.
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deformation instability that the schematic Hamiltonian possesses as was discussed
in 1. Since our main aim was to study the technique for collective renormalization
itself, we have chosen the smaller value | x | = 0.003 (and hence ¢;,» < 2) to avoid
too many spurious effects.

Bubble Approximation

The “excluded” spherical shell model configurations are restricted to those differing
from the “model” states of the (80)-representation by a particle lifted across two major
oscillator shells. The three different types of excluded states will be given the label N
which describes the [ls — (25, 1d)] excitation for N = 1; [lp — (2p, 1f)] for N = 2;
and [(2s, 1d) — (35, 2d, 1g)] for N = 3. The off-diagonal matrix elements of the
residual interaction v, coupling these excluded configurations to the (80)-states are
expressible in terms of products of a reduced quadrupole matrix element within the
(80)-representation and the single-particle, reduced quadrupole matrix element
associated with the [k — p] excitation (see the later Eq. (3.7)). The part of the
quadrupole operator that excites a particle across two major shells transforms
according to the (20) representations of SUj: the part that acts within a major shell
transforms according to the (11) representation but, since this part is identical to a
generating operator of SUj , it effectively acts like a scalar as far as selection rules are
concerned. Consequently the residual interaction can be considered to effectively
transform according to the (20) representation of SU, as far as the coupling between
the model and excluded space is concerned. Thus the only [# — p] “excluded” states
that need be considered are those classified according to the SU; representations

(Aw) = (80) x (20) = (10, 0) + (81) + (62).

Since the v, interaction is a central force we select also just the states of maximum
orbital symmetry. Thus the only excluded configurations considered in our renor-
malization have the totally antisymmetric structure

| N =1, Ap) KJ> = | 1s* 1p**(2s, 1d) 0o, (3.3a)
| N =2, Qw) KJ> = | 15*{1p"2p, 1)} en (25, 1 otowxs, (3.3b)
[N =3, w KI> = [ 15" 1p"™{(25, 1d)Te0) (5, 2d, 180} 0wk » (3.30)

with (Ap) = (10, 0), (81), or (62) and maximum orbital symmetry is to be understood,
i.e., § = T = 0. We note that antisymmetry precludes a (Ax) = (10, 0) representation
in the case N = 1.

The nonzero matrix elements of the first-order approximation to the wave operator
can thus be written

(NQ\) KJ | W (80) 0> = (NO\w) KJ | vg | 80 ON/(—2hiew).  (3.4)

The matrix elements of v, have been deduced using the method of Elliott and
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Harvey [9]. Using the standard equations for renormalization of a single body
operator (cf. [4] and [10]) one can now deduce the first-order correction €y to the
quadrupole matrix elements acting within the (80)-model space

< ((80) 0| 01/ (80) 0T) = ((80) 0J || Q|| (80) 0J)
+ Y [(800J | WD | N(Aw) KIYNAuKJ | Q || (80) 0F)

NiuK

+ (807 || Q|| NAuKTYNApKT | W | 80 0T)]. (3.5)

The two last correction terms on the RHS we represent diagrammatically by Fig. 4

J J
-%
+
- - % -
J J

Fic. 4. Schematic representation of the first order renormalization terms of a one-body operator.

and refer to them loosely as the “bubble” correction. The enhanced reduced matrix
elements ¢,7;((80) 0J| |/ (80) 0J) are reproduced in Fig. 3 (crosses labeled b) for
x = —0.003.

The energy spectrum is evaluated from the expression
<(80) 04| »'V | (80) OJ> = ((80) 07 | v, | (80) 0J)

+ Y (800J| vy | NA\uK(NAuKJ | W2 |800J) (3.6)

Niuk

and is shown in column b of Fig. 2.

Black-Dot Renormalization

We write the off-diagonal matrix element of v, as it appears in Eq. (3.4) in the
form

(NARKJ | vg ] 80 O
= ok Y, ((20) 2(80) J' | (Aw) KJ) W(IT' 02; 20) qn<80J (| Q 180> (3.7)
2

where gy represents particle-hole reduced quadrupole matrix elements of @ across
two major shells, thus

vy = {Is7H2s, 1d)}an2 || Q1] O,
Giv-2 = {1p7*2p, 1wzl Q11 0>,
Giv- = <{2s, 1d)71(3s, 2d, 12)} 02 || Q| OD.
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The factor ((20) 2 (80) J' | (Au) KJ) represents an SU; Clebsch-Gordan coefficient
[11, 12] with K a convenient orthonormal labeling of states with the same J within
a representation; W(abcd : ef) is an SU, Racah coefficient [13]. The factor oy,,x in
Eq. (3.7) absorbs all the spectroscopic factors representing the antisymmetry of states,
and strength and exchange of v, . In practice we have evaluated the LHS of Eq. (3.7)
using the method of Elliott and Harvey [9] and then deduced the ay,,x factors.

The off-diagonal matrix elements of v, in the form of Eq. (3.7) display, through
Eq. (3.4), the dependence of the wave operator W® on the quadrupole matrix
elements that transform within the (80)-model space. According to the principle of
consistent renormalization these matrix elements in W® should be replaced by the
renormalized values; i.e.,

{(80) 0771 Q1 (80) 0> — €,,,<80 07| @ | (80) 0. ERERY)

With the matrix elements of W® having such a dependence on ¢,, we see that
Eq. (3.5) can be solved iteratively for the various factors €,;. Such an iterative
solution based on the first-order wave operator we represent schematically by the
diagram in Fig. 5 and call this the black-dot (bd) approximation. The steps in the

- X
- = -x + +
--X

FiG. 5. Schematic representation of the black-dot approximation to the renormalization of the
quadrupole operator.

iterative solution are shown by the crosses on the lines labeled d in the diagrams of
Fig. 6 which shows the enhancement value ¢,, after the nth iteration on the ordinate
plotted against the e,-, at the n — 1 iteration on the abscissa. (In zeroth order all
ey = 1) Clearly self-consistency is reached at the 45° line. The solutions after
five iterations have been plotted in Fig. 3 (crosses labeled d). Having found the self-
consistent value for ¢, in this approximation the compatible energy spectrum is
deduced from Eq. (3.6) using Eq. (3.8) in the definitions for the matrix elements of
W (Eq. (3.4)). The spectrum in this bd-approximation is shown in Fig. 2, spectrum d.
We note that the energy difference for the J = O+ ground state between the bubble
approximation (spectrum b) and the VPHF (spectrum h) is about halved by the
black-dotting procedure which agrees qualitatively with the corresponding changes
in the calculation for the intrinsic energies in 1 (see I, Table I).

Black-Box Vertex Renormalization

In I jt was shown that the black-box (bb) vertex renormalization with intermediate
states restricted to 24w-excitation was significant as far as reproducing the results of
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€out

€out

1t

o v Wy
111213 141516171819 10U 1213 141516171819 1011 1213141516 171819 0Ll 12131415 1617 1819
€in €in €in €in

Fic. 6. Iterative sequences for the enhancement factors ¢, in the bb-bd-IBG (g) approximation
and in the simple bd (d) approximation. Each diagram (J-J’) corresponds to a particular (J|| Q| J*)
matrix element. Plotted on the abscissa is the enhancement factor €, put into the iterative equation
and on the ordinate the ¢;;- factor calculated from the iterative equation. The crosses correspond to
the iterative sequence beginning at ¢;(in) = 1.

the deformed self-consistent calculation with the schematic Hamiltonian. In order to
put such a feature into the present calculation in the laboratory frame it is necessary
to compute the matrix elements of v, in the excluded space. These are found to have
the following form:

(NQ\w) KJ | vg | NAEKJ) = xhiw, Y, WIT'T'2; JI)WGnid + Sxp)
X ((80) 0J°(20) J” | (Aw) KJ)((80) 0J'(20) J" | (Am) KL)
X ((80) 0J" || Q| (80) 0J")((20) J" || @ I 20) J")
+ Sx3((60) 0J°(40) J” | (Aw) KJT)((60) 0J"(40) J” | (\jz) KJ)
X ((60) 0J || Q1 (60) 0J')(40) J" || Q || (40) J")} (3.9)

where 4 = 1 unless (Au) or (Ax) = (10, 0) in which case 4 = 0. The sum ¥ is over
J', J”, J', and J". The separable nature for this matrix element in Eq. (3.9) arises
from the special exchange character of the interaction v, .

As is clear from Eq. (3.9), the interaction matrix in the excluded space is non-
diagonal in the | N(AL) KJ)> representation. It is convenient to transform to the
diagonal representation which we denote by | />

laJ> = Y (NQw) KJ | oJ | NQw) K. (3.10)

NiukK

The transformation matrix {N(AL) KJ | oJ) is given by the normalized eigenvectors
in the diagonalization of the interaction matrix in the excluded space. The diagonal
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elements {aJ | H, | oJ) = &,; are the eigenvalues. In terms of the diagonal represen-
tation, the bb-vertex renormalization (to all orders) of the first-order wave operator
in Eq. (3.4) takes the form

(o | Wy | 800J) = _ 1 (o | v | 80 OJ)/(—2cw,) (3.11a)
(l - Sa.’)
where
éu.l = éa.’/ (—2ﬁw0)

or

(NOW) KT | Wiy |800S> = 5 (NAKJ | ) (—1—_1?3@1 | NA KT
N’/\':'K’J' *
X AN'NwWK'J | vg| 80 0J/(—2hwy). (3.11b)

In Eq. (3.9) we note that the interaction matrix elements within the excluded spaces
N =1 or 2 have, as factors, the reduced quadrupole matrix elements within the
(80)-model space. Again, according to the principle of consistent renormalization,
these factors should be replaced by the renormalized value as in Eq. (3.8) when
allowing also for bd-renormalization. For the N = 3 space (sd — sdg excitation) the
transformation within the model space is given by the quadrupole matrix elements
within the (Aw) = (60) representation corresponding to the structure of the three
remaining sd-particles after the excitation of the fourth to the sdg-shell. We have
approximated the bd-renormalization of this term by assuming the ¢,, for the (60)-
quadrupole matrix element is the same as that in Eq. (3.8) for the (80)-matrix element.
In general then the W-function, Win(e), itself depends in a highly nonlinear way
on the enhancement factors ¢;, .

On substituting for the matrix elements of W® — Wy (e = 1) from Eq. (3.11)
into Egs. (3.5) and (3.6) we obtain, respectively, the enhancement factors e,
(Fig. 3, crosses labeled c) and the energy spectrum (Fig. 2¢) in the bb-approximation.
If Eq. (3.5) is solved (iteratively) with W@ — Wyy(e), with € having the self-consistent
value, we generate the bd-vertex renormalization upon the black box (bb-bd). The
bb-bd results for ¢;,» and the energy spectrum are those labeled e in Figs. 3 and 2,
respectively.

We note that the black-box renormalization by itself does not yield a significantly
different enhancement factor or spectrum over similar quantities derived in the
first-order calculation {compare the results b and ¢ in Figs. 3 and 2). However, the
bb-renormalization is enhanced by the self-consistent bd-renormalization such that
the difference between the self-consistent results with and without the bb-vertex
renormalization can be considerable (compare the results d and e in Figs. 2 and 3).

The IBG Terms

In I it was noted that, for the renormalization in the intrinsic frame, a contribution
in second order to the quadrupole enhancement from a diagram we called the inter-
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mediate bubble generating diagram (IBG) was equal to the second-order contribution
arising from the bb-renormalization of the bubble diagram. The addition of the IBG
diagram takes the form

Y [K800J| WO | NQw) KIYXNARKJ | @ || NAKJ >{NARKJ' || 7 (180 0J")
— 180 0J || WO || NAwKJS(NAKT | W || 80 0>
+ <80 OJ7 | W || NARKJT S(NAKJ' | WD {| 80 0J'5}80 0J || Q1| 80 0J°)] (3.12)

where the sum Y is over all intermediate states | N(Aw) KJ ). For renormalization up
to second order the first-order values for W® would be used in Eq. (3.12) but clearly
by making the substitution W® — Wip(e) we can generalize Eq. (3.12) to include the
bb-vertex renormalization with the self-consistent bd-renormalization. The addition
of Eq. (3.12) to Eq. (3.5) in the evaluation of the renormalization of quadrupole
matrix elements yields the full bb-bd-IBG approximation.

Corresponding to the addition of the term in Eq. (3.12) to Eq. (3.5) for the quadru-
pole matrix element, we must add to Eq. (3.6), for the effective interaction, the term

1{(80 0J | W™ | N)\,uKJ) (NARKT [ vg | NN W K'J'SN'X W' K'J' | WD | 80 0
— (80 0J | W,, | 80 0J)] (3.13a)

where

(800J | W, | 800J) = (80 0J | vp| o) (__g'g—')_z (aJ | vy | 80 OJ)/(—2fiwy) (3.13b)

with &, defined in Eq. (3.11). As was discussed in I the term in Eq. (3.13b) removes
double counting originating from the use of the e, Jarising from the bb-bd-IBG
approximation in the first terms of Eq. (3.6).

The values for the renormalized quadrupole matrix elements in the full bb-bd-IBG
approximation are given in Fig. 3, crosses labeled g, and the corresponding spectrum
in Fig. 4, spectrum g. In paper I we saw that the bb-bd-IBG approximation as
applied in the intrinsic frame reproduced very well the properties of the deformed
Hartree~-Fock state. Now we see that this same approximation as applied in the
laboratory frame has many of the features of the variation-after-projection Hartree—
Fock approach. It is difficult to assess why the differences between the bb-bd-IBG
and VPHF approximations occur since we do not have the complete analytic structure
for either the renormalization approach or the VPHF approach in the laboratory
frame. A possible source of error is in our estimate of the bd self-consistent renormal-
ization in the black box for the valence polarization terms (sd — sdg). We recall
that there we assumed the renormalization factor associated with the three remaining
sd-particles was similar to that for four. It is possible (but difficult) to treat this term
precisely without any assumption. We feel, however, that the closeness of the
agreement of our present bb—bd-IBG results and VPHF has already demonstrated the
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degree of complexity and self-consistency that must enter into the renormalization
of operators within the spherical shell model in order to recapture collective effects.

Perturbation Order

In the first-order (bubble) correction to the quadrupole matrix elements the wave
operator is taken to first order in Eq. (3.5). The bd-self-consistent renormalization
of this term is found by the substitution W® — W(e) and solving for e, . It is
convenient to find the solution by an iterative technique the results for which are
given in Fig. 6d. These diagrams for each J-J' pair correspond to the single diagram
of Fig. 4 in I for the renormalization of the intrinsic quadrupole matrix element.
In Fig. 6 we plot on the ordinate the ¢, from the nth iteration (i.e., from the LHS of
Eq. (3.5) with WO — W(e)) and on the abscissa the €, from the (n — 1)th iteration
introduced into the RHS of Eq. (3.5). The various places in the iteration are marked
by crosses. Clearly the self-consistent point is reached when the iterative curve crosses
the 45° line (i.e., €in = €out). In the (W™ — W(e)) approximation this point is
reached only after about five iterations starting with €, = 1. Note that since the
first iteration (ein = 1) corresponds to first-order perturbation theory, the second
iteration corresponds to the addition of some second-order terms, etc. Thus self-
consistency cannot be reached before the addition of some fifth-order terms in pertur-
bation theory at least.
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FiG. 7. Changes in the energy spectrum for 2°Ne throughout the iterative sequence of the bb-bd-
IBG approximation for H, (x = —0.003).
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Shown also in Fig. 6, by the crosses on lines g, is the iterative sequence for the full
bb-bd-IBG approximation. With just the bb-renormalization (no bd-iteration) the
enhancement value for the J-J' = 2-0 matrix element is 1.4 (compared to the first-
order bubble value of 1.35). After reaching self-consistency the bb-bd-IBG value for
€50 is ~1.88 (compared to)the value of 1.54 for the iterative bubble approximation).
Clearly the higher-order terms in the bb-renormalization are very important in the
iterative (self-consistent) process to achieve the large collective enhancement factors.
Again one needs to iterate at least five times to get near self-consistency. We note that
the second-order term in the black box effectively yields perturbation terms of the
10th order at the Sth iteration. Thus the full self-consistent bb~bd-IBG approximation
involves certain classes of diagrams to very high perturbative order. To try to include
such diagrams explicitly by a straightforward summation technique is clearly im-
practical: some technique like infinite summation (as in the bb-series) or iteration
(as in the bd-renormalization) must be used to capture the main effect of these higher
order terms without explicitly having to write them down.

In Fig. 7 we show the changes in the spectrum during the iterative procedure
leading up to the full bb-bd-IBG approximation. This figure shows that the iterative
technique is simulating the change of spectrum from the far LHS of Fig. 1 to the
position of the minima. Cleatly the energies (and enhancement factors) associated
with the low J states are the slowest to converge taking at least five iterations.

ENERGY (UNITS OF Haw )
o
e
T
o

BARE  l.Ib Vi X. X1l yPHF
.V X

FiG. 8. Energy spectra corresponding to the various “‘excluded” states considered in the perturba-
tion series as listed in Table 1, and defined by the Roman numerals. Similar spectra have only been
drawn once, but given multiple labels.
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Core and Valence Polarization

Summations in the perturbation series over excluded states having N =1
(1s — (25, 1d) excitations) and N = 2 (1p — (2p, 1f) excitations) contribute to the

so-called core polarization: the terms having N = 3 ((2s, 1d) — (35, 2d, 1g)) yield
the polarization of the valence orbits. In each of these categories there are contri-
butions from states having (Au) = (10, 0), (81), and (62) SU, symmetry. In Table 1
we show the results for the enhancement values of the bb-bubble-IBG approximation
(and, in brackets, the full bb-bd-IBG approximation) but with various limitations
on the intermediate states considered. Some of the corresponding spectra have been
drawn in Fig. 8. We conclude from these results that valence polarization is as
important as core polarization for this schematic Hamiltonian at least (a feature in
common with the intrinsic calculation of 1) and the most important states in these
categories have the (Au) = (10, 0) and (6, 2) SU, symmetry.

4. SUMMARY AND GENERALIZATIONS

Our aim in this paper has been to compare the numerical results for quadrupole
matrix elements and spectra in the projected Hartree-Fock approaches and the
renormalized spherical shell model for the schematic quadrupole-quadrupole
Hamiltonian H, . We have demonstrated that similar results can be obtained for the
VPHF model and the renormalized shell model with wave operator calculated in the
bb-bd-1BG approximation. Our analysis suggests that some very high order (>>10)
perturbation terms must be included if the collective features of the Hartree-Fock
model are to be adequately recaptured in the renormalized: spherical shell model.

In a paper by Harvey and Khanna [14] the sentiment was expressed that if one is
forced into a phenomenological treatment of the spherical shell model, because the
orders of perturbation are too large for an adequate renormalization, then the object
that should be parameterized is the wave operator W (referred to as the “coupling-
operator” in [14]). One approach to determine the appropriate structure for W is to
first understand what physical features are not adequately described by the bare model
and then ask how these features must manifest themselves in #. In I and this paper
we have attempted to construct a W that recaptures the collective (deformation)
characteristics of the unrestricted deformed Hartree-Fock model. Since the single
particle field in the Hartree-Fock model arises from a self-consistent procedure,
it is natural that W should itself be determined through an iterative scheme.

In seeking the equivalence within the spherical shell model of deformed Hartree—
Fock for a realistic interaction we clearly would like to develop a technique by which
higher-order perturbation terms associated with the ‘“‘collective renormalization™
(equivalence of bb-bd-IBG) can be summed by the iteration method so that we stay
close to the self-consistency aspects of the structure. We also desire the technique to be
tractable for any number of valence nucleons. The problem with generalizing the
results in I and this paper is that a realistic ineraction does not have a separable form
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and hence no natural multipole operator (like Q) with which to use the black-dot
consistent-renormalization simplification. It must also be realized that the valence
polarization is relatively more important than the core polarization the more particles
there are in the valence shell. Thus one must treat with greater care the excitations
from and into these partially filled orbitals. Already we have seen in this paper that
the approximations we used to handle the valence polarization may not be adequate.

The most promising approach to “collective renormalization” being pursued at this
time by one of us (M.H.) in collaboration with I.S. Towner is to consider directly the
evaluation of the transition-density matrices

pu{AB) = <A |n."n, | B) @40

where 7,'(n,) creates (destroys) a particle in the single particle orbital y. Here 4 and B
denote any two states of the many particle nucleus. Clearly for any single particle
operator like 0

<A1Q1 B> = Z QmuPyx(AB)- (4-2)

Y

If the states A4 and B are approximated in zeroth order by spherical shell model states,
then the only nonzero transition-density matrix elements are those for which x and y
are both the same core (c) orbital or both some valence (v) orbitals. In this case the
pu{(AB) are given by products of coefficients of fractional parentage (cfp). Other
components of the transition-density matrices arise from the perturbation series.
Thus, for example if x is a core (c) orbital and y an excluded (e) orbital, in first-order
perturbation theory,

per (AB) = GeaapoaAB)E,o
where a and b are core or valence orbitals. Here G represents a realistic two-body
interaction appropriate for independent {(quasi)-particle motion and E,, is the energy

difference between the core and excluded orbitals. The second-order contribution to
pe(AB) from the Tamm-Dancoff series has the structure

P (AB) = Goror'Go'ar'opral AB)EooEores

4.3)
= Gec'cc’Pil')g'(AB)/Eec .
The full Tamm~Dancoff approximation for p,,(4B) is thus given by
Eecpec(AB) = Geacbpba(AB) + Gee'cc'Pe'c'(AB)‘ (44)

This set of equations (all e, ¢) can be solved exactly for the p,.(4B) but, for later
considerations, is best considered solved by iteration starting with the value zero for
all p,-,(AB) onthe RHS of Eq. (4.4). The RPA approximation is obtained by adding
to the RHS of Eq. (4.4) the term

Gee'cc'Pc'e'(AB) (45)
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and solving simultaneously the modified set of Egs. (4.4) with a similar set for
Pce(AB)-

Additional terms can be added to Eq. (4.4) which introduce the black-box vertex
renormalization as well as valence polarization terms, etc. Each term can be written
in general in terms of products of transition-density matrix elements and thus, at
each iteration, contribute varying amounts to the final structure for each matrix
element of p(4, B).

The significance of the present approach is that by considering the renormalization
of the single particle transition densities we stay close to the Hartree-Fock technique
although now we do not restrict the states 4, B to be a single determinant but rather
allow them to develop, by the (iterative) perturbation series (like Eq. (4.4)), from the
spherical shell mode! states. For a given nucleus the only input are the transition
density matrix elements in the model space p,(4B) determined from the cfp’s. Thus
in principle the technique is applicable wherever cfp’s are available independent of
the number of valence particles. In practice the calculation does become more com-
plicated the more particles are added into the valence shell. These complications
together with preliminary results must await a further publication.

To see that the renormalization of the density is equivalent to the bb-bd-IBG
approximation in I consider in the generalized form for Eq. (4.4) the states 4 and B
to be the intrinsic state y; with normalized component y, in the model space. Consider
also G to be separable, i.e., Gupog = Q..Qas . Now the generalized Eq. (4.4) will take
the form

EecPec(XS ’ X&) == Qec(Qabea(XoXO) + Qc'e'Pe'c'(XBXG) + )
= Qec<X6 [ Qo I Xa>- (46)

Thus from Eq. (4.2), the expectation value of Q in the fully renormalized (deformed)
intrinsic state y, has the form

sl Q1 xey =<0 = QarpralXoXo) T Qeepec(xoXs) + Qecpee(Xsxs) + -+

= Q0 +2222= ), + -, @7

the last line coming from the substitution from Eq. (4.6). It was just this latter
equation which was shown in I to be equivalent to the self-consistent Hartree-Fock
condition given in this paper by Eq. (1.6).
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