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In paper I, [Ann. Phys. (N. Y.) 94 (1975)] the matrix elements of effective operators in an 
intrinsic frame of the spherical shell model, that were determined by an iterative, renormali- 
zation technique, were shown to be analytically equivalent to those from a deformed, 
unrestricted Hartree-Fock model for the case of *ONe with a schematic quadrupole- 
quadrupole Hamiltonian. This paper shows the numerical comparison of the results from 
the renormalized spherical shell model and the projected, deformed Hartree-Fock model 
in the laboratory frame with states of definite angular momentum. Good agreement is 
found for the full iterative, renormalization results and those from the variation-after- 
projection Hartree-Fock model. 

1. INTR~DUCTI~N 

The standard spherical shell model calculations (SSSM) involve the description of 
nuclear states in terms of configurations having a spherical core, from the filling of 
the lowest single particle orbitals, with the remaining particles distributed among a 
few valence orbitals (cf. [l]). The use of effective charges in the calculations for 
quadrupole moments and transitions is but one indication, however, that the nucleus 
has structure beyond that described by the model wavefunctions. If the object of a 
shell-model calculation is to learn something about the structure of the nucleus, 
then it is clearly as important to study the hidden structure buried in the effective 
charge phenomena as it is to study the structure of the model wavefunctions them- 
selves. 

The attempts that have been made to supplement the model wavefunctions by a 
systematic addition of low-order perturbation terms have not been completely 
successful in explaining the origin of the effective charges and have never considered 
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examples with more than two valence particles (cf. [2]). Such is the plethora of higher- 
order perturbation terms that a study of contributions order-by-order would seem 
doomed to failure. 

In this series of papers our approach has been different. We attempt to recognize 
a priori the physical structures that, for some nuclei, are believed to be missing from 
the model wavefunctions, and then identify the types of perturbation terms that 
describe these features. Necessarily we must be prepared to accept some types of 
perturbation terms of very high order if these are seen to be important from the 
physical point of view, just as we shall feel free initially to ignore some types of 
low-order terms which do not seem to play a role in the phenomena under study. 
Throughout our approach we always insist on a consistent renormalization: thus, 
whatever perturbation terms are introduced into the calculation of effective operators, 
similar terms must also be introduced into the calculation for effective interactions 
to deduce the corresponding effects on the energy spectrum. 

The big question of course is what physical properties are believed to be missing 
from the standard spherical shell model wavefunctions. Here we turn to other models 
for guidance. For some light nuclei, like 20Ne, the unrestricted deformed Hartree-Fock 
model has been remarkably successful in explaining the magnitudes of quadrupole 
matrix without the use of effective charges and also a reasonably correct level density 
within a band using the bare reaction matrix (cf. [3]). The success of this model seems 
to hinge on the self-consistent generation of the deformed intrinsic state. Since 20Ne 
is also a typical spherical shell model nucleus, it is certainly relevant to ask what 
series of perturbation terms must one consider within the framework of the renor- 
malized spherical shell model that will recapture the self-consistency of the deformed 
Hartree-Fock model. 

In an earlier paper ([4], hereafter referred to as I) we considered the deformation 
in the intrinsic state for 20Ne for a simple schematic Hamiltonian of the form 

HA = ho + VQ (1.1) 

VQ = fiwox c Q(i) . QWWd, 
id 

(1.2a) 

Y,“uMi), (1.2b) 

and 

ho is a spherical harmonic oscillator (fiwo = A2/mbo2). 

The exchange mixture of vQ was so chosen that 

Al1 + 9P = 3(A13 + /131) = 8 Cl.41 
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with 

P+1*2S+1 = (TS I[X]I TS) 

where 1 TS> is a two-body state with isospin T and spin S. With this particular 
exchange mixture, the Hartree-Fock Hamiltonian for an N = 2 nucleus has precisely 
the structure of a deformed oscillator 

LF = h, = ho - fiwoN?o + A!22 + Q-d (1.5) 

where 

--6 = x(Qoh (1.6a) 

and 

Y = x(Qz + Q-&s. (1.6b) 

The expectation values in Eq. (1.6) are taken with respect to the lowest many particle, 
deformed eigensolution x6 of h, . 

The study in I was restricted to the structure of the intrinsic state xs relative to 
that part of it (x0) that lies in the standard spherical shell model space of closed 1s 
and lp shells and four particles in the (2s, Id) shell. The state x0 is in fact the intrinsic 
state of the leading representation in the (spherical) SCJ, model [5]. It was shown in I 
(Eq. (4.7)) how, for an axially symmetric system like 2oNe, the self-consistent condition 
in Eq. (1.6a) could be recast into an equation representing the perturbation expansion 
of <Qo)s with respect to the state x0 . Thus the same equation can be interpreted either 
as the self-consistent condition for the deformed Hartree-Fock model or as the 
perturbative equation for the renormalization of the quadrupole operator in the 
spherical shell model. It was a relatively simple exercise therefore to examine the 
equation term-by-term to identify the types of perturbation terms that are equivalent 
to self-consistent deformation. Of course, since the Hartree-Fock state itself is an 
approximation to the lowest eigensolution of H,,, , not every perturbation term need 
appear in this “collective renormalization” of the quadrupole operator. This selection, 
however, is consistent with the spirit of our approach. 

An interesting principle of “consistent renormalization” was noted in I which, for 
the schematic Hamiltonian of Eq. (l.l), allows certain classes of higher-order terms 
to be easily generated from a few low-order terms. This is achieved by replacing all 
quadrupole matrix elements within the valence space, as they appear within a pertur- 
bation term, by their renormalized values. Since the renormalized value is not known 
until the perturbation terms for the renormalized quadrupole operator have been 
summed, it is clear that, in general, the solution can only be found iteratively. This 
iterative solution is precisely equivalent to the self-consistency involved in the 
generation of the deformation in the Hartree-Fock method. In I we introduced a 
“black-dot” vertex renormalization to perturbation diagrams indicating that the 
renormalized quadrupole matrix elements should be used. If only the first-order 
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bubble perturbation terms are considered, then the black-dot vertex renormalization 
is equivalent to building up the open-shell RPA series. As noted in I, however, it is 
necessary to include also the black-box vertex renormalization of Barrett and 
Kirson ([2] with particle-particle as well as particle-hole interactions) if agreement 
with deformed Hartree-Fock is to be reached. The black-dot vertex renormalization, 
together with the black-box, generate very exotic perturbation terms (cf. Fig. 11 in I). 

In this paper we extend the results of I into the laboratory frame. Now the “model” 
states for 20Ne are the band of states having good angular momentum J = 0, 2, 4, 6, 
and 8 belonging to the leading (hp = 80) representation of SU, . Using the series of 
perturbation terms for “collective renormalization” we deduce the enhancements for 
quadrupole matrix elements within the band and the renormalized energy spectrum. 
Results of the calculation agree well with those from a variation-after-projection, 
unrestricted, deformed Hartree-Fock calculation (VPHF). 

The results of the VPHF calculation are presented in Section 2 prior to the dis- 
cussions in Section 3 on the results of the renormalization in the spherical shell mode. 
In the summary of Section 4 we briefly hint at how the procedures of these two papers 
are being generalized for a realistic Hamiltonian. 

We finish this introduction with a word of clarification with regard to the unusual 
exchange mixture in Eq. (1.4). Most quadrupole-quadrupole interactions in the 
literature have been used with a Wigner exchange mixture (a, = a, = uo7 z 0) but 
exchange contributions in two-body matrix elements are ignored: thus Mottelson [6] 
has shown that the Hartree (no exchange) field of HA in Eq. (1.1) with Wigner 
exchange has the structure of the deformed oscillator. Unfortunately it is not obvious 
which exchange terms in the renormalized spherical shell model must corre- 
spondingly be ignored to achieve the same result. For clarity therefore we have 
resorted to the exchange mixture in Eq. (1.4) with which the exchange terms in the 
Hartree-Fock field exactly cancel, thus leading once again to Mottelson’s result. 
Now, however, we consider all exchange terms in the two-body matrix elements 
of the renormalization perturbation series with the satisfaction that we have performed 
a consistent calculation. 

2. THE UNRESTRICTED, PROJECTED HARTREE-FOCK APPROACH 

In the projected Hartree-Fock (PHF) method [3, 71 the energies EJ of the lowest 
eigenstates of HA are approximated by the expectation value of the Hamiltonian 
with respect to a state lcIJ of angular momentum J projected from the Hartree-Fock 
state xs where xs is the lowest many particle solution of the Hartree-Fock Hamiltonian 
h nF . Thus 

b--Fx.s = 8x6 , (2.la) 

#J = P”xs 9 (2.lb) 

EJ = (+J I HA I +J). (2.lc) 
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Experience has shown [3] that a better estimate for the structure of each state 
(especial& for high J) is given by allowing the intrinsic state to vary in some collective 
way for each J. In practise this is achieved by imposing some single particle (collective) 
constraint XQ on the Hartree-Fock field, determining the solution x8(/\) in terms of the 
strength X of the constraint, and then minimizing the energy E,(h) with respect to A 
for each J. The energies derived in this way yield the variation after projection 
Hartree-Fock approximation (VPHF). 

For the schematic Hamiltonian HA applied to 20Ne we follow Cusson and Lee [3] 
by taking the constraint to be the q = 0 component of the quadrupole operator in 
Eq. (1.2b). Thus 

h&h) = ha + Xkw,Q, = ha* . 

Since the Hartree-Fock field for HA has the structure of a deformed oscillator (ha), 
that for the constrained system also has the deformed oscillator structure but with a 
different deformation 

6’ = -x(Q,,>s, + A. 

Thus, for the Hamiltonian HA , the VPHF soluiton with Q, constraint is equivalent 
to projecting J from the lowest many particle state of a deformed oscillator and then 
varying the deformation of the oscillator to achieve a minimum for each J. 

The PHF and VPHF calculations for 20Ne with the Hamiltonian HA were done 
using the computer code EVALIN written by Cusson and Lee [3]. Here the single 
particle deformed oscillator states are approximated by an expansion over five major 
shells of the orbits of the spherical oscillator ho . Results of the variation calculation 
are shown in Fig. 1 for a ug strength x = -0.003. Plotted on the abscissa is the 
strength h of the Q,-constraint and, equivalently, the ,&deformation of the con- 
strained intrinsic state. The energy is given in units of fiw, (m 15 MeV for 20Ne) 
relative to the expectation value of ho in the spherical shell model ((ho), = 50 ho,). 

It is interesting to note the similarity of Fig. 1 with Fig. 3 of the paper by Cusson 
and Lee [3] even though they used the “realistic” interaction of Saunier and Pearson [8] 
in their constrained Hartree-Fock calculation. We see clearly, for example, the anti- 
stretching feature whereby states of higher angular momentum prefer smaller 
intrinsic deformations. Such a comparison gives confidence that the gross features 
determining collective motion in the realistic calculation also exist in our simpler 
schematic model and that later features of the renormalization calculation are also 
meaningful. 

For our schematic model, when the strength of the constraint h = -0.05 the 
deformation arising from co is canceled, i.e., the single particle field is that of the 
spherical oscillator ho. The spectrum at this point is shown on the extreme left-hand 
side of the curves in Fig. 1 and represents the spectrum in the (bare) spherical shell 
model with states arising from the projection of J from a many particle intrinsic 
state of the spherical oscillator in a Cartesian representation having the same quantum 
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FIG. 1. Energy of projected states of given J for the schematic Hamiltonian of Eq. (1.1) relative 
to the expectation value of ho in the spherical shell model configuration: </I,), = 50 L, . On the 
abscissa is shown the /%deformation of the constrained intrinsic state with the constraining parameter 
A. The points of each curve on the vertical dashed line mark the spectra for the SSSM and PHF 

approximation as marked. The VPHF spectrum is given by the minima for each curve. 

distribution .S, = Cd (n&(i) + &)), k = 1,2, 3, as the fully deformed intrinsic Hartree- 
Fock state: n,(i) is the number of quanta in the kth-direction on the ith particle. 
The spherical shell model states generated in this way [5] are those belonging to the 
leading (hp) = (80) representation of the group SU, . Thus already we see in Fig. 1 
that the effect of deformation is greater for the states for smaller angular momentum. 
We must expect therefore that the renormalization of operators within the spherical 
shell model that takes this deformation into account should be greater for the low 
energy states. 

3. THE RENORMALIZED SPHERICAL SHELL MODEL APPROACH 

Bare Approximation 

We choose as model Hamiltonian the spherical oscillator ho , and hence the residual 
interaction for the schematic Hamiltonian of Eq. (1 .l) is identical to the quadrupole- 
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quadrupole potential vc of Eq. (1.2a). The model space for 20Ne is chosen to consist 
of configurations having closed 1s and lp shells with two neutrons and two protons 
in the (2.5 Id) shell. The potential oQ acting within the model space is very similar to 
the quadrupole-quadrupole potential of the SU, model and so we have approximated 
the bare calculation by considering just the states of the leading (A,) = (80) represen- 
tation of SU, . These states have maximum orbital symmetry [44444] and hence total 
intrinsic spin and isotopic spin S = T = 0. The (80) representation contains states 
corresponding to the ground state band of 20Ne having J = 0,2,4, 6, and 8. 

The “bare” energy of states within the (SO)-representation is found, by the method 
of Elliott and Harvey [9], to have the form 

((80)J 1 UQ / (80)J) = xfiw,[1088 - 12J(J + 1)]/7. (3.1) 

The bare spectrum is shown in Fig. 2 (spectrum a) in units of hw, for x = -0.003 
and is identical to the spectrum at the LHS of Fig. 1. Clearly a comparison between 
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FIG. 2. Energy spectra for the schematic Hamiltonian of Eq. (1.1) (relative to <h,>,) under 
various approximations (a) bare (SSSM); (b) bubble (first order); (c) bubble + black-box vertex 
renormalization; (d) black-dot renormalization of the bubble approximation; (e) black-box and 
black-dot; (f) black-box, black-dot, and intermediate bubble generation with the black-box taken 
only to second order; (g) as in (f) but for all orders of the black-box vertex renormalization; (h) the 
variation-after-projection Hartree-Fock approximation; (i) the projected Hartree-Fock approxi- 
mation. 
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the bare spectrum and the VPHF spectrum (Fig. 2h) shows that renormalization 
due to deformation effects are considerable. 

All isoscalar quadrupole reduced matrix elements will be compared to those 
arising in the (80)-representation to define state-dependent enhancement factors EJJ’ ; 
i.e., 

(J 11 Q 11 -f’) f ~JJ’@O)J 11 Q 11 WJ’). (3.2) 

Reduced matrix elements are defined in the Wigner-Eckart theorem 

(JM 1 Q, I J’M’) = (JZM’q 1 JM)(Jll Q I/ J’)/(2J + l)l/‘. 

Thus enhancement factors for the quadrupole matrix elements in the bare approx- 
imation are all unity by definition. Those for the matrix elements in the VPHF 
approximation (X = -0.003) shown in Fig. 3 (open circles joined by dashed lines) 
range from 1.2 to 1.8. 

Comparison of experimental data on B(E2)-transitions in 20Ne with the bare model 
having fiw, = 41A-l13 reveals the need for phenomenological isoscalar quadrupole 
enhancement factors with E N 2. We could have forced our model to yield such large 
factors by increasing 1 x j but this would bring the calculation close to the unphysical 
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FIG. 3. The magnitude of the reduced quadrupole matrix elements (J ( Q ( J’) (dimensionless 
units) in the various approximations (a)-(g) listed in Fig. 2. The points labeled (c’) refer to the black- 
box, bubble, intermediate-bubble-generation approximation for which the energy spectrum is 
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moments arc negative. The results for the VPHF approximation are shown by the open circles 
connected by the dashed lines. 
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deformation instability that the schematic Hamiltonian possesses as was discussed 
in I. Since our main aim was to study the technique for collective renormalization 
itself, we have chosen the smaller value 1 x j = 0.003 (and hence l JJ’ < 2) to avoid 
too many spurious effects. 

Bubble Approximation 

The “excluded” spherical shell model configurations are restricted to those differing 
from the “model” states of the (80)-representation by a particle lifted across two major 
oscillator shells. The three different types of excluded states will be given the label N 
which describes the [Is + (23, Id)] excitation for N = 1; [lp + (2p, If)] for N = 2; 
and [(2s, Id) + (3s, 2d, Ig)] for N = 3. The off-diagonal matrix elements of the 
residual interaction vQ coupling these excluded configurations to the (80)-states are 
expressible in terms of products of a reduced quadrupole matrix element within the 
(80)-representation and the single-particle, reduced quadrupole matrix element 
associated with the [h -p] excitation (see the later Eq. (3.7)). The part of the 
quadrupole operator that excites a particle across two major shells transforms 
according to the (20) representations of SU,: the part that acts within a major shell 
transforms according to the (11) representation but, since this part is identical to a 
generating operator of SU, , it effectively acts like a scalar as far as selection rules are 
concerned. Consequently the residual interaction can be considered to effectively 
transform according to the (20) representation of SU, as far as the coupling between 
the model and excluded space is concerned. Thus the only [II -+ p] “excluded” states 
that need be considered are those classified according to the SU, representations 

(A,) = (80) x (20) = (10,O) + (81) + (62). 

Since the vo interaction is a central force we select also just the states of maximum 
orbital symmetry. Thus the only excluded configurations considered in our renor- 
malization have the totally antisymmetric structure 

I N = 1, (Ap) KJ) = I ls3 lp1*(2s, ld)~~,,m), (3.3a) 

I N = 2, h-4 KJ) = I ~s~{UP~~(~P, lf)%zo) (2.5, ~d);5ch)~.h (3.3b) 

I N = 3, (4.4 KJ) = I 1s” lp’“f(24 Id%,, (33, 2d, k)tz,,huc.J , (3.3c) 

with (APL) = (10, 0), (81), or (62) and maximum orbital symmetry is to be understood, 
i.e., S = T = 0. We note that antisymmetry precludes a (hp) = (10,O) representation 
inthecaseN= 1. 

The nonzero matrix elements of the first-order approximation to the wave operator 
can thus be written 

(IV(+) KJ ( v(l) / (80) OJ) = (N&L) KJ 1 v. I 80 OJ)/(-~LJ,,). (3.4) 

The matrix elements of zlo have been deduced using the method of Elliott and 
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Harvey [9]. Using the standard equations for renormalization of a single body 
operator (cf. [4] and [lo]) one can now deduce the first-order correction l $’ to the 
quadrupole matrix elements acting within the (80)-model space 

#((SO) OJ /I Q 11 (80) OJ) = ((80) OJ I/ Q II (80) 01) 

+ N& W OJ I @) I WA KJWWJ II Q II (80) 01) 

+ (S;;J,, Q I( NhpK~)(NhpKJ ( m(l) ( 80 OJ)]. (35) 

The two last correction terms on the RHS we represent diagrammatically by Fig. 4 

FIG. 4. Schematic representation of the first order renormalization terms of a one-body operator. 

and refer to them loosely as the “bubbIe” correction. The enhanced reduced matrix 
elements l ,1((80) OJ 1) I/ (80) Oj) are reproduced in Fig. 3 (crosses labeled b) for 
x = -0.003. 

The energy spectrum is evaluated from the expression 

<(80) OJ 1 v(l) I (80) OJ? = ((80) OJ ) vQ j (80) OJ) 

and is shown in column b of Fig. 2. 

Black-Dot Renormalization 

We write the off-diagonal matrix element of vQ as it appears in Eq. (3.4) in the 
form 

{NhpKJ 1 u. 1 80 OJ> 

= OINAwK 5;: ((20) 2(80) J’ 1 t&d KJ) w(JJ’ 02; 2J) 9iv<8oJ’ 11 Q ii8OJ) (3.7) 

where qN represents particle-hole reduced quadrupole matrix elements of Q across 
two major shells, thus 

q(N=l) = <(lS-'(2& Idkzo)z 11 QII o>, 

q(N=z) = G~P-VP~ lfhm)z II Q II O>, 

q(N-3) = <{h ld)-1(3h 24 kh,), 11 Q 11 0). 
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The factor ((20) 2 (80) J’ 1 (@FL) KJ) represents an SU, Clebsch-Gordan coefficient 
[II, 121 with K a convenient orthonormal labeling of states with the same J’within 
a representation; W(abcd : ef) is an SU, Racah coefficient [13]. The factor OL~,,~~ in 
Eq. (3.7) absorbs all the spectroscopic factors representing the antisymmetry of states, 
and strength and exchange of ZIP . In practice we have evaluated the LHS of Eq. (3.7) 
using the method of Elliott and Harvey [9] and then deduced the aNAUK factors. 

The off-diagonal matrix elements of oo in the form of Eq. (3.7) display, through 
Eq. (3.4) the dependence of the wave operator ?@I on the quadrupole matrix 
elements that transform within the (80)-model space. According to the principle of 
consistent renormalization these matrix elements in v(l) should be replaced by the 
renormalized values; i.e., 

((80) OJ’ II Q II (80) OJ> + ~,,,(80 OJ’ /I Q 1) (SO) OJ). (3.8) 

With the matrix elements of m(l) having such a dependence on c,tJ we see that 
Eq. (3.5) can be solved iteratively for the various factors •,‘~. Such an iterative 
solution based on the first-order wave operator we represent schematically by the 
diagram in Fig. 5 and call this the black-dot (bd) approximation. The steps in the 

FIG. 5. Schematic representation of the black-dot approximation to the renormalization of the 
quadrupole operator. 

iterative solution are shown by the crosses on the lines labeled d in the diagrams of 
Fig. 6 which shows the enhancement value Ed’., after the nth iteration on the ordinate 
plotted against the eJfJ at the n - 1 iteration on the abscissa. (In zeroth order all 
l JrJ = 1.) Clearly self-consistency is reached at the 45” line. The solutions after 
five iterations have been plotted in Fig. 3 (crosses labeled d). Having found the self- 
consistent value for cJ,J in this approximation the compatible energy spectrum is 
deduced from Eq. (3.6) using Eq. (3.8) in the definitions for the matrix elements of 
l%‘(l) (Eq. (3.4)). The spectrum in this bd-approximation is shown in Fig. 2, spectrum d. 
We note that the energy difference for the J = Of ground state between the bubble 
approximation (spectrum b) and the VPHF (spectrum h) is about halved by the 
black-dotting procedure which agrees qualitatively with the corresponding changes 
in the calculation for the intrinsic energies in 1 (see I, Table I). 

Black-Box Vertex Renormalization 

In I it was shown that the black-box (bb) vertex renormalization with intermediate 
states restricted to 2&J-excitation was significant as far as reproducing the results of 
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% <in Ein <in 

FIG. 6. Iterative sequences for the enhancement factors c JJ’ in the bb-bd-IBG (g) approximation 
and in the simple bd (d) approximation. Each diagram (J-J’) corresponds to a particular (J 11 Q 11 J’) 
matrix element. Plotted on the abscissa is the enhancement factor l II* put into the iterative equation 
and on the ordinate the cJJ’ factor calculated from the iterative equation. The crosses correspond to 
the iterative sequence beginning at cjJ(in) = 1. 

the deformed self-consistent calculation with the schematic Hamiltonian. In order to 
put such a feature into the present calculation in the laboratory frame it is necessary 
to compute the matrix elements of t’Q in the excluded space. These are found to have 
the following form: 

(iv(Ap)KJI UQ 1 NA/xJ) = XAOJ, c W(JJ"J'2;J'J"){(S,,d + S,,) 

x ((80)05'(20) J" 1 (hp) KJ){(80)01'(2O)T' 1 (@)KL) 

x W30) OJ’ I I  Q II WV OW20) J” II Q II (20) J”> 

+ 6,,((60)05'(4O)J" 1 (hp)KJ)((60)0J'(40)J" ( (&i)RJ) 

x ((60) OJ II Qll (60) 09')((40) J” II Q II (40) J")l (3.9) 

where d = 1 unless (Xp) or ($) = (10,O) in which case d = 0. The sum C is over 
J', J", J’, and J”. The separable nature for this matrix element in Eq. (3.9) arises 
from the special exchange character of the interaction oQ . 

As is clear from Eq. (3.9), the interaction matrix in the excluded space is non- 
diagonal in the I N(XL) KJ) representation. It is convenient to transform to the 
diagonal representation which we denote by I cJ> 

(3.10) 

The transformation matrix (N(hL) KJ 1 aJ) is given by the normalized eigenvectors 
in the diagonalization of the interaction matrix in the excluded space. The diagonal 
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elements (cJ 1 HA 1 &) = ,!jaJ are the eigenvalues. In terms of the diagonal represen- 
tation, the bb-vertex renormalization (to all orders) of the first-order wave operator 
in Eq. (3.4) takes the form 

<aJ I @iv, I 80 OJ> = t1 f (,,> (aJ I VI) I 80 OJM-=4 (3.1 la) 

where 

or 

x (N’X’p’K’J I o. I 80 OJ)/(--2fiw,). (3Slb) 

In Eq. (3.9) we note that the interaction matrix elements within the excluded spaces 
N = 1 or 2 have, as factors, the reduced quadrupole matrix elements within the 
(80)-model space. Again, according to the principle of consistent renormalization, 
these factors should be replaced by the renormalized value as in Eq, (3.8) when 
allowing also for bd-renormalization. For the N = 3 space (sd + sdg excitation) the 
transformation within the model space is given by the quadrupole matrix elements 
within the (hp) = (60) representation corresponding to the structure of the three 
remaining &particles after the excitation of the fourth to the sdg-shell. We have 
approximated the bd-renormalization of this term by assuming the cJsJ for the (60)- 
quadrupole matrix element is the same as that in Eq. (3.8) for the (80)-matrix element. 
In general then the mfunction, @M,(E), itself depends in a highly nonlinear way 
on the enhancement factors Q,S . 

On substituting for the matrix elements of W(l) -+ Wbb (E = 1) from Eq. (3.11) 
into Eqs. (3.5) and (3.6) w’e obtain, respectively, the enhancement factors eJJ’ 
(Fig. 3, crosses labeled c) and the energy spectrum (Fig. 2c) in the bb-approximation. 
If Eq. (3.5) is solved (iteratively) with W(l) + Wbb(SZ), with E having the self-consistent 
value, we generate the bd-vertex renormalization upon the black box (bbbd). The 
bb-bd results for Ed,’ and the energy spectrum are those labeled e in Figs. 3 and 2, 
respectively. 

We note that the black-box renormalization by itself does not yield a significantly 
different enhancement factor or spectrum over similar quantities derived in the 
first-order calculation (compare the results b and c in Figs. 3 and 2). However, the 
bb-renormalization is enhanced by the self-consistent bd-renormalization such that 
the difference between the self-consistent results with and without the bb-vertex 
renormalization can be considerable (compare the results d and e in Figs. 2 and 3). 

The IBG Terms 

In I it was noted that, for the renormalization in the intrinsic frame, a contribution 
in second order to the quadrupole enhancement from a diagram we called the inter- 
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mediate bubble generating diagram (IBG) was equal to the second-order contribution 
arising from the bb-renormalization of the bubble diagram. The addition of the IBG 
diagram takes the form 

c [(80 OJ 11 i+ 11 N(&) KJ)(NhpKJ 11 Q /I NhpKJ’)(N@KJ’ /I p(l) I/ 80 OJ’) 

- ${(80 OJ 11 i?(l) 11 NxpKJ)(N;\KJ (! p(l) 11 80 OJ) 

+ (80 OJ’ [I +) jj NApKJ’)(N+KJ’ /I p(l) /I 80 OJ’)}(80 OJ 11 Q /I 80 OJ’)] (3.12) 

where the sum C is over all intermediate states I N(hp) KJ). For renormalization up 
to second order the first-order values for I@) would be used in Eq. (3.12) but clearly 
by making the substitution mu) -+ &I,(E) we can generalize Eq. (3.12) to include the 
bb-vertex renormalization with the self-consistent bd-renormalization. The addition 
of Eq. (3.12) to Eq. (3.5) in the evaluation of the renormalization of quadrupole 
matrix elements yields the full bb-bd-IBG approximation. 

Corresponding to the addition of the term in Eq. (3.12) to Eq. (3.5) for the quadru- 
pole matrix element, we must add to Eq. (3.6), for the effective interaction, the term 

*[(SO OJ 1 i?(l) I NApKJ) (NApKJ / u. / N’h’~‘K’J’)(N’hl~‘K’J’ I if’(l) j 80 OJ} 

- (80 OJ / ii-$, j 80 OJ)] (3.13a) 

(80 OJ I msb ( 80 OJ) = (80 OJ 1 ug I aJ) (1 “; )” (aJ ( u. 1 80 OJ)/(-2Aw3 (3.13b) 
aJ 

with fUJ defined in Eq. (3.11). As was discussed in I the term in Eq. (3.13b) removes 
double counting originating from the use of the +l,arising from the bb-bd-IBG 
approximation in the first terms of Eq. (3.6). 

The values for the renormalized quadrupole matrix elements in the full bb-bd-IBG 
approximation are given in Fig. 3, crosses labeled g, and the corresponding spectrum 
in Fig. 4, spectrum g. In paper I we saw that the bb-bd-IBG approximation as 
applied in the intrinsic frame reproduced very well the properties of the deformed 
Hartree-Fock state. Now we see that this same approximation as applied in the 
laboratory frame has many of the features of the variation-after-projection Hartree- 
Fock approach. It is difficult to assess why the differences between the bb-bd-IBG 
and VPHF approximations occur since we do not have the complete analytic structure 
for either the renormalization approach or the VPHF approach in the laboratory 
frame. A possible source of error is in our estimate of the bd self-consistent renormal- 
ization in the black box for the valence polarization terms (sd + sdg). We recall 
that there we assumed the renormalization factor associated with the three remaining 
s&particles was similar to that for four. It is possible (but difficult) to treat this term 
precisely without any assumption. We feel, however, that the closeness of the 
agreement of our present bbbd-IBG results and VPHF has already demonstrated the 
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degree of complexity and self-consistency that must enter into the renormalization 
of operators within the spherical shell model in order to recapture collective effects. 

Perturbation Order 

In the first-order (bubble) correction to the quadrupole matrix elements the wave 
operator is taken to first order in Eq. (3.5). The bd-self-consistent renormalization 
of this term is found by the substitution I@) -+ R(E) and solving for eJJ’ . It is 
convenient to find the solution by an iterative technique the results for which are 
given in Fig. 6d. These diagrams for each J-J’ pair correspond to the single diagram 
of Fig. 4 in I for the renormalization of the intrinsic quadrupole matrix element. 
In Fig. 6 we plot on the ordinate the cJJ’ from the nth iteration (i.e., from the LHS of 
Eq. (3.5) with i@(l) -+ P(E)) and on the abscissa the eJJ’ from the (n - 1)th iteration 
introduced into the RHS of Eq. (3.5). The various places in the iteration are marked 
by crosses. Clearly the self-consistent point is reached when the iterative curve crosses 
the 45” line (i.e., Ein = &). In the ( @‘l’ -+ W)(E)) approximation this point is 
reached only after about five iterations starting with cJJ? = 1. Note that since the 
first iteration (Ein = 1) corresponds to first-order perturbation theory, the second 
iteration corresponds to the addition of some second-order terms, etc. Thus self- 
consistency cannot be reached before the addition of some fifth-order terms in pertur- 
bation theory at least. 
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FIG. 7. Changes in the energy spectrum for e”Ne throughout the iterative sequence of the bb-bd- 
IBG approximation for HA (x = -0.003). 
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Shown also in Fig. 6, by the crosses on lines g, is the iterative sequence for the full 
bb-bd-IBG approximation. With just the bb-renormalization (no bd-iteration) the 
enhancement value for the J-J’ = 2-O matrix element is 1.4 (compared to the first- 
order bubble value of 1.35). After reaching self-consistency the bbbd-IBG value for 
Ed,, is ~1.88 (compared to)the value of 1.54 for the iterative bubble approximation). 
Clearly the higher-order terms in the bb-renormalization are very important in the 
iterative (self-consistent) process to achieve the large collective enhancement factors. 
Again one needs to iterate at least five times to get near self-consistency. We note that 
the second-order term in the black box effectively yields perturbation terms of the 
10th order at the 5th iteration. Thus the full self-consistent bb-bd-IBG approximation 
involves certain classes of diagrams to very high perturbative order. To try to include 
such diagrams explicitly by a straightforward summation technique is clearly im- 
practical: some technique like infinite summation (as in the bb-series) or iteration 
(as in the bd-renormalization) must be used to capture the main effect of these higher 
order terms without explicitly having to write them down. 

In Fig. 7 we show the changes in the spectrum during the iterative procedure 
leading up to the full bb-bd-IBG approximation. This figure shows that the iterative 
technique is simulating the change of spectrum from the far LHS of Fig. 1 to the 
position of the minima. Clearly the energies (and enhancement factors) associated 
with the low J states are the slowest to converge taking at least five iterations. 
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FIG. 8. Energy spectra corresponding to the various “excluded”states considered in the perturba- 
tion series as listed in Table I, and defined by the Roman numerals. Similar spectra have only been 
drawn once, but given multiple labels. 



18 HARVEY, LEE, AND AMIOT 

Core and Valence Polarization 

Summations in the perturbation series over excluded states having N = 1 
(1s -+ (23, Id) excitations) and N = 2 (lp -+ (2p, If) excitations) contribute to the 

so-called core polarization: the terms having N = 3 ((2s, Id) + (3s, 2d, lg)) yield 
the polarization of the valence orbits. In each of these categories there are contri- 
butions from states having (A,) = (10, 0), (81), and (62) SU, symmetry. In Table I 
we show the results for the enhancement values of the bb-bubble-IBG approximation 
(and, in brackets, the full bbbd-IBG approximation) but with various limitations 
on the intermediate states considered. Some of the corresponding spectra have been 
drawn in Fig. 8. We conclude from these results that valence polarization is as 
important as core polarization for this schematic Hamiltonian at least (a feature in 
common with the intrinsic calculation of I) and the most important states in these 
categories have the (hp) = (10,O) and (6,2) SUI, symmetry. 

4. SUMMARY AND GENERALIZATIONS 

Our aim in this paper has been to compare the numerical results for quadrupole 
matrix elements and spectra in the projected Hartree-Fock approaches and the 
renormalized spherical shell model for the schematic quadrupole-quadrupole 
Hamiltonian HA . We have demonstrated that similar results can be obtained for the 
VPHF model and the renormalized shell model with wave operator calculated in the 
bb-bd-IBG approximation. Our analysis suggests that some very high order (>lO) 
perturbation terms must be included if the collective features of the Hartree-Fock 
model are to be adequately recaptured in the renormalized spherical shell model. 

In a paper by Harvey and Khanna [14] the sentiment was expressed that if one is 
forced into a phenomenological treatment of the spherical shell model, because the 
orders of perturbation are too large for an adequate renormalization, then the object 
that should be parameterized is the wave operator @ (referred to as the “coupling- 
operator” in [14]). One approach to determine the appropriate structure for @is to 
first understand what physical features are not adequately described by the bare model 
and then ask how these features must manifest themselves in E In I and this paper 
we have attempted to construct a I? that recaptures the collective (deformation) 
characteristics of the unrestricted deformed Hartree-Fock model. Since the single 
particle field in the Hartree-Fock model arises from a self-consistent procedure, 
it is natural that @should itself be determined through an iterative scheme. 

In seeking the equivalence within the spherical shell model of deformed Hartree- 
Fock for a realistic interaction we clearly would like to develop a technique by which 
higher-order perturbation terms associated with the “collective renormalization” 
(equivalence of bb-bd-IBG) can be summed by the iteration method so that we stay 
close to the self-consistency aspects of the structure. We also desire the technique to be 
tractable for any number of valence nucleons. The problem with generalizing the 
results in I and this paper is that a realistic ineraction does not have a separable form 
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and hence no natural multipole operator (like Q) with which to use the black-dot 
consistent-renormalization simplification. It must also be realized that the valence 
polarization is relatively more important than the core polarization the more particles 
there are in the valence shell. Thus one must treat with greater care the excitations 
from and into these partially filled orbitals. Already we have seen in this paper that 
the approximations we used to handle the valence polarization may not be adequate. 

The most promising approach to “collective renormalization” being pursued at this 
time by one of us (M.H.) in collaboration with I.S. Towner is to consider directly the 
evaluation of the transition-density matrices 

p&@ = (A I rz+rlr I B) (4.1) 

where ~~~(7~) creates (destroys) a particle in the single particle orbital y. Here A and B 
denote any two states of the many particle nucleus. Clearly for any single particle 
operator like Q 

0 I Q I B) = 2 t?cw~&B). (4.2) 
w  

If the states A and B are approximated in zeroth order by spherical shell model states, 
then the only nonzero transition-density matrix elements are those for which x and y 
are both the same core (c) orbital or both some valence (v) orbitals. In this case the 
py,(AB) are given by products of coefficients of fractional parentage (cfp). Other 
components of the transition-density matrices arise from the perturbation series. 
Thus, for example if x is a core (c) orbital and y an excluded (e) orbital, in first-order 
perturbation theory, 

where a and b are core or valence orbitals. Here G represents a realistic two-body 
interaction appropriate for independent (quasi)-particle motion and Eec is the energy 
difference between the core and excluded orbitals. The second-order contribution to 
p,JAB) from the Tamm-Dancoff series has the structure 

The full Tamm-Dancoff approximation for pJAB) is thus given by 

&p&B) = G,,,,pa,(AB) + Ge,~,,~v,+fB). (4.4) 

This set of equations (all e, c) can be solved exactly for the p&AB) but, for later 
considerations, is best considered solved by iteration starting with the value zero for 
all pep&B) on the RHS of Eq. (4.4). The RPA approximation is obtained by adding 
to the RHS of Eq. (4.4) the term 

G ee~ecwe4AB) (4.5) 
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and solving simultaneously the modified set of Eqs. (4.4) with a similar set for 
p&W. 

Additional terms can be added to Eq. (4.4) which introduce the black-box vertex 
renormalization as well as valence polarization terms, etc. Each term can be written 
in general in terms of products of transition-density matrix elements and thus, at 
each iteration, contribute varying amounts to the final structure for each matrix 
element of p(A, B). 

The significance of the present approach is that by considering the renormalization 
of the single particle transition densities we stay close to the Hartree-Fock technique 
although now we do not restrict the states A, B to be a single determinant but rather 
allow them to develop, by the (iterative) perturbation series (like Eq. (4.4)), from the 
spherical shell model states. For a given nucleus the only input are the transition 
density matrix elements in the model space p&AB) determined from the cfp’s. Thus 
in principle the technique is applicable wherever cfp’s are available independent of 
the number of valence particles. In practice the calculation does become more com- 
plicated the more particles are added into the valence shell. These complications 
together with preliminary results must await a further publication. 

To see that the renormalization of the density is equivalent to the bb-bd-IBG 
approximation in I consider in the generalized form for Eq. (4.4) the states A and B 
to be the intrinsic state xs with normalized component x0 in the model space. Consider 
also G to be separable, i.e., Gabcd = QacQdb . Now the generalized Eq. (4.4) will take 
the form 

-%~ec(xs 9 xs) = Qec(Qa~~dxcixo) + Qc,e,~e,c,(xsxa) + . ..> 

= Qdxs I Q I xc& (4.6) 

Thus from Eq. (4.2), the expectation value of Q in the fully renormalized (deformed) 
intrinsic state x6 has the form 

(xs I Q I xs) = <Qh = Qaa~dxoxo) + Qce~ec(x~xcJ + Qec~ceCxaxd + -** 

= (Qh, + 2 w (Qh + .a., (4.7) 

the last line coming from the substitution from Eq. (4.6). It was just this latter 
equation which was shown in I to be equivalent to the self-consistent Hartree-Fock 
condition given in this paper by Eq. (1.6). 

ACKNOWLEDGMENT 

One of us (P.A.) wishes to thank G. A. Bartholomew for the hospitality in the Physics Division, 
Chalk River during the Summer 1974. 



RENORMALIZATION FOR COLLECTIVE MOTION, II 21 

REFERENCES 

1. E. C. HALBERT, J. B. MCGRORY, B. H. WILDENTHAL, AM) S. P. PAM)YA, in “Advances inNuclear 
Physics” (M. Baranger and E. W. Vogt, Ed.) Vol. 4, p. 316, Plenum, New York/London, 1971. 

2. B. R. BARRETT AND M. KIRSON, in “Advances in Nuclear Physics” (M. Baranger and E. W. 
Vogt, Eds.), Vol. 6, p. 219, Plenum, New York/London, 1973. 

3. R. Y. CUSSON AND H. C. LEE, Nucl. Phys. A 211 (1973), 429. 
4. M. HARVEY, Ann. Phys. (N.Y.) 94 (1975), 47. 
5. M. HARVEY, in “Advances in Nuclear Physics” (M. Baranger and E. W. Vogt, Eds.), Vol. 1, 

p. 67, Plenum, New York/London, 1968. 
6. B. R. MO~TELSON, L’Ecole d&e de Physique Th&xique, Les Houches, Paris, 1959. 
7. G. RIPKA, in “Advances in Nuclear Physics” (M. Baranger and E. W. Vogt, Eds.), Vol. 1, p. 183, 

Plenum, New York/London, 1968. 
8. G. SAUNIER AND J. M. PEARSON, Phys. Reu. C 1 (1970), 1353. 
9. J. P. ELLIOTT AND M. HARVEY, Proc. Roy. Sot. Ser. A 272 (1963), 557. 

10. M. HARVEY, “Proc. Int. School of Physics “Enrico Fermi” Course LXII, Varerma” (H. Faraggi 
and R. A. Ricci, Eds., 1974, North Holland, Amsterdam/New York/Oxford, 1976. 

11. K. T. HECHT, Nucl. Phys. 62 (1965), 1. 
12. T. SEBE, Nucl. Phys. A 109 (1968), 65. 
13. M. ROTENBERG, R. BIVIMS, N. METROPOLIS, AND K. K. WOOTEN, JR., “The 3-j and 6-j Symbols,” 

The Technology Press, Massachusetts Institute of Technology, Cambridge, 1959. 
14. M. HARVEY AND F. C. KHANNA, Nucl. Phys. A 155 (1970), 337. 


