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1. INTRODUCTION TO ANALYTIC REGULARIZATION

In the originally devised form of dimensional regularization [1-4],
a theory in D (= integer) dimensions is defined as the limit €20 of a
theory in d = D + 2¢ dimensions. The method is incompatible with supersym-
metry [5-8], since the algebras for vectors and spinors in a supersymmetric
theory depend differently on D, so that supersymmetry is manifestly broken
in the method.

In a modification, known as dimensional reduction [9], the algebra of
Dirac matrices (which act only on spinors) is kept in the N-dimensional
space, but the Lorentz algebra lives in d-dimensional space. This approach
is basically inconsistent [9,10], but except for anomalies it can be made
with special provisions to work for most purposes.

Dimensional regularization also fails when used to compute axial anom—
alies [11-15] since a totally antisymmetric tensor cannot be realized in a
nonintegral-dimensional space. There is another more technical reason.
Because anomalies (in perturbation theory) are closely related to surface
integrals [17-1%9] - not surprising since in the topological approach [15]
anomalies are associated with boundaires of manifolds - they are always
expressible as finite differences of pairs of divergent Feynman integrals.
But the nature of analytic continuation employed by dimensional
regularization is such that these differences are exact cancellations so
that the method always (incorrectly) gives zero values for anomalies.

Several modifications have been devised for dimensional regularization
for the purpose of making it useful for the computing anaomalies [1,20-23].
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The modification usually centres on the properties of the totally antisym-
metric tensor and Dirac matrix (ys when D=4) and requires special care for
its application, thus tarnishing the elegance of the method in some way.

Another misconception that gives doubts to the applicability of dimen-
sional regularization in computing anomalies is the belief that shift of
integration variables in Feynman integrals is not allowed (a notion not
inconsistent with the association between anomalies and surface integrals).
In fact shift of integration variables is permitted, provided it is done
consistently (in a way explained later). This is important because the
shift operation is essential for an analytic approach.

Our goal is to find a regularization method based on analytic continu-
ation that (i) preserves supersymmetry and (ii) is useful for computing
anomalies. It goes without saying that the method must also preserve gauge
invariance, Lorentz invariance, and so on. The method, which shall be
called analytic regularization for reasons that will become obvious, is
based on the observations that: (i) In (the perturbative approach to) field
theory divergences that need to be regulated occur only in Feynman inte-
grals; (ii) All amplitudes involving Feynman integrals and transforming as
tensor of the Lorentz group can be expressed as sums of terms that are pro-
ducts of known Lorentz tensors and Lorentz invariant Feynman integrals.
Thus in the proposed method only (Lorentz) invariant (Feynman) integral are
regulated.

A method of regulating only invariant integrals entails a retreat from
the more ambitious "global" approach of dimensional regularization, in
which a theory is regulated. As mentioned earlier, the retreat is neces-
sary 1if the objective is to preserve supersymmetry.

There is an earlier (and different) version of analytic regularization
[24-26] often referred to as Speer's method. This approach is also global:

propagatorskhaving the form (k2 + miz)'l is replaced by the expression

(k2 + m 2) 1, and the original theory is viewed as the limit A, + 1 of the
i i

theory with the new propagators. In principle the method calls for as many
parameters Ay as there are species of particles, a procedure which mani-
festly breaks supersymmetry. The method has had some success in verifying
supersymmetric Ward identities at the one-loop level, provided the differ-
ent Aj's are identified as a single parameter [27].

As a vehicle for testing our method, we consider the N=1 supersymme-
tric Yang-Mills theory [5-8] in the Wess-Zumino gauge, and use the method
to verify the anomalous supersymmetric identity [28-35)

5(f*y) = 215 Te@T) + 3¢ yvs(a¥s) (1)

at the one-loop order. In the equations & denofes the supersymmetric
transformation, € is a constant spinor field, 4? is the supersymmetry cur-
rent, 9T is the energy-momentum tensor and 5;5 is the axial-vector current.
The non-vanishing quantities J!'Y, Tr(*T) and bjfs are anomalous since they
respectively signal the violations of conformal invariance, energy-momentum
conservation and chiral invariance due to quantum fluxuation. Eq. (1) is
therefore an unbroken supersymmetric relation among anomalies. It will be
shown that our method neatly separates the task of evaluating the three
anomalies and the task of making manifest the supersymmetric relations con-
necting them.

2. N=1 SUPERSYMMETRIC YANG-MILLS THEORY [5-8]

We restrict ourselves to working in the Wess-Zumino gauge [5]. Then
the Lagrangian is
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exists, which we call M);. We now define

def
I;(D,2),%2,23) = 1lim Mj(w,A},A2,A3) (29)
2w*D
Ay

The other two classes of integrals I, and I3 are similarly defined.

Because (we assume, and it turns out to be so) M) is an analytic function
of w and the Ay's, divergences in the original integral I, will appear in
M) as poles in the wA-plane. The method differs from dimensional regulari-
zation through the presence of generalized exponents Ay. Since there are
more than one parameter, the regularization is not completely defined until
the limiting process in (29) is specified. We defer the choosing of the
limit to the end of the computation.

Elsewhere [36,37] it has been shown that the multi-parameter continua-
tion has allowed our method to render a rigorous treatment of certain inte-
grals (e.g. tadpoles) undefinable in dimensional regularization and to
analytically separate ultraviolet from infrared and mass singularities.

With the on-shell conditions (23) and (24), and using Euler's repre-
sentation for exponentiating the factors in the integrand in (28) and stan-
dard dimensional regularizations technique [1,4,38] for the k-integration
one derives [39] the close-form representation for M)

(-0 *Ir(~ay)T(ay=2p) T(ay-A3)
T(=A2)T(-A3)T(2aj-A;-A—-A3)

M) (w,A1,A2,A3) = (30)

where a); = wth)+Ap+A3z. Similar calculation shows that both M; and M3 are
identical to the right-hand side of (30). We therefore suppress the sub-
script on M henceforth. Now write

w=D/2 + ¢, Ai = 21 + % (31)
with the small continuous parameter € and the oy's being of the same
order. Then

det lim D
11,2’3(1),11,12,13) = E,%i"o H(-Z- +e, 21+61, 124-02, 134-0'3) (32)

where, as usual, the limit £+0 means ignoring terms of C?(e) and higher.
To complete the regularization we still need to specify the approach to the
origin in the eoj~hyperplane.

4. PRESERVATION OF SUPERSYMMETRY

The method described in the last section clearly preserves Lorentz
invariance and leaves unchanged the Dirac algebra. It does not manifestly
break gauge invariance or supersymmetry, but neither is it guaranteed that
such symmetries are preserved. Since properties of such symmetries are not
transparently transmitted to Feynman integrals, it is difficult to directly
assess whether our method indeed preserves them. Normally Ward identities
and identities such as (1) are used for the purpose of making such assess-
ments. This we shall do in the next section. Here we show how we can, by
constraining the small parameters £, oOj expect our regularization to pre-
serve the symmetries.

We begin with the supposition that if the representation (32) retains
all the symmetries of the original integrals in (25)-(27), then the regu-
larization should preserve all symmetries of the theory, as far as three-
point and lower functions are concerned. The symmetries of the original
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When either £, or %3 is nonnegative, the representation has "zeroes"
of ((eg-€1). The limit when all the oy's vanish exactly corresponds to
dimensional regularization. In that case g€y = €) and the aforementioned
zeroes become exact, thus providing a rigorous derivation of the vanishing
of tadpole integrals in that method.

In addition 50 simple poles, the representation also admits dguble
poles oSC?((l/eo) ) which originate from terms such as (1/€g) &nq“ in the
limit q° + 0. As expected, in the calculation of anomalies all simple and
double ep-poles cancel among themselves.

The choice of linear paths (recall €, o) and o) are by definition of
the same order) on the eo-plane for the limit in (35) is constrained by the
possible occurence of @(1/eg) and (J(1/€)) poles such that paths defined by
€p = 0 and €) = 0 are not allowed; any other path is permissible.

Note that, because of the canonicalization of invariant integrals(see
paragraph leading to (21)), the exponents 23 in (35) are no more directly
related to propagators, and even less to that of any species of particle.
This makes clear the difference between our method and the analytic method
of Speer, and gives reason to why a necessary (but not sufficient)
condition for Speer's method [8] to work is to dissociate the exponents
from particle species.

6. ANOMALOUS SUPERSYMMETRY IDENTITY

We now compute one-loop contributions to the three amplitudes (10),
(11) and (12). The four types of graphs that occur in the calculation are

given in Figure 1; (a) in the calculation of J(l), (a) and (b) in S(l) and
Spa pap

A/

(a) (b) (d)

all four in T(l) .
pvap
cribed in section 3 so that each of the (amputated) amplitudes is reduced
to a sum of known operators with coefficients being sums of invariant
integrals. The tensor reduction is straightforward but can be tedious;
here it is carried out with the aid of the algebraic computer program
SCHOONSCHIP [40]. The results, with the on-shell conditions (23)

These graphs are evaluated following the procedure des-

Hx = D =0 (38)
incorporated, are [39]

wo(1) p o
P J5HGB 1641 €appoP 9 (39)

440



regularization method is used, with the consequential "route-momentum ambi-
guity” further adding to the myth of anomalies in perturbation theory.

(1ii) The tadpole graph (d) in Fig. 1 does not have a vanishing value, but
contributes terms proportional to (0,0,-1) to both (44) and (45). Among
all integrals this integral is actually the most important one, being
directly proportional to the anomalies.

The non-vanishing divergents (39)-(42), (44) and (45) represent anoma-
lies only if they cannot be removed by local counterterms. It can be shown
that [39] gauge invariance (all contraction with q% must vanish) demands
the constraint

Ix =0 (50)

with which the counterterms become uniquely determined. They are

[+2
(AJ5) g = 41 T e o (a-T) (51)
i o g
(AS)M 61 L,Ysy €uaopd (52)
p - . —
(AT} = -12 I (a*rg g = ¥,qg) (53)

In terms of fields, the renormalized currents (Jgren - ,9(1) + AAf, etc.)
satisfy

ren _ _ * pv
395 2L P (54)
ren - v *
Iyt g (55)
ren, _ BV
Te(F ") =3 I Fqu (56)

ke wl po
where Fuv 3 EprOF is the dual of va' A comparison of (52) and (53)

with (43) and (46) reveals that the two anomalies ‘Jren.v and Tr@’rren)
arise entirely from counterterms. The supersymmetry transformation of the
right-hand side of (55) gives

- _uv = X By _ = * uv
(6y)o Fuv = ieFqu £Ys F vF (57)

u
3 - 2170"(e )
X oV (8F, ) = 2iXo (D v, =0 (58)
to within a total derivative (because i.¢7==,¢7x = 0). Thus, from (54)-(58)
8C4™M) - 218 Te(F"") - 3Eys(3P 5 = 1 (0] =0 (59)

That is, the identity (1) is satisfied algebraically as a result of super-
symmetry, independently of the value of I,.

7. LIMIT FOR ANALYTIC REPRESENTATION
The magnitude of the anomalies (54)-(56) is determined by I,, sub-
ject to the constraint (50). From (35), (47) and (48), we have
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Ep—€)

I = (60)
e 321!2 €1
1 1
Ix - o = (gg + 35} - 2¢g3) (61)
32n° g

which are undetermined until the limiting path in (35) is chosen. The
ellusive nature of these integrals, a reflection of the fact that anomalies
depend on finite differences of divergent integrals, is now transparently
displayed.

If we take the limit corresponding to dimensional regularization,
namely letting o) = 0 = 0 so that €5 = €] = €2/2 = €. Then Ix = Iu = 0.
That is, the constraint (50) is satisfied but the anomalies are also incor-
rectly given vanishing values. (Because (-1,0,0) (eo-cl)zlel ~ CSKsi),
I, depends only on (0,0,-1), the integral intimately related to the tad-
pole graph Fig. 1(d). The indistinguishability of ultraviolet and infrared
singularities (gg = €;), the vanishing of tadpoles and the vanishing of
anomalies are closely related shortcomings of dimensional regularization.)

If the integrals are indeterminate, we can ask whether a path in the
eo-plane exists that satisfies Iy = 0 and yields the known value [17]

1, - - 1;2 (62)
From (60)~(62), it must satisfy

€] = -gg = €3 (63)
The limiting path, from (37), is therefore

€ =0 (64)

20y + 30, = 0 (65)

The first condition is remarkable. It states that a supersymmetry preserv-
ing analytic regularization can be extended for the computation of anoma-
lies only if the number of dimensions is not changed. Note that, had we
restricted ourselves to £€=0 from the outset, then the constraint I =0 alone

would have yielded (65), from which (62) and (63) wogld have followed.
With (64) and (65), the anomalies are (in units of g“Cj).

ren _ 1 * BV
695 3 B

‘Jrng - 32 7 MVF

8n By
Tr(,rren) __.3 > ¥ vFuv
16n° ¥

We close with some final remarks. We suspect €¢ =0 is a general con-
straint for an analytic regularization if it is to be used to compute anom-
alies unambiguously. But this can only be confirmed by further studies.
Our method differs from that of Speer's because there is not a fixed rela-
tion between the exponents %4 in (35) and any set of propagators in the
theory. We do not believe an analytic regularization (even with € = 0)
without adhering to the tensor reduction procedure described in section 3
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