

NUCLEAR CHARGE, CONVECTION CURRENT AND MAGNETIZATION CURRENT DENSITIES

by

H.C. LEE

Chalk River Nuclear Laboratories
Chalk River, Ontario
January 197.5

NUCLEAR CHARGE, CONVECTION CURRENT AND MAGNETIZATION CURRENT DENSITIES

by

H.C. Lee

Atomic Energy of Canada Limited Chalk River Nuclear Laboratories Chalk River, Ontario, Canada KOJ 1J0

NUCLEAR CHARGE, CONVECTION CURRENT AND MAGNETIZATION CURRENT DENSITIES

H.C. LEE

Abstract

Nuclear electromagnetic charge and current densities and related topics are discussed. Formulas expressing the multipole-decomposed density distributions in terms of the transition density matrix, geometrical factors and single-part) le radial wavefunctions are given in detail. These formulas are used for coding a program, MICRØDENS, written in Fortran-iV, to compute the densities. MICRØDENS also computes the form factors, or the Bessel transforms of the densities. Instructions for the use of the program are provided. Three appendices discuss the densities in connection with several physical processes (gamma-emission, electron scattering and photo nucleon-emission), present the formulas for the computation of the transition density matrix in the most commonly used nuclear models, and give a complete listing of MICRØDENS.

Manuscript prepared November 1974

Atomic Energy of Canada Limited Chalk River Nuclear Laboratories Chalk River, Ontario, Canada February, 1975 Densités des charges nucléaires, des courants de convertion et des courants de magnétisation

par

H.C. Lee

Résumé

L'auteur de ce rapport fait des commentaires au sujet des densités de courant et de charge électromagnétique nucléaire ainsi qu'au sujet de questions connexes. Il décrit en détail les formules exprimant la répartition des densités à décomposition multipolaire, en fonction de la matrice des densités de transition, de facteurs géométriques et de fonctions ondulatoires radiales à particule unique. Ces formules sont employées pour le codage d'un programme, MICRØDENS, écrit en FORTRAN-IV et destiné à calculer les densités. Par ailleurs. le programme MICRØDENS permet de calculer les facteurs de forme ou les fonctions de Bessel pour les densités. Des instructions sont données pour l'emploi du programme. La première annexe concerne les densités par rapport à plusieurs procédés physiques (émission gamma, diffusion des électrons et émission photo-nucléon), la seconde donne des formules pour calculer la matrice des densités de transition dans les modèles nucléaires les plus couramment utilisés et la troisième est la liste complète des programmes MICRØDENS.

Manuscript rédigé en novembre 1974

L'Energie Atomique du Canada, Limitée Laboratoires Nucléaires de Chalk River Chalk River, Ontario, Canada Février 1975

TABLE OF CONTENTS

l.	INTRODUCTION		
2.	CHARGE AND CURRENT DENSITY DISTRIBUTIONS	7	
	2.1 Notation and Phase Conventions	7	
	2.2 Multipole Decomposition	9	
	2.3 The Charge Density	10	
	2.4 The Convection Current Density	11	
	2.5 The Magnetization Current Density	15	
	2.6 Parity Selection Rules	18	
	2.7 Hermitian Property of the Density Operators	19	
	2.8 Time-Reversal Property of the Density Operators	24	
	2.9 Isospin Pensities	28	
3.	THE COMPUTER CODE "MICRØDENS"	29	
	3.1 Brief Description, Flow Chart	29	
	3.2 Input Data	31	
	3.3 Physical Constants	3.2	
	3.4 Computation	33	
	3.5 Output	34	
	3.6 Subroutines and their Functions	35	
	CREDITS	36	
	ACKNOWLEDGEMENTS	36	
	REFERENCES	37	
	APPENDIX A	39	
	A.1 Gauge Invariance, Charge Conservation and Siegert's Theorem	39	
	A.2 Gamma-Emission	47	
	A.3 Electron Scattering	54	
	A.4 (γ,N) Reactions	72	

ДРР	ENDIX B	7 9		
B.1	Transition Density Matrix in the Farticle-Hole Model	79		
в.2	Transition Density Matrix in the Shell Model	85		
В.3	Transition Density Matrix in the Projected Hartree-Fock Approximation	87		
APP	ENDIX C	90		
C.1	Listing of MICRØDENS	92		
C.2	Sample Output of MICRØDENS			
c.3	3 Special Relations for Checking the Results			

1. INTRODUCTION

The electromagnetic interaction is one of the best tools that can be used to probe the structure of the nucleus. The reasons for this are manifold. Firstly, it is the best understood interaction among those (strong, electromagnetic and weak) that are used to investigate nuclear structure. Secondly, viewed as an operator, the leading and in many cases the only important portion of the interaction is a one-body operator. From a practical point of view the advancement of experimental technologies in the areas of γ -ray detectors, electron accelerators and photon beam generators in the last two decades or so has produced a great wealth of data from which much information in nuclear structure can be extracted.

magnetic field via its charge and current. From a study of the charge and current densities one can infer certain aspects of nuclear structure. In practice often the charge and current densities are computed in a particular model with specific assumptions. These densities are then used in (electromagnetic) reaction calculations and the results are compared with experimental data. Such a comparison may then lead to the rejection, acceptance or modification of the model used, or some of the assumptions made, or both. This report is mainly concerned with the calculation of nuclear charge and current densities.

Suppose that, under the influence of the electromagnetic interaction, the nucleus goes through a transition from state Ψ_i to state Ψ_f (f may be identical to i), then the transition charge, $\rho_{(r)}^{i+f}$, and current, $J_{(r)}^{i+f}$, densities are

$$\rho(\vec{r}) = e \sum_{k} \delta(\vec{r} - \vec{r}_{k}) g_{L}^{k} \{ \Psi_{f}^{*} \Psi_{i} \}$$

$$(1)$$

$$\vec{J}(\vec{r}) = \vec{J}^{c}(\vec{r}) + \vec{J}^{m}(\vec{r}) + \vec{J}^{exch}(\vec{r})$$
 (2)

$$\vec{J}^{c}(\vec{r}) = \frac{e\hbar}{12M} \sum_{k} \delta(\vec{r} - \vec{r}_{k}) g_{L}^{k} \{ \Psi_{f}^{*} \vec{\nabla}_{k} \Psi_{i} - \Psi_{i} \vec{\nabla}_{k} \Psi_{f}^{*} \}, \qquad (3)$$

$$\vec{J}^{m}(\vec{r}) = \frac{e\hbar}{2M} \sum_{k} \delta(\vec{r} - \vec{r}_{k}) \mu_{s}^{k} \vec{\nabla}_{k} \times \{ \Psi_{f}^{*} \vec{\sigma}_{k} \Psi_{i} \}, \tag{4}$$

where σ_k are the Pauli matrices and we have suppressed the superscripts i+f. In (1), (3) and (4), integration over all internal coordinates other than \vec{r}_k is implied for the expression in the curly brackets; g_L is the nucleon orbital g-factor ($g_L^{proton} = 1$, $g_L^{neutron} = 0$) and μ_s is the magnetic moment of the free nucleon ($\mu_s^{proton} = 2.79$, $\mu_s^{neutron} = -1.91$) in nuclear magnetons. \vec{J}^c is the convection current due to the motion of individual nucleons within the nucleus and \vec{J}^m is the magnetization current generated by the magnetic

moments of the nucleons. Jexch is the current that will arise from an exchange or a momentum-dependent nuclear interaction term or both. Although the exchange current has been a subject of interest since the early days of nuclear physics^{1,2)} the nuclear interaction is not sufficiently well known to enable us to treat Jexch in a general way. In fact Jexch may require a separate treatment for each individual transition, since it is very model dependent. For example a truncation of the shell model basis may be viewed as being effected by a strongly momentum-dependent (in fact, singular) interaction. In this report Jexch will be completely ignored. Recently studies of the exchange current can be found in the literature³⁻⁵⁾.

Having decided to consider only the three densities ρ , \vec{J}^c and \vec{J}^m of which the operative forms are well known, we still must decide on a method to treat the nuclear wavefunctions. Currently in the literature there are many models that are used to describe the many-body nuclear wavefunction. Most models have their own distinctive usefulness and together they form a complementary set. It is therefore easy to conclude that for the purpose of this report one should not commit oneself to any one model but rather adopt a more global approach. A natural

linkage between any many-body wavefunction and a one-body density function is the one-body transition density matrix. In this work we shall assume that the density matrix is known, and begin our evaluation of the charge and current densities from this knowledge.

The plan of this report is as follows. In section 2 we first express the density functions in terms of single-particle density functions and the onebody density matrix. We then expand ${
m p}$ and ${
m \vec{J}}$ in terms of scalar and vector spherical multipoles respectively. This expansion is suitable for finite systems such as the nucleus. The multipole single-particle density functions are expressed in terms of geometric coefficients and single-particle radial functions and their derivatives. The hermitian conjugate and the time-reversal properties of the density operators are discussed in two following subsections. A knowledge of these properties may be used to reduce the complexity of the computation. As well, it establishes the realness of the densities (if the radial wavefunctions are real) and enables one to identify a special selection rule, namely that the electric current densities (both longitudinal and transverse) in an elastic transition (i.e., $\Psi \rightarrow \Psi$) vanish. In the last subsection of section 2 we show how the isoscalar and isovector components of the densities are calculated.

In section 3 we describe a tackage of computer programs, MICRODENS, written in FORTRAN-IV for the CDC-6600 installation at Chalk River Nuclear Laboratories, for the computation of the nuclear charge and current densities $\rho(\vec{r})$, $\vec{J}^{c}(\vec{r})$ and $\vec{J}^{m}(\vec{r})$. The formulas derived in section 2 are used for the coding. The nuclear form factors, which are essentially the spherical Bessel transforms of the densities, are also computed in MICRØDENS. Spherical harmonic oscillator functions (Hermite polynomials) are used as the radial wavefunctions. The advantages of using these functions are their wide use in structure calculations, their well-known analytical properties, and the fact that a complete set of such functions is determined by a single parameter, the oscillator frequency. A flow chart of the program, adequate instructions for the preparation and the assembly of input cards, and brief descriptions of the functions of all subroutines are provided.

A knowledge of the nuclear charge and current densities as isolated entities is academic, since their properties are manifested only through interacting with external fields. In Appendix A, formulas relating the densities to the external field in several physical processes (γ -decay, electron scattering and photo nucleon-emission) are presented. These may be in the form of transition probabilities or strengths or scattering amplitudes or cross sections. The (e,e')

scattering amplitude in the distorted-wave Born approximation is derived in detail. A new formulation for the amplitude, better than those presently available in the literature, is given. The important concepts of gauge invariance and charge conservation and the related Siegert's theorem² are also briefly discussed at the beginning of the Appendix.

In Appendix B we show how the one-body transition density matrix can be extracted from the result of structural calculations in the three most commonly used nuclear models, namely the particle-hole model and its variants, the shell model, and the angular-momentum-projected Hartree-Fock model.

A complete listing of the computer code MICRØDENS and sample outputs are contained in Appendix C.

2. CHARGE AND CURRENT DENSITY DISTRIBUTIONS

2.1 NOTATION AND PHASE CONVENTIONS

We use the Greek alphabet, except λ , which is reserved for the tensor rank, to represent the complete set of quantum numbers defining a single-particle state; we use the corresponding Roman alphabet for the same set excluding the magnetic quantum number. Thus

$$\alpha = (\tau_a n_a \lambda_a j_a m_a \dots) = (a, m_a); \quad \overline{\alpha} = (a, -m_a).$$

The single-particle wavefunction is L-s coupled

$$\psi_{\alpha}(\vec{r}) = \langle \vec{r} | \alpha \rangle = \sum_{m,\sigma} \langle \ell_{a}^{m} \frac{1}{2} \sigma | j_{a}^{m} \rangle i^{a} u_{a}(r) Y_{\ell_{a}}^{m}(\vec{r}) \chi_{1/2}^{\sigma}.$$
 (5)

Here $u_a(r)$ is the radial wavefunction. The phase i assures that $|\alpha\rangle$ will have the desired property under time-reversal,

$$T|\alpha\rangle = (-)^{j_a - m_a}|\overline{\alpha}\rangle, \qquad (6)$$

when $u_a(r)$ is real. $\chi_{\frac{1}{2}}^{\sigma}$ is the spin wavefunction. Let 0_{λ} be a spherical tensorial operator of rank λ . Using the Wigner-Eckart theorem⁶⁾ we define the reduced matrix element,

$$\langle f || O_{\lambda} || i \rangle = \sum_{\mathbf{M}_{i}, \mu} \langle J_{i} \mathbf{M}_{i} \lambda \mu | J_{i} \mathbf{M}_{f} \rangle \langle f || \mathbf{M}_{f} || O_{\lambda \mu} || i || \mathbf{M}_{i} \rangle.$$
 (7)

We also define a partially reduced matrix element, where only the polar coordinates are integrated over

$$\langle \mathcal{Z}_{f} | | 0_{\lambda}(r) | | J_{1} \rangle = \frac{1}{r^{2}} \langle J_{f} | | \delta(\vec{r} - \vec{r}') 0_{\lambda}(\vec{r}') | | J_{1} \rangle.$$
 (8)

In general, if ∂_{λ} is a one-body operator, the reduced matrix element can be expressed in terms of reduced matrix elements between single-particle states and the one-body transition density matrix, $\rho^{\mbox{if}}$,

$$(\mathbf{f} \| \mathbf{0}_{\lambda}(\mathbf{r}) \| \mathbf{i}) = \sum_{\mathbf{a}, \mathbf{b}} \frac{\hat{\mathbf{j}}_{\mathbf{a}}}{\hat{\lambda}} \rho_{\mathbf{b}\mathbf{a}, \lambda}^{\mathbf{i}\mathbf{f}} (\mathbf{a} \| \mathbf{0}_{\lambda}(\mathbf{r}) \| \mathbf{b})$$
(9)

where $\hat{j}_a = (2j_a+1)^{1/2}$ etc. and

$$\rho_{ba,\lambda}^{if} = \langle f \| [C_a^{\dagger} \otimes C_b]_{\lambda} \| i \rangle; \quad [C_a^{\dagger} \otimes C_b]_{\lambda\mu} = \sum_{m_a,m_b} \langle j_a^{m_a} j_b^{-m_b} \rangle \langle j_a^{m$$

 C^{\dagger} and C are respectively the single-particle creation and annihilation operators. We see from (9) that to compute the transition charge or current density it is not necessary to know the wavefunctions of $|i\rangle$ and $|f\rangle$ in their entirety. Only the transition density matrix is needed.

2.2 MULTIPOLE DECOMPOSITION

From now on it will be understood that the transition is from the state |i> to the state |f>, and all super- or sub-scripts indicating this fact will be suppressed. Since only certain portions, or multipoles of the density will affect a transition between states of definite angular momentum, it is convenient to decompose the density into various multipoles. We define the multipole charge density ρ_{λ} and current density ρ_{λ} as follows:

$$\rho(\hat{r}) = e \sum_{\lambda \mu} (-i)^{\lambda} \langle J_i M_i \lambda \mu | J_f M_f \rangle \rho_{\lambda}(r) Y_{\lambda}^{\mu*}(\hat{r})$$
(11)

$$\vec{J}^{c,m}(\hat{r})/c = e \sum_{\lambda \ell \mu} (-i)^{\ell} \langle J_i M_i \lambda \mu | J_f M_f \rangle \rho_{\lambda \ell}^{c,m}(r) \vec{Y}_{\lambda \ell 1}^{\mu *}(\hat{r})$$

$$(12)$$

where

$$\hat{Y}^{\mu}_{\lambda \ell 1}(\hat{\mathbf{r}}) = \sum_{m\nu} \langle \ell m l \nu | \lambda \mu \rangle Y^{m}_{\ell}(\hat{\mathbf{r}}) \hat{\epsilon}_{\nu}$$
(13)

is the vector spherical harmonic. $\hat{\epsilon}_{\nu}$, ν =±1,0 are the spherical unit vectors. The quantities ρ_{λ} , $\rho_{\lambda\ell}^{c,m}$ to be calculated are now functions of the radial variable only.

2.3 THE CHARGE DENSITY

Recall that the total charge density

is given as

$$\rho(r) = e \sum_{k} \delta(r - r_{k}) g_{L}^{k} (\Psi_{f}^{*} \Psi_{i}).$$
 (1)

Multiplying the right-hand side of (1) and (11) by $i^{\lambda}Y^{\mu}_{\lambda}(\hat{r})$ and integrating over the polar variables and then using (7) and (3) we get

$$\rho_{\lambda}(\mathbf{r}) = \sum_{\mathbf{a}, \mathbf{b}} \frac{\hat{\mathbf{j}}_{\mathbf{a}}}{\hat{\lambda}} \rho_{\mathbf{b}\mathbf{a}\lambda} (\mathbf{a} \| \mathbf{i}^{\lambda} \mathbf{y}_{\lambda}(\hat{\mathbf{r}}) \| \mathbf{b})$$
 (14a)

with

$$(a\|i^{\lambda}y_{\lambda}(\hat{r})\|b) = -(-)^{j_{b}+\frac{1}{2}+\lambda} i^{k_{b}+\lambda-l_{a}} \frac{\hat{\lambda} \hat{j}_{b}}{\sqrt{4\pi}} \begin{pmatrix} j_{a} j_{b} \lambda \\ \frac{1}{2} - \frac{1}{2} 0 \end{pmatrix} u_{a}^{\star}(r) u_{b}^{\star}(n),$$

$$if \ l_{a}+l_{b}+\lambda \text{ is even};$$

$$= 0, \qquad \qquad if \text{ otherwise.} \qquad (14b)$$

The above equation is general. For the special case when the radial function u(r) is taken to be the oscillator function,

$$u_a(r) = d^{-3/2} R_{n_a l_a}(r/d),$$
 (15)

where $R_{n\ell}(x)$ is the (dimensionless) Hermite polynomial⁷⁾, d is the oscillator length parameter ($d^{-2} = \frac{M\omega}{\hbar} = 0.02412 \; \hbar\omega$ (F⁻²), and $\hbar\omega$ is the oscillator frequency in MeV).

2.4 THE CONVECTION CURRENT DENSITY

We repeat the expression for J^c given in (3),

$$\vec{J}^{C}(\vec{r}) = \frac{e\hbar}{2iM} \sum_{k} \delta(\vec{r} - \vec{r}_{k}) g_{L}^{k} (\Psi_{f}^{*} \nabla_{k} \Psi_{i} - \Psi_{i} \nabla_{k} \Psi_{f}^{*}). \tag{3}$$

One must always be especially careful whenever evaluating the matrix element of an operator involving the derivative.

Consider the integral

$$I = \int d\vec{r} \, \Psi_{i} \, f(r) \, \vec{Y}_{\lambda \ell 1}^{\mu}(\hat{r}) \cdot \vec{\nabla} \, \Psi_{f}^{*}$$
 (16a)

where f(r) is a function of r only and $\Psi_i \Psi_f^*$ $f(r)r^2$ vanishes at $r \rightarrow \infty$. Integrating by parts we get

$$I = -\int d\mathbf{\hat{r}} \ \Psi_{\mathbf{f}}^{*} \ \vec{\nabla} \cdot \mathbf{f}(\mathbf{r}) \ \vec{Y}_{\lambda \ell l}^{\mu}(\hat{\mathbf{r}}) \Psi_{\mathbf{i}}. \tag{16b}$$

We left multiply both sides of (3) by $f_{\lambda \ell l}^{\gamma \mu}$, integrate over all space, and use (9) and (12) to obtain

$$\int r^{2} d\mathbf{r} f(\mathbf{r}) \rho_{\lambda \ell}^{\mathbf{C}}(\mathbf{r}) = -\frac{\mathbf{f}_{1}}{2Mc} \sum_{\mathbf{a}\mathbf{b}} g_{\mathbf{L}}^{\mathbf{a}} \frac{\hat{\mathbf{j}}_{\mathbf{a}}}{\hat{\lambda}} \rho_{\mathbf{b}\mathbf{a}\lambda} \langle \mathbf{a} | \mathbf{i}^{1+\ell} (\mathbf{f}_{\mathbf{X}_{\lambda \ell 1}}^{\dagger} \cdot \nabla + \nabla \cdot \mathbf{f}_{\lambda \ell 1}^{\dagger}) | \mathbf{b} \rangle. \tag{17}$$

The RHS does not have the desired form since f is being operated upon. We now note that the Hermitian adjoint of $i^{1+\ell} \vec{\nabla} \cdot f \vec{Y}^{\mu}_{\lambda \, \ell \, 1}$ is

$$(i^{1+\ell} \vec{\nabla} \cdot f \vec{Y}^{\mu}_{\lambda \ell 1})^{\dagger} = (-)^{1+\lambda+\mu} i^{1+\ell} f \vec{Y}^{\mu}_{\lambda \ell 1} \cdot \vec{\nabla}.$$
 (18)

Using this and the identity

$$<\alpha \mid 0 \mid \beta> \equiv <\beta \mid 0^{\dagger} \mid \alpha>$$

where 0 is any operator, we get

$$\langle \mathbf{a} \| \mathbf{i}^{1+\ell} \overset{\uparrow}{\nabla} \cdot \mathbf{f} \overset{\downarrow}{\mathbf{Y}}_{\lambda \ell 1} \| \mathbf{b} \rangle = (-)^{1+\lambda+j} \mathbf{b}^{-j} \mathbf{a} \frac{\hat{\mathbf{j}}_{\mathbf{b}}}{\hat{\mathbf{j}}_{\mathbf{a}}} \langle \mathbf{b} \| \mathbf{i}^{1+\ell} \mathbf{f} \overset{\dagger}{\mathbf{Y}}_{\lambda \ell 1} \overset{\downarrow}{\nabla} \| \mathbf{a} \rangle^{*}$$

$$= (-)^{1+\lambda+j} \mathbf{b}^{-j} \mathbf{a} \frac{\hat{\mathbf{j}}_{\mathbf{b}}}{\hat{\mathbf{j}}_{\mathbf{a}}} \int_{\mathbf{r}}^{2} \mathbf{d} \mathbf{r} \mathbf{f} \langle \mathbf{b} \| \mathbf{i}^{1+\ell} \overset{\downarrow}{\mathbf{Y}}_{\lambda \ell 1} \overset{\downarrow}{\nabla} \| \mathbf{a} \rangle^{*}.$$

$$(19)$$

From (17) and (19), we finally get, independent of f

$$\rho_{\lambda\ell}^{c}(\mathbf{r}) = -\frac{\hbar}{2Mc} \hat{\lambda}^{-1} \sum_{ba\lambda} \rho_{ba\lambda} g_{L}^{a} \{\hat{j}_{a}(a\|i^{1+\ell}\hat{\mathbf{Y}}_{\lambda\ell1} \cdot \nabla\|b) - (-) \hat{j}_{b}(b\|i^{1+\ell}\hat{\mathbf{Y}}_{\lambda\ell1} \cdot \nabla\|a)^{*}\}. \tag{20}$$

From (5) the RHS of (19) has a phase factor i $a^{l_a+l+l-l_b}$. Due to the parity of the operator $\vec{Y}^{\mu}_{\lambda l 1} \cdot \vec{\nabla}$, which is $(-)^{1+l}$, the non-vanishing matrix elements must have an even $a^{l_a+l_b+l+l}$. Therefore the phase factor mentioned above is real. In other words, $\rho^{c}_{\lambda l}(r)$ is real, if the radial wavefunctions and $\rho_{ba\lambda}$ are real. We now introduce the ket a^{l_a} for the spatial part of the single-particle wavefunction,

$$\langle \mathbf{r} | \mathbf{l}_{a} \mathbf{m}_{a} \rangle \equiv \mathbf{Y}_{\mathbf{l}_{a}}^{\mathbf{m}_{a}}(\hat{\mathbf{r}}) \mathbf{u}_{a}(\mathbf{r}); \langle \mathbf{r} | \mathbf{l}_{a}^{*} \mathbf{m}_{a} \rangle = \mathbf{Y}_{\mathbf{l}_{a}}^{\mathbf{m}_{a}}(\hat{\mathbf{r}}) \mathbf{u}_{a}^{*}(\mathbf{r}). \tag{21}$$

The spin wavefunctions can now be contracted out 6)

$$(\mathbf{a}\|\mathbf{i}^{1+\ell}\mathbf{\hat{Y}}_{\lambda\ell\mathbf{1}}\cdot\vec{\nabla}\|\mathbf{b}) = \mathbf{i}^{\ell_b+1+\ell-\ell_a}(-)^{j_a+\ell_b+\lambda-\frac{1}{2}}\hat{\mathbf{j}}_{\mathbf{b}}\hat{\ell}_{\mathbf{a}}\mathbf{w}(\ell_a\ell_b\mathbf{j}_a\mathbf{j}_b;\lambda^{\frac{1}{2}})(\ell_a\|\vec{\mathbf{Y}}_{\lambda\ell\mathbf{1}}\cdot\vec{\nabla}\|\ell_b). \tag{22}$$

Substituting (22) into (20), we finally get

$$\rho_{\lambda \ell}^{C}(r) = \frac{\hbar}{Mc} \hat{\lambda}^{-1} \sum_{i} b^{+1+\ell-\ell} a_{(-)}^{j} a^{+\frac{1}{2}+\ell} b^{+\lambda} \rho_{ba\lambda}^{G} g_{L}^{a} \hat{j}_{a} \hat{j}_{b}^{W(\ell} a^{\ell} b^{j} a^{j} b^{;\lambda^{\frac{1}{2}}})$$

$$a_{i}b$$

$$\times {}^{1}_{2}\{\hat{\ell}_{a}(\ell_{a}\|\vec{Y}_{\lambda\ell1}\cdot\vec{\nabla}\|\ell_{b}) - (-)^{\lambda}\hat{\ell}_{b}(\ell_{b}^{\star}\|\vec{Y}_{\lambda\ell1}\cdot\vec{\nabla}\|\ell_{a}^{\star})\}. \tag{23}$$

The evaluation of the reduced matrix element in (23) is now straightforward; we find

$$D_{\ell_b, \pm 1}(\mathbf{r}) = (\ell_b + \frac{1}{2}(1\pm 1))^{1/2} \left[\frac{d}{d\mathbf{r}} \mp \frac{\ell_b + \frac{1}{2}(1\pm 1)}{\mathbf{r}} \right]$$
 (25)

For $(l_b^* | \vec{Y}_{\lambda l 1} \cdot \vec{\nabla} | l_a^*)$, we interchange l_a with l_b , and $u_a^*(r)$ with $u_b(r)$, in (24).

It is not always necessary to compute the second term on the RHS' of (23). We note that $\vec{Y}^{\mu}_{\lambda\lambda 1}$ is proportional to \vec{L} Y^{μ}_{λ} ; it therefore commutes with the gradient operator, $\vec{\nabla}$. Consequently for the current that affects magnetic transitions, $\rho^{c}_{\lambda\lambda}(\mathbf{r})$, the second term is equal to the first term.

Equations (23) and (24) are applicable for any radial wavefunction. When oscillator functions $R_{n\ell}(x)$ are employed, the relations given below are useful. For $\ell \geq 0$, we have

$$\left(\frac{d}{dx} + \frac{\ell+1}{x}\right) R_{n\ell}(x) = \left(\ell+n+\frac{1}{2}\right)^{\frac{1}{2}} R_{n\ell-1}(x) + (n+1)^{\frac{1}{2}} R_{n+1,\ell-1}, \quad (26a)$$

$$\left(\frac{\mathrm{d}}{\mathrm{d}x} - \frac{\ell}{x}\right) R_{n\ell}(x) = \left(\frac{\mathrm{d}}{\mathrm{d}x} + \frac{\ell+1}{x}\right) R_{n\ell}(x) - \frac{2\ell+1}{x} R_{n\ell}. \tag{26b}$$

When l = 0, we have

$$\frac{d}{dx} R_{n0}(x) = -(n + \frac{3}{2})^{\frac{1}{2}} R_{n1}(x) - n^{\frac{1}{2}} R_{n-1,1}(x).$$
 (26c)

In (26), n is the number of nodes of the oscillator function in the range 0 < r < ∞ .

^{*}RHS - right-hand side

2.5 THE MAGNETIZATION CURRENT DENSITY

We repeat equation (4)

$$\vec{J}^{m}(\vec{r}) = \frac{e\hbar}{2M} \sum_{j} \delta(\vec{r} - \vec{r}_{j}) \mu_{s}^{j} \vec{\nabla}_{j} \times (\Psi_{f}^{*} \vec{\sigma}_{j} \Psi_{i}), \qquad (4)$$

and consider the integral

$$I = i^{\ell} \int d\vec{r} f(r) \vec{Y}^{\mu}_{\lambda \ell l}(r) \cdot [\vec{\nabla} \times (\Psi^{*}_{f} \vec{\sigma} \Psi_{\underline{i}})]$$

$$= i^{\ell} \int d\vec{r} \Psi^{*}_{f} \vec{\sigma} \Psi_{\underline{i}} \cdot \vec{\nabla} \times (f \vec{Y}^{\underline{u}}_{\lambda \ell l}).$$
(27)

Using the well-known relations

$$(\vec{\nabla} \times \mathbf{f} \ \vec{Y}_{\lambda \ell \perp}^{\mu})_{\mathbf{q}} = \frac{\sqrt{2}}{1} \sum_{\mathbf{m} \nu} (-)^{\mathbf{k}} < \ell \mathbf{m} \mathbf{1} - \mathbf{k} |\lambda_{\mu}\rangle < l \nu l \mathbf{k} |l \mathbf{q}\rangle \nabla_{\nu} (\mathbf{f} \ \mathbf{Y}_{\ell}^{\mathbf{m}})$$
(28)

and

$$\nabla_{V} f Y_{\ell}^{m} = \left(\frac{\ell+1}{2\ell+3}\right)^{\frac{1}{2}} < \ell_{m} |V| \ell+1, m+v > Y_{\ell+1}^{m+v} \left(\frac{d}{dr} - \frac{\ell}{r}\right) f$$

$$- \left(\frac{\ell}{2\ell-1}\right)^{\frac{1}{2}} < \ell_{m} |V| \ell-1, m+v > Y_{\ell-1}^{m+v} \left(\frac{d}{dr} + \frac{\ell+1}{r}\right) f$$
(29)

and calling the left-hand side of (28) $D_q(r, \frac{d}{dr})f$, we rewrite (27) as

$$I = i^{\ell+1} \sum_{q} (-)^{q} \int_{d\mathbf{r}} d\mathbf{r} (\Psi_{f}^{*} \sigma_{-q} \Psi_{i}) D_{q} (\mathbf{r}, \frac{d}{d\mathbf{r}}) f$$

$$= -i^{\ell+1} \sum_{q} (-)^{q} \int_{d\mathbf{r}} d\mathbf{r} f D_{q} (\mathbf{r}, -\frac{d}{d\mathbf{r}}) \mathbf{r}^{2} \Psi_{f}^{*} \sigma_{-q} \Psi_{i}, \qquad (27')$$

upon integration by parts. Equation (27') has the desired form, since f is not operated upon. From (27'), (28), (7), (9) and (12), and using standard angular momentum recoupling techniques, we have

$$\rho_{\lambda \ell}^{m}(\mathbf{r}) = -\frac{\hbar}{2Mc} \hat{\lambda}^{-1} \sum_{a,b} \hat{j}_{a} \rho_{ba\lambda} \mu_{s}^{a} i^{1+\ell} \sqrt{6}$$

$$- \ell^{\frac{1}{2}} W(112-1, \ell:1\lambda) (\frac{d}{dr} - \frac{\ell-1}{r}) (a \| T_{\lambda} (Y_{\ell-1} \otimes \sigma) \| b) \}.$$
 (30)

 $T_{\lambda}(Y_{\ell}\otimes\sigma)$ is a rank- λ tensor product of Y_{ℓ} and $\dot{\vec{\sigma}}$:

$$T_{\lambda\mu}(Y_{\ell}\otimes\sigma) = \sum_{mq} <\ell m |q| \lambda\mu > Y_{\ell}^{m}\sigma_{q}.$$

With (5), we have

 $(a \| T_{\lambda} (Y_{\ell} \otimes \sigma) \| b)$

$$= (-)^{l_{a}} i^{l_{b}-l_{a}} (\frac{3}{2\pi})^{l_{2}} \hat{\lambda} \hat{l} \hat{j}_{b} \hat{l}_{a} \hat{l}_{b} (0 \ 0 \ 0) \begin{pmatrix} j_{a} j_{b} \\ l_{a} l_{b} \\ l_{2} l_{2} \ 1 \end{pmatrix} u_{a}^{*} (r) u_{b} (r).$$

$$(31)$$

From (30) and (31), l_a+l_b+l+1 must be even, i.e., the phase factor $i^{1+l+l}b^{-l}a$ is real, and $\rho_{\lambda l}^m$ is real, if u_a and u_b and $\rho_{ba\lambda}$ are real. Since $l=\lambda$, $\lambda \pm 1$, the two equations above may be further simplified by evaluating the Racah and 9-j coefficients. We finally get

$$\rho_{\lambda \ell}^{m}(r) = -\frac{h}{2Mc} \sum_{ab} i^{b} e^{-\ell_{a}+1+\ell} (-)^{\lambda+j_{b}+\frac{j_{2}}{2}} \rho_{ba\lambda} \mu_{s}^{a} \frac{\hat{j}_{a}\hat{j}_{b}}{\hat{\lambda}\sqrt{4\pi}} \begin{pmatrix} j_{a} j_{b} & \lambda \\ \frac{j_{2}}{2} & -\frac{j_{2}}{2} & 0 \end{pmatrix} F_{\lambda \ell}^{ab}(r) u_{a}^{*}(r) u_{b}^{*}(r)$$
(32)

$$F_{\lambda\lambda}^{ab}(\mathbf{r}) = -\left(\frac{2\lambda+1}{\lambda(\lambda+1)}\right)^{\frac{1}{2}} \left[\frac{\lambda(\lambda+1)}{\mathbf{r}} + (\mathbf{x_a} + \mathbf{x_b})(\frac{\mathbf{d}}{\mathbf{dr}} + \frac{1}{\mathbf{r}})\right]$$
 (33a)

$$F_{\lambda,\lambda\pm 1}^{ab}(r) = \frac{1}{\lambda + \frac{1}{2} \pm \frac{1}{2}} (x_a - x_b) D_{\lambda,\pm 1}(r)$$
(33b)

with $D_{\lambda,\lambda\pm 1}(r)$ given by (25), and $x_a = (l_a-j_a)(2j_a+1)$.

2.6 PARITY SELECTION RULES

TABLE 1. PARITY SELECTION RULES

density	type	L _i +L _f +λ	l _a +l _b +λ	l _a +l _b +l+1
ρ _λ (r)	Coulomb	even	even	
$\rho_{\lambda,\ell=\lambda}^{c,m}(r)$	Magnetic	odd	odd	even
$\rho_{\lambda,\ell=\lambda\pm1}^{c,m}(r)$	Electric	even	e ve n	even

2.7 HERMITIAN PROPERTY OF THE DENSITY OPERATORS

When the Hermitian adjoint of a tensor operator O^{μ}_{λ} is

$$(O_{\lambda}^{\mu})^{\dagger} = (-)^{\lambda+\mu} O_{\lambda}^{-\mu},$$

we shall call $\textbf{O}^{\mu}_{\lambda}$ Hermitian. Conversely, if

$$(O_{\lambda}^{\mu}) = -(-)^{\lambda+\mu}O_{\lambda}^{-\mu}$$

is true, we call 0^{μ}_{λ} anti-Hermitian.

The Hermitian property of an operator can be exploited to shorten the calculation of its matrix elements. We define a multipole density operator to be an operator such that its reduced matrix elements between $|\Psi_{\hat{1}}\rangle$ and $|\Psi_{\hat{1}}\rangle$ give the correct density. From (1), the charge density operator is

$$\rho_{\text{op},\lambda\mu}(\hat{r}) = \frac{1}{r^2} \sum_{j} g_{L}^{j} \delta(r-r_{j}) i^{\lambda} Y_{\lambda}^{\mu}(\hat{r}_{j}). \tag{34}$$

From (3) and (17), the convection current density operator is

$$\rho_{\text{op},\lambda\mu,\ell}^{\text{c}}(\hat{\vec{r}}) = -\frac{\hbar}{2\text{Mcr}^{2}} \mathbf{i}^{1+\ell} \sum_{j} g_{\mathbf{L}}^{j} \{\delta(\mathbf{r} - \mathbf{r}_{j}) \dot{\vec{Y}}_{\lambda\ell 1}^{\mu}(\hat{\mathbf{r}}_{j}) \cdot \dot{\vec{\nabla}}_{j} + \dot{\vec{\nabla}}_{j} \cdot \delta(\mathbf{r} - \mathbf{r}_{j}) \dot{\vec{Y}}_{\lambda\ell 1}^{\mu}(\hat{\mathbf{r}}_{j}) \}. \tag{35}$$

We cannot immediately write down the magnetization density operator from (4). However, by partial integration, we find

$$\rho_{\text{op},\lambda\mu,\ell}^{\text{m}}(\hat{\vec{r}}) = \frac{\hbar}{2Mc} i^{\ell} \sum_{j} \mu_{s}^{j} \{\delta(r-r_{j}) \vec{\hat{Y}}_{\lambda\ell 1}^{\mu}(\hat{r}_{j}) \cdot (\vec{\nabla}_{j} \times \vec{\sigma}_{j}) + (\vec{\sigma}_{j} \times \vec{\nabla}_{j}) \cdot \delta(r-r_{j}) \vec{\hat{Y}}_{\lambda\ell 1}^{\mu}(\hat{r}_{j}) \}$$

$$(36)$$

Recalling that

$$\vec{Y}_{\lambda \ell 1}^{\mu} \cdot \vec{A} = \sum_{m,q} \langle \ell m l q | \lambda \mu \rangle Y_{\ell}^{m} A_{q}$$

and

$$\dot{Y}^{\mu}_{\lambda \ell l} \cdot (\dot{A} \times \dot{B}) = \frac{\sqrt{2}}{i} \sum_{mrs} < \ell m lq | \lambda \mu > < lrls | lq > Y^{m}_{\ell} A_{r} B_{s},$$

where \vec{A} and \vec{B} are any rank-1 tensors, and $(i^{\ell}Y_{\ell}^{m})^{\dagger} = (-)^{\ell-m}i^{\ell}Y_{\ell}^{-m};$ $(\nabla_{q})^{\dagger} = (-)^{1-q}\nabla_{q}$ and $(\sigma_{q})^{\dagger} = (-)^{q}\sigma_{-q}$, it is easily shown that

$$\left(\rho_{\text{op},\lambda\mu}\right)^{\dagger} = \left(-\right)^{\lambda+\mu} \rho_{\text{op},\lambda-\mu}, \tag{37a}$$

and

$$\left(\rho_{\text{op},\lambda\mu,\ell}^{c,m}\right)^{\dagger} = -(-)^{\lambda+\mu} \rho_{\text{op},\lambda-\mu,\ell}^{c,m}. \tag{37b}$$

That is, the charge density operator is Hermitian and the current density operators are anti-Hermitian. Note that in (35) as well as in (36), either one of the two terms on the RHS by itself does not have definite Hermiticity.

Now consider a tensor O^μ_λ which has definite Hermiticity, $(O^\mu_\lambda)^\dagger=(-)^{p+\mu}O^{-\mu}_\lambda$; we find

$$= ^{*}$$

$$= (-)^{p-\mu}^{*}$$

leading to

$$\langle J | O_{\lambda} | J \rangle = (-)^{p+J-J'} \hat{J}' \langle J' | O_{\lambda} | J \rangle^*.$$
 (38)

In the previous sections, we have shown that, when $\rho_{ba\lambda}$ and the radial functions are real[†], reduced single-particle matrix elements of $\rho_{\sigma p, \lambda \mu}$ and $\rho_{\sigma p, \lambda \mu, \ell}^{c, m}$ are all real. In this case, from (37,38) we can make the replacement on the LHS of (15), for the charge density

$$\sum_{ab} \rho_{ba,\lambda} + \sum_{a \ge b} \frac{1}{1+\delta_{ab}} \left[\rho_{ba,\lambda} + (-)^{\lambda+j} b^{-j} a_{\rho_{ab,\lambda}}\right]; \quad \text{for } \rho_{\lambda}(r). \quad (39)$$

Similarly, for the current densities, on the LHS of (23) and (32),

$$\sum_{a,b} \rho_{ba,\lambda} + \sum_{a \geq b} \frac{1}{1+\delta_{ab}} \left[\rho_{ba,\lambda} - (-)^{\lambda+j} b^{-j} a \rho_{ab,\lambda} \right]; \quad \underline{\text{for } \rho_{\lambda\ell}^{c,m}(r)}. \quad (40)$$

[†] In the rest of this section, we shall assume this to be the case, unless otherwise stated.

Equation (40) leads to an interesting result for electric transitions. Consider the pair a=b. Due to the parity selection rule for electric transitions, λ must be even. Therefore we see that the pair a=b cannot generate a convection current which contributes to $\Xi\lambda$ transitions. A special case of this property is when $|\Psi_i\rangle = |\Psi_f\rangle$. For this case it follows immediately from (3) that $j^c(r) = 0$.

Since the gradient operator is spin independent, we can even make a stronger statement; no convection current can be generated if the spatial wavefunctions of | i > and | f > are identical. Microscopically, this is manifestly true from (23). In the spherical harmonic oscillator model, the spatial wavefunctions of the two states with $j = l \pm \frac{1}{2}$ are identical: therefore there is no convection current between such two states. In more realistic (single-particle) models their wavefunctions will in general be different. The difference will be small, however, because it is generated only by. the spin-orbit potential, which is a small part of the total potentia. This observation, coupled to the fact that only currents can affect \u03c4-transitions (due to gauge invariance, or equivalently, the conservation of charge), seems to lead to the following statement: Ex transitions between spin-orbit partner states, such as $d_{3/2} \rightarrow d_{5/2}$,

are always weak. On the other hand, we know this conjecture is not supported by experiments. The answer to this apparent paradox lies in the fact that only convection current has been considered so far. Currents generated by exchange and momentum-dependent forces or due to basis truncations (i.e. Jexch) have been ignored. The fact that there are strong E2 transitions in nuclei across the whole periodic table is proof that Jexch is not negligible. Yet for reasons stated in the Introduction, a global treatment of Jexch is not feasible. This difficulty is resolved, at least in part, for low energy processes (wave length of photon > nucleon size), by the so-called Siegert's theorem²⁾. This theorem enables us to side-step the question of currents, and relate the electric transition directly to the nuclear charge distribution. A comprehensive discussion of Siegeru's theorem is somewhat outside the scope of this report; however, it is discussed briefly at the beginning of Appendix A.

2.8 TIME-REVERSAL PROPERTY OF THE DENSITY OPERATORS

We shall use the time-reversal properties of the density operators to establish the realness of the densities. Under time-reversal (TR), all momenta and spins change sign, and all c-numbers become their respective complex-conjugates. Let us call the TR transformation T, and for any state $|\psi\rangle$

$$|\psi_{\mathbf{T}}\rangle \equiv \mathbf{T}|\psi\rangle. \tag{41}$$

We shall call a state of good angular momentum TR-invariant if under the transformation T, other than gaining a phase $(-)^{J-M}$ only its magnetic quantum number changes sign,

$$T|\gamma JM\rangle = (-)^{J-M}|\gamma J, -M\rangle, \qquad (42)$$

where γ is the set of all other quantum numbers. Thus as stated in (6) the single-particle wavefunction given in (5) is TR-invariant, if u(r) is real.

Let 0 be any operator, and

$$0|\psi\rangle = \sum_{n} |\phi_{n}\rangle\langle\phi_{n}|0|\psi\rangle. \tag{43}$$

We want to find the property of 0 under TR, which is defined as

$$TO | \psi \rangle = TOT^{-1}T | \psi \rangle \equiv O_T | \psi_T \rangle$$

(44;

$$= \sum_{n} |\phi_{nT}\rangle \langle \phi_{n}|0|\psi\rangle^*,$$

the second line comes from (43), taking into account that $<\phi_n\,|\,0\,|\,\psi> \text{ is c-number.} \quad \text{It follows that}$

$$\langle \phi_{\mathbf{T}} | O_{\mathbf{T}} | \psi_{\mathbf{T}} \rangle = \langle \phi | O | \psi \rangle^{*}.$$
 (45)

Suppose

$$(o_{\lambda}^{\mu})_{T} = (-)^{p-\mu} o_{\lambda}^{-\mu},$$

and let $|JM\rangle$ and $|J'M'\rangle$ be TR-invariant, then from (45)

$$(-)^{J-M-J'+M'+p-\mu} <_{J-M} |_{\Omega_{\lambda}^{-\mu}} |_{J'-M'}> \ = \ <_{JM} |_{\Omega_{\lambda}^{\mu}} |_{J'M'}>^{*}.$$

Taking the reduced matrix elements on both sides, we have

$$^* = (-)^{p-\lambda} < J||0_{\lambda}||J'>.$$
 (46)

Therefore $\langle J \| O_{\lambda} \| J' \rangle$ is real, if $p=\lambda$, and is purely imaginary if $p=\lambda+1$.

From (34), (35) and (36) we find that the charge and current density operators transform similarly under T

$$(\rho_{\text{op},\lambda\mu})_{\text{T}} = (-)^{\lambda-\mu} \rho_{\text{op},\lambda-\mu}, \tag{47a}$$

$$(\rho_{\text{op},\lambda\mu,\ell}^{c,m})_{\text{T}} = (-)^{\lambda-\mu} \rho_{\text{op},\lambda-\mu,\ell}^{c,m}. \tag{47b}$$

Since we have chosen a phase convention such that the single-particle wavefurctions are TR-invariant (Equation (5)) it follows that all single-particle reduced matrix elements of the density operators are real. This has already been pointed out in Section 2. To establish the realness of the density itself, it remains to show that the many-body states $|\Psi_1\rangle$ and $|\Psi_f\rangle$ are TR-invariant. This can easily be shown by induction, if (5) is true, and if all the coupling coefficients are real. Here we only show it to be true for a two-particle state. Let

$$|ab;JM\rangle = |\alpha \otimes \beta;JM\rangle = \sum_{m_a,m_b} \langle j_a m_a j_b m_b | JM\rangle |\alpha\rangle |\beta\rangle.$$

Then from (5),

$$T|ab;JM\rangle = \sum_{m_{a},m_{b}} \langle j_{a}m_{a}j_{b}m_{b}|JM\rangle(-)^{j_{a}-m_{a}}(-)^{j_{b}-m_{b}}|\overline{\alpha}\rangle |\overline{\beta}\rangle$$

$$= (-)^{J-M} \sum_{m_{a},m_{b}} \langle j_{a}-m_{a}|j_{b}-m_{b}|J-M\rangle |\overline{\alpha}\rangle |\overline{\beta}\rangle$$

$$= (-)^{J-M}|ab;J-M\rangle.$$

Therefore |JM> is TR-invariant. We have thus shown that for the phase convention used here, the charge and current densities are real. A corollary is that the one-body density matrix element $\rho_{ha\lambda}$ is real.

It should be emphasized that Equations (5), (37) and (47) follow strictly from the phase convention adopted in Section 2.1, which is essentially replacing the spherical harmonic Y_{ℓ}^{m} by $i^{\ell}Y_{\ell}^{m}$ whenever the former appears. Any other phase-convention, if consistently used, will be equally acceptable but may result in imaginary or complex densities.

The realness of the current, together with the Hermitian property of the current operator, lead to a special selection rule when $|\Psi_{\vec{f}}\rangle$ is equal to $|\Psi_{\vec{i}}\rangle$. From the identity

$$\langle \Psi_{f} | O_{\lambda_{11}} | \Psi_{f} \rangle^* = \langle \Psi_{1} | (O_{\lambda_{11}})^{\dagger} | \Psi_{f} \rangle$$

and (37b), we have

$$\left(\rho_{\lambda\ell}^{\text{i+i}}(\mathbf{r})\right)^{\text{*}} = \rho_{\lambda\ell}^{\text{i+i}}(\mathbf{r}) = -(-)^{\lambda}\rho_{\lambda\ell}^{\text{i+i}}(\mathbf{r}).$$

For magnetic transitions $(l=\lambda)$, $(-)^{\lambda}$ must be odd, from the parity selection rule, so $-(-)^{\lambda}=1$. Therefore a magnetic transition is allowed. A similar argument shows that the diagonal electric transition is not allowed.

2.9 ISOSPIN DENSITIES

So far we have discussed the charge and current distributions in terms of proton and neutron densities. If the proton and neutron wavefunctions are close approximates to each other, a condition which is certainly fulfilled in all light and intermediate nuclei, then it is convenient to discuss the distributions in terms of isoscalar and isovector densities. Let us call the isoscalar density matrix $\rho_{\rm ba}^{(0)}$ and the isovector density matrix $\rho_{\rm ba}^{(1)}$. It is easy to see that

$$\rho_{\text{ba}}^{(0)} = \frac{1}{\sqrt{2}} \left(\rho_{\text{ba}\lambda}^{\text{proton}} + \rho_{\text{ba}\lambda}^{\text{neutron}} \right), \tag{48a}$$

$$\rho_{\text{ba}}^{(1)} = \frac{1}{\sqrt{2}} \left(\rho_{\text{ba}\lambda}^{\text{proton}} - \rho_{\text{ba}\lambda}^{\text{neutron}} \right). \tag{48b}$$

We can therefore pretend that there is only one kind of particle with orbital g-factor and magnetic moment which is isospin dependent. Thus

$$g_{L}^{(T)} = \frac{1}{\sqrt{2}} (g_{L}^{proton} + (-)^{T} g_{L}^{neutron}), \qquad (49)$$

$$\mu_{S}^{(T)} = \frac{1}{\sqrt{2}} (\mu_{S}^{\text{proton}} + (-)^{T} \mu_{S}^{\text{neutron}}); T = 0,1.$$
 (50)

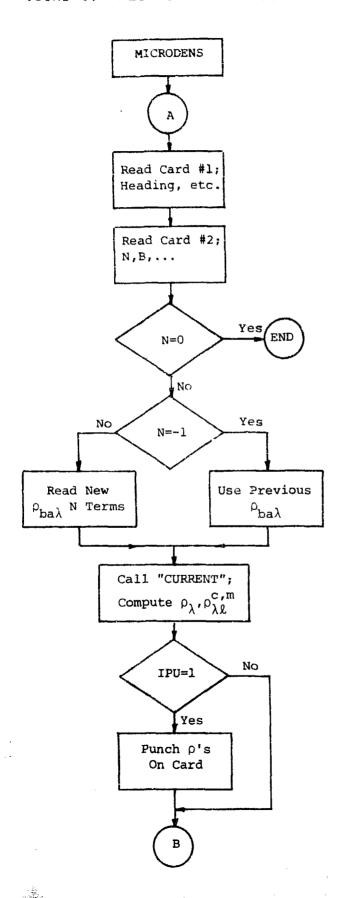
THE COMPUTER CODE "MICRØDENS"

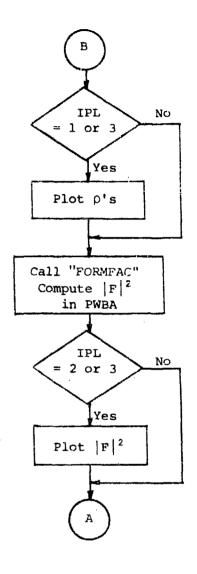
3.1 BRIEF DESCRIPTION, FLOW CHART

MICRØDENS is a self-contained package of computer programs, written in the Fortran-IV language, for calculating the charge and current densities, given the one-body transition density matrix. The execution of the program is controlled by input data cards, and the results are printed and/or punched on cards and plotted. The flow chart of the code is given in Fig. 1. The execution begins at point A. Upon the completion of a full cycle of computation, the command returns to point A. The job is terminated upon reading of #2 data card with N=0.

A second part of the program, shown as part B in the flow chart, calculates the Coulomb, electric and magnetic form factors (see Appendix A, Equations (27) and (27c')) corresponding to the one-body transition density matrix.

FIGURE 1. FLOW CHART OF MICRODENS





3.2 INPUT DATA

For each transition for which the densities are to be calculated, there are three sets of data cards.

Each of the first two sets contains only one card.

The number of cards in the third set varies.

The contents and format of each card is as follows:

Content/Format

card - NAME, KIND no. 1 7A10, A10

card N, B, DX, NX, DQ, QMAX, VJI, VJF, Z, EFC, EFM, JS, JL, IPL, IPU no. 2 14, F6.3, F5.3, I5, (7F5.1), (412)

card NLJA(1), NLJB(1), IRO(1), RØ(1), NLJA(2),...
no. 3 13, I3, I1, F8.5, I3,....

NAME is the identifier of the particular calculation. It may be up to seven words (10 characters per word) long, and is used as the heading for all output. KIND may be either one of the three left-adjusted words COULOMB, $(\rho_{\lambda} \text{ computed}), \text{ ELECTRIC } (\rho_{\lambda}^{\text{C,m}} \text{ computed}) \text{ and MAGNETIC} \\ (\rho_{\lambda}^{\text{C,m}} \text{ computed}). \text{ N is the number of } \rho_{ba\lambda} \text{ to be read.} \\ \text{It therefore determines the number } (\text{N/5+1}) \text{ of cards in set 3.} \\ \text{B is the oscillator length parameter} \qquad \text{(Section 2.3) in} \\ \text{Fermies. The meanings of other entries on card No. 2}$

are clearly explained in the listing of MICRØDENS (see Appendix C), and will not be repeated here. For each pair (a,t), NLJA, NLJB, IRØ and RØ have respectively the following meanings:

NLJA =
$$32*n_a + 2*l_a + j_a + \frac{1}{2} - l_a$$
,

with NLJB similarly defined; IRØ=1(0) if (a,b) is a proton (neutron) pair; and RØ = $\rho_{ba\lambda}$. $n_a \ge 0$ is the principal quantum number minus one.

3.3 PHYSICAL CONSTANTS

We give the names and values of the physical constants used in MICRØDENS:

HBC = fic = 197.33 (MeV.F);

BOHR = μ_n/e = $\hbar/2Mc$ = 0.105(F), μ_n is the nuclear magneton;

GLP = $g_{I_i}^p$ = 1, orbital g-factor for proton;

GLN = $g_1^n = 0$, orbital g-factor for neutron;

MUSP = μ_s^p = 2.79, magnetic moment for protons in μ_n ;

MUSN = μ_s^n = -1.91, magnetic moment for neutron in μ_n .

The effective charge for proton (neutron), in units of e, is GLP+EFCH (GLN+EFCH). EFCH is read as an input parameter on card No. 2.

3.4 COMPUTATION

The charge and current densities are calculated in the subroutine CURRENT. When KIND = COULOMB, the dimensionless density $\tilde{\rho}_{\lambda}(x) = d^3 \rho_{\lambda}(r) \Big|_{r=xd}$ is computed using (14). When KIND = ELECTRIC (or MAGNETIC), $\rho_{\lambda,\lambda\pm 1}^{c,m}(x) = d^3 \rho_{\lambda,\lambda\pm 1}(r) \Big|_{r=xd}$ (or $\tilde{\rho}_{\lambda\lambda}^{c,m}(x)$) are calculated using (23-26) and (30-33); d is the oscillator length parameter (see Section 2.3).

In the subroutine FORMFAC, the Coulomb electric and magnetic form factors are computed. These form factors are defined in Appendix A, section 3. They are essentially spherical Bessel transforms of the appropriate densities However, in FORMFAC the form factors are (see (A.27)). not calculated as such, but are directly calculated from the one-body density matrix. For example, if we seek the Bassel transform of the density $(f \| \theta_{\lambda}(r) \| i)$ with kernel $j_{0}(qr)$, we replace the partially reduced matrix element $(a \| \theta_{\lambda}(r) \| b)$ by the reduced matrix element <a $\|j_{\varrho}(qr)O_{\lambda}(r)\|$ b>. The point is that for harmonic oscillators such reduced matrix elements can be evaluated analytically (by the routine RADQ) and the form factor thus obtained provides at least a consistency check when compared against the (numerically evaluated) Bessel transform of the appropriate density.

In FORMFAC the form factors are calculated for momentum transfer q = 1 to QMAX(MeV/c), in steps of DQ.

3.5 OUTPUT

The calculated densities and form factors are printed in a format that is self-explanatory (see sample output on p.92).

When IPU=1, the density will also be punched on the card. The first card will contain the first three words of NAME and other relevant information (see card MICRØD.95). Then $\tilde{\rho}^c(x_1)$, $\tilde{\rho}^m(x_1)$, $\tilde{\rho}^c(x_2)$, $\tilde{\rho}^m(x_2)$... are punched, in format (6E12.5). NX points are punched, with $x_1=0$, $x_{n+1}-x_n=DX$. When KIND = COULOMB, $\tilde{\rho}^c(x)=\tilde{\rho}(x)$, and $\tilde{\rho}^m(x)=0$.

When IPL = 1 or 3, the output includes plots of the density vs. x. When IPL = 2 or 3, the natural-logarithmic of the form factor squared is plotted against q.

3.6 SUBROUTINES AND THEIR FUNCTIONS

Subroutines that are used in MICRØDENS are described in Table 2.

Name	Function	Called by	
MICRØD	Main program		
CURRENT	Computes densities	MICRØD	
FORMFAC	Computes (e,e') form factors	MICR Ø D	
TLYDEL	Computes $(\ell_a \ T_{\lambda}(Y_{\ell} \Theta \nabla) \ \ell_b) = r$	FORMFAC, CURRENT	
or TLYDELQ	$\langle \ell_a \ j_\ell(qr) T_\lambda(Y_\ell \Theta \nabla) \ \ell_b \rangle$		
TJYLL	Computes $\langle \ell_a j_\ell(qr) T_\lambda(Y_\ell \Theta L) \ell_b \rangle$	FORMFAC	
RDFUNC	Computes oscillator function $R_a(x)$	CURRENT, TLYDEL	
RADQ	Computes the integral	FORMFAC, TJYLL, TLYDEL	
	$\int_0^{\infty} x^2 dx R_a(x) j_{\ell}(Qx) R_b(x)$		
CG000	Computes the 3-j symbol $\begin{pmatrix} l_a & l_b & l \\ 0 & 0 & 0 \end{pmatrix}$	TJYLL, TLYDEL	
CLEBS	Computes the 3-j symbol $\begin{pmatrix} a & b & \lambda \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$	FORMFAC, CURRENT	
WCOEF	Computes Racah or 6-j Coefficients	FORMFAC, CURRENT, TJYLL, TLYDEL	
LINPLØT	Linear plot	MICRØD	
SEMILØG	Semi-log plot	MICRØD	

The subroutines LINPLOT and SEMILOG call a system routine FLOT, for plotting purposes. This routine is available at the computing center at Chalk River Nuclear Laboratories only. Users at other computer installations may substitute local versions of plotting routines for PLOT. If this proves impossible, the calls, in MICROD, to SEMILOG and LINPLOT must be bypassed.

A complete listing of MICRØDENS is given in Appendix ${\tt C.}$

CREDITS

The routine RADQ, of which a revised version is used here, was originally written by F.C. Khanna. WCOEF, a high speed program which employs the Regge symmetries to calculate 6-j coefficients, was written by R.Y. Cusson. The two plotting routines LINPLØT and SEMILØG were kindly supplied by M.A. Lone.

ACKNOWLEDGEMENTS

I am indebted to F.C. Khanna, M.A. Lone and I.S. Towner for many useful discussions. I am very grateful to H. Chow and D.J. Rowe for providing me with some of their results for comparison.

REFERENCES

- 1. G. Breit and E.V. Condon, Phys. Rev. 49, 904 (1936).
- 2. A.J.F. Siegert, Phys. Rev. 52, 787 (1937).
- 3. M. Chemtob and M. Rho, Nucl. Phys. A163, 1 (1971).
- 4. D.O. Riska and G.E. Brown, Phys. Lett. 32B, 662 (1970).
- M. Chemtob, E.J. Moniz and M. Rho, Phys. Rev. <u>C10</u>, 334 (1974).
- 6. D.M. Brink and G.R. Satchler, "Angular Momentum", (Oxford University Press, 1962).
- 7. P.M. Morse and H. Feshbach, "Methods of Theoretical Physics", Chap. 6 (McGraw-Hill, New York, 1953).
- 8. See for example W.N. Bogoliubov and D.V. Shirkov, "Introduction to the Theory of Quantum Fields".
- 9. P.M. Morse and H. Feshbach, ibid, Chap. 7.
- 10. See for example the large basis projected Hartree-Fock calculations by R.Y. Cusson and H.C. Lee, Nucl. Phys. A211, 429 (1973).
- 11. J. Rainwater, Phys. Rev. 79, 432 (1950).
- 12. F.C. Khanna, H.C. Lee and M. Harvey, Nucl. Phys. A164, 612 (1971).
- 13. R.G. Sachs and N. Austern, Phys. Rev. 81, 705 (1951).
- 14. L.L. Foldy, Phys. Rev. 92, 178 (1953).
- 15. See for example, J.M. Blatt and V.F. Weisskopf, "Theoretical Nuclear Physics", (John Wiley and Sons, New York, 1952).
- 16. T. de Forest, Jr. and J.D. Walecka, Adv. in Phys. (Phil. Mag. Supp.) 15, No. 57, 1 (1966).
- 17. H. Uberall, "Electron Scattering from Complex Nuclei", Part B, (Academic Press, New York, 1971).
- 18. M.E. Rose, "Relativistic Electron Theory" (John Wiley and Sons, New York, 1961).

- 19. J.F. Ziegler, "The Calculation of Inelastic Electron Scattering by Nuclei", Yale-2726E-49 (USAEC, TID-4500), (1967).
- S.T. Tuan, L.E. Wright and D.S. Onley, Nucl. Instr. & Methods, 60, 70 (1968).
- 21. B. Buck and A.D. Hill, Nucl. Phys. A95, 271 (1967).
- J. Raynal, M.A. Melkanoff and T. Sawada, Nucl. Phys. <u>A101</u>, 369 (1967).
- 23. G.E. Brown, "Unified Theory of Nuclear Models and Forces", (North-Holland, Amsterdam, 1967).
- 24. M. Baranger, Phys. Rev. 120, 957 (1960).
- 25. D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968).
- 26. A. De-Shalit and I. Talmi, "Nuclear Shell Theory", (Academic Press, New York, 1963).
- 27. B.F. Bayman and A.Laude, Nucl. Phys. 77, 1 (1966).
- 28. I.S. Towner and J.C. Hardy, Nucl. Data A9, 153 (1969).

APPENDIX A

In this appendix we present a collection of formulas describing some physical processes most often exploited to prope the nuclear charge and current densities, namely γ -emission, photonuclear-disintegration leading to particle emission, and elastic and inelastic electron scattering. These formulas will all be given explicitly in terms of the density functions ρ_{λ} , $\rho_{\lambda \ell}^{c,m}$ described in Section 2. Detailed attention will be given only to the development of the formalism for the (e,e') in the distorted wave Born approximation, in view of the fact that this topic has received a less than comprehensive treatment in the literature.

A special property of electromagnetism is its gauge invariance which is closely related to the conservation of charge. A very useful relation which arises from this property is the so-called Siegert's theorem. We shall start the appendix on this topic.

A.1 GAUGE INVARIANCE, CHARGE CONSERVATION AND SIEGERT'S THEOREM

We shall use the compact 4-vector notation $\mathbf{x}_{v}=(\vec{\mathbf{x}},\mathrm{ct}),\ \mathbf{x}^{v}=(\vec{\mathbf{x}},\mathrm{-ct}).$ The 4-vector electromagnetic potential is $\vec{A}_{v}=(\vec{A},\phi)$, the current is $\mathbf{J}_{v}=(\vec{J}/c,\rho)$, and the

gradient is $\theta_{\gamma} = (\vec{\nabla}, -\frac{1}{c}, \frac{\partial}{\partial t})$. The gauge invariance of electromagnetism states that Maxwell's equations are invariant under a gauge transformation of the second kind⁸⁾,

$$A_{v}^{*} = A_{v} + \partial_{v} \Lambda \tag{A.1}$$

where A is any function of x_{ν} . The gauge invariance is closely related to the conservation of charge. Consider the interaction of A_{ν}^{\prime} with current J_{ν} . We have

$$\int A_{v}^{\prime} J^{v} dx^{4} = \int A_{v}J^{v} d^{4}x + \int (\partial_{v}\Lambda)J^{v} d^{4}x$$
$$= \int A_{v}J^{v} d^{4}x - \int \Lambda(\partial_{v}J^{v})d^{4}x,$$

integrating by parts. The second term vanishes, however, because charge is conserved:

$$\partial_{\nu}J^{\nu} = \frac{1}{c} \left(\vec{\nabla} \cdot \vec{J} + \frac{\partial \rho}{\partial t} \right) = 0.$$
 (A.2)

The relation above is also called the equation of continuity.

The gauge invariance allows us, for example, to work in
the Lorentz gauge, expressed by the equation

$$\partial_{\nu}A^{\nu} = \vec{\nabla} \cdot \vec{A} + \frac{1}{C} \frac{\partial \phi}{\partial t} = 0$$

We shall see that this is consistent with describing A as being generated by a conserved current, J_{ν} , via a retarded Green's function⁹⁾ G_{ret} ,

$$A_{v}(r) = -i \int J_{v}(r')G_{ret}(r,r')d^{4}r' \qquad (A.3)$$

where

$$G_{\text{ret}}(r,r') = \frac{1}{|\vec{r}-\vec{r}'|} \delta(t-t' - \frac{1}{c} |\vec{r}-\vec{r}'|).$$

The Lorentz condition is automatically satisfied,

$$\partial_{\nu}A^{\nu}(r) = -i \int J^{\nu}(r')\partial_{\nu}G_{ret}(r,r')d^{4}r'$$

$$= +i \int J^{\nu}(r')\partial_{\nu}G_{ret}(r,r')d^{4}r'$$

$$= -i \int (\partial_{\nu}G^{\nu})G_{ret}(r,r')d^{4}r' = 0.$$

Since J_{ν} is conserved, $\partial_{\nu}J^{\nu} = 0$.

From now on we shall restrict our discussion only to fields with definite frequencies

$$A_{v}(r) = A_{v}(\dot{r})e^{-i\omega t}. \tag{A.4}$$

Naturally, fields of any time-dependence can be constructed as integrals of such fields. Let us consider a field

created by a source at infinity. In this case Maxwell's equations, in the Lorentz gauge, become

$$\nabla^2 A_v + k^2 A_v = 0,$$

where $k = \omega/c$. The three independent solutions can be multipole decomposed⁶)

$$\phi(\vec{r}) = a \sum_{\lambda} \phi_{\lambda O}(\vec{r})$$
(A.5a)

$$\overrightarrow{A}(\overrightarrow{r}) = a \sum_{\lambda} \overrightarrow{\lambda}_{\lambda O} + \sum_{\lambda \mu} b_{\mu} (\overrightarrow{\xi}_{\lambda \mu} + \mu \overrightarrow{m}_{\lambda \mu} (r))$$

$$(A.5b)$$

 $\phi_{\lambda\mu} = \left[4\pi (2\lambda + 1)\right]^{\frac{1}{2}} i^{\lambda} j_{\lambda}(kr) Y_{\lambda}^{\mu}(\hat{r}) \tag{A.5c}$

$$\overrightarrow{\mathbf{A}}_{\lambda\mu} = (\mathbf{i}\mathbf{k})^{-1} \overrightarrow{\nabla}_{\phi_{\lambda\mu}} = -\mathbf{i}^{1+\lambda} \sqrt{4\pi} \left(\sqrt{\lambda} \mathbf{j}_{\lambda-1} \overrightarrow{\mathbf{Y}}_{\lambda,\lambda-1,1}^{\mu} + \sqrt{\lambda+1} \mathbf{j}_{\lambda+1} \overrightarrow{\mathbf{Y}}_{\lambda,\lambda+1,1}^{\mu}\right), \quad (A.5d)$$

$$\vec{\xi}_{\lambda\mu} = [k^2 \lambda(\lambda+1)]^{-\frac{1}{2}} \vec{\nabla} \times \vec{L} \phi_{\lambda\mu} = i^{1+\lambda} \sqrt{4\pi} (\sqrt{\lambda+1} j_{\lambda-1} \vec{Y}_{\lambda,\lambda-1,1}^{\mu} - \sqrt{\lambda} j_{\lambda+1} \vec{Y}_{\lambda,\lambda+1,1}^{\mu}), (A.5e)$$

$$\mathcal{H}_{\lambda\mu} = (\lambda(\lambda+1))^{-\frac{1}{2}} \vec{L} \phi_{\lambda\mu} = i^{\lambda} \sqrt{4\pi(2\lambda+1)} j_{\lambda} \vec{Y}_{\lambda\lambda 1}^{\mu}$$
(A.5f)

where the direction of the z-axis is along \vec{k} , and a and $b_{\pm 1}$ are arbitrary c-numbers. $\vec{Z}_{\lambda\mu}$, $\vec{E}_{\lambda\mu}$, $\vec{m}_{\lambda\mu}$ are respectively the longitudinal and transverse electric, and magnetic multipoles. Note that by setting the gauge field Λ in (A.1) to be $\frac{ia}{k}$ $\phi e^{+i\omega t}$, we reduce the gauge transformed ϕ' and \vec{Z}' to zero. Only \vec{E}' and \vec{m}' are left, resulting in a two-component field

perpendicular to k. To see this differently we let the field interact with current $J_{\nu}(r) = J_{\nu}(r)e^{i\omega t}$. We get

$$A_{\nu}J^{\nu}d^{4}\mathbf{r} = \frac{1}{c}\int \mathbf{\vec{k}}\cdot\mathbf{\vec{j}} d^{4}\mathbf{r} - \int \phi\rho d^{4}\mathbf{r} + (\mathbf{\vec{k}} \text{ and } \mathbf{\vec{m}} \text{ terms})$$

$$= -\frac{1}{i\omega}\int \phi\vec{\nabla}\cdot\mathbf{\vec{j}} d^{4}\mathbf{r} + \int \phi\rho d^{4}\mathbf{r} + \cdots . \tag{A.6}$$

From the equations of continuity, and (A.4), we have

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t} = -i\omega \rho. \tag{A.2'}$$

Therefore the first two terms in (A.6) cancel. In other words, due to charge conservation, only the $\vec{\xi}$ and \vec{m} fields are felt by the current.

To proceed further, we expand the fields in powers of kr. Note that since the nucleus is finite $<(kr)^n>$ $\le k^n$ R^n , where R is the nuclear radius. So for long wave-length photons, $\frac{1}{k}<< R$, this expansion is meaningful. We keep only the lowest order term. Then

$$\vec{\chi}_{\lambda\mu} = \frac{1}{2} \sqrt{\frac{\lambda}{2\lambda + 1}} \frac{(kr)^{\lambda - 1}}{(2\lambda - 1)!!} \dot{Y}_{\lambda, \lambda - 1, 1}^{\mu} (1 + O(k^2 r^2)), \qquad (A.7a)$$

$$\vec{\mathcal{E}}_{\lambda\mu} = -\frac{1}{2} \sqrt{\frac{\lambda+1}{2\lambda+1}} \frac{(kr)^{\lambda-1}}{(2\lambda-1)!!} \vec{Y}_{\lambda,\lambda-1,1}^{\mu} (1 + O(k^2r^2)). \tag{A.7b}$$

Thus, to lowest order

$$\vec{\mathcal{E}}_{\lambda\mu} \approx -\sqrt{\frac{\lambda+1}{\lambda}} \vec{\mathcal{E}}_{\lambda\mu}.$$
(A.8)

Using the equations of continuity again, we have

$$\frac{1}{c} \int \vec{\xi}_{\lambda\mu} \cdot \vec{J} d^3r \approx \sqrt{\frac{\lambda+1}{\lambda}} \int \phi_{\lambda\mu} \rho d^3r. \tag{A.9}$$

The above relation which states that in the long wave length limit a knowledge of the charge density of matter alone is sufficient to describe the interaction between the matter and the electric potential, is generally referred to as "Siegert's theorem"²⁾. The RHS of (A.9) is obviously easier to compute than the LHS. Conceptually it is also easier to grasp, as it is related to static properties of the nucleus.

It should be stressed that in actual calculations, (A.9) will be realized only if (A.2) is explicitly satisfied. For example (A.9) will not be realized when Jexch is non-vanishing and not included in Therefore it is always advantageous to use the RHS of (A.9) whenever possible, since unlike (the Jexch term in) \vec{J} the charge density is known. One of the prescriptions that will guarantee gauge invariance and charge conservation is to replace the operator $\frac{\pi}{\epsilon}$ \forall in (3) by the cannonical momentum operator $[H, \dot{r}]$. This will include in \vec{J} the exchange current due to the explicit dependence of the interaction on momentum. There are other more subtle reasons for the breakdown of (A.2). For example, truncating the basis in a shell model calculation is equivalent to making the two-body interaction effectively momentum-dependent, even if it is not explicitly so. This part of the texch can be either eliminated (or reduced) by enlarging the basis 10) or it can be calculated by perturbation theory. In the literature the latter procedure is referred to as "renormalization" of the density operators 11,4,12).

There is no equivalent of Siegert's theorem for the magnetic interaction $\int \vec{n}_{\lambda\mu} \cdot \vec{j} \ d^4r$. Although the contributions from the magnetization current of (4) almost always dominates this interaction, in some cases 3) the contributions of the exchange current are known to be important.

Siegert's theorem can be generalized so that for the electric interactions explicit reference to the current is deleted for all photon energies. Sachs and Austern¹³⁾ used gauge invariance and Foldy¹⁴⁾ used the conservation of charge to achieve this goal. The end results of these two approaches are equivalent but not identical. Essentially they involve different series expansions of the interactions in powers of the photon energy $\hbar\omega$. In both cases the expansions can be identified with the usual multipole expansion only in the long wave-length limit.

The equation of continuity, (A.2), can be expressed in terms of multipole densities. For the Fourier component $J_{\nu}(r) = J_{\nu}(\vec{r})e^{i\omega t}$, we have, from (A.2) and (11,12),

$$k\rho_{\lambda}(\mathbf{r}) + \sqrt{\frac{\lambda+1}{2\lambda+1}} \left(\frac{d}{d\mathbf{r}} + \frac{\lambda+2}{\mathbf{r}}\right) \rho_{\lambda,\lambda+1}(\mathbf{r}) + \sqrt{\frac{\lambda}{2\lambda+1}} \left(\frac{d}{d\mathbf{r}} - \frac{\lambda-1}{\mathbf{r}}\right) \rho_{\lambda,\lambda-1}(\mathbf{r}) = 0 \tag{A.2'}$$

where $k = \omega/c$.

A.2 GAMMA-EMISSION

The rates of transition from $|\Psi_{\vec{1}}\rangle$ to $|\Psi_{\vec{1}}\rangle$, or the numbers of photons of energy hw emitted per second, are $^{15})$

$$T_{\lambda\mu}^{E} = \frac{2k}{\hbar(2\lambda+1)} \left| \int \vec{\xi}_{\lambda\mu} \cdot \frac{\vec{J}}{c} d^{3}r \right|^{2}$$
(A.10a)

and

$$T_{\lambda\mu}^{M} = \frac{2k}{\hbar(2\lambda+1)} \left| \int \vec{m}_{\lambda\mu} \cdot \frac{\vec{J}}{c} d^{3}r \right|^{2}$$
 (A.10b)

respectively due to electric and magnetic λ -pole γ -transitions. Using Siegert's theorem and (11)

$$T_{\lambda\mu}^{E} = 8\pi e^{2} \left(C_{1,\lambda\mu}^{f}\right)^{2} \frac{(\lambda+1)}{\lambda \left[(2\lambda+1)!!\right]^{2}} \frac{k^{2\lambda+1}}{\hbar} \left(\int_{0}^{\infty} r^{\lambda+2} \rho_{\lambda}(r) dr\right)^{2}$$
(A.11a)

in the long wave-length limit. Here $C_{i,\lambda\mu}^f = \langle J_i M_i \lambda \mu | J_f M_f \rangle$. We may also use the current given by (12), in which case

$$T_{\lambda\mu}^{E} = \frac{8\pi ke^{2}}{\hbar} \frac{1}{2\lambda+1} \left(C_{i,\lambda\mu}^{f}\right)^{2} \left\{ \int_{0}^{\infty} r^{2} dr \sqrt{\lambda+1} j_{\lambda-1}(kr) \rho_{\lambda,\lambda-1}(r) + \sqrt{\lambda} j_{\lambda+1}(kr) \rho_{\lambda,\lambda+1}(r) \right\}^{2}. \tag{A.11b}$$

Similarly

$$T_{\lambda\mu}^{M} = \frac{8\pi ke^{2}}{\hbar} \left(C_{1,\lambda\mu}^{f}\right)^{2} \left(\int_{0}^{\infty} r^{2} dr j_{\lambda}(kr) \rho_{\lambda\lambda}(r)\right)^{2}$$
(A.11c)

In the long wave-length limit, a condition invariably satisfied in nuclear γ -transitions, we may again expand the spherical Bessel functions and keep the terms lowest order in k. Summing over $M_{\hat{\Gamma}}$ and μ and averaging over $M_{\hat{\Gamma}}$, we define

$$T(\frac{E}{M}\lambda;i+f) = \frac{1}{2J_{i}+1} \sum_{m_{i},m_{f},\mu} T_{\lambda\mu}^{E,M}(i+f)$$

$$= \frac{8\pi(\lambda+1)}{\lambda \lceil (2\lambda+1)!! \rceil^{2}} \frac{k^{2\lambda+1}}{h} B(\frac{E}{M}\lambda;i+f). \tag{A.12}$$

B is called the transition strength. From (A.11)

$$B(E\lambda; i+f) = e^2 \frac{2J_f+1}{2J_i+1} \left(\int r^{\lambda+2} \rho_{\lambda}^{i+f}(r) dr \right)^2,$$
 (A.13a)

$$= e^{2} \frac{2J_{f}^{+1}}{2J_{f}^{+1}} \frac{(2\lambda+1)\lambda}{k^{2}} \left(\int r^{\lambda+1} \rho_{\lambda,\lambda-1}^{1+f}(r) dr \right)^{2}, \qquad (A.13b)$$

$$B(M\lambda; i+f) = e^{2} \frac{2J_{f}+1}{2J_{f}+1} \frac{\lambda}{\lambda+1} \left(\int r^{\lambda+2} \rho_{\lambda\lambda}^{i+f}(r) dr \right)^{2}. \tag{A.13c}$$

The strengths are simply moments of the appropriate transition densities. The dimensionality of $B(\lambda)$ is $e^2L^{2\lambda}$. Note that the RHS of (A.13b) depends explicitly on the photon energy, whereas the expression in (A.13a) does not. This is a reflection of the continuity

equation, which must be satisfied if the equality of (A.13a) and (A.13b) is to be realized. In the literature (A.13a) is invariably used, as its evaluation requires no explicit statement being made of the current.

As for the evaluation of all operators involving the gradient operator, different expressions can be obtained by integrating by parts. We shall use this technique to derive a more familiar expression for $B(M\lambda)$. From (20) and (27) (second line) we have

$$\sqrt{\frac{\lambda}{\lambda+1}} \int r^{\lambda+2} \rho_{\lambda\lambda}^{i \to f}(r) dr$$

$$= \frac{\pi}{2Mc} \sqrt{\frac{\lambda}{\lambda+1}} i^{\lambda} \langle \Psi_{\mathbf{f}} | -2ig_{\mathbf{L}} r^{\lambda Y}_{\lambda\lambda i} \cdot \overrightarrow{V} + \mu_{\mathbf{s}} (\overrightarrow{\nabla} \times r^{\lambda Y}_{\lambda\lambda 1}) \cdot \overrightarrow{\sigma} | \Psi_{\mathbf{i}} \rangle. \tag{A.14}$$

Using the identities †

$$\mathbf{r}^{\lambda} \ddot{\mathbf{Y}}_{\lambda\lambda}^{\mu} \mathbf{1} \cdot \vec{\nabla} = -\sqrt{\frac{1}{\lambda(\lambda+1)}} \quad \vec{\nabla} \left(\mathbf{r}^{\lambda} \mathbf{Y}_{\lambda}^{\mu} \right) \cdot \vec{\mathbf{L}},$$

and

$$\vec{\nabla} \times (\mathbf{r}^{\lambda} \ \vec{Y}^{\mu}_{\lambda\lambda 1}) = i \sqrt{\frac{\lambda+1}{\lambda}} \ \vec{\nabla} (\mathbf{r}^{\lambda} \ Y^{\mu}_{\lambda})$$

we have

$$\sqrt{\frac{\lambda}{\lambda+1}} \int \mathbf{r}^{\lambda+2} \rho_{\lambda\lambda}^{\mathbf{i} \to \mathbf{f}}(\mathbf{r}) d\mathbf{r} = \langle \Psi_{\mathbf{f}} | \frac{\hbar}{2Mc} \mathbf{i}^{1+\lambda} \{ \frac{2g_{\mathbf{L}}}{\lambda+1} \vec{\nabla} (\mathbf{r}^{\lambda} Y_{\lambda}) \cdot \vec{\mathbf{L}} + \mu_{\mathbf{S}} \vec{\nabla} (\mathbf{r}^{\lambda} Y_{\lambda}) \cdot \vec{\sigma} \} \| \Psi_{\mathbf{i}} \rangle. \tag{A.15}$$

$$\vec{\mathcal{M}}_{\lambda\mu} \cdot \vec{\nabla} / \mathbf{i} = -\frac{\mathbf{k}}{\sqrt{\lambda(\lambda+1)}} \vec{\mathcal{Z}}_{\lambda\mu} \cdot \vec{\mathbf{L}}; \langle \vec{\mathcal{M}}_{\lambda\mu} \cdot (\vec{\nabla} \times \vec{\sigma}) \rangle = \mathbf{k} \langle \vec{\mathcal{E}}_{\lambda\mu} \cdot \vec{\sigma} \rangle$$

[†] The following identities are more general:

The operators on the RHS are the usual effective magnetic λ -pole operators due to charge and spin respectively. The evaluation of the complete matrix element can be found in the literature 6). However, we may also separate the angular and radial integrations and thereby define the appropriate densities. Using the identity

$$\vec{\nabla}(\mathbf{r}^{\lambda}\mathbf{Y}^{\mu}_{\lambda}) = \sqrt{\lambda(2\lambda+1)} \mathbf{r}^{\lambda-1} \vec{\mathbf{Y}}^{\mu}_{\lambda,\lambda-1,1}$$

and defining the orbital and intrinsic spin densities

$$\rho_{\lambda \ell}^{\cdot, i+f} = \frac{\hbar}{Mc} \frac{1}{\sqrt{\lambda(\lambda+1)}} (\Psi_{f} \| i^{\ell} g_{L} \nabla_{\lambda \ell} \cdot \vec{L} \| \Psi_{i})$$
(A.16)

$$\rho_{\lambda \ell}^{s, i+f} = \frac{h}{2Mc} \left(\Psi_{f} \| i^{\ell} \mu_{s} \vec{Y}_{\lambda \ell 1} \cdot \vec{\sigma} \| \Psi_{i} \right), \tag{A.17}$$

We have

$$B(M\lambda; i+f) = e^{2} \frac{2J_{f}+1}{2J_{i}+1} \frac{\lambda}{\lambda+1} (2\lambda+1) \left\{ \int_{0}^{\infty} r^{\lambda+1} (\sqrt{\lambda} \rho_{\lambda,\lambda-1}^{L,i+f} + \sqrt{\lambda+1} \rho_{\lambda,\lambda-1}^{S,i+f}) dr \right\}^{2}. \quad (A.13d)$$

We use (9) to evaluate the partially reduced matrix elements.
We give the relevant single-particle matrix elements

$$(\mathbf{a}\|\mathbf{i}^{1+\lambda})_{\lambda \ell 1} \cdot \mathbf{\hat{L}}\|\mathbf{b}) = (-)^{\mathbf{j}_{\mathbf{a}} + \ell_{\mathbf{b}} - \lambda - \frac{1}{2}} \hat{\mathbf{j}}_{\mathbf{b}} \hat{\mathbf{k}}_{\mathbf{a}} \mathbf{W}(\mathbf{k}_{\mathbf{a}} \mathbf{k}_{\mathbf{b}})_{\mathbf{a}} \mathbf{j}_{\mathbf{b}}; \lambda^{\frac{1}{2}}) (\mathbf{k}_{\mathbf{a}}\|\mathbf{i}^{1+\lambda})_{\lambda \ell 1} \cdot \mathbf{\hat{L}}\|\mathbf{k}_{\mathbf{b}})$$
(A.18a)

$$(\ell_{\mathbf{a}} \| \mathbf{i}^{1+\lambda} \mathbf{Y}_{\lambda \ell 1} \cdot \mathbf{L} \| \ell_{\mathbf{b}}) = (-)^{\ell+\lambda+\ell_{\mathbf{a}}} \mathbf{i}^{\ell_{\mathbf{b}}+1+\lambda-\ell_{\mathbf{a}}} (\frac{\ell_{\mathbf{b}}(\ell_{\mathbf{b}}+1)}{4\pi})^{\frac{1}{2}} \hat{\ell} \hat{\lambda} (2\ell_{\mathbf{b}}+1)$$

$$\times W(l_{b}l_{a}l_{i}l_{b}h) \binom{a}{0} \binom{l}{0} \binom{u}{a}(r) \binom{u}{b}(r)$$
(A.18b)

$$(a\|\mathbf{i}^{1+\lambda}\vec{Y}_{\lambda,\lambda\pm1,1}\cdot\vec{\sigma}\|\mathbf{b}) = (-)^{\ell_{\mathbf{a}}+\ell_{\mathbf{b}}+\mathbf{j}_{\mathbf{b}}+\mathbf{j}_{\mathbf{b}}+\mathbf{j}_{\mathbf{b}}}\mathbf{i}^{\ell_{\mathbf{b}}+1+\lambda-\ell_{\mathbf{a}}}\mathbf{i}^{\ell_{\mathbf{b}}+1+\lambda-\ell_{\mathbf{a}}}\mathbf{j}_{\mathbf{b}}(\mathbf{j}_{\mathbf{a}}\mathbf{j}_{\mathbf{b}})$$

$$\times \left(x_a^{+}x_b^{+\lambda+1}\right)\left(4\pi \begin{pmatrix} \lambda+1 \end{pmatrix}^{-\frac{1}{2}} u_a^{\star}(r)u_b(r); \qquad \frac{\ell_a^{+}\ell_b^{+\lambda} \text{ odd}}{2}, \tag{A.19a}$$

and

$$(\mathbf{a} \| \mathbf{i}^{\lambda} \mathbf{Y}_{\lambda \lambda 1} \cdot \vec{\sigma} \| \mathbf{b}) = -(-)^{\mathbf{j}_{b} + \lambda - \mathbf{j}_{2}} \mathbf{i}^{k_{b} + \lambda - k_{a}} \hat{\mathbf{j}}_{b} \hat{\lambda} (\mathbf{j}_{a} \mathbf{j}_{b} \lambda)$$

$$\times (\mathbf{x}_{a} - \mathbf{x}_{b}) (4\pi\lambda(\lambda + 1))^{-\mathbf{j}_{2}} \mathbf{u}_{a}^{*}(\mathbf{r}) \mathbf{u}_{b}(\mathbf{r}); \quad \underline{\hat{\mathbf{k}}_{a} + \hat{\mathbf{k}}_{b} + \lambda \quad \text{even.}}$$
(A.19)

(A.19b)

In the literature, the transition strength is often expressed in terms of the so-called Weisskopf units 15) (WU). This unit represents a rough estimate of the single-particle strength of a proton in transition

$$\begin{split} \mathbf{B}_{WU}(\mathbf{E}\lambda) &= \frac{(1.2)^{2\lambda}}{4\pi} \left(\frac{3}{\lambda+3}\right)^2 \mathbf{A}^{2\lambda/3} (\mathbf{e}^2 \mathbf{F}^{2\lambda}), \\ \mathbf{B}_{WU}(\mathbf{M}\lambda) &= \frac{0.11(1.2)^{2\lambda-2}}{\pi} \left(\frac{3}{\lambda+3}\right)^2 \mathbf{A}^{(2\lambda-2)/3} \left(\mathbf{e}^2 \mathbf{F}^{2\lambda}\right), \\ &= \frac{10(1.2)^{2\lambda-2}}{\pi} \left(\frac{3}{\lambda+3}\right) \mathbf{A}^{(2\lambda-2)/3} \mu_n^2 \mathbf{F}^{2\lambda-2}, \end{split}$$

and is given as follows:

where $\mu_n = \frac{f_0}{2Mc} = 0.105$ eF is the nuclear magneton. the atomic mass number of the nucleus. The Weisskopf unit strengths, in units of $e^2F^{2\lambda}$, for $E\lambda$ and $M\lambda$ transitions, are respectively plotted in Fig. A.1 and A.2, as functions of A.

Experimental data on transitions are also expressed in terms of the (partial) width, $\Gamma(\lambda) = hT(\lambda)$ and the associated lifetime $\tau(\lambda) = T(\lambda)^{-1}$. $T(\lambda)$ is the rate of transition given in (A.12). We may define the kinematic coefficients $\tau(\lambda)$ and $\tau(\lambda)$,

$$\tau(\lambda; i+f)^{-1} = t(\lambda) \cdot E_{\gamma}^{2\lambda+1} \cdot B(\lambda; i+f),$$

$$\Gamma(\lambda; i+f)^{-1} = C(\lambda) E_{\gamma}^{2\lambda+1} \cdot B(\lambda; i+f),$$

where E_{γ} = ħck is the transition energy. From (A.12)

$$C(\lambda)h = t(\lambda) = \frac{8\pi(\lambda+1)}{\lambda[(2\lambda+1)!!]^2} \frac{c}{(\hbar c)^{2\lambda+1}} (\frac{e^2}{\hbar c}), \text{ if } B(\lambda) \text{ in } e^2 F^{2\lambda}$$

$$= \frac{8\pi(\lambda+1)}{\lambda[(2\lambda+1)!!]^2} \frac{c}{(\hbar c)^{2\lambda+1}} (\frac{e^2}{\hbar c}) (\frac{\hbar}{2Mc})^2 \text{ if } B(\lambda) \text{ in } \mu^2 F^{2\lambda-2}.$$

In table A.1, the values for $t(\lambda)$ and $c(\lambda)$ for $\lambda=1$ to 5 are listed, with τ in units of psec (10^{-12} sec), Γ in units of eV, and E $_{\gamma}$ in units of MeV.

TABLE A.1. VALUES FOR COEFFICIENTS $t(\lambda)$ AND $C(\lambda)$

	$B(\lambda)$ in $e^2 F^{2\lambda}$		$B(\lambda)$ in $\mu_n^2 F^{2\lambda-2}$	
λ	t(λ)	C(λ)	t(λ)	C(\(\lambda\)
1	1.60(3)*	1.05	1.76(1)	1.16(-2)
2	1.23(-3)	8.08(-7)	1.36(-5)	8.94(-9)
3	5.72(-10)	3.76(-13)	6.33(-12)	4.16(-15)
4	1.70(-16)	1.12(-19)	1.88(-18)	1.24(-21)
5	3.46(-23)	2.28(-26)	3.83(-25)	2.52(-28)

^{*} The number in the bracket is the exponent of 10, i.e. $1.60(3) = 1.60 \times 10^3$.

A.3 ELECTRON SCATTERING

We shall express all momenta and energies in terms of wave numbers, in units of inverse length. The following notations will be used,

momenta of the incident and scattered electrons, respectively;
$$\epsilon_i, \epsilon_f, \qquad \text{initial and final electron energy;}$$

$$\epsilon_i, \epsilon_f, \qquad \text{momentum transferred to the nucleus;}$$

$$k = \epsilon_i - \epsilon_f, \qquad \text{energy transferred to the nucleus;}$$

$$\vec{P} \equiv \frac{1}{2} (\vec{P}_i + \vec{P}_f), \qquad \text{and}$$

$$q_{\mu}^2 \equiv q^2 - \kappa^2.$$

The EM potential which interacts with the nucleus is generated by the electron in motion. We use (A.3) and write $J_{\nu}^{(e)}$ as

$$J_{\nu}^{(e)} = e \overline{\psi}_{f} \gamma_{\nu} \psi_{i}$$

where ψ is the electron wavefunction, and γ_{ν} is the Dirac matrix. From (A.3), (A.4), and integrating the time out, we get the time-independent 4-vector potential

$$\delta(\varepsilon_{i}^{-\varepsilon} - \varepsilon_{f}^{-k}) A_{v}(\vec{r}) = -e\delta(\varepsilon_{i}^{-\varepsilon} - \varepsilon_{f}^{-k}) \int d^{3}r' \psi_{f}(\vec{r}') \gamma_{v} \psi_{i}(\vec{r}') \frac{e^{ikR}}{R}. \qquad (A.20)$$

R = |r-r'|. The interaction matrix element, to lowest order, is

$$\langle H_{int} \rangle = \int d^3 \mathbf{r} \ A_{\nu}(\mathbf{r}) \ J^{\nu}(\mathbf{r}), \qquad (A.21)$$

where $\boldsymbol{J}_{\nu}(\boldsymbol{r})$ is the nuclear current. The differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{2\pi}{\hbar} \left| \langle H_{int} \rangle \right|^2 \frac{\rho_f}{J_e}$$
 (A.22)

where $\boldsymbol{\rho}_{\mathbf{f}}$ is the final density of state. Including the nuclear recoil correction

$$\rho_{f} = \frac{1}{1 + \frac{2\varepsilon_{f}}{M_{m}} \sin^{2} \frac{\theta}{2}} \frac{p_{f}^{\varepsilon} f}{(2\pi)^{3} \hbar c}$$

where θ is the scattering angle in the laboratory frame and \textbf{M}_T is the nuclear mass. \textbf{j}_e is the incident electron flux

$$j_e = c p_i/\epsilon_i$$
.

(The expression for ρ_f and j_e implies that the electron wavefunctions are normalized in a sphere of unit volume.) Putting everything together, we have

$$\frac{d\sigma}{d\Omega} = \frac{\varepsilon_{i} \varepsilon_{f}^{p} f}{(2\pi)^{2} (\Re c)^{2} p_{i}} \frac{1}{1 + (2\varepsilon_{f} \sin^{2} \frac{\theta}{2})/M_{T}} |\langle H_{int} \rangle|^{2}. \qquad (A.23)$$

Only ${H_{int}}$ remains to be calculated.

In the plane wave Born approximation, $\overline{\psi}_{\hat{\Gamma}}(\vec{r}')\psi_{\hat{I}}(\vec{r}') \text{ is proportional to } e^{-i\vec{q}\cdot\vec{r}'}. \text{ Using this property and the relation}$

$$(\nabla_{\mathbf{r}}^2 + k^2) \frac{e^{ikR}}{R} = -\delta(\dot{\mathbf{r}}' - \dot{\mathbf{r}}),$$

and by integrating by parts, we have

$$\langle H_{\text{int}} \rangle_{\text{PWBA}} = \frac{e}{q_u^2} \int \overline{\psi}_f(\vec{r}) \gamma_v J^v(\vec{r}) \psi_i(\vec{r}) d^3r. \qquad (A.24)$$

The evaluation of the matrix element is straightforward but somewhat tedious; we only give the result for the cross section averaged over initial and summed over final spin projection 16),

$$\frac{d\sigma}{d\Omega} = \frac{\varepsilon_{i} \varepsilon_{f} p_{f}}{(2\pi)^{2} (\hbar c)^{2} p_{i}} \frac{1}{1+2\varepsilon_{f}/M_{T} \sin \frac{2\theta}{2}} \frac{1}{2(2J_{i}+1)} \sum_{M's} \left| \langle H_{int} \rangle \right|^{2}_{PWBA}$$

$$= \frac{z^{2}\alpha^{2}}{q_{\mu}^{4}} \frac{p_{f}}{p_{i}} \frac{2}{1+2 \epsilon_{f}/M_{T} \sin^{2} \frac{\theta}{2}} \cdot \left\{ v_{L}(\theta) \sum_{\lambda=0}^{\infty} \left| F_{\lambda}^{c}(q^{2}) \right|^{2} \right\}$$

+
$$v_{T}(\theta) \sum_{\lambda=1}^{\infty} (|\dot{F}_{\lambda}^{M}(q^{2})|^{2} + |\dot{F}_{\lambda}^{E}(q^{2})|^{2})$$
 (A.25)

where

$$V_{L}(\theta) = \frac{1}{2} \frac{q_{\mu}^{4}}{q^{4}} \left[(\epsilon_{i} + \epsilon_{f})^{2} - q^{2} \right]$$
 (A.26a)

$$V_{T}(\theta) = P^{2} - (\frac{\vec{p} \cdot \vec{q}}{q})^{2} + \frac{1}{2} q_{\mu}^{2}.$$
 (A.26b)

The Coulomb, electric and magnetic form factors, F^{C} , F^{E} and F^{M} , are given by

$$Z \frac{\hat{J}_{i}\hat{\lambda}}{\hat{J}_{f}} F_{\lambda}^{c}(q^{2}) = \frac{1}{e} \langle \Psi_{f} | | \Phi_{\lambda} \rho_{op} | | \Psi_{i} \rangle = \sqrt{4\pi} \hat{\lambda} \int \rho_{\lambda}(qr) r^{2} dr \qquad (A.27a)$$

$$z \frac{\hat{\mathbf{j}}_{\hat{\mathbf{i}}}^{\hat{\lambda}}}{\hat{\mathbf{j}}_{f}} \mathbf{F}_{\lambda}^{E}(\mathbf{q}^{2}) = \frac{1}{ec} \langle \Psi_{f} | \vec{\xi}_{\lambda} \cdot \vec{\mathbf{j}}_{op} | \Psi_{\hat{\mathbf{i}}} \rangle$$

$$= \sqrt{4\pi} \int \left\{ \sqrt{\lambda+1} \, \rho_{\lambda,\lambda-1}(\mathbf{r}) \, \mathbf{j}_{\lambda-1}(\mathbf{q}\mathbf{r}) + \sqrt{\lambda} \, \rho_{\lambda,\lambda+1}(\mathbf{r}) \, \mathbf{j}_{\lambda+1}(\mathbf{q}\mathbf{r}) \right\} \mathbf{r}^2 d\mathbf{r} \tag{A.27b}$$

$$z \frac{\hat{J}_{i}\hat{\lambda}}{\hat{J}_{r}} F_{\lambda}^{M}(q^{2}) = \frac{1}{ec} \langle \Psi_{i} | \overrightarrow{m}_{\lambda} \cdot J_{op} | \Psi_{i} \rangle = \sqrt{4\pi} \hat{\lambda} \int_{\rho_{\lambda\lambda}} (r) j_{\lambda} (qr) r^{2} dr. \qquad (A.27c)$$

The multipole fields $\Phi_{\lambda\mu}$, $\vec{\xi}_{\lambda\mu}$ and $\vec{m}_{\lambda\mu}$ are those defined in (A.5) (with k replaced by q) and ρ_{λ} and $\rho_{\lambda\ell}$ are the nuclear transition densitis defined in Section 2.

When the momentum transfer is small, $qR \, \lesssim \, 1 \, , \, \, \text{where } R \, \, \text{is the nuclear size, we may use Siegert's}$ theorem, resulting in

$$F_{\lambda}^{E}(q^{2}) \approx \frac{k}{q} \sqrt{\frac{\lambda+1}{\lambda}} F_{\lambda}^{c}(q^{2}).$$

We have the extra factor k/q which is not equal to unity because in general the exchanged photon will be off the mass-shell.

As in our discussion of the B(M λ) strength, the orbital and spin densities, defined in (A.16) and (A.17), can be used to compute the magnetic form factor. Thus (see footnote on p.49)

$$\begin{split} &\frac{1}{c\varepsilon} < \Psi_{\mathbf{f}} \| \overrightarrow{\boldsymbol{m}}_{\lambda} \cdot \overrightarrow{\boldsymbol{j}}_{\mathrm{op}} \| \Psi_{\mathbf{i}} > = -\frac{\hbar q}{2Mc} < \Psi_{\mathbf{f}} \| 2q_{\mathbf{L}} \overrightarrow{\boldsymbol{\mathcal{E}}}_{\lambda\mu} \cdot \frac{\overrightarrow{\boldsymbol{L}}}{\sqrt{\lambda\left(\lambda+1\right)}} - \mu_{\mathbf{s}} \overrightarrow{\boldsymbol{\mathcal{E}}}_{\lambda\mu} \cdot \overrightarrow{\boldsymbol{\jmath}} \| \Psi_{\mathbf{i}} > \\ &= -\sqrt{4\pi} \ q \int [\sqrt{\lambda} \ \rho_{\lambda}^{\mathbf{L}} + \sqrt{\lambda+1} \ \rho_{\lambda}^{\mathbf{S}}, \lambda-1) j_{\lambda-1} (q\mathbf{r}) - (\sqrt{\lambda+1} \ \rho_{\lambda}^{\mathbf{L}}, \lambda+1} - \sqrt{\lambda} \ \rho_{\lambda,\lambda+1}^{\mathbf{S}}) j_{\lambda+1} (q\mathbf{r}) | \mathbf{r}^{2} d\mathbf{r}. \end{split}$$

(A.27c')

Clearly the LHS of (A.27c) has a simpler appearance. It should also be pointed out that (A.27c) is formally correct for the complete current (including J^{exch}) density whereas (A.27c') is specialized for J^c and J^m only. In general the advantage ρ^L and ρ^S have over ρ^c and ρ^m is that the former do not involve the derivative of the nuclear wavefunction. When q is small compared to the nuclear size, only the first two terms on the RHS of (A.27c') need be retained, since $|J_{\lambda+1}(qr)/J_{\lambda-1}(qr)| << 1$. In this case, just as in the case of static M λ transitions in the long wave-length limit, it is more advantageous to use the orbital and intrinsic spin densities. This is especially so for Ml, since $\rho_{1,0}^{L,S}$ are quite simple to calculate.

When the charge of the target is large, or more specifically, when the Coulomb potential energy of the scattered electron is not negligible compared to its kinetic energy, distortions of the incoming and outgoing electron waves must be considered. In this case, the condition leading to the simplified expression of (A.24) is no longer satisfied, and partial wave expansions for both the initial and final electron waves must be carried out.

Although the expression for the (e,e') cross section in the distorted wave Born approximation (DWBA) exist in the literature 17 , the derivation is often less than transparent and the end result incomplete. We shall therefore present a complete derivation of the formulas here. Readers who are only interested in the end result shall find them in (A.41) and (A.45). We shall use the abbreviated notations $f = f \ d^3r'd^3r$, $C^j_{ajb} = C^j_{ajb} = C^j_{a$

We start from (A.20) and (A.21). Using an explicit representation of the Dirac matrices, and expanding 9) out the Green's function, we have

$$H_{int} = -e \int \psi_f^+(\vec{r}') (\rho(\vec{r}) - \vec{\alpha} \cdot \vec{J}(\vec{r})/c) \psi_i(\vec{r}) e^{ikR}/R$$

$$= -1e^{ik\cdot k\cdot k\tau} \sum_{\lambda=0,\mu} \int_{\psi_{\hat{\mathbf{f}}}} (\mathbf{p} - \hat{\mathbf{q}} \cdot \frac{\hat{\mathbf{J}}}{c}) \psi_{\hat{\mathbf{i}}} j_{\lambda} (k\mathbf{r}_{<}) h_{\lambda}^{(1)} (k\mathbf{r}_{>}) Y_{\lambda}^{*\mu} (\hat{\mathbf{r}}^{\dagger}) Y_{\lambda}^{\mu} (\hat{\mathbf{r}}), \qquad (A.28)$$

where $r_{i}(r_{j})$ is the smaller (larger) of r' and r_{i} and $\vec{r}_{i} = (\frac{e^{i}}{d}, \frac{d}{d})$ is an operator in the electron Hilbert space only. In the following we shall use the abbreviation $h_{\lambda}(r')h_{\lambda}(r) = j_{\lambda}(kr_{j})h_{\lambda}^{(1)}(kr_{j}).$

For any vectors A and B, we have the identities

$$\sum_{\ell=0}^{\infty} \hat{\mathbf{A}}(\hat{\mathbf{r}}^{\ell}) \cdot \mathbf{B}(\hat{\mathbf{r}}) \mathbf{Y}_{\ell}^{\mathbf{m}}(\hat{\mathbf{r}}^{\ell}) \mathbf{Y}_{\ell}^{\mathbf{m}}(\hat{\mathbf{r}}) \mathbf{h}_{\lambda}(\hat{\mathbf{r}}^{\ell}) \mathbf{h}_{\ell}(\mathbf{r})$$

$$= \sum_{\ell=0}^{\infty} \sum_{m,\nu} (-)^{\nu} (\vec{A} \cdot \hat{\epsilon}_{-\nu} Y_{\ell}^{m*} h_{\ell}) (\vec{B} \cdot \hat{\epsilon}_{\nu} Y_{\ell}^{m} h_{e})$$

$$= \sum_{\lambda,\mu} \vec{A} \cdot \vec{Y}_{\lambda \ell 1}^{\mu *} (\hat{r}') h_{\ell}(r') h_{\ell}(r) \vec{Y}_{\lambda \ell 1}^{\mu} (\hat{r}) \cdot \vec{B}$$

$$(A.29 a)$$

$$=\sum_{\lambda\mu}\frac{1}{4\pi(2\lambda+1)}\vec{A}\cdot\{\vec{z}_{\lambda\mu}^{\star}(\hat{\mathbf{r}}')\vec{z}_{\lambda\mu}^{\star}(\hat{\mathbf{r}})+\vec{z}_{\lambda\mu}^{\star}(\mathbf{r}')\vec{z}_{\lambda\mu}^{\star}(\mathbf{r}')\vec{z}_{\lambda\mu}^{\star}(\hat{\mathbf{r}}'$$

where $\hat{\epsilon}_{\pm 1}$, $\hat{\epsilon}_0$ are the spherical unit vectors and $\vec{\boldsymbol{\xi}}$, $\vec{\boldsymbol{\xi}}$, $\vec{\boldsymbol{m}}$ are the spherical vector tensors defined in (A.5), with j_{ℓ} replaced by h_{ℓ} (i.e., $j_{\ell}(kr_{<})$ or $h_{\ell}^{(1)}(kr_{>})$). In the summation over λ , λ starts from 0 for $\vec{\boldsymbol{\xi}}$, and from 1 for $\vec{\boldsymbol{\xi}}$ and $\vec{\boldsymbol{m}}$. The reason

for having the two expansions (A.29a) and (A.29b) will be made clear later. Briefly the former will lead to a simpler expression whereas only the latter will allow us to make explicit and easy use of the equation of continuity. Putting (A.29) into (A.28), we have

$$=-4 \text{ iek } \left\{ \int \sum_{\lambda\mu} h_{\lambda}h_{\lambda} \left(\psi_{\mathbf{f}}^{\dagger}(-\mathbf{i})^{\lambda}Y_{\lambda}^{*\mu}\psi_{\mathbf{i}}\right) \left(\rho \mathbf{i}^{\lambda}Y_{\lambda}^{\mu}\right) \right.$$

$$\left. - \sum_{\lambda\ell\mu} h_{\ell}h_{\ell}(\psi_{\mathbf{f}}^{\dagger}(-\mathbf{i})^{\ell} \vec{\alpha} \cdot Y_{\lambda\ell1}^{*\mu}\psi_{\mathbf{i}}) \left(\mathbf{i}^{\ell} \vec{Y}_{\lambda\ell1}^{\mu} \cdot \vec{J}/c\right) \right\} . \tag{A.30}$$

We shall do the angular integration for the RHS of (A.30) first. From the definition of the nuclear charge and current densities, (11) and (12), we immediately have

$$\int \rho i^{\lambda} y_{\lambda}^{\mu} d\Omega_{\mathbf{r}} = e C_{\mathbf{i}, \lambda \mu}^{\mathbf{f}} \rho_{\lambda}(\mathbf{r}),$$

$$\int i^{\lambda} \dot{Y}_{\lambda \ell 1}^{\mu} \cdot \dot{J} / c d\Omega_{\mathbf{r}} = e C_{\mathbf{i}, \lambda \mu}^{\mathbf{f}} \rho_{\lambda \ell}(\mathbf{r}). \tag{A.31}$$

To do the same for the electron part we need explicit expressions for the electron wavefunctions. We follow the notation of Rose 18), and write for the incoming and outgoing functions

$$\psi_{(\hat{p},\hat{r})}^{(\frac{\pm}{2})\sigma} = \frac{4\pi}{\sqrt{2}} \sum_{\kappa,m,j} e^{\pm i\delta_{\kappa}} i^{\ell} C_{\ell m^{l} 2\sigma}^{j \nu} Y_{\ell}^{m^{*}}(\hat{p}) \psi_{\kappa}^{\nu}(\hat{r})$$
(A.32a)

where $\delta_{\bf k}$ is the phase-shift, σ is the spin projection, and $\psi^{\rm V}_{\bf k}$ is a two-component wavefunction,

$$\psi_{\kappa}^{V}(\hat{\mathbf{r}}) = \begin{pmatrix} g_{\kappa}(\mathbf{r})\phi_{\kappa}^{V}(\hat{\mathbf{r}}) \\ if_{\kappa}(\mathbf{r})\phi_{-\kappa}^{V}(\mathbf{r}) \end{pmatrix}$$
(A.32b)

$$\phi_{\kappa}^{V}(\hat{\mathbf{r}}) = \sum_{m \in \mathcal{I}} C_{\mathbf{k}_{\kappa}^{m}, \frac{1}{2}\mathcal{I}}^{j_{\kappa}V} Y_{\mathbf{k}_{\kappa}}^{m}(\hat{\mathbf{r}}) X_{\mathbf{i}_{2}}^{\sigma}$$
(A.32c)

with $j_{\kappa} = |\kappa| - \frac{1}{2}$, and $l_{\kappa} = \kappa$, if $\kappa > 0$ and $l_{\kappa} = -\kappa - 1$, if $\kappa < 0$. The radial wavefunctions g and f are solutions of the coupled radial Dirac equations 18 and are functions of the electron energy and the nuclear charge distribution:

$$\frac{dg_{\kappa}}{dr} = (E + m_e - V)f_{\kappa} - \frac{\kappa + 1}{r}g_{\kappa}$$
 (A.32d)

$$\frac{\mathrm{df}_{\kappa}}{\mathrm{dr}} = \frac{\kappa - 1}{r} f_{\kappa} - (E - m_{\rho} - V)g_{\kappa} \tag{A.32e}$$

where E = ϵ_1 or ϵ_k and V(r) are the appropriate static Coulomb potential generated by the nucleus. With (A.32), we have, for any tensor operator θ_{λ}^{μ}

$$(\psi_{\mathbf{f}}^{\sigma'} | o_{\lambda}^{\mu} | \psi_{\mathbf{i}}^{\sigma}) = 8\pi^{2} \sum_{\kappa', mm'} e^{i(\delta_{\kappa} + \delta_{\kappa'})} i^{\ell-\ell'} c_{\ell m}^{j\nu} c_{\ell' m'}^{j\nu} c_{\ell' m'}^{j'\ell'} \gamma_{\ell}^{m*} (\hat{\mathbf{p}}_{\mathbf{i}}) \gamma_{\ell'}^{m'} (\hat{\mathbf{p}}_{\mathbf{f}}) (\psi_{\kappa'}^{\nu'} | o_{\lambda}^{\mu} | \psi_{\kappa'}^{\nu}).$$

$$(A.33)$$

From (A.32b)

$$(\psi_{\kappa^{\, *}}^{\nu^{\, *}} \big| \, (\text{-i})^{\, \lambda} Y_{\lambda}^{*\mu} \big| \psi_{\kappa}^{\nu})$$

$$= (-)^{\lambda+\mu} C_{j\nu,\lambda-\mu}^{j'\nu'} \{ g_{\kappa}, g_{\kappa}(\phi_{\kappa'} \| i^{\lambda}Y_{\lambda} \| \phi_{\kappa}) + f_{\kappa'}f_{\kappa}(\phi_{-\kappa'} \| i^{\lambda}Y_{\lambda} \| \phi_{-\kappa}) \}$$
(A.34)

and

$$|\psi_{\kappa'}^{\nu'}|(-i)^{\ell} \stackrel{\rightarrow}{\alpha} \stackrel{\rightarrow}{Y}_{\lambda \ell 1}^{\mu*} |\psi_{\kappa}^{\nu}| = -i(-)^{\lambda+\mu} c_{j\nu\lambda-\mu}^{j'\nu'}$$

$$\times \{g_{\kappa}, f_{\kappa}(\phi_{\kappa}, \|i^{k} \overset{?}{\sigma} \overset{?}{\circ} \overset{?}{Y}_{\lambda k l} \|\phi_{-\kappa}) - f_{\kappa}, g_{\kappa}(\phi_{-\kappa}, \|i^{k} \overset{?}{\sigma} \overset{?}{\circ} \overset{?}{Y}_{\lambda k l} \|\phi_{\kappa})\}$$
(A.35)

where $j_{\kappa} = j_{\kappa}$, $j' = j_{\kappa'}$. From (14), and (A.19)

$$(\phi_{\pm k}, \|i^{\lambda}Y_{\lambda}\|\phi_{\pm \kappa}) = (-)^{j-\frac{1}{2}+\lambda} i^{\lambda} \frac{\hat{\lambda}\hat{j}}{\sqrt{4\pi}} (\frac{j}{\frac{1}{2}} - \frac{j}{\frac{1}{2}} \frac{\lambda}{0}), \quad \ell_{\kappa} + \ell_{\kappa} + \lambda \text{ or } \ell_{-\kappa} + \ell_{-\kappa} + \lambda \text{ even}$$

$$(\phi_{\pm\kappa} \| \mathbf{i}^{\lambda} \mathbf{Y}_{\lambda} \| \phi_{\pm\kappa}) = (-)^{\mathbf{j} - \mathbf{i}_{2} + \lambda} \mathbf{i}^{\lambda} - \frac{\hat{\lambda} \hat{\mathbf{j}}}{\sqrt{4\pi}} (\mathbf{i}_{2}^{\mathbf{j}} - \mathbf{i}_{2}^{\mathbf{j}} 0), \ell_{\kappa} + \ell_{\kappa} + \lambda \quad \text{odd}$$

$$(\phi_{\pm\kappa}, \|i^{\lambda+1} + \frac{1}{\alpha}, \dot{Y}_{\lambda+}\|\phi_{\pm\kappa}) = i \frac{\pm(\kappa' - \kappa) + \lambda + 1}{\lambda} (\phi_{\kappa}, \|i^{\lambda}Y_{\lambda}\|\phi_{\kappa})$$
(A.38)

$$(\phi_{\pm\kappa}, \|\mathbf{i}^{\lambda-1} \circ \dot{\mathbf{Y}}_{-}\| \phi_{\pm\kappa}) = -\mathbf{i} \frac{\pm (\kappa' - \kappa) - \lambda}{\hat{\lambda} \sqrt{\lambda}} (\phi_{\kappa}, \|\mathbf{i}^{\lambda} \mathbf{Y}_{\lambda}\| \phi_{\kappa})$$
(A.39)

$$(\phi_{\pm\kappa}, \|\mathbf{i}^{\lambda} - \mathbf{\hat{y}}_{\lambda}\|\phi_{\pm\kappa}) = \pm \frac{\kappa' + \kappa}{\sqrt{\lambda(\lambda + 1)}} (\phi_{\kappa}, \|\mathbf{i}^{\lambda}\mathbf{Y}_{\lambda}\|\phi_{-\kappa})$$
(A.40)

Putting (A.33-40) into (A.30a), we get

$$\langle H_{\text{int}} \rangle_{\text{DWBA}} = -i32\pi^{\circ} e^{2} k \sum_{k', h} C_{i, h}^{f} e^{i(\delta_{k'} + \delta_{k'})} i^{\ell - \ell' + \lambda} (-)^{j - \frac{1}{2} + \mu} \frac{\hat{\lambda} \hat{j}}{\sqrt{4\pi}} \begin{pmatrix} j' & j & \lambda \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$$

$$\times \ c_{\ell m^{\underline{l}_{2G}}}^{j \vee} \ c_{\ell \ 'm^{'\underline{l}_{2G}}}^{j \ ' \nu '} \ c_{j \nu , \lambda - \mu}^{j \ ' \nu '} \ y_{\ell}^{m^{\star}} (\hat{p}_{\underline{i}}) y_{\ell}^{m'} (\hat{p}_{\underline{f}})$$

$$\times \int \left\{ j_{\lambda}(kr_{\zeta})h_{\lambda}^{(1)}(kr_{\zeta})(T_{\kappa'\kappa\lambda}^{S} - i T_{\kappa'\kappa\lambda}^{M}) - \sum_{\ell = \lambda \pm 1} j_{\ell}(kr_{\zeta}/h_{\ell}^{(1)}(kr_{\zeta})T_{\kappa'\kappa\lambda\ell}^{EL} \right\} r^{2} dr'r^{2} dr$$
(A.41a)

where

$$T_{\kappa',\kappa\lambda}^{S} = G_{\kappa',\kappa}^{+}(r')\rho_{\lambda}(r)$$
 (A.41b)

$$T_{\kappa'\kappa\lambda,\lambda-1}^{EL} = \frac{1}{\hat{\lambda}\sqrt{\lambda}} \left(\lambda F_{\kappa'\kappa}^{-}(r') - (\kappa'-\kappa) F_{\kappa'\kappa}^{+}(r')\right) \rho_{\lambda,\lambda-1}(r)$$
(A.41c)

$$T_{\kappa'\kappa\lambda,\lambda+1}^{EL} = \frac{1}{\hat{\lambda}\sqrt{\lambda+1}} \left((\lambda+1)F_{\kappa'\kappa}(\mathbf{r'}) + (\kappa'-\kappa)F_{\kappa'\kappa}^{+}(\mathbf{r'}) \right) \rho_{\lambda,\lambda+1}(\mathbf{r})$$
(A.41d)

$$T_{\kappa'\kappa\lambda}^{M} = \frac{\kappa' + \kappa}{\sqrt{\lambda(\lambda + 1)}} F_{\kappa'\kappa}^{+}(r') \rho_{\lambda\lambda}(r)$$
(A.41)

$$G_{\kappa',\kappa}^{\dagger}(r') = g_{\kappa'}(r')g_{\kappa}(r') + f_{\kappa'}(r')f_{\kappa}(r')$$
 (A.41f)

$$F_{\kappa'\kappa}^{\pm}(r') = g_{\kappa'}(r')f_{\kappa}(r') \pm f_{\kappa'}(r')g_{\kappa}(r')$$
(A.41g)

where $\ell=\ell_{\kappa}$, $\ell'=\ell_{\kappa}$,, $j=j_{\kappa}$, $j'=j_{\kappa}$. Note that for T^S and T^{EL} , $\ell+\ell'+\lambda$ must be even, whereas for T^M , $\ell+\ell'+\lambda$ must be odd. It follows that other than the phase shift factor $\ell=\ell_{\kappa}$, $\ell+\ell_{\kappa}$, $\ell+\ell_{\kappa}$, is pure imaginary.

Equation (A.41) has been the basis for essentially all the computer programs written for (e,e') in DWBA. An updated and improved version of one of these, the code DUELS, originally written by the Yale-Duke-Ohio group 19,20), is available at CRNL.

It should be pointed out that in the development above, nowhere was the equation of continuity used. This results in \mathbf{T}^S being due solely to the scalar multipole, and \mathbf{T}^{EL} being due both to the longitudinal and transverse electric multipoles. Consequently \mathbf{T}^S is not the equivalent of the Coulomb term \mathbf{F}^C in PWBA. The latter includes the contribution from the longitudinal multipole as well. Similarly, \mathbf{T}^{EL} is not the equivalent of \mathbf{F}^E in PWBA. The latter is due only to the transverse electric multipole. It is desirable to combine the contributions to the scattering from the charge distribution and the longitudinal current. One does not do this for

esthetic reasons alone. For a many-body nucleus (A > 2), the approximation used in calculating the wavefunction often leads to a current which is not conserved, even when the Hamiltonian is formally gauge invariant. Therefore it is advantageous to work in a formalism that does not overly rely on the accuracy of the (irrotational component of the) current. In the following we shall derive an expression for the (e,e') amplitude in which explicit knowledge of the longitudinal current is not needed.

We start from equation 28, and use the shorthand notations for the electron current and density

$$\dot{j}^{\dagger} \equiv \psi_{f}^{\dagger}(\dot{\vec{r}}')\dot{\alpha}^{\dagger} \psi_{i}(\dot{\vec{r}}'); \qquad \rho_{(e)}^{\dagger} \equiv \psi_{f}^{\dagger}(\dot{\vec{r}}')\psi_{i}(\dot{\vec{r}}').$$

In making use of the continuity equation (A.2), we will have to do some integration by parts. Therefore it is necessary to separate the electron and nuclear coordinates. First we recall the integral representation

$$i^{4\pi k j}_{\ell}(kr_{<})h_{\ell}^{(1)}(kr_{>}) = 8 \int_{0}^{\infty} \frac{j_{\ell}(qr')j_{\ell}(qr)q^{2}dq}{q^{2}-k^{2}-i\epsilon}$$
 (A.42)

Substituting into (A.28), we get

$$\langle H_{int} \rangle = -8e \int d\vec{r}' d\vec{r} \int_0^{\infty} \frac{q^2 dq}{q^2 - k^2 - i\epsilon}$$

$$\times \sum_{\ell,m} \left\{ (\rho_{(e)}^{\dagger}(\vec{r}')\rho(\vec{r}) - \vec{j}^{\dagger}(\vec{r}')\vec{J}(\vec{r})/c) j_{\ell}(qr') Y_{\ell}^{m^{\star}}(\hat{r}') j_{\ell}(qr) Y_{\ell}^{m}(\hat{r}) \right\}.$$

The electron and nuclear coordinates are now completely separated. We now use (A.29b) and get

$$\langle H_{\text{int}} \rangle = -8e \int d\vec{r}' d\vec{r} \int_0^{\infty} \frac{q^2 dq}{q^2 - k^2 - i\epsilon} \left\{ \sum_{\ell m} \rho_{(e)}^{\dagger} \rho_{\ell}^{\dagger} y_{\ell}^{m *} y_{\ell}^{m} \right\}$$

$$-\sum_{\mathbf{q},\mu} \frac{1}{4\pi(2\lambda+1)} \sum_{\mathbf{q}} (\vec{\mathbf{j}}(\vec{\mathbf{r}}') \cdot \vec{\mathbf{q}}_{\lambda\mu}(\vec{\mathbf{r}}'))^{\dagger} (\vec{\mathbf{j}}(\vec{\mathbf{r}})/c \cdot \vec{\mathbf{q}}_{\lambda\mu}(\vec{\mathbf{r}}))$$
(A.43)

where Σ means summing over the three functionals $\vec{\mathcal{Z}}$, $\vec{\xi}$ and \vec{m} defined in (A.5). We are especially interested in the term when \mathcal{R} is

$$\vec{\mathcal{X}}_{\lambda\mu}(\vec{\mathbf{r}}) = \sqrt{4\pi} \; \hat{\lambda}(\mathrm{iq})^{-1} \; \vec{\nabla}(\mathrm{j}_{\lambda}(\mathrm{qr})\mathrm{i}^{\lambda}Y^{\mu}_{\lambda}(\hat{\mathbf{r}})).$$

In this case

$$\begin{split} &\frac{1}{4\pi(2\lambda+1)}\int d\vec{r}'(\vec{j}(\vec{r}')\cdot\vec{k}_{\lambda\mu}(\vec{r}'))^{\dagger}\int d\vec{r}(J(r)/c\cdot\vec{k}(\vec{r})) \\ &=\frac{k^2}{2}\int d\vec{r}' d\vec{r} \, \rho_{\lambda}(\vec{r}')^{\dagger}\rho_{\lambda}(\vec{r}) \, j_{\lambda}(qr')j_{\lambda}(qr)Y_{\lambda}^{\mu^{*}}(\hat{r}')Y_{\lambda}^{\mu}(\vec{r}), \end{split}$$

where we have integrated by parts, thrown away the vanishing surface terms at infinity, and used (A.2). We get a term which is k^2/q^2 times the scalar term, for each momentum transfer q. Combining this term with the scalar term in (A.43) and recalling that for $\vec{k} = \vec{k}$ the sum over λ is from $\lambda=0$ on, whereas for $\vec{k} = \vec{k}$ or \vec{j}_{ij} it is from $\lambda=1$ on, we have

$$\langle H_{\text{int}} \rangle = -3e \int d\vec{r}' d\vec{r} \left\{ \int_0^\infty dq \rho_{(e)}^\dagger(\vec{r}') \rho(\vec{r}) \sum_{\ell=0,m} j_\ell(qr') j_\ell(qr) Y_\ell^{m'}(\hat{r}') Y_\ell^m(\hat{r}) \right\}$$

$$-\int_{0}^{\infty} \frac{q^{2}dq}{q^{2}-k^{2}-i\epsilon} \sum_{\lambda=1,\mu} \frac{1}{4\pi(2\lambda+1)} \sum_{\alpha=\ell,m} (\vec{j}(\vec{r}') \cdot \vec{R}_{\lambda\mu}(\vec{r}'))^{\dagger} (\vec{j}(\vec{r}$$

This is a remarkable result. The expression for the Coulomb term (first term in the curly brackets) is similar to that for elastic scattering; that is, for k=0. (Naturally the densities $\rho_{(e)}$ and ρ still depend on the energy loss implicitly.) To proceed, we integrate over q and the angular variables, using (A.50e,f), (A.33-40) and (A.42). In using the last equation for the Coulomb term, we take the limit $k \to 0$,

$$8 \int_{0}^{\infty} j_{\ell}(qr')j_{\ell}(qr)dq = \frac{4\pi}{2\ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}}.$$

The final result is

$$\langle \mathbf{H}_{\text{int}} \rangle_{\text{DWBA}} = -32\pi^{3} e^{2} \sum_{\substack{\lambda \mu \kappa \\ \mathbf{k'mm'}}} c_{\mathbf{i},\lambda\mu}^{\mathbf{f}} e^{\frac{\mathbf{i}(\delta_{\kappa} + \delta_{\kappa'})}{\kappa' + \delta_{\kappa'}}} i^{\ell-\ell'+\lambda} (-)^{\frac{\mathbf{j} - \mathbf{i}_{2} + \mu}{\sqrt{4\pi}}} \frac{\hat{\lambda}\hat{\mathbf{j}}}{\sqrt{4\pi}} \begin{pmatrix} \mathbf{j'} & \mathbf{j} & \lambda \\ \mathbf{i}_{2} & -\mathbf{i}_{2} & 0 \end{pmatrix}$$

$$\times \ C_{\ell m^{l} 2^{\sigma}}^{j \nu} C_{\ell m^{l} 2^{\sigma}}^{j' \nu'}, C_{j \nu \lambda - \mu}^{j' \nu'} \ Y_{\ell}^{m \star}(\hat{p}_{i}) Y_{\ell}^{m'}, (\hat{p}_{f}) \ \int_{0}^{\infty} r'^{2} \mathrm{d}r' \int_{0}^{\infty} r^{2} \mathrm{d}r' \int_{0}^{\infty} r'^{2} \mathrm{d}r' \int_{0}^{\infty} r'' \int_{0}^{\infty} r' \int_{0}^{\infty} r'' \int_{0}^{\infty} r'' \int_{0}^{\infty} r'' \int_{0}^{\infty} r' \int_{0}^{\infty} r'$$

$$\times \left\{ \frac{1}{2\lambda+1} G_{\kappa'\kappa}^{\dagger}(\mathbf{r'}) \rho_{\lambda}(\mathbf{r}) \frac{r_{<}^{\lambda}}{r_{>}^{\lambda+1}} P_{\ell\ell'\lambda}^{(+)} \right\}$$

+ k
$$\frac{\kappa'+\kappa}{\sqrt{\lambda(\lambda+1)}} F_{\kappa'\kappa}^{+}(r')\rho_{\lambda\lambda}(r)j_{\lambda}(kr_{<})h_{\lambda}^{(1)}(kr_{>})(1-\delta_{\lambda0})P_{\ell\ell'\lambda}^{(-)}$$

$$-ik\frac{\sqrt{\lambda(\lambda+1)}}{\hat{\lambda}(2\lambda+1)}\left[\left(F_{\kappa'\kappa}(r')-\frac{\kappa'-\kappa}{\lambda}F_{\kappa'\kappa}(r')\right)h_{\lambda-1}(kr')\right]$$

+
$$(F_{\kappa',\kappa}(r'))$$
 + $\frac{\kappa'-\kappa}{\lambda+1}$ $F_{\kappa',\kappa}(r')$ $h_{\lambda+1}(kr')$

$$\times \left[\sqrt{\lambda+1} \rho_{\lambda,\lambda-1}(\mathbf{r}) h_{\lambda-1}(\mathbf{k}\mathbf{r}) + \sqrt{\lambda} \rho_{\lambda,\lambda+1}(\mathbf{r}) h_{\lambda+1}(\mathbf{k}\mathbf{r}) \right] (1-\delta_{\lambda 0}) P_{\ell\ell'\lambda}^{(+)} \right\}, \quad (A.45)$$

where with $|\lambda' - \lambda| \le 2$

$$h_{\lambda'}(kr')h_{\lambda}(kr) = \begin{cases} j_{\lambda'}(kr')h_{\lambda}^{(1)}(kr) + i(2\lambda-1)k^{-3}r'^{\lambda-2}/r^{\lambda+1}\delta_{\lambda'+2,\lambda'}; & r' \leq r, \\ h_{\lambda'}(kr')j_{\lambda}(kr) + i(2\lambda+3)k^{-3}r^{\lambda}/r'^{\lambda+3}\delta_{\lambda'-2,\lambda'}; & r' > r. \end{cases}$$

The function P (±) enforces the parity selection rule,

$$P_{QQ'}^{(\pm)} = \frac{1}{2} (1 \pm (-)^{\ell + \ell' + \lambda}).$$

Although in principle they should lead to (A.45) should be chosen over (A.41) identical results. whenever possible. Some of the reasons for advocating this choice have been given earlier. In more practical terms, suppose we are interested in calculating the forward (e,e') amplitude for a natural parity transition. Equation (A.45) only requires that the charge density $\rho_{\lambda}(r)$ (41) requires a knowledge of the be known whereas current densities $\rho_{\lambda-1}(r)$ and $\rho_{\lambda+1}(r)$ as well. It can be shown that the error incurred in using (A.41) but setting $\rho_{1+1}(r) = 0$ is approximately k^2/q^2 , where \vec{q} is the (asymtotic) momentum transfer. Therefore the error is small when $k^2/q^2 \ll 1$, and (A.45) offers no practical advantage over (A.41) in such cases. On the other hand, when moderate electron energy beams are used to highly excited nuclear states (such as the giant Ελ resonances), k^2/q^2 can be large, and (A.45) is definitely to be preferred.

Equation (A.45) has the correct limit for elastic scattering, but it is more convenient to use the relation

$$\lim_{k \to 0} k j_{\lambda}(kr_{<}) h_{\lambda}^{(1)}(kr_{>}) = \frac{-i}{2\lambda + 1} \frac{r_{<}^{\lambda}}{r_{>}^{\lambda + 1}}$$

for the magnetic term (second term in { }) at the outset. Also in this case the transverse electric (third) term vanishes since $\rho_{\lambda,\lambda\pm 1}(r)$ each vanishes individually, as was shown in section 2.8. We also expect the electron kernel to vanish for this term. We note that the electron kernel is an odd function under the permutation κ' $\$ κ , therefore it must be zero when $\psi_f = \psi_i$.

A.4 (Y,N) REACTIONS

When the absorption of a γ -ray leads only to an internal excitation of the nucleus, the process can be described in terms similar to those describing γ -emission. A more complicated reaction occurs when the nucleus disintegrates. Here we describe the reactions (γ,p) and/or (γ,n) .

We first recall the general (non-relativis-tic) expression for a scattering cross section

$$\frac{do}{d\Omega} = \frac{2\pi}{\hbar} \left| \langle H_{int} \rangle \right|^2 \frac{\rho(E_f)}{J_i}.$$

<H_{int} > is the interaction matrix, in this case

$$H_{\text{int}} = \frac{1}{\sqrt{2}} \sum_{\lambda \mu = \pm 1} (\vec{\xi}_{\lambda \mu} + \mu \vec{m}_{\lambda \mu}) \cdot \vec{J} / c = \sum_{\lambda, \mu = \pm 1} O_{\lambda \mu}$$

 j_1 is the flux of the incoming (unpolarized) beam. For the EM fields given by (A.5), with $b_{+1} = 1/\sqrt{2}$,

$$j_i = k/2\pi\hbar.$$

 $\rho_{\rm f}(E)$ is the number of final states per unit volume per unit energy. For (γ,N) when the wavefunction of the outgoing particle is normalized as

$$\psi_{\mathbf{P_{f}},\sigma}^{(+)} = 4\pi \sum_{\ell m} \mathbf{u}_{\ell}(\mathbf{r}) Y_{\ell}^{m}(\hat{\mathbf{r}}) Y_{\ell}^{m*} (\hat{\mathbf{p}}_{\mathbf{f}}) X_{\sigma}$$

$$= 4\pi \sum_{k,m,a} c_{km}^{j} a^{m} a \psi_{\alpha}^{(+)}(\hat{r}) Y_{k}^{*m}(\hat{k})$$

$$(A.46)$$

where $\lim_{r\to\infty} u_{\ell}(r) = \sin(k\gamma - \frac{\ell\pi}{2} + \text{phase shifts})$, we have (ignoring recoil)

$$\rho_{\mathbf{f}}(\mathbf{E}) = \frac{Mp_{\mathbf{f}}}{(2\pi\hbar)^3}.$$

Therefore

$$\frac{d\sigma}{d\Omega} = \frac{M}{2\pi^2} \frac{P_f}{hk} |\langle H_{int} \rangle|^2. \tag{A.47}$$

Let $|\Psi_{\mathbf{r}}\rangle$ be the wavefunction of the residual nucleus. The total final state is

$$|\Psi_{f}\rangle = |\psi_{p_{f},\sigma}^{(+)}\rangle |\psi_{r}\rangle$$

$$= 4\pi \sum_{\ell,m,a} C_{\ell,2}^{\alpha} Y_{\ell}^{*m} (\hat{p}_{f}) |\psi_{\alpha}^{(+)} \psi_{r}\rangle. \tag{A.48}$$

Therefore

$$\langle H_{\text{int}} \rangle = \frac{1}{\sqrt{2}} \sum_{\lambda,\mu=\pm 1} 4\pi \sum_{\ell=\pm 1} C_{\ell}^{\star} Y_{\ell}^{\star m}(\hat{p}_{f}) \langle \psi_{\alpha}^{(+)} \psi_{r} | O_{\lambda\mu} | \Psi_{i} \rangle$$

$$= \sum_{\lambda, \mu \pm 1} \frac{4\pi}{\sqrt{2}} \sum_{\ell} Y_{\ell}^{*m} (\hat{p}_{f}) \sum_{ab} \rho_{ab, \lambda \mu}^{i \to f} \frac{\hat{a}}{\hat{\lambda}} \langle a^{(+)} \| 0_{\lambda} \| b \rangle$$
(A.49)

where

$$\rho_{ab,\lambda\mu}^{i\to f} = (-)^{j_b^{-m}b} C_{\ell \downarrow}^{\alpha} C_{\alpha B}^{\lambda \mu} C_{J_r,\beta}^{i} \langle J_r;b| \} J_i \rangle$$
(A.50)

is the equivalent of the one-body transition density matrix. $<J_r;b \nmid \} J_i > \text{ is the usual fractional parentage coefficient.}$ We can now use the formulas developed in section 2. We find

$$= \frac{4\pi e}{\sqrt{2}} \sum_{\lambda, \mu=\pm 1} \sum_{\ell} Y_{\ell}^{*m} (\hat{p}_{f}) \sqrt{4\pi}$$

$$\times \{ \int r^{2} dr (\sqrt{\lambda+1} j_{\lambda-1}(kr) \rho_{\lambda\lambda-1}(r) + \sqrt{\lambda} j_{\lambda+1}(kr) \rho_{\lambda, \lambda+1}(r) \}$$

$$+ \mu \hat{\lambda} \int r^{2} dr j_{\lambda}(kr) \rho_{\lambda\lambda}(r) \}. \qquad (A.57)$$

The similarity among the expressions in (A.51), (A.11), (A.27) and (A.45) that involve the nuclear current densities is quite transparent. In the curly bracket, the first two terms are due to $\vec{\boldsymbol{\xi}}_{\lambda u}$ and the last term due

to $\hat{m}_{\lambda\mu}$. If the photon wave-length is long, we can again use Siegert's theorem to replace the first two terms by

When magnetic states M_1 and M_f are averaged and summed over, respectively, the parentage states $|\mathrm{J}_f;\mathrm{b}\rangle$ enter the sum incoherently. Furthermore, when σ is summed over and the cross section integrated over the angle of $\hat{\mathrm{P}}_f$, the multipoles contribute incoherently. We get

$$\sigma = \frac{8\pi Mc^{2}e^{2}}{(\hbar c)^{2}} \frac{P_{f}}{hk} \sum_{a,b,\lambda} \frac{(2j_{a}^{+1})}{(2j_{b}^{+1})(2\lambda+1)} \left| \langle J_{r};b | \} J_{i} \rangle \right|^{2} \left| \langle a^{(+)} | | 0_{\lambda} | | b \rangle \right|^{2}.$$

The one-body matrix element can be evaluated straight-forwardly using (A.5) and the formulas in Section 2, or alternatively, those given in (A.14-19). We only point out that since the radial wavefunction of the outgoing particle is dimensionaless instead of having the normalization $\int |u|^2 r^2 dr = 1$ for bound states, the dimensionality of the matrix element is $L^{3/2}$.

In practice the (γ,N) spectrum (for A >> 1) has a broad resonance structure. Thus at least in the giant resonance region (E, % 20-30 MeV) cross section is

dominated by the second order effect. That is, the photon is first absorbed by a resonance of the target, and the nucleon is then emitted through the residual nuclear interaction. In this case we have a "second order" term

$$\langle H_{\text{int}}^{(2)} \rangle = \frac{1}{\sqrt{2}} \sum_{n,\lambda,\mu=\pm 1} \langle \Psi | \hat{\mathcal{R}}_{\lambda\mu}^{\dagger} + \mu \hat{\mathcal{M}}_{\lambda\mu}^{\dagger} \rangle \cdot \frac{\dot{J}_{\text{op}}}{c} | \Psi_{n} \rangle \cdot \frac{1}{E_{f} + E_{i} - E_{n} + i\Gamma_{n/2}} \langle \Psi_{n} | \Psi_{\text{res}} | \Psi_{f} \rangle,$$

where E_n and Γ_n are respectively the energy and width of the intermediate (resonant) state $|\Psi_n\rangle$. The electronic matrix element can again be expressed in terms of the currents $\rho_{\lambda\ell}^{i\to n}$. The description of the nuclear vertex leading to the particle emission may be quite complex, and is outside the scope of this report.

An alternative to the perturbation treatment is to incorporate the resonance effect into the outgoing wave. This involves the solving of coupled-channel equations, as was done by Buck and Hill^{21} and by Raynal et al. 20 . In this case (A.51) is formally retained, with the resonance (or second and higher order) effect included in the (complex) densities $\rho_{\lambda\ell}$.

FIGURE 1. B(Eλ) WEISSKOPF UNITS

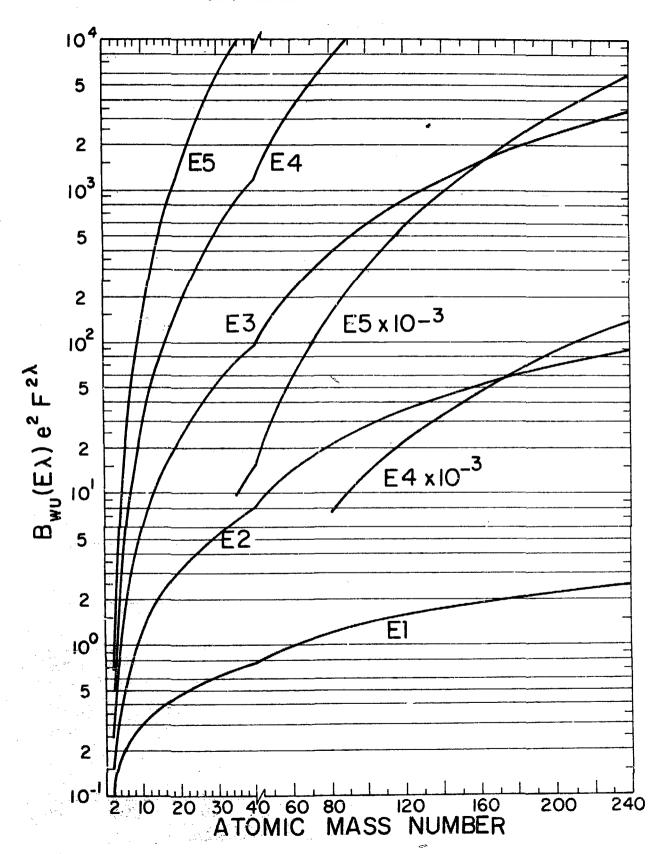
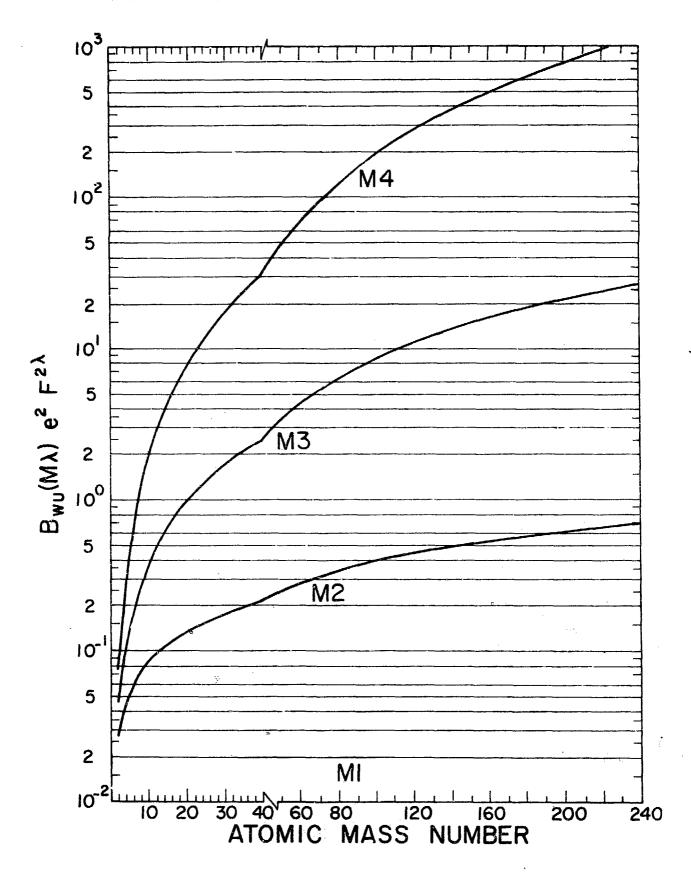


FIGURE 2. B(MA) WEISSKOPF UNITS



APPENDIX B

It was shown in Section 2 that the nuclear structural information leading to the one-body charge and current density is contained in the one-body transition density matrix, ρ . The computation of the density matrix depends on the specific microscopic model being used. In some models, such as the shell model and the Hartree-Fock model, the "complete" wavefunction of the nuclear state is obtained. In such cases the computation of ρ can be quite complex. In other models, such as the random-phase approximation and its variants, the transition amplitude instead of the wavefunction is obtained. In such cases the computation of ρ becomes a rather simple matter.

In this appendix we describe methods to calculate ρ in the three most commonly used nuclear models: The particle-hole model, the shell model and the Hartree-Fock model.

B.1 TRANSITION DENSITY MATRIX IN THE PARTICLE-HOLE MODEL

One of the simplest kinds of microscopic model describing nuclear excitations is the particle-hole model. In the Tamm-Dancoff approximation (TDA)

the particle-hole structure of an excited state of spin J, relative to the 0^+ ground state $|0\rangle$ is

$$|\Psi_{JM}\rangle = Q_{JM}^{\dagger}|0\rangle \equiv \sum_{ph} x_{ph}^{J} \Lambda_{phJM}^{\dagger}|0\rangle$$
(B.1)

where

$$A_{abJM}^{\dagger} = \sum_{\alpha \overline{\beta}} C_{\alpha}^{JM} s_{\beta} C_{\alpha}^{\dagger} C_{\beta};$$
(B.2)

p is an orbital not occupied (particle) in $|0\rangle$ and h is an orbital occupied (hole) in $|0\rangle$. The amplitudes x_{ph} are obtained by solving the linearized equation-of-motion²³)

$$<\Psi_{JM}|[H,Q_{JM}]|0> = \omega_{J} <\Psi_{JM}|Q_{JM}^{\dagger}|0>.$$
 (B.3)

The normalization is

$$(x_{ph}^{J})^2 = 1.$$
 (B.4)

Since A_{abJM}^{\dagger} is in fact just the transition density operator it is easy to see that in TDA

$$\rho_{ba\lambda}^{0\to J} = \delta_{J\lambda} \delta_{ap} \delta_{bh} x_{ph}^{\lambda} \quad (TDA)$$
(B.5)

In the random-phase approximation ²³⁾
(RPA), one assumes that there are particle-hole components in the ground state as well and write

$$|\Psi_{JM}\rangle = Q_{JM}^{\dagger}|0\rangle \equiv \sum_{ph} (x_{ph}^{J} A_{phJM}^{\dagger} - (-)^{J-M} y_{ph}^{J} A_{phJ-M})|0\rangle,$$
 (B.6)

and again linearize (B.3). The normalization is now

$$\sum_{ph} ((x_{ph}^{J})^2 - (y_{ph}^{J})^2 = 1.$$

The non-vanishing density matrix elements are

$$\rho_{hp\lambda}^{O \to J} = \delta_{\lambda J} x_{ph}^{\lambda}, \tag{B.7a}$$

$$\rho_{\text{ph}\lambda}^{\text{O+J}} = -(-)^{j_{\text{p}}^{+j_{\text{h}}^{+\lambda}}} \delta_{\lambda J} y_{\text{ph}}^{\lambda}. \quad (\text{RPA})$$
 (B.7b)

From (B.7) and the Hermitian properties of the density operators (equations (37) and (39)) we have

$$\rho_{\lambda}^{0+\lambda}(\mathbf{r}) = \sum_{ph} \frac{\hat{j}_p}{\hat{\lambda}} (\mathbf{x}_{ph} + \mathbf{y}_{ph}^{\lambda}) (\mathbf{p} \| \rho_{\lambda,0p} \| \mathbf{h})$$
 (B.8a)

and

$$\rho_{\lambda \ell}^{0 \to \lambda}(\mathbf{r}) = \sum_{ph} \frac{\hat{j}_p}{\hat{\lambda}} (\mathbf{x}_{ph}^{\lambda} - \mathbf{y}_{ph}^{\lambda}) (\mathbf{p} \| \rho_{\lambda \ell, 0p} \| \mathbf{h}) . \tag{B.8b}$$

One should pay attention to the different signs that combine the x and y amplitudes in the charge and current densities.

The particle-hole model is generally applied only to close-shell nuclei. For some medium and heavy nuclei, which have superconducting ground states, the low excited states can be described in terms of two-quasi-particle excitations 24 . In this model the quasi-particle creation (a_{α}^{\dagger}) and annihilation (a_{α}) operators are defined as

$$a_{\alpha}^{\dagger} = (a_{\alpha})^{\dagger} = u_{\alpha} c_{\alpha}^{\dagger} - (-)^{J_{\alpha}^{-m} a} v_{\alpha} c_{\alpha}^{-}, \tag{B.9}$$

and the angular-momentum-coupled two-quasi-particle operator is defined as

$$A_{abJM}^{\dagger} = (A_{abJM})^{\dagger} = \sum_{m_a m_b} C_{\alpha\beta}^{JM} a_{\alpha}^{\dagger} a_{\beta}^{\dagger}.$$
 (B.10)

v_a (u_a) is the amplitude that the orbital "a" is occupied (unoccupied) in the BCS ground state. In the quasi-particle random-phase-approximation²²⁾ (QRPA) the excitations are described as

$$|\Psi_{JM}\rangle = Q_{JM}^{\dagger}|0\rangle = \frac{1}{2}\sum_{ab} (1+\delta_{ab})^{\frac{1}{2}} (x_{ab}^{J} A_{abJM}^{-}(-)^{J-M}y_{ab}^{JM} A_{abJ-M})|0\rangle.$$
 (B.11)

The x and y amplitudes are obtained as usual by solving (B.3), with the normalization

$$\sum_{a \ge b} ((x_{ab}^{J})^{2} - (y_{ab}^{J})^{2}) = 1.$$

The density matrix in this case becomes

$$\rho_{ba\lambda}^{0\to J} = \delta_{\lambda J} (1 + \delta_{ab})^{\frac{1}{2}} (u_a v_b x_{ab}^{\lambda} + v_a u_b y_{ab}^{\lambda}). \quad (QRPA)$$

Similar to (B.8) one can reduce the sum over the pairs (a,b) to that over the ordered pairs (a≥b) by using the symmetry properties of the amplitudes and matrix elements involved, and get

$$\rho_{\lambda}^{0+\lambda}(r) = \sum_{a \ge b} \frac{\hat{j}_{a}}{\hat{\lambda}} (1+\delta_{ab})^{-\frac{1}{2}} (u_{a} v_{b} + v_{a}u_{b}) (x_{ab}^{\lambda} + y_{ab}^{\lambda}) (a \| \rho_{\lambda,0p} \| b)$$
 (B.13a)

$$\rho_{\lambda\ell}^{0+\lambda}(\mathbf{r}) = \sum_{\mathbf{a} \geq \mathbf{b}} \frac{\hat{\mathbf{j}}_{\mathbf{a}}}{\hat{\lambda}} (\mathbf{i} + \delta_{\mathbf{a}\mathbf{b}})^{-\frac{1}{2}} (\mathbf{u}_{\mathbf{a}} \mathbf{v}_{\mathbf{b}} - \mathbf{v}_{\mathbf{a}} \mathbf{u}_{\mathbf{b}}) (\mathbf{x}_{\mathbf{a}\mathbf{b}}^{\lambda} - \mathbf{y}_{\mathbf{a}\mathbf{b}}^{\lambda}) (\mathbf{a} \| \rho_{\lambda\ell,0p} \| \mathbf{b}). \quad (B.14b)$$

We note that the pair (a=b) does not contribute to the current.

The particle-hole RPA may be generalized so that it becomes applicable to open-shell nuclei with ground states not necessarily of 0^+ . For detail the reader is referred to the literature on the equation-of-motion method 25).

B.2 TRANSITION DENSITY MATRIX IN THE SHELL MODEL

In the shell model 26 , the wavefunction of an n-particle state is described as a linear combination of orthonormal n-particle basis wavefunctions $|\alpha(n)J\rangle$

$$|\Psi_{JM}(n)\rangle = \sum_{\alpha} x_{\alpha}^{J} |\alpha(n)JM\rangle.$$
 (b.15)

The (real) amplitudes x^{J}_{α} are obtained by diagonalizing the Hamiltonian sub-matrix

$$H_{\alpha\alpha}^{J} = \langle \alpha(n)JM | H | \alpha'(n)JM \rangle.$$

In the j-j coupling scheme, the transition density matrix is

$$\rho_{ab\lambda}^{\mathbf{i} \to \mathbf{f}} = \mathbf{n} \sum_{\alpha_{\mathbf{i}} \alpha_{\mathbf{f}}} \mathbf{x}_{\alpha_{\mathbf{i}}}^{\mathbf{j}} \mathbf{x}_{\alpha_{\mathbf{f}}}^{\mathbf{f}} \sum_{\alpha_{\mathbf{p}} \mathbf{J}_{\mathbf{p}}} (-)^{\mathbf{J}_{\mathbf{p}} + \lambda - \mathbf{J}_{\mathbf{f}} - \mathbf{j}_{\mathbf{b}}} \hat{\lambda} \hat{\mathbf{J}}_{\mathbf{i}} W(\mathbf{j}_{\mathbf{a}} \mathbf{j}_{\mathbf{b}} \mathbf{J}_{\mathbf{f}} \mathbf{J}_{\mathbf{i}}; \lambda \mathbf{J}_{\mathbf{p}})$$

$$\times \langle \alpha_{f}(n) J_{f}\{ | \alpha_{p}(n-1) J_{p}, a \rangle \langle \alpha_{p}(n-1) J_{p}, b | \} \alpha_{i}(n) J_{i} \rangle$$
 (B.16)

The coefficients of fractional parentage $(cfp)<\alpha_pJ_p;a|\alpha J>$ are defined in the expansion⁶)

$$|\alpha(n)JM\rangle = \sum_{\alpha_{\mathbf{p}}J_{\mathbf{p}}M_{\mathbf{p}}\gamma} c_{\mathbf{J}_{\mathbf{p}}M_{\mathbf{p}}\gamma}^{JM} |\alpha_{\mathbf{p}}(n-1)J_{\mathbf{p}}M_{\mathbf{p}}\rangle|\gamma\rangle\langle\alpha_{\mathbf{p}}(n-1)J_{\mathbf{p}};c|\alpha(n)J\rangle.$$
(B.17)

The values and phases of cfp's depend on the way the manyparticle states are built up. In general they can be
expressed in terms of single-shell cfp's, i.e. cfp's
for which all particles occupied the same orbit a:

$$<\alpha(a^n)J| \alpha_p(a^{n-1})J_p,a>.$$

Some single-shell cfp's have been tabulated 27,28 .

For the particularly simple case when n=2, the basis wavefunctions are

$$|ab;JM\rangle = \sqrt{\frac{1+\delta_{ab}}{2}} \sum_{m_b m_a} C_{\alpha\beta}^{JM} (|\alpha\rangle|\beta\rangle - (1-\delta_{ab})|\beta\rangle|\alpha\rangle)$$
(B.18)

and the cfp's are

$$\{a,b|\}abJ\} = \sqrt{\frac{1+\delta_{ab}}{2}} = -(-)^{j_a+j_b+J} \{b,a|\}abJ\}.$$
 (B.19)

Writing a two-particle state as

$$|\Psi_{JM}(2)\rangle = \sum_{ab} a_{ab}^{J}|ab;JM\rangle$$
 (B.20)

with the normalization

$$(a_{ab}^{J})^2 = 1,$$

the density matrix becomes

$$\rho_{ba\lambda}^{1+f} = \sum_{c} \sqrt{1+\delta_{ac}} \sqrt{1+\delta_{bc}} = \sum_{ca} a_{cb}^{1} (-) \sum_{c} (-)^{j_c+\lambda+J_f-j_b} \hat{\lambda} \hat{J}_i W(j_a j_b J_f J_i; \lambda j_c) . \tag{B.21}$$

B.3 TRANSITION DENSITY MATRIX IN THE PROJECTED HARTREE-FOCK APPROXIMATION

In the Hartree-Fock (HF) approximation $^{21)}$, a variational method is used to minimize the expectation value of the Hamiltonian for a single Slater determinant, $|x\rangle$.

$$|\chi\rangle = \frac{N}{\pi} C_{\mu_1}^{\dagger} |0\rangle$$

where N is the number of particles and $\{\mu_i\}$ are the set of single-particle HF orbitals. They are related to the set of basis orbital $\{\alpha\}$ by the linear transformation

$$C_{\mu}^{\dagger} = \sum_{\alpha} U_{\alpha\mu} C_{\alpha}^{\dagger}, \qquad \sum_{\alpha} (U_{\alpha\mu})^{2} = 1. \tag{B.22}$$

In general $|\chi\rangle$ does not have a specific angular momentum, but may be expanded in terms of normalized states with good angular momentum,

$$|\chi\rangle = \sum_{JK} n_{JK} |J(K\chi)K\rangle.$$

If the initial state is $|J_1(K_1X_1)M_1\rangle$, and the final state is $|J_f(K_fX_f)M_f\rangle$, then the transition density matrix is 10)

$$o_{ba\lambda}^{i \to f} = (n_{J_{\mathbf{f}} K_{\mathbf{f}} \chi_{\mathbf{f}}} n_{J_{\mathbf{i}} K_{\mathbf{i}} \chi_{\mathbf{i}}})^{-1} \frac{2J_{\mathbf{i}}^{+1}}{8\pi^{2}} \sum_{\mu = -\lambda}^{\lambda} c_{J_{\mathbf{i}} K_{\mathbf{f}}^{-\mu}, \lambda \mu}^{J_{\mathbf{f}} K_{\mathbf{f}}} \int d^{3} \Omega p_{K_{\mathbf{f}}^{-\mu} 1}^{J^{*}} K_{\mathbf{i}}(\Omega)$$

$$\times \sum_{\alpha \beta} c_{\alpha \beta}^{\lambda \mu} < x_{f} | c_{\alpha}^{\dagger} c_{\beta} R(\Omega) | x_{i}^{>}$$

$$= \sum_{\alpha \beta} c_{\alpha \beta}^{\lambda \mu} < x_{f} | c_{\alpha}^{\dagger} c_{\beta} R(\Omega) | x_{i}^{>}$$
(B.23)

where $R(\Omega) = R(\alpha, \beta, \gamma)$ is the rotation operator specified by the Euler angles (α, β, γ) , $D(\Omega)$ is the rotation matrix and

$$\langle x_{\mathbf{f}} | C_{\alpha}^{\dagger} C_{\beta} R(\Omega) | x_{\mathbf{i}} \rangle = \sum_{\mu \nu} U^{\dagger}(\mathbf{r})_{\beta \nu} (\mathbf{d}^{-1})_{\nu \mu} U_{\alpha \mu}^{\mathbf{f}^{*}}$$
(B.24a)

$$d_{\mu\nu} = \sum_{\alpha} U_{\alpha\mu}^{f*} U^{i}(\Omega)_{\alpha\nu}$$
(B.24b)

and

$$U_{\alpha\mu}^{f}(\Omega) = \sum_{\beta} \delta_{JaJb} D_{m_{a}m_{b}}^{Ja}(\Omega) U_{\beta\mu}^{f}, \qquad (B.24c)$$

where U is the transformation of (B.22). In (B.24b), the summations of μ and ν are over occupied orbits (in $|\chi^f\rangle$ and $|\chi^i\rangle$ respectively) only. In general, it is possible to replace the integral in (B.23) by a sum over a certain set of Euler angles, to be determined by the symmetry properties of $|\chi_i\rangle$ and $|\chi_f\rangle^{10}$.

If the initial and final states are described respectively in terms of linear combinations of projected HF states,

$$|\Psi_{\underline{i}}\rangle = |\sigma J_{\underline{i}} M_{\underline{i}}\rangle = \sum_{\sigma} x_{\sigma}^{\underline{i}} |J_{\underline{i}} (K_{\sigma} X_{\sigma}) M_{\underline{i}}\rangle$$
(B.25a)

and

$$|\Psi_{\mathbf{f}}\rangle = |\sigma'J_{\mathbf{f}}M_{\mathbf{f}}\rangle = \sum_{\sigma'} x_{\sigma'}^{\mathbf{f}}, |J_{\mathbf{f}}(K_{\sigma'},\chi_{\sigma'}|M_{\mathbf{f}}\rangle)$$
(B.25b)

then

$$\rho_{ba\lambda}^{1+f} = \sum_{\sigma\sigma'} x_{\sigma'}^{f} x_{\sigma}^{i} \rho_{ba\lambda}^{\sigma+\sigma'}$$
(B.26)

where $\rho_{ba}^{\sigma+\sigma'}$ is given by (B.23).

APPENDIX C

This appendix provides the complete listing of MICRØDENS and the outputs for three sample calculations.

The only comments that need be made on the listing is that the "\$" sign is a record separator, and that the subroutines DATE (called at MICRØD.77) and PLØT (called at LINPLØT.37 and SEMILØG.31) are system routines of the CDC-6600 computing system at CRNL. Users at other computer installations may have to use the respective equivalents available locally.

In all three test cases the initial state |i> is the vacuum (0⁺) state, and the oscillator length is taken to be 2.0F. Other specifications are given preceding the output for each case.

In the form factor section of the output, quantities listed under the headings F(CHARGE), FC.SQ, F(SPIN), FS.SQ and FTOTAL.SQ are explained in table B.l, where the notations

$$f_{JL}^{c,m}(q) \equiv \int_{0}^{\infty} \rho_{JL}^{c,m}(r) j_{L}(qr)r^{2}dr, \qquad (C.1)$$

$$f_{J}(q) = \int_{0}^{\infty} \rho_{J}(r) j_{J}(qr)r^{2}dr, \qquad (C.2)$$

and

$$N = \frac{4\pi(2J_f+1)}{(2J_i+1)Z^2}$$
 (C.3)

are used. The form factors $F_J^{C,M,E}(q^2)$ are those defined in (A.27).

TABLE C.1

	Heading				
TYPE OF SCAT.	F(CHARGE)	FC.SQ	F(SPIN)	FS.SQ	FTOTAL.SQ
COULOMB	f _j (q)	$N f_J ^2$			$F_{J}^{c}(q^{2})$
MAGNETIC	$f_{JJ}^{C}(q)$	N fCT 2	†	Ħ	$F_{\mathcal{J}}^{M}(q^{2})$
ELECTRIC(L=J-1)	f ^c ,J-1(q)	$\frac{\sqrt{J+1}}{\hat{J}} f_{J,J-1}^{c}$	†	#	
ELECTRIC(L=J+1)	f ^c J+1(q)	$N \left \frac{\sqrt{J+1}}{\hat{J}} f_{J,J-1}^{c} + \frac{\sqrt{J}}{\hat{J}} f_{J,J+1}^{c} \right ^{2}$	†	#	$F_{J}^{E}(q^{2})$

⁺ Same as under F(CHARGE), but replace superscript c by m.

[#] Same as under FC.SQ, but replace superscript c by m.

C.1 LISTING OF MICRODENS

MICROD

```
DPOGRAM MICROD(INPUT, OUTPUT, PUNCH, PLOT)
DIMENSION (CSO), S(SO), RO(SO), NLJA(SO), NLJR(SO), NAME(7), IRO(SO),
L SNAME(3), XX(SC), TC(SO), TS(SO)
CGMMON/GFACTOR/SLP, GLN, MUSP, MUSN, EFC(2), EFM(2), BOHR, TRI
EQUIVALENCE (C.NLJA), (S, NLJB)
PEAL MUSP, MUSN
OATA SLP, GLN, MUSP, MUSN/1, B. 2.79, -1.91/
DATA SLP, GLN, MUSP, MUSN/1, B. 2.79, -1.91/
DATA MODE/10LELECTRIC /
MOHR = 0.5* MBAR/M(NUGLEON)*C (FERMI)
X = MCOEF(1, 11, 11, 11, 11, 11)
                                                                                                                                                                                                              MICSOD
                                                                                                                                                                                                            READ 1302, NAME, KIND
  100
                IPL=0 40 PLOT. EXL IS = LARGER EXPONENT OF 10 FOR SEMILOG PLOT IPL = 1 DENSITY PLOT ONLY. = 2 FORMFACTORS ONLY = 3 BOTH DENSITY AND FORMFACTORS. NO IS THE NUMBER OF CYCLES OOR SEMILOG P
                                                                                                                                                                                                              READ 1003. N.3.0X.NX.D3.OMAX.VJI.VJF.Z.EFC.EFM.JS.JL.IPL.IPU
                                                    LENGTH OF RO ARRAY TO BE READ IN

OSCILLATOR LENGTH IN FERMIES

INCREMENT IN X X = R/R

NO. OF X VALUES FOR WHICH DENSITY BE CALCULATED

FIRST POINT IS X=3. IF NY.LT.2 DENSITY NOT COMPUTED

INCREMENT IN MOMENTUM TRANSF Q IN HEV/C

MAXIMUM VALUE FOR O

SPIN OF INITIAL AND FINAL STATE. IF LEFT PLANK

VJI IS SET TO J AND VJF= MULTIPOLARITY

SMALLEST AND LARGEST MULTIPOLE TO BE CONSIDERED

PLOT OPTION. =1, PLOT(LINEAR) DENSITY DNLY

=2, PLOT (SEMI-LOG) FORM FACTORS ONLY

BUNCH OPTION. =1. PUNCH DENSITY. =0, NO PUNCH

CHARGE THANCEMENT FOR PROTON(1) AND NEUTRON(2)

MAGNETIC MOMENT ENHANCEMENT
                 ИX
                                                                                                                                                                                                              MTCPOD
MICPOD
MICPOD
                 00
                 ZMAX
                 VJÍ,VJF
                                                                                                                                                                                                               HÎCRŎŐ
                                                                                                                                                                                                               ÖÖSTĪY
                                                                                                                                                                                                               MICROT
                                                                                                                                                                                                              HICEOD
                                                                                                                                                                                                               HICKON
                 IPU
                                                                                                                                                                                                              HICRODO MICCOOD MICCO
                 ĒFČ
                                                                                 IF N= -1 USE RO-ARRAY OF LAST CASE
, OR 10LELECTRIC , OR 10LMAGNETIC
                 IF N=0 JOB TERMINATES. KIND HAY BE 101COULONB
                 IF ( N.EG. 0 ) GOTO 99 $ PRINT 1304
PRINT 1803, N,A,DX,NX,DD,QMAX,VJI,VJF,7,EFC,EFH,JS,JL,IPL,IPU
                                                                                                                                                                                                               410200
                                                                                                                                                                                                              HICRON
HICRON
HICRON
MICRON
                 PRINTIGIZ. NAME.KINO & IF (N.EQ. -1) GOTO 15 & NOLD= N
                 READ IN AND CONSTRUCT DENSITY ARRAY IRO
                 READ 1885, ( (NLJA(I), NLJA(I), IRO(I), PO(I)), I=1, N) PRINTISS, ( (NLJA(I), NLJA(I), IRO(I), RO(I)), I=1, N)
                                                                                                                                                                                                               ΜĨĊŶŎĎ
                                                                                                                                                                                                               MÎCPOÓ
MICROD
                NLJ = 32*N+ 2*L + (J+0.5-L)
CONSTRUCT THE WORD IPO AS FOLLOWS
FIRST 22(0 - 21) RITS STORES APS(RO)*1.505
NEXT # BITS(22 - 29) STORES NLJ#
NEXT # BITS(30 - 27) STORES NLJ#
IHE 59TH BIT STORES ISO (=1 FOR PROTON, =0 FOR NEUTRON)
THE SIGN OF GOTH BIT HAS THE SIGN OF RO.
                                                                                                                                                                                                               WICEOU
MICEOU
 Ŧ
                                                                                                                                                                                                               MICEOD
                                                                                                                                                                                                               MICPON
MICPON
MICPON
MICRON
 .
                .
                                                                                                                                                                                                              HICEOU
HICEOU
HICEOU
   1
, 15
                                                                                                                                                                                                               4 Tre on
                                                                                                                                                                                                               MÎCRON
MICRON
, i1
                                                                                                                                                                                                               MTCROD
<sub>$</sub>12
                                                                                                                                                                                                                YÎronî
                                                                                                                                                                                                               MÍCO ÖÓ
MÍCE ÖÓ
                                                                                                                                                                                                               HÌCRCO
                                                                                                                                                                                                               MTCP00
                                                                                                                                                                                                               MĪCŖŎŃ
                                                                                                                                                                                                                410000
                                                                                                                                                                                                               Mireon
                                                                                                                                                                                                               HICROD
```

MICROD (CONTINUED)

```
MICROD
        FIFST COMPUTE CHARGE AND SPIN DENSITIES
                                                                                                                      MICROD
MICROD
MICROD
MICROD
        IF (NX .LT. 2 ) 5010 3
X=yX(1)=5 5 00 3 I=2.NX S X=XX(I)=X+0X
CALL CURRENT(G(I),S(I),ICO,J,L,X,IRO,N,9) $ PO(I)= G(I)+ S(I)
P=INT 1001, X,G(I),S(I),RO(I)
IF(IPU,E0.C) 50 10 5
PUNCH 1018, (NAME(I), I= 1.3),KIND,J,L,DX,NX,8
PUNCH 2006, ( (G(I),S(I)), I= 1, NX )
                                                                                                                      MICRON
        ĬĔ(ĬĔĿ.ĔŖ.1.OP.IPĿ.E?.3) CALL LŢŊPŁOT(XY.C.S.DX.NX.NAME.SNAME)
                                                                                                                                        9123
NOW CALCULATE FORM FACTORS IN FORM APPROXIMATION
                                                                                                                                        945
                                                                                                                                        9
                                                                                                                                       MICROD
MICROD
MICROD
MICROD
                                                                                                                                       110
111
112
                                                                                                                                       MÍCRÓĎ
                                                                                                                       MICROD
MICROD
MICROD
MICROD
MICROD
MICROD
```

CURRENT

```
SURPOUTINE CURRENT (CHARGE, SPIN, ICO, J.L.X, IROA, N. 9)
       CUPPENT
CURPENT
CURPENT
CUPPENT
CURPENT
CURPENT
        CHANGED TO TIME-REVERSAL INVARIANT PHASE (FER 2 1974 ) ADDITIONAL PHASE (LB+ J- LA)/2 FOR ELECTRIC AND ( LB+ J- LA+ 1)/2 FOR MAG.
                                                                                                           CUPPENT
CUPPENT
CUPPENT
CUPPENT
       CUPRENT
CUPRENT
CUPRENT
CURPENT
.1
                                                                                                           CUPPENT
                                                                                                           CUPPENT
                                                                                                           CUPPENT
CUPPENT
CUPPENT
CUPPENT
CUPPENT
CUPPENT
CUPPENT
CUPPENT
 2
 3
                                                                                                           CUPPENT
 31
                                                                                                           CUPPENT
CUPPENT
CUPPENT
CUPPENT
       ÇÜRRÊNT
                                                                                                           CUPPENT
CUPPENT
CURRENT
                                                                                                           CUPRENT
CUPRENT
                                                                                                           CURRENT
CURRENT
CURPENT
 5
                                                                                                           CUPRENT
                                                                                                           CUPRENT
CUPRENT
CUPPENT
CUPPENT
CUPPENT
CUPPENT
CUPPENT
 13
                                                                                                           CUPPENT
CUPPENT
CURRENT
 6
                                                                                                           CURRENT
CURRENT
CURRENT
                                                                                                           CUPPENT
CUPPENT
CURRENT
 7
 8
                                                                                                           CUPPENT
CUPPENT
CUPPENT
CUPPENT
CUPPENT
 9
 10
                                                                                                           ČŪRRĒNT
```

45678901274557890127456789012

CURRENT (CONTINUED)

20	RA= (L4- JA+ 0.5)*(JA+ JA) \$ PR= (LR- JB+ 0.5)*(JB+ JB) RAR= RA*RR/X , DRAR= D/DX(RA*RR*X*X)/X**Z , RA= XA , RB= XB S= JA*JOPPI	CUPPENT CUPPENT CUPPENT CUPPENT CUPPENT CUPPENT	79 81 82 84
22	FOF RO(3,3) S=SNRT(5/(J+J+ J))+((RA+RR)+(RAS- DRAS)+ (J+J+ J)+RAR) \$ 6070 23 FOP RO(J,J-1)	CUPPENT CUPPENT CUPPENT	85 85 87 88
23	IFA= J+ JP+ (IFAS+1- IA3S(J-L))/2 % IFA= IFA .A. 1 SPIN= SPIN+(1- IFA- IFA IFCLESS(JA, JB, J) *S*RO*MUS	CUPPENT CUPPENT	69 60
11	CONTINUE S TE (ICO .EO2) RETURN CHAPGE= 2.790HR*TRI*CHARGE/B \$ SPIN= BOHR*TRI*SPIN/B \$ RETURN END	COPOENT	9123

TLYDEL

```
FUNCTION TLYDEL (MA, LA, NB, LR, LAM, L, X)
ROUTINE CALCULATES REDUCED MATTIX ELEMENT OF TENSORIAL OPERATOR
OF ORDER LAM FORMED BY THE VECTOR COUPLING OF THE SPHERICAL
HARMONIC OF OPDER L TO THE GRADIENT OPERATOR. ONLY THE ANGLES
ARE INTEGRATED OVER. THE PADIAL FUNCTIONS ARE ASSUMED TO HARMONI
OSCILLATOR FUNCTIONS. X = 9/P IS DIMENSIONALESS: 9= 05C. LENGTH.
THE BRINK AND SACTHLER, NOT THE TIME-REVERSAL-INVARIANT PHASE
IS USED.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     TLYDEL
TLYDEL
TLYDEL
TLYDEL
TLYDEL
TLYDEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             TLYDEL
TLYDEL
TLYDEL
                                     LOGICAL PHO
DATA PI/3.1415 92653/
RHO= .T. $ GOTO 11 $ ENTRY TLYDELG $ RHO = .F.
I4= LA+ L9+ L $ TLYDEL= 0 $ GOTO 1
FOLLOWING ENTRY POINT DO TESTING OF TRIANGULAR RELATIONS.
ENTRY TLYDET $ TLYDEL= 0 $ IF (MOD(14,2).NE.1) RETURN
IF (IAPS(LAM-L) .GT. 1) RETURN
IF (EAM .GT. LA+L8 .CR. LAM .LT. IAPS(LA-L9)) RETURN
IS= LAM+LAM+1)*(L+L+1)/4./PI $ IZ= T5+ L+ L8- 1 $ I3= L8+ L8
I5= I5+LA $ I6= L+LAM+ 1 $ I1= I4 + 1 $ I4- I4- 1
FAS= FAS*SORT(7) $ IF (RHO) FAS= FAS*RDFUNC(NA,LA,X)
IF (LB.GT.0) GOTO 13 $ IF (RHO) FAS= FAS*RDFUNC(NA,LA,X)
RMO= -SORT(NB+1.5)*RADO(NA+1,LA,NB+1,1,L,X) RMO= -SORT(NB+1.5)*RADO(NB+1.1.4)*
.11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TLYDEL
TLYDEL
TLYDEL
TLYDEL
TLYDEL
TLYDEL
TLYDEL
                                    2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TLYDEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TLYDEL
TLYDEL
TLYDEL
TLYDEL
TLYDEL
TLYDEL
TLYDEL
                                                                                                                                                                                                                                                                                                                                                                                                                                   $ GOTO 14
       3
       14
        6
15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             TLYDEL
TLYDEL
TLYDEL
        5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TLYBEL
```

14567.6901234567.5901234567.89

7557 557 559

60

64 65 67

689 701 77

7777777

FORMFAC

```
FORMFAC
FORMFAC
           SUPROUTINE FORMEAC (CHARGE, SPIN, ICO, J.L.O, IRO4, N. 8)
           COMPUTE FORM FACTORS

ROUTING SIMILAR TO CURRENT, EXCEPT THAT THE DELTA FUNTION IN X IS RELATION OF DROER J. FOR MAGNETIC FORM FACTOR, USE THE RELATION OF DROER J. MAGNETIC FORM FACTOR, USE THE RELATION MAGNET CORL (MU)) = -K*( -LONG*L/SDRT(J*J+J) + ELEC*MU)

O = K*9 , X = R/R , K IS THE MOMENTUM-TRANSFER.
                                                                                                                                               FOPMFAC
                                                                                                                                               FÖPHFAC
                                                                                                                                               FORMFAC
FORMFAC
FORMFAC
FORMFAC
FORMFAC
FORMFAC
          FORMEACC
FORMEACC
FORMEACC
FORMEACC
FORMEACC
                                                                                                                                               FORMFAC
FORMFAC
FORMFAC
                                                                                                                                               FORMEAC
FORMEAC
FORMEAC
FORMEAC
                                                                                                                                               FORMFAC
FORMFAC
FORMFAC
FORMFAC
  2
.3
                                                                                                                                               FORMEAC
FORMEAC
FORMEAC
                                                                                                                                               FORMFAC
FORMFAC
FORMFAC
FORMFAC
            THIS SECTION COMPUTES COULOMS FORM FACTOR
           IFAS= JR+ J+ IFAS/2 % IFAS= IFAS .A. 1 % FAS= 1- IFAS- IFAS
FAS= FAS*SORT( JA*J8/PI)
CHARGE= CHARGE- FAS*RO*GL*CLERS(JA,JR,J)
*RADO(NA*1,LA,NR+1,LB,J,O)
        FORMFAC
FORMFAC
FORMFAC
                                                                                                                                               5
                                                                                                                                                FORMFAC
                                                                                                                                               FORMFAC
FORMFAC
FORMFAC
  10
                                                                                                                                                FOPMEAC
FOPMEAC
FOPMEAC
  12
                                                                                                                                                FORMFAC
FORMFAC
FORMFAC
FORMFAC
  6
                                                                                                                                                8
  9
  11
```

0000000000

A

```
23456789912345
  111112222222222373333333334444
6799012345678901234567890123
  44444455555555556666666667777777777
```

```
FUNCTION RAMO (NP, LP, NF, LF, L, Q)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                2400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PADO
                                                          PROGRAM CALCULATES THE RADIAL INTEGRAL

(NP, LPII JL ()P) IINF, LF)

WHEPE JL (P) IS THE SPHERICAL RESSEL FUNCTION OF OPDER L

AND O IS A DIMENSIONALESS QUANTITY.

NFACTI(N) IS EQUAL TO FACTORIAL JF (N-1),

NOFACTI(N) IS EQUAL TO DOUBLE FACTORIAL OF N,

GHM4(N) IS EQUAL TO GAMM4(N-.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RANG
                        HOFACT(N) IS EQUAL TO GAMMA(N-.5)

OIMENSION GMMA(10G),NFACT(5G),NOFACT(18G)

LGGICAL (PASS)

OATA TELSY/FALSE./

DATA TELSY/FALSE./

IF(NF.LE.)GOT/45 IF(NF.E.0)GOT/43 IF(IPASS)GOT/25 IPASS=.TRUE.

PI=3.14150253593 B=SORT(PI)S X=-5% GMMA(1)=RS DO3 I=2,100%X=X+1.

RGMMA(1)=X*RMMA(I-.1)* NFACT(I)=1% DO5 I=2,50

NFACT(I)=X*RMMA(I-.1)* NFACT(I)=1% NDFACT(2)=2% DO7 I=3,100

NOFACT(I)=X*NOFACT(I-2)

RNP=NFACT(NP)

RNP=NFACT(NP)

RNP=NFACT(NP)

RNP=NFACT(NP)

RNP=NFACT(NP)

RLF=NDFACT(2*LF+1)

RP=NDFACT(2*LF+2*NF-1)

RP=NDFACT(2*LF+2*NF-1)

RP=NDFACT(2*LF+2*NF-1)

RP=NDFACT(2*LF+2*NF-1)

RP=NDFACT(2*LF+2*NF-1)

RP=NDFACT(2*LF+2*NF-1)

RP=NDFACT(2*LF+2*NF-1)

RP=NDFACT(2*LF+2*NF-1)

RNF=NFACT(NF-XT)

RNFN=NFACT(NF-XT)

RNFN=NFACT(NF-XT)

RNFN=NFACT(NF-XT)

RNFN=NFACT(X+1)

RNFN=NFN-NFACT(X+1)

RNFN=NFN-NFACT(X+1)

RNFN=NFACT(X+1)

RNFN-NFACT(X+1)

RNFN-NFACT(X+1)

RNFN-NFACT(X+1)

RNFN-NFACT(X+1)

RNFN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                PATT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 8401
8401
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RATIO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RATIO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RANG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RAND
8400
8400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RANO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RAND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RANG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RATIO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADO
RADO
RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RANG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RATIO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADO
RADO
RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  5,000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RADO
RADO
RADO
RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RADO
                         FOLLOWING TO ST: NO.11 COMPUTE CONFL. HYPER-G 1F1(-NNS,L+1.5,QSQ/4)
                             QSQ6=Q*O/4. $ SUMM= SUMN= 1. $ NSTP= NNS $ NSB= 1
IF (NNS) 12, 11, 13
NSTP= OSO4+ 5
XD= -MMS $ XN= L+ 1.5
DO # NS= NSB, NSTP $ SUMN= SUMN*XD*QSQ4/XN/NS
SUMM= SUMM $ XO= XO+ 1. $ XN= XN+ 1.
CONTINUE $ IF ( (NNS.GT.0) .OR. (ARS(SUMN/SUMM).LT.1.E-6) )GOTO11
NSB= NSTP+ 1 $ NSTP= NSTP+ 5 $ GOTO 14
SUM2=SUMM2+XA*SUMM*(-1.)**KS*2.**KS*RNP*RLP/(RKP*RNKP*RFKP)
CONTINUE
SUP1=SUM1+S*SUM2
CONTINUE
SUP1=SUM1+S*SUM2
CONTINUE
SUP1=SUM1+S*SUM2
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    QANG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ≷ವಿರಗ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PAÑO
12
13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RANG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RADO
RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    e ann
             116
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RADO
RADO
RADO
                   1
                        CONTINUE

XLP=LP

XLF=LF

XL=L

RAD1= RADQ= AC*SUM1

RETURN

PRINT20

FOFMAT(10x*MESSAGE FROM RADQ----L+LP+LAMDA IS ODD, RADQ FAILS*)

RAD1= RADQ= Q.

RETURN

PRINT100

PRINT100

PRINT100

FORMAT(10x*MESSAGE FROM RADQ ---*/

10x*EPROR IN THE PRINCIPLE QUANTUM NUMBER OF THE OSCILLA-

2TOP MAVE FUNCTION. THE W.F. WITH ZERO NODE MUST HAVE N=1. *)

RETURN

RETURN

RETURN

END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    9000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RATIO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SAUJ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RADA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RADO
RADO
RADO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DAUJ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RANO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RADO
                                END
```

TJYLL

RDFUNC

C	FUNCTION PDFUNC(N.L.X) NOPMALIZED H.O.RADIAL-FUNCTION UPTO NOSC=20 (NOSC=2*N+L) DIMENSION FL(11),GL(21) LOGICAL IPASSÎ DATA IPASS/.F./ DATA NIMAX,LIMAX/11,21/	RDFUNC RDFUNC RDFUNC RDFUNC RDFUNC RDFUNC
	N1= N+13 Li=L+13 POFUNC=13 IF (N.LT.D.OR.L.LT.D) RETURN NL= N+L+1\$ IF (N1.GT.N1M4X.OR.NL.GT.LIMAY) GO TO 5 TECTPASS GO TO 23 IPASS= T.S FI.(1)=0.3 GL(1)= ALOGO.5)	RDFUNC RDFUNC RDFUNC
	IF(IPASS) GO TO 25 IPASS= .T.5 FL(1)=0.4 GL(1)= ALOG(0.5) 00 1 M = 2 , LIMAXS A= 4-15 IF(M.GT.NIMAX) GO TO 1 FL(M)= FL(M-1)+ALOG(A)	RĎFŮŇC RDFUNG
1	GL(M)= GL(M-1)+ALOG(A+0.5) A= 2./SORT(3.141593)	ROFUNC
2 م	X S 0 ≠ X + X	ROFUNC ROFUNC
· ·	EVALUATE LAGUEPRE POLYNOMINAL POLAG(N.L+1/2,XSO) POLAGE EXP(GL(NL)-GL(L1)-FL(N1)); IF(N.EQ.0) GO TO 48 B= 1.	ROFUNC
3	30 3 M=1,NS 8= +8*XS0 POLAG= POLAG+9*EXP(GL(NL)-GL(L1+M)-FL(N1-M)+FL(M+1))	RDFUNC RDFUNC
4	9= EXP(FL(N1)-GL(NL))\$ 9= SQRT(A+9)	RDFÚNG
5	ROFUNC= B*(X**L)*EXP(-0.5*XSQ)*POLAG3 RETURN PRINT6.N.L\$ PETUPN	RDFUNC RDFUNC
6	FORMAT(/IX.*XXXX N=+.I2.2X.*L=+.I2.2X.*N OR L TOO LARGE*, 11* CANNOT CALCULATE RADING. CHANGE DIMENSION AND DATA XXXXX*) END	RDFUNC RDFUNC RDFUNC

23456759012345675901234

CLEBS

```
FUNCTION CLEBS(A, B, J)

CLERS
COPPUTE 3-J COEFFICIENT (JA, JR, J/0.5, -0.5, 0)

JA, JR ASSUMED TO HALF-INTEGERS. A= JA+0.5

(FO?NULA FPUN PRINK AND SATCHLER, P.112)

DIMENSION FACL (100) & INTEGER A, B & LOGICAL PASS

OATA PASS/.F./

IF (PASS) GOTO 1 & PASS= .T. & FACL(1)= 0 & X= 1.

OO 10 K= 1, 99 & FACL(K+1)= FACL(K)+ ALOG(X)

X= X+ 1.

FACL(K+1) IS EQUAL TO LOG OF K-FACTORIAL

X= FACL(A+R-J)+ FACL(A-R+J+1)+ FACL(B-A+J+1)- FACL(K+2)

X= FACL(A+R-J)+ FACL(A-R+J+1)+ FACL(B-A+J+1)- FACL(B+K-A+1)/2 )

X= EXP(X)*2.7SOPT(4.*A*B)

CLERS
CLERS
CLERS
15

CLERS
16

CLERS
17

CLERS
11

CLERS
12

CLERS
13

CLERS
15

CLERS
15

CLERS
15

CLERS
16

CLERS
17

CLERS
17

CLERS
18

CLERS
18

CLERS
19

CLERS
19

CLERS
19

CLERS
19

CLERS
19

CLERS
20

CLERS
21

22

CLERS
23

CLERS
23
```

CG000

CCC 12	CG[GO=GT. (IA+IR).OP.IC.LT.IA9S(IA-IR)) RETURN IF((-1)**(IA+IR+IC).NE.1) RETURN IAR=IA+IR IG2=IA9+IC IG2=IG2+2 IG=IG2/2 ICP=IC+1 IACMBP=IA-IA+ICP IACMBP=IA-IA+ICP IACMBP=IB-IA+ICP IAFMCP=IAR-IC+1 IGP 1=IG+1 IGMAP=IGP1-IA IGMAP1=IGP1-IA IGMAP1=IGP1-IG IGH2P1=IGP1-IC IGD2=IG2/2 NSIG=IG-IGD2-IGD2 SIG=IG-IGD2-IGD2 SIG=I-NSIG-NSIG X=FL(IGP1)-FL(IGMAP1)-FL(IGMBP1)-FL(IGMCP1) VLG=X+OLG Y=FXP(VLG) TJ=SIG+Y	00000000000000000000000000000000000000	23456789012345678901234567890123456789012345
	Y=FXP(YLG) TJ=SIG*Y CGCOO=TJ RETURN END		32 33 34 35

WCOEF

```
HCOEF
     FUNCTION HOOEF (4,8,0,0,E,F)
 THIS PROGRAM, WRITTEN BY R.Y. CUSSON AND J.H. SCHMIDT IN SEPT. 1971.
                                                                             MCGEF
 USES REGGES FORMULA (NUOVO CIMENTO, VOL11(1959), P116) TO EVALUATE THE
                                                                              MCOEF
 RACAH DDEFFICIENT W(A,B,C,D,E,F)=(-1)**(A+B+C+D)*SIXJ(A,B,E/D,C,F) .
                                                                              WCOEF
                                                                                           5
                                                                              WCOEF
                                                                                           6
 SINCE MANY PROGRAMS WHICH USE RACAH COEFFICENTS ALSO USE CLEBSCH -
                                                                              HCOEF
 GORDANS, COMMON BLOCK CORACAH HAS BEEN SET UP SO TABLES OF LOGS AND
                                                                              NCOEF
 SQUARE RIOTS DO NOT HAVE TO BE CALCULATED EACH TIME THE FUNCTIONS
                                                                              HCOEF
                                                                                           9
 ARE CALLED, NOTE THAT ALOGF(0) IS SOMETIMES REQUIRED IN THE
                                                                              WCOEF
                                                                                          10
 CALCULATIONS AND SO ALOGFO=ALOGF(0)=0.
                                                                              MCOFF
                                                                                          11
                                                                              NCOEF
                                                                                          12
 COMMON BLOCK RACASYS IS INCLUDED TO ENSURE THAT ALL ITS ELEMENTS ARE
                                                                              WCOEF
                                                                                          13
 STORE) SEGJENTIALLY IN CORE. THIS IS IMPORTANT FOR EQUIVALENCING.
                                                                              WCOEF
                                                                                          14
                                                                              HCOEF
                                                                                          15
 COMMON BLOCK XRACAM IS USED IN CALCULATING X-COEFFICIENTS.
                                                                              HÇGEF
                                                                                          16
                                                                              WCOEF
                                                                                          17
     COMMON/3GRACAH/INITIAL, ALOGFO, ALOGF(80), SQRF(80)
                                                                              WCOEF
                                                                                          18
     COMMON/RACASYS/X1, X2, X3, Y1, Y2, Y3, Y4, IX1, IX2, IX3, IY1, IY2, IY3, IY4
                                                                              WCOLF
                                                                                          19
     COMMON/KRACAH/JOUT, JXSHTCH
                                                                              WCOEF
                                                                                          20
     DIMENSION RV(7), IV(7)
                                                                              MCGEF
                                                                                          21
     EQJIVALENCE (RV, X1), (IV, IX1, VA), (IX2, VB), (IY1, VC), (IY2, VD),
                                                                              WCOEF
                                                                                          22
    1 (IY3,VE), (IY4,VF)
                                                                              WCOEF
                                                                                          23
     DATA INITIAL/0/, ALOGFO/O. /, JXSWTCH/O/
                                                                              WCOEF
                                                                                          24
     FORMAT(* ILLEGAL PARAMETERS IN WCOEF(*,6F5.1,*)*)
400
                                                                              HCOEF
                                                                                          25
 ENSURES THAT ALUGE AND SORE ARE SET UP ONLY ONCE IN EACH PROGRAM
                                                                              MCOFF
                                                                                          26
     IF (INITIAL .NE. G) 30 TO 20
                                                                              WCOEF
                                                                                          27
     AL) 35 (1) = 0 .
                                                                              WCOEF
                                                                                          28
     SQRF(1)=1.
                   $
                        SM=1.
                                                                              WCOFF
                                                                                          29
     DO 25 J=2,80
                                                                              WCOEF
                                                                                           30
     S4=54+1.
                                                                              WCOEF
                                                                                           31
     SQRF(J)=JGRT(SM)
                                                                               WCCEF
                                                                                           32
25
     ALDGF (J) = ALOGF (J-1)+ALOG(SH)
                                                                               WCOEF
                                                                                           33
     INITIAL = 1
                                                                               WCOEF
                                                                                           34
     SIXJ=1.
                                       WGOEF≈G.
                                                                                           35
20
                 3
                      TFAS= 0
                                                                               MCOFF
  SET UP THE REGGE SYMBOL
                                                                               WCOEF
                                                                                           36
     Y4= A+3
                                    $
                 2
                       Y3=C+D
                                         Y2=£+F
                                                                               WCOEF
                                                                                           3?
     X1=Y4+Y3
                       X2=A+D+Y2
                                         X3=B+C+Y2
                                    $
                                                                               NCOEF
                 5
                                                                                           38
     Y1= Y4+E
                       Y2=Y3+E
                                    $
                                         Y3=A+C+F
                                                            Y4=8+0+F
                                                                               WCOEF
                                                                                           39
   CHECK THAT THE REGGE SYMBOL CONTAINS ONLY NON-NEGATIVE INTEGERS
                                                                               WCOEF
                                                                                           40
     00 1 K=1,7
                                                                               MOOFE
                                                                                           41
     J=435 (R/(K))
                                                                               HCDEF
                                                                                           42
     IF (FLOAT(J) .NE. RV(K)) GO TO 998
                                                                               WCOEF
                                                                                           43
     IV(<) = J
                                                                               WCOEF
                                                                                           44
  CHECK FOR TRIANGLE AND IN RANGE CONDITION .
                                                                               WCOEF
                                                                                           45
     GO TO 281
                                                                                           46
                                                                               NCOEF
     ENTRY FACOEF
                                                                                           47
                                                                               HCOEF
  CALLING SEQUENCE IS F=FWCOEF(IX1, IX2, IV1, IV2, IV3, IV4)
                                                              WHERE
                                                                               WCOEF
                                                                                           48
           IX1 = A+B+C+D
                                          IY2=C+0+E
                                                                               MCOFF
                                                                                           49
           IX2 = A+D+E+F
                                          IY3=A+C+F
                                                                               WCOEF
                                                                                           50
           IY1 = A+B+E
                                          IY4=B+D+F
                                                                               MCOEF
                                                                                           51
  IF PARAMETERS ARE LEGAL THE VALUE OF MCOEF(A,3,C,D,E,F) IS RETURNED
                                                                               WCOEF
                                                                                           52
  HCOEF MUST BE CALLED FIRST TO INITIALISE /CGRACAH/
                                                                               WCOEF
                                                                                           53
  NOTE - IF FHOOEF IS CALLED, NO ARGUMENT CHECKING IS DONE
                                                                               WCOEF
                                                                                           54
     VA=AS V3=B$ VC=C$ VD=D$ VE=E$ VF=F
                                                                               HCOEF
                                                                                           55
     IX3= IY1+IY2+IY3+IY4-IX1-IX2
                                                                               WCOEF
                                                                                           56
201
     IYO= MAKO(IY1, IY2, IY3, IY4)
                                                                                           57
                                                                               WCOEF
     I \times 0 = MI \times 0 (I \times 1, I \times 2, I \times 3)
                                                                               HCOEF
                                                                                           58
```

WCOEF (CONTINUED)

```
IF (IYG .GT. 78) GO TO 938
                                                                             HCOEF
                                                                                         59
     X=1X0-140+1
                                                                             WCOEF
                                                                                         60
     IF (X ._T. 1.) GO TO 998
                                                                             HCOEF
                                                                                         61
     IFAS=1x1
                                                                             WCOLF
                                                                                         62
     IF (IXO .LT. 0) GO TO 939
                                                                             MCOEF
                                                                                         63
   THE EXPRESSION (IYO .AND. 1) SIMPLY CHECKS IF IYO IS ODD OR EVEN
                                                                             WCOEF
                                                                                         64
     K=ITT .AND. 1
                                                                             WCOEF
                                                                                         65
         DELC IS EVALUATED AS FOLLOWS
  NOTE
                                                                             HCOEF
                                                                                         66
          DE_C=(1)-(2)+((3)-(+))
                                                                             HCOEF
                                                                                         67
  HHERE
             (1)=SUH OF SHALLER LOGS
                                                                             WCOEF
                                                                                         68
             (2) = SUM OF SMALLER LOGS
                                                                             WCOEF
                                                                                         69
             (3) = NOST LIKELY TO BE THE LARGEST LOG
                                                                             HCOEF
                                                                                         70
                                                                                         71
             (4) = SUM OF LARGE LOGS
                                                                             HCOEF
     DELC=((ALOGF(IX1-IY1)+ALOGF(IX1-IY2)+ALOGF(IX1-IY3)+ALOGF(IX1-IY4)
                                                                             WCOEF
                                                                                         72
           +1LOGF(IX2-IY1)+ALJGF(IX2-IY2)+ALOGF(IX2-IY3)+ALOGF(IX2-IY4)
                                                                             WCOEF
                                                                                         73
    2 +ALDGF(IX3-IY1)+ALCGF(IX3-IY2)+ALOGF(IX3-IY3)+ALOGF(IX3-IY4))*.5)
                                                                             WCOEF
                                                                                         74
         - (ALDGF(IY0-IY1)+ALDGF(IY0-IY2)+ALDGF(IY0-IY3)+ALOGF(IY0-IY4)
                                                                             WCOEF
                                                                                         75
           +4LOGF(IX1-IY0)+ALJGF(IX2-IY0)+ALOGF(IX3-IY0))+(ALOGF(IY0+1)
                                                                             WCOEF
                                                                                         76
    4
                                                                             WCOEF
                                                                                         77
           -.5*(ALOGF(IY1+1)+ALOGF(IY2+1)+ALOGF(IY3+1)+ALOGF(IY4+1)))
     DELC= (1-K-K) +EXP (DELC)
                                                                             HCCEF
                                                                                         78
   INITIALISE THE SUM
                                                                             WCOEF
                                                                                         79
                                                                             WCGEF
                                                                                         80
     S4=1.
     IF (X ._E. 1.) GO TO 13
                                                                             WCOEF
                                                                                         81
     Z0=IX0+3
                                                                             WCCEF
                                                                                         82
                 X1=IX1-K $
Y1=K-IY1 $
                                                                             WCOEF
                                                                                         83
                                X2=IX2-K
                                          ŝ
                                              X3=IX3-K
     K=IX0+1
     K=<+1
                               Y2=K-IY2
                                          $
                                              Y3=K-IY3
                                                                             WCOEF
                                                                                         84
                                                                                         85
   THE SUM IS DONE RECURSIVELY WITHOUT ALOGF
                                                                             WCOFF
  NOTE BECAUSE OF THE DEFINITION OF X; THE SUM FROM 2 TO X IS THE
                                                                             HCOEF
                                                                                         86
  SAME AS THE SUM FROM IYO TO IXO
                                                                             WCOEF
                                                                                         87
                                                                                         88
                                                                             WCOEF
     SH= 1.-5H+(Z0-XK)+(X1+XK)+(X2+XK)+(X3+XK)/
                                                                             WCOEF
                                                                                         89
15
                                                                             HCOEF
                                                                                         90
    1 {{Y1-X{}}*{Y2-XK}*{Y3-XK}*{Y4-XK}}
                                                                                         91
     XK=XK+1.
                                                                             WCOFF
                                                                             MCOEF
                                                                                         92
     IF (XK .LE. X) GO TO 15
                                                                                         93
                                                                             HCOEF
   SIXJ IS THE USUAL 6-J SYMBOL OF WIGNER .
                                                                                         94
     SIXJ= DELC+SM
                                                                             HCOEF
13
                                                                                         95
                                                                             MCOEF
339
     IFAS=IFAS .AND. 1
                                                                             WCOEF
                                                                                         96
     NCDE==SIXJ*(1-IFAS-IFAS)
                                                                             WCOEF
                                                                                         97
397
     RETJRN
                                                                                         98
  JXSWICH DETERMINES WHETHER OR NOT WOOEF WAS CALLED BY XCOEF. IF IT
                                                                             NCOEF
                                                                             WCOEF
                                                                                         99
  WAS. NO ERROR MESSAGE IS PRINTED BY MCDEF
                                                                                        100
                                                                              WCOEF
     IF (JX54TCH .EQ. 0) 50 TO 996
398
                                                                                        101
                   JXSWTCH= 0
                                                                             WCOEF
     1=1 LCL
              $
                                                                              WCOEF
                                                                                        102
     GO TO 937
                                                                                        103
                                                                              HCOEF
     PRINT 430,A,B,C,D,E,F
396
                                                                             WCOEF
                                                                                        104
     GO TO 997
                                                                                        105
                                                                              WCOEF
     END
```

LINPLOT

```
SUFFOUTINE LINPLOT(X,Y,T,NX,N,NAME,SNAME)
DIMENSION X(50),Y(50),Z(50),NAME(4),SNAME(3)
DATA FORM1/6M(47,4)/,FORM2/10M(F10,2410)
DATA FORM4/6M(441C)/
FIND MAX ARSOLUTE VALUE FOR ARRAY Y AND?
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   LINPLOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             INPLOT
INPLOT
INPLOT
INPLOT
                                                                                                                                                                                                                                                                                                                                                                                                         /,FORM3/6H(F5.2)/
DATA FORMA, 6H (441);

FIND MAX A9SOLUTE VALUE FOR ARRAY Y AND?

AM = 2.0

DO 1 I = 1, N

AM = AMAX (AM + ARS (Y(I)), A9S (Z(I)))

IF (AM) 6, 6, 7

PRINT R, NAME

GO TO 3

FOOMAT (* G*, 5410, * ARRAYS ARE 7ERO*)

SELECT VEPITCAL SCALF FACTORAPPLICABLE WHEN AM IS LESS THAN 1

AM = 2*AM S NP = 0

IF (AM, 6T, 1) GO TO 3 $ NP = NP + 1 $ AM = AM*10 $ GO TO 2

AM = 2*AM S NP = 0

IF (AM, 6T, 1) GO TO 3 $ NP = NP + 1 $ AM = AM*10 $ GO TO 2

AM = 2*AM S NP = 0

IF (AM, 6T, 1) GO TO 3 $ NP = NP + 1 $ AM = AM*10 $ GO TO 2

AM = 2*AM S NP = 0

IF (AM, 6T, 1) GO TO 3 $ NP = NP + 1 $ AM = AM*10 $ GO TO 2

AM = 2*AM S NP = 0 NP + 1 $ AM = AM*10 $ GO TO 2

AM = 2*AM S NP = 0 NP + 1 $ AM = AM*10 $ GO TO 2

AM = 10 T (AM, 10 C) S NM = 10 NP + 1 $ AM = AM*10 $ GO TO 2

CALL PLOT(1, XL, 10 C, XHIN, XHAX, YMIN, YMAX, TICX, TICY)

PLOTTING THE FRAME

TICX = 16* OX S TICY = AM*0.1 $ XL = XMAX/(10*DX)

CALL PLOT(1, XL, 10 C, XHIN, XHAX, YMIN, YMAX, TICX, TICY)

PLOTTING THE FRAME

TICX = 16* OX S XHIN, XHAX, YMIN, YMAX, TICX, TICY)

PLOTTING THE FRAME

TICX = 16* OX S XHAX = INT(XL)

APP = YLOC = YMIN + (I-1)*TICX

CALL PLOT(3, FOOM4, 10, 0, 0, XLOC, YLOC, NAME, 4)

XLOC= XMIN+3.5*TICX3 CALL PLOT(3, FORM2, 1.0, 0, XLOC, YLOC, SNAME, 3)

YLOC= YMIN - 0.2*TICY $ IXL= INT(XL) +1

DO 5 1= 1, IXL $ XLOC = XMIN + (I-1)*TICX - 0.3*TICX

CALL PLOT(3, FORM3, 1.0, 0, XLOC, YLOC, APR, 1)

END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     LINPLOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      NPENT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              INPLOT
INPLOT
INPLOT
INPLOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     LINPLOT
LIMPLOT
LIMPLOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LIMPLOT
LIMPLOT
LIMPLOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               INPLOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      INPLOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      LINPLOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LINPLOT
LINPLOT
LINPLOT
LINPLOT
```

SEMILOG

```
SEMILOG
SSEMILOG
SSEMILOG
SSEMILOG
SSEMILOG
SSEMILOG
SSEMILOG
SSEMILOG
```

23456789012345678901234567890123

1 2 mm 1 mm 48 20 6300 M +D. 0 +D. 0 20.0 +D. 0 +D. 0 +D. 0 -D. 0 2 2-0-0
2,000,100

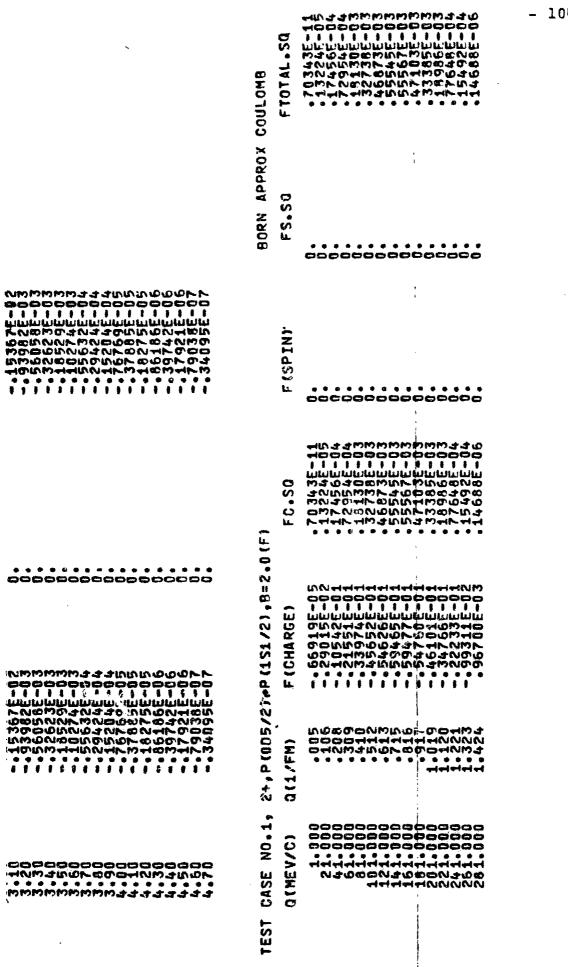
TEST CASE NO.1, 2+,P(805/2),P(1S1/2),B=2.0(F) 33		
₩	EST CASE NO.1, 24,P(005/2)+P(151/2),B=2.0(F)	3 51 1.00000 66000 60000 60000 600000 60000

O(F) IMES B-CUBED IS PRINTED

.}

, <u>, , ;</u>)

).



7

)

.)

()

)

and the second state of the second

)

PRINTED

B-CUBED

transition
Electric
, t ; 2, t > ;
/2)(m0d _{5/2})
= (mls ₁
1
e No. 2:
Case

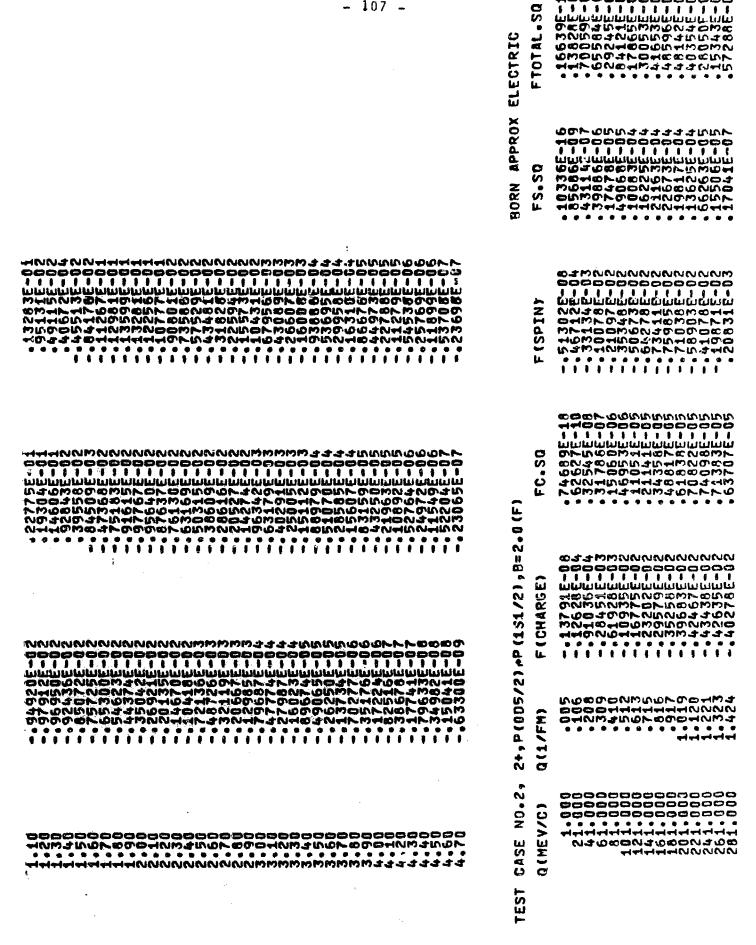
	1 2.000	.100	1 2.000 .100 48 20.0300.0 -0.0 -0.6 20.0 -0.0 -0.0 -0.0 -0	0.0-0	0-0-	65
•	FEST CASE	N0.29	TEST CASE NO.2, 24,P(005/2),P(151/2),8=2.0(F)			
	33 51 1.	00000	33 51 1.00000 600000000001120303240			

U
-
œ
÷
O
w
_
ū

्र संस्थानस्थानस्य स्थाप्तर	444 44 44 44	まままようごうろこ	ところらららららい
000000000	00000	50000000	00000000
	1 1 1 1 1	1 1 1 1 1 1 1 1	1111111
faifaltaffa flettel talte it.	الثالثالثالثال	lattanta ita ita ita ita ita ita ita i	<u> រាប់ប្រើប្រើបាលប្រើប្រ</u>
B. In the section of the	MALE	In Oliverio Montaio	カカンウカンロロロ
*****			25-15-5-10-00
TO TO TO THE STATE OF THE STATE	(- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	31100000031	NINGONOGNIN
L'ALDON DALLON	احالمهدينمة	のまちのアアもの	こらてていまとらる
			しろりらりまてきて
			おおおところとませ
6 1			
•	. •		

	### ##################################	
$\frac{1}{2}$		TNTED TOTAC
では、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	7	2.0(F) SPIN SPIN -10966E-03 -26453E-02 -14788E-01 -24347E-01 -24546E-01
4040304694694694694694694694694694694694694694	24, 7	2+, P (005/2) P (151/2), B = 2 L = 3, X = R/B, OENSITY CHARGE - 23677E-04 - 13643E-02 - 13643E-02 - 154567E-02 - 17557E-02 - 177557E-02 - 187979E-02
	TEST CASE	TEST CASE NO.29 X X X X X X X X X X X X X X X X X X X

- 106 -



TOTAL

B=2.0(F) TIMES B-CUBED IS PRINTED

(093/2) + (091/2) X=R/8, DENSITY

CASE NO.3, 1+,T=1, HAGNETIC J=1 L=1;

SE: NO.3. 1+, T=1, (0P3/2) + (0P1/2), 8=2.0(F)
--

ပ
H
-
u
Z
Ü
⋖
Σ

ふままぐの	U erl erl erl :	el el el el	نجاجيا جناء	ようろう	$\alpha\alpha\alpha\alpha\alpha\alpha$	۰
-	-	5000	0000	0000	00000	C
よぶろきに	ンひろろご	ᡓᠬᢐᢐ	4ろアエ	くるりょう	ろりろりき	٨
っちちょき	- ア こり	とりかかれ	00t4	生まめら	さりらわり	
- もらん 446	りててり	でする	BUON.	3 00 H H	MOUGO	+
41	- NOW	4000	toin t	4040	つなもらり	_
J-H-HM-	P 4446VI	ころろろ	ろろして	FOO:	ちらまりら	۲.
1 1 1		•				
	14444 14474 14594	* * * * * * * * * * * * * * * * * * *	**************************************	**************************************	**************************************	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

イボール・オーナー・スとこれのこれのこれのこれのこれのこれのこれを

- 1 "if .

F S S S S S S S S S	### C P 1 / 2) #### C P 1 / 2) #### C P 1 / 2) ##### C P 1 / 2) ################################	### COP1/2) ####################################	F C A R C E F C A R C E F C A R C E C C C C C C C C C
	C P C P C C C C C C	T	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	7 (0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T	14, T=1, (0P3/2) + (0P1/2), 0=2,0(F) 000
	7		14, T=1, (0P3/2) + (0P1/2), 0=2, 0 (F) 00
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000 000 000 000 000 000 000 000 000 00

~ひみみみなみなるなりいいべの

 μ_{1}

TEST

C.3 SPECIAL RELATIONS FOR CHECKING THE RESULTS

There are some special properties of the densities and form factors which are useful to know.

Using the "form factors" given in equations (C:1,2)

$$\langle \vec{J}_{\lambda} \cdot \vec{J} \rangle = \sqrt{4\pi} \left(\sqrt{\pi} f_{\lambda, \lambda-1}(q) - \sqrt{\lambda+1} f_{\lambda, \lambda+1}(q) \right). \tag{C.4}$$

Here < > means the reduced matrix element between the initial and final states.

For the magnetization current

$$\langle \vec{\nabla}_{\lambda} \cdot (\vec{\nabla} \times \vec{\mu}) \rangle \propto \langle \phi_{\lambda} \vec{\nabla} \cdot (\vec{\nabla} \times \vec{\mu}) \rangle \equiv 0.$$

Therefore we have the first general relation

(i)
$$\sqrt{\lambda} f_{\lambda,\lambda-1}^{m} - \sqrt{\lambda+1} f_{\lambda,\lambda+1}^{m} \equiv 0;$$
 general. (C.5)

If the <u>convection current</u> is conserved we have

$$\vec{\mathcal{L}}_{\lambda} \cdot \vec{J}^{c} > = \frac{k}{q} \langle \phi_{\lambda} \rho \rangle,$$

where k is the wave-number of the energy transfer. This leads to the second relation

(ii)
$$\sqrt{\lambda} f_{\lambda,\lambda-1}^{c} - \sqrt{\lambda+1} f_{\lambda,\lambda+1}^{c} = \frac{k}{q} \hat{\lambda} f_{\lambda}; \underline{if} \overline{J}^{c} \underline{conserved}.$$
 (C.6)

This relation must be used with discretion since in a microscopic, many-body calculation \dot{J}^{C} is almost <u>never</u> conserved. However in the single-particle model, where the one-body potential is momentum-independent, (ii) is satisfied. In the special case of harmonic oscillator, the energy difference in the transition $|b\rangle \rightarrow |a\rangle$ is

$$\Delta N\hbar\omega = (2n_a + l_a - 2n_b - l_b)\hbar\omega$$

and

$$k = \Delta N \cdot \hbar c / (Md^2)$$

where M is the nucleon mass and d is the oscillator length parameter. For such cases

(iii)
$$\sqrt{\lambda} f_{\lambda,\lambda-1}^{c} - \sqrt{\lambda+1} f_{\lambda,\lambda+1}^{c} = \frac{\Delta N \cdot \hbar c}{qMd^{2}} \hat{\lambda} f_{\lambda};$$

(C.7)

A special case for (iii) is when $|a\rangle$ and $|b\rangle$ are orbitals in the same shell, in which case $\Delta N = 0$; therefore the LHS of (C.7) must vanish.

We recall (see section 2.8) that \vec{J}^c vanishes in an elastic transition. This can be extended to transitions between two s.p. states split by a simple spin-orbit interaction (constant \times $\vec{L} \cdot \vec{\sigma}$), since this

interaction does not affect the spatial wavefunctions.

The harmonic oscillator model provides such an example. Therefore we have

(iv)
$$e_{\lambda,\lambda\pm 1}^{c} = e_{\lambda,\lambda\pm 1}^{c} \equiv 0$$
; s.p. transition, $e_{a} = e_{b}$, $e_{a} = e_{b}$. (C.8)

Equations (C.4,6,7) can be used to check the results of MICRØDENS. Equation (C.8) has been incorporated into the coding of the program.

As was mentioned earlier, the form factors in MICRODENS are calculated <u>analytically</u> rather than by Bessel transforming the computed densities. In particular the magnetic form factor is calculated using (the first line of) (A.27c') which involves formulas significantly different from those used in computing the magnetic density. Therefore an additional consistency check can be made by performing the integrations in (C.1,2).

The International Standard Serial Number

CN ISSN 0067-0367

has been assigned to this series of reports.

To identify individual documents in the series we have assigned an AEC1.— number.

Please refer to the AECL- number when requesting additional copies of this document from

Scientific Document Distribution Office Atomic Energy of Canada Limited Chalk River, Ontario. Canada KOJ 130

Price - \$2.00 per copy