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Abstract

Nuclear ivlectromagnetic charqe and current densitios

and related topics are discussed. Formulas expressing the multipolc?-

decomposed density distrihutions in terms of the transition density

matrix, geometrical factors and single-parti ie radial wavofunc:tion~

are given in detail. Thss- formulas ar. used for ending a program,

MICR0DENS, written in Fortran-iV, in compute the densities. M1CR0DENS

also computes the form factors, or the Bessel transforms of the densi-

ties. Instructions for the use of the program are provided. Three

appendices discuss the dens i; les in connection with several physical

processes (gamir.a-ernissior., electron scattering and photo nucleon-

emission), present the formulas for the computation of the transitior,

density matrix in the most commonly used nuclear models, and give a

complete listing of MICR0DENS.
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1. INTRODUCTION

The electromagnetic interaction is <--r.e of

the best tools that can be used to probe the structure

oi' the nucleus. The reasons 1'or this are manifold.

Firstly, it is the best understood interaction arr.onfr

those (strong, electromagnetic and weak) that are used

to investigate nuclear structure. Secondly, viewed as

an operator, the leading and in many cases tn-- only

important portion of the interaction is a one-body operator.

From a practical point of view the advancement of experimerora."

technologies in the areas of y-r-ay detectors, electron accei-

or so has produced a great wealth of data from which much

information in nuclear structure can be extracted.

The nucleus interacts with the electro-

magnetic field via its charge and current. From a study

of the charge and current densities one can infer certain

aspects of nuclear structure. In practice often the

charge and current densities are computed in a particular

model with specific assumptions. These densities are

then used in (electromagnetic) reaction calculations and

the results are. compared with experimental data. Such a

comparison may then lead to the rejection, acceptance or

modification of the model used, or some of the assumptions

made, or both. This report is mainly concerned with the cal

culation of nuclear charge and current densities.



Suppose that, under the influence of the

electromagnet ic interaction, the nucleus goes through" a

t rar-.s: *: ion f-cr. state 4'. to state * (f may be identical

to 1 ) , t ncn the transition charge s p ^ ^ a n d current,

i -*fJ , -* -> , dene, 11 ies ;ir<;
{r)

o(r) = e T St r - r JgfCFJJ (1)

k

{r) + o C r ) + u ( r j ( I )

V,
12M ^ - k ; gL l f k

k

k

where a, are the Pauli matrices and we have sup-

pressed the superscripts i-+f. In (1), (3)

and (4), integration over all internal coordinates other

than r is implied for the expression in the curly
K

brackets; g is the nucleon orbital g-factor (gPro o n = 1
ij Li

gT = 0 ) and y_ is the magnetic moment of the

free nucleon (uP
roton = 2.79, yneutr>on = -l.9l) in

s s

nuclear magnetons. Jc is the convection current due to

the motion of individual nucleons within the nucleus and

J is the magnetization current generated by the magnetic



moments of the nucleons. Jexch j s fche current that will

arise from an exchange or a momentum-dependent nuclear

Interaction Term or both. Although the exchange cur-

rent has been a subject of interest since the early

1 2 )days of nuclear physics » the nuclear interaction

is not sufficiently well known to enable us to treat

j e x c in a general way. In fact ?exc may require a

separate treatment for each individual transition, since

it is very model dependent. For example a truncation

of the shell model basis may be viewed as being

effected by a strongly momentum-dependent (in fact,

singular) interaction. In this report J u will be

completely ignored. Recently studies of the exchange

current can be found in the literature^ .

Having decided to consider only the three

densities p, Jc and Jm of which the operative forms

are well known, we still must decide on a method to

treat the nuclear wavefunctions. Currently in the

literature there are many models that are

used to describe the many-body nuclear

wavefunction. Most models have their own distinctive

usefulness and together they form a complementary set.

It is therefore easy to conclude that for the purpose

of this report one should not commit oneself to any one

model but rather adopt a more global approach. A natural



linkage oetween any many-body wavefunction and a one-bcdy

density function is the one-body transition density

matrix. In this work we shall assume that the density

matrix is known, and begin our evaluation of the charge

and current densities from this knowledge.

The plan of this report is as follows.

In section 2 we first express the density functions in

terms of single-particle density functions and the one-

bcdy density matrix. We then expand p and J in terms

c: scalar and vector spherical multipoles respectively.

This expansion is suitable for finite systems such as

the nucleus. The multipole single-particle

density functions are expressed in terns of geometric

coefficients and single-particle radial functions and

their derivatives. The hermltian conjugate and the

time-reversal properties of the density operators are

discussed in two following subsections. A knowledge of

these properties may be used to reduce the complexity

of the computation. As well, it establishes the realness

of the densities (if the radial wavefunctions are real) and

enables one to identify a special selection rule, namely that

the electric current densities (both longitudinal and

transverse) in an elastic transition (i.e., ¥ •*• ¥) vanish.

In the last subsection of section 2 we show how the isoscalar

and isovector components of the densities are calculated.
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In s ec t ion 3 we desc r ibe a ; ackage of computer

programs, MICR0DENS, w r i t t e n in FORTRAN-IV for the C!;C-66'JO

i n s t a l l a t i o n a t Chalk River Nuclear L a b o r a t o r i e s , for the

computation of the nuc l ea r charge and c u r r e n t d e n s i t i e s p ( r ) ,

~*c •*" ~*m "*•

J (r) and J (r). The formulas derived in section ? are used

for the coding. The nuclear form factors, which are essen-

tially the spherical Bessel transforms of the densities, are

also computed in MICR0DENS- Spherical harmonic oscillator

functions (Hermite polynomials) are used as the radial wave-

functions. The advantages of using these functions are their

wide use in structure calculations, their well-known analy-

tical properties, and the fact that a complete set of such

functions is determined by a single parameter, the oscilla-

tor frequency. A flow chart of the program, adequate

instructions for the preparation and the assembly of input

cards, and brief descriptions of the functions of all

subroutines are provided.

A knowledge of the nuclear charge and

current densities as isolated entities is academic,

since their properties are manifested only through inter-

acting with external fields. In Appendix A, formulas

relating the densities to the external field in several

physical processes (y-decay, electron scattering and

photo nucleon-emission) are presented.. These may be

in the form of transition probabilities or strengths

or scattering amplitudes or cross sections. The (e,e')
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scattering amplitude in the distorted-wave Born approxi-

mation is derived in detail. A new formulation for the

amplitude, better than those presently available in the

literature, is given. The important concepts of gauge

invariance and charge conservation and the related

2 )Siegert's theorem are also briefly discussed at the

beginning of the Appendix.

In Appendix B we show how the one-body

transition density matrix can be extracted from the

result of structural calculations in the three most

commonly used nuclear models, namely the particle-hole

model and its variants, the shell model, and the angular-

momentum-projected Hartree-Fock model.

A complete listing of the computer code

MICR0DENS and sample outputs are contained in Appendix C
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2, CHARGE AND CURRENT ..DENSITY DISTRIBUTIONS
2.1 NOTATION AND PHASE CONVENTIONS

We use the Greek alphabet, except X, which

is reserved for the tensor rank, to represent the com-

plete set of quantum numbers defining a single-particle

state; we use the corresponding Roman alphabet for the

same set excluding the magnetic quantum number. Thus

a = ^ a V a V a " 0 = (a'raa
); a = <a,-ma).

The single-particle wavefunction is l-s coupled

, I m
U; (r) = <?|a> = [ <* m 4 a | j m >i a u (r )Y a (?)x° ? • (5)

m,o

Here u (r) is the radial wavefunction. The phase ia

assures that |a> will have the desired property under

time-reversal,

Tja> = (-)
Ja ma|a>, (6)

when u^(r) is real. Xi is "the spin wavefunction.a -$

Let Ou be a spherical tensorial operator of

6)rank A. Using the Wigner-Eckart theorem we define

the reduced matrix element,
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^ r Ij 0 x Ij i > = I <JiMiXpjJfMf><f Mf |0Xp|i M ^ . (7)

M.
l ,u

We also define a partially reduced matrix element, where

only the polar coordinates are integrated over

(J JO, (r)||J, > = — <Jr||6(r~r' )0, (r')||J,>. (8)

lr, genera], If J. is a one-body operator, the reduced
*~ A

rr.atrix element can be expressed in terms of reduced

matrix elements between single-particle states and the

if
cne-body transition density matrix, p ,

(f||OA(r)|i) - I ̂  P H X (a|Ox(r)|b) (9)
a,b X

where j = (2j +1) etc. anda a

C and C are respectively the single-particle creation

and annihilation operators. We see from (9) that to

compute the transition charge or current density it is

not necessary to know the wavefunctions of |i> and |f>

in their entirety. Only the transition density matrix

is needed.
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2,2 MULTIPOLE DECOMPOSITION

Prom now on It will be understood that the

transition Is from the state |i> to the state |f>, and

all super- or sub-scripts indicating this fact will be

suppressed. Since only certain portions, or muitipoles

of the density will affect a transition between states

of definite angular momentum, it is convenient

to decompose the density into various

muitipoles. We define the multipole charge density p.
A

and current density p,D as follows:

p(?) = e I (-i)X<JiMiAu|JfMf>Px(r)Y^*(r) (11)

Ay

Jc'm(r")/c = e I (-D^J^AulJfM^pJ^Cr)?^^?) (12)

where

?) = I <lmlv|Xy> Y^(r) gy (13)
rav

is the vector spherical harmonic, e , v=±l,0 are the

spherical unit vectors. The quantities p,, p.' to be

calculated are now function? of the radial variable only.
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2.3 THE CHARGE DENSITY

Recall that the total charge density

is given as

o(r) = e I 6(r-r. )gjc ("C* " / , ) . (1)
k

Multiplying the right-hand side of (1) and (J "1 ) by i Yr* (r) and

integrating over the polar variables and then using (7)

and (•) we get

P X ( D - I ^ P b a X (a|iiXyx(r)||b)
a,b

with

i b

if 8. +£ +X is even;a b

= 0, if otherwise. (1.4b)

The above equation is general. For the special case when the

radial function u(r) is taken to be the oscillator function,

ua(r) - d~
3/2 Rn l (r/d), (15)

where Rna(
x) is the (dimensionless) Hermite polynomial^',

d is the oscillator length parameter (d~2 = |p = 0.02412 fuo

(P ), and fun Is the oscillator frequency in MeV),
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2.*t THE CONVECTION CURRENT DENSITY

We repeat the expression for Jc given in (?) ,

J KC) 2TH *• l *k'gLl f k i i k f}' k }

k

One must always be especially careful whonev^r evaluating the

matrix element of an operator involving the derivative.

Consider the integral

I = J dr *i f(r) Yj£1(r)-V H»* (16a)

where f ( r ) i s a function of r only and S'.H' f ( r ) r

vanishes a t r-*°°. I n t e g r a t i n g by p a r t s we get

I = - J d r *J V ' f ( r ) Y j £ l ( r ) 4 ' i . (16b)

We left multiply both sides of (3) by fTM ^, integrate

over all space, and use (9) and (12) to obtain

(r)P^(r) =- £ I gJ '-± p ^ <a|| i 1 + £ (f^^^.V-fY^^) ||b> . (17)
ab A

The RHS does not have the desired form since f i s being operated upon
l+i,-* -*-\j

We now note t h a t the Hermitian adjo in t of i v" f Yx«,l 1 S
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!3in^ this and the identity

= <S|O+|a>

where 0 is any operator, we get

From (17) ar.d (19), we finally get, independent of f

ab

£ +l+£-£.

From (5) the RHS of (19) has a phase factor i

Due to the parity of the opera-tor YV „, • V, which is (-)

the non-vanishing matrix elements must have an even

I +JL+1+H. Therefore the phase factor mentioned above is

real. In other words, p 0(r) is real, if the radial

wavefunctions and p, . are real. We now introduce the
baA

ket |£ m > for the spatial part of the single-particle
a, d

wavefunction,

(18)

3
a

= ( - ) — r d r f ( b i Yyo'Vla) . (19)
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< r U a m a > = 5 f ] l
a ( r ) u a ( r ) ; <r|fc*ma> = Y ^ r ) u * ( r ) . (21)

a a

The sp in wavefunc t ions can now be c o n t r a c t e d out '

i V . * | b ) - i a ( ) a 3 £ W ( £ £ J J A 4 ) ( g ! y V | U b ) . (22!

S u b s t i t u t i n g ( 2 2 ) i n t o ( 2 0 ) , we f i n a l l y g e t

a ,b

(23>

The evaluation of the reduced matrix element in (23) is now

straightforward; we find

a

oa o 0 L

s ( )
Dib.±i

(p) = ^ b ^ ^ 1 ^ 1 7 [fe T J L-T ] (25)

F o r (H. | | Y , , , , • v|| il ) , we i n t e r c h a n g e S, w i t h JL., and u ( r )

w i t h u b ( r ) , i n ( 2 4 ) .



It is not always necessary to compute the

second term on the RHS* of (23). We note that Yy.. is
A A X

proportional to h YV ; it therefore commutes with the

gradient operator, V. Consequently for the current

that affects magnetic transitions, p,.(r), the second
A A

term Is equal to the first term.

Equations (23) and (2*0 are applicable for

any radial wavef'.nation. When oscillator functions R * ( *

are employed, the relations given below are useful.

For I > 0, we have

(26a)

When il = 0, we have

h Rn0(x) = -(n+|)

In (26), n is the number of nodes of the oscillator function

in the range 0 < r < °°.

*RHS - right-hand side
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2.5 THE MAGNETIZATION CURRENT DENSITY

We repeat equation (h)

J

and consider the integral

J dr f(r) Y j £ 1 ( r ) - [ ^ x_(¥* a 4»±)]

Using the well-known relations

mv

and

and calling the left-hand side of (28) Dq
(r>f^)f-> w e

rewrite (27) as

(2:

1 j; (-)k<ilml-k|Ay><lvlkilq>Vv(f YJ) (28)
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f Dq(r,- ^ ) r
2 V*f o_q V., (2?')

upon Integration by parts. Equation (27') has the desired

form, since f is not operated upon. From (27'), (28),

(7), (9) and (12), and using standard angular momentum

recoupling techniques, we have

-ft C-l r - a
2Mc" X I 3 a P y

a,b

(30)

) is a rank-X tensor product of Y, and a

mq

With (5), we have
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Prom (30) and (3D, z
a
+ J lb + £ + 1 m u s t b e e v e n> i.e., the

phase factor ^•Lt""~o ~a ±s r e a ^ anc] p is real, if

u and ufe and Pba^ are real. Since l=X, X + l, the two

equations above may be further simplified by evaluating

the Racah and 9-J coefficients. We finally get

h .

ab

(33a)

( xa" Xb ) DX + l
( r ) ( 3 3 b )

with D. ,.,(r) given by (25), and x = (H -j )(2j +1)
A,Ail 3i a. a a.
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2.6 PARITY SELECTION RULES

We recall that for transitions affected by

the electric or Coulomb field, the parity change from

|i> to |f> is "natural" ( ( - ) 1 f = ( - ) X ) , and for mag-

n.^ic: -rarisl- ion? it is "unnatural" ((-) x l = (-) )

These selection rules must be reflected in the transi-

tion densities. In table 1 these rules are summarized.

TABLE I. PARITY SELECTION RULES

density type L.+L.+X £. +JL+X I +£. •
i t a b a b

Coulomb even even

Magnetic odd odd even

Electric even even even
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2.7 HERMITIAN PROPERTY OF THE DENSITY OHERATORS

When the Hermitian adjoint of a tensor

operator oV is

we shall call 0^ Hermitian. Conversely, if

is true, we call 0^ anti-Hermitian.

The Kermitian property of an operator

can be exploited to shorten the calculation of its

matrix elements. We define a multipole density operator

to be an operator such that its reduced matrix elements

between |¥.> and |v?f
> give the correct density.

From (1), the charge density operator is

h

From (3) and (17), the convection current density operator

is

j
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We cannot Immediately write down the magnetization density

operator from (4). However, by partial integration,

we find

1 3 6 )

Recalling that

* A

m,q

and

mrs

where A and B are any rank~l tensors, and (i£Y^)+ = (-)ft"mi£Yjm;

(V q)
+ = (-)1"qVq and (oq)

+ = (-)qo_q» it is easily

j

shown that

and

pop,X-y,il

That is, the charge density operator is Hermitian and the

current density operators are anti-Hermitian. Note that

in (35) as well as in (36), either one of the two terms

on the RHS by itself does not have definite Hermiticity.
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Now consider a tensor 0̂  which has definite

Hermiticity, (0^J)+ = (-)p+yorM; we find

leading to

J'<J'||OjJ>*. (38)

in the previous sections, we have shown that, when p
Da A

and the radia l functions are real , reduced single-

par t ic le matrix elements of p , and p c ' m , n are

a l l rea l . In th is case, from (37,38) we can make the

replacement on the LHS of (15), for the charge density

[ p + ( ) b a p ^ ^ x ^ - (39)T7
ab aib a b

Similarly, for the current densities, on the LHS of (23)

and (32),

a,b a>.b at>

t In the rest of this section, we shall assume this to be the case,

unless otherwise stated.
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Equation (40) leads to an interesting

result for electric transitions. Consider the pair a=b.

Due to the parity selection rule for electric transi-

tions, \ must be even. Therefore we see that the pair

a=b cannot generate a convection current which contri-

butes to EX transitions. A special case of this pro-

perty is when 14*. > = \Vr> • For this case it follows

immediately from (3) that jc(r) = 0.

Since the gradient operator is spin

independent, we can even make a stronger statement; no

convection current can be generated if the spatial wave-

functions of |i> and |f> are identical. Microscopically,

this is manifestly true from (23). In the spherical

harmonic oscillator model, the spatial wavefunctions of

the two states with j = lt^ are identical: therefore

there is no convection current between such two states.

In more realistic (single-particle) models their wave-

functions will in general be different. The difference

will be small, however, because It is generated only byv

the spin-orbit potential, which is a small part of the

total potentia.. This observation, coupled to the fact

that only currents can affect v-transitlons (due to gauge

Invariance, or equivalently, the conservation of charge),

seems to lead to the following statement: EX transitions

between spin-orbit partner states, such as cU/? •* dt-/p»
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are always weak. On the other hand, we know this con-

jecture is not supported by experiments. The answer to

this apparent paradox lies in the fact that, only con-

vection current has been considered so far. Currents

generated by exchange and momentum-dependent forces or

due to basis truncations (i.e. Jexc ) have been ignored.

The fact that there are strong E2 transitions in nuclei

across the whole periodic table is proof that Jexc is

not negligible. Yet for reasons stated in the Introduction,

a global treatment of jCAi-IJ ±s not feasible. This diffi-

culty is resolved, at least in part, for low energy

processes (wave length of photon > nucleon size), by the

2)so-called Siegert's theorem . This theorem enables us

to side-step the question of currents, and relate the

electric transition directly to the nuclear charge

distribution. A comprehensive discussion of Siegeri,' ?

theorem is somewhat outside the scope of this report ;

however, it is discussed briefly at the beginning of

Appendix A.
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2.8 TIME-REVERSAL PROPERTY OF THE DENSITY OPERATORS

We shall use the time-reversal properties

of the density operators to establish the reainess of

the densities. Under time-reversal (TR), all

momenta and spins change sign, and all c-numbers

become their respective complex-conjugates. Let us call

the TR transformation T, and for any state \i>>

(ill)

We shall call a state of good angular momentum TR-invariant

if under the transformation T, other than gaining a

phase (-) ~ only its magnetic quantum number changes sign,

T N!

T|yJM> = (-) |YJ,-M>,

where y is the set of all other quantum numbers. Thus

as stated in (6) the single-particle wavefunction given

in (5) is TR-invariant, if u(r) is real.

Let 0 be any operator, and

n

We want to find the property of 0 under TR, which is

defined as
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n

the second line comes from (^3), taking into account that

|O|ijj> is c-number. It follows that

Suppose

(oJ)T(oJ)

and let |JM> and |JfM'> be TR-invariant, then from

Taking the reduced matrix elements on both sides, WP

<J«Ox|jJ'>* » (-)
P~X <J|0xi|J'>.

Therefore <J!|o,||J'> is real., if p=X, and is purely

imaginary if p = X+i.

From (3^4), (35) and (36) we find that the

charge and current density operators transform similarly

under T
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poP,x-u..r

Since we have chosen a phase convention such that the

single-particle wavefunctions are TR-invariant(Equation (S))

it follows that all single-particle reduced matrix

elements of the density operators are real. This has

already been pointed out in Section 2. To establish the

realness of the density itself, it remains to show that

the many-body states 14* > and |¥ > are TR-invariant.

This can easily be shown by induction, if (5) is true,

and if all the coupling coefficients are real. Here

we only show it to be true for a two-particle state. Let

|ab;JM> = |a06;JM> = I < j m jKm. |JM>
„ 3. 3. u 0

ma>mb

Then from (5),

T|ab;JM> = £ <JamaJbmb|JM>(-)
 a a(-) b b|a>

ma,mb

= (-) J' M I <J -m j -m |J-M> ja>
a a ub b

= (-)J-M|ab;J-M>.
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Therefore |JM >ls TR-invariant. We have thus shown that

for the phase convention used here, the eharge and

current densities are real. A corollary is that the

one-body density matrix element p is real.
DaA

It should be emphasized that Equations (5),

(37) and (̂ 7) follow strictly from the phase convention

adopted in Section 2.1, which is essentially replacing

the spherical harmonic Ym by i Yo whenever the former

appears. Any other phase-convention, if consistently

used, will be equally acceptable but may result in

imaginary or complex densities.

The realness of the current, together with

the Hermitian property of the current operator, lead to

a special selection rule when J4'f> is equal to , Y. > .

From the identity

and (37b), we have

For magnetic transitions (£=A), (-)X must be odd, from the

parity selection rule, so - ( - ) X = 1. Therefore a magnetic

transition is allowed. A similar argument shows that the

diagonal electric transition is not allowed.
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2.9 1S0SP1N DENSITIES

So far we have discussed the charge and

current distributions in terms of proton and neutron

densities. If the proton and neutron wavefunctions are

close approximates to each other, a condition which is

certainly fulfilled in all light and intermediate nuclei,

then it is convenient to discuss the distributions in

terms of isoscalar and isovector densities. Let us call

the isoscalar density matrix p. , and the isovector

density matrix p, ,. It is easy to see that

(0) 1 , proton neutron,
Pba = ^ CpbaA + PbaX >•

_(1) 1 ( proton neutron.
Pba = ^ (pbaA " PbaA >•

We can therefore pretend that there is only one kind of

particle with orbital g-factor and magnetic moment

which is isospin dependent. Thus

g<T) = -1 (gP™
ton

 + (.)T neutron}
/2

/2
, .T neutron. _
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3, THE COMPUTER CODE "MICR0DENS"
3.1 BRIEF DESCRIPTION, FLOW CHART

MICR0DENS is a self-contained package of

computer programs, written in the Fortran-IV language,

for calculating the charge and current densities, given

the one-body transition density rnatr-ix. The execution

of the program is controlled by input data cards, and

the results are printed and/or punched on cards and

plotted. The flow chart of the code is given in Fig. 1.

The execution begins at point A. Upon the completion of

a full cycle of computation, the command returns to point

A. The job is terminated upon reading of #2 data card

with N=0.

A second part of the program, shown as

part B in the flow chart, calculates the Coulomb,

electric and magnetic form factors (see Appendix A,

Equations (27) and (27c1)) corresponding to the one-body

transition density matrix.
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FIGURE I . FLOW CHART OF MICRODENS

MICRODENS

Read Card #1;
Heading, etc.

Read Card #2;
N,B,...

Yes

Read New
p, , N TermsbaA

Use Previous
PbaA

Call "CURRENT"?
c in

Compute PyP^

No

Plot p's

Call "FORMFAC"
Compute |F|z

in PWBA

0

Plot

r 3 J>- NO
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3.2 INPUT DATA

For each transition for which the densities

are to be calculated, there are three sets of data cards.

Each of the first two sets contains only one card.

The number of cards in the third set varies.

The contents and format of each card is

as follows:

Content/Format

card - NAME, KIND
no. 1 7A10, A10

card N, B, DX, NX, DQ, QMAX, VJI, VJF , Z, EFC, £FM, JS, JL, I PL, IPU
no. 2 " 14, F6.3, F5.3, 15, ( 7F5.1 ), ( 412 )

card NLJA(l), NLJB(l), IRO(l), R0(1), NLJA(2),...
no. 3 " 13, 13, ii, F8.5, 13,

NAME is the identifier of the particular calculation.

It may be up to seven words (10 characters per word) long,

and is used as the heading for all output. KIND may be

either one of the three left-adjusted words COULOMB,

(p. computed), ELECTRIC (p?3?+1 computed) and MAGNETIC
A A j A - l

(p?Jm computed). N is the number of p. . to be read.

It therefore determines the number (N/5+1) of cardu in ::et 3.

B is the oscillator length parameter (Section 2.3) in

Fermies. The meanings of other entries on card No. 2
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are clearly explained in the listing of MICR0DENS (see

Appendix 0 ) , and will not be repeated here. For each

•i.-.-l.;r ia,tK MLJA, NLJB, IR0 and R0 have respectively

the following meanings-.

MLJA = 32*na + 2*1^ + J a+| - * a,

with NI.TP similarly defined; IR0=1(O) if (a,b) is a

proton I neutron) pair; and R0 = p . nfl 1 0 is the

principal quantum number minus one.

3.5 PHYSICAL CONSTANTS

We give the names and values of the physical

constants used in MICR0DENS:

HBC = tie = 197. 33 (MeV.F) ;

BOHR = ur/e = ft/2Mc = 0.105(F), Vu is the nuclear magneton;

GLP = g£ = 1, orbital g-factor for proton;

GLN = g L - '0, orbital g-factor for neutron;

MUSP = u^ = 2.79, magnetic moment for protons in p ;

MUSN = u_ = -1.91S magnetic moment for neutron in u .s n

The effective charge for proton (neutron), in units of e,

is GLP+EPCH (GLN+EPCH). EFCH is read as an input

parameter on card No. 2.
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l.k COMPUTATION

The charge and current densities are calcu-

lated in the subroutine CURRENT. When KIND = COULOMB,

the dlmensionless density p\(x) = d'p,(r)| is coin-
A A |r=xd

puted using (1*0. When KIND = ELECTRIC (or MAGNETIC),

pS;Itl(x) - d3pA,A±l(r)|r=xd (or * u m < x » ar>e calculated

using (23-26) and (30-33); d is the oscillator length

parameter (see Section 2.3).

In the subroutine FORMPAC, the Coulomb electric

and magnetic form factors are computed. These form factors

are defined in Appendix A, section 3- They are essentially

spherical Bessel transforms of the appropriate densities

(see (A.27)). However, in PORMFAC the form factors are

not calculated as such, but are directly calculated from

the one-body density matrix. For example, if we seek the

B^ssel transform of the density (f||0 (r)||i) with kernel j.(qr),

then in (9) we replace the partially reduced matrix

element (a||0,(r)|b) by the reduced matrix element

<a|| j. (qr)O-. (r)||b>. The point is that for harmonic oscilla-

tors such reduced matrix elements can be evaluated analyti-

cally (by the routine RADQ) and the form factor thus obtained

provides at least a consistency check when compared against

the (numerically evaluated) Bessel transform of the appro-

priate density.

In FORMFAC the form factors are calculated for

momentum transfer q = 1 to QMAX(MeV/c), in steps of DQ.



3.5 OUTPUT

The calculated densities and form factors

are printed in a format that is self-explanatory (see

sample output on p.92).

When IPU=1, the density will also be

punched en the card. The first card will contain the

first three words of NAME and other relevant infor-

mation (see card MICR0D.95). Then p 0 ^ ) , pm(x1),

pc(x2l, p
m(x-,) ... are punched, in format (6E12.5).

NX points are punched, with x^O, xn+1-*n = DX. When

KIND = COULOMB, pc(x) = p(x), and pm(x) = 0.

When IPL = 1 or 3, the output Includes

plots of the density vs. x. When IPL = 2 or 3, the

natural-logarithmic of the form factor squared is

plotted against q.
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3.6 SUBROUTINES AND THEIR FUNCTIONS

Subroutines that are used in MICR0DENS

are described in Table 2.

TABLE 2 . ROUTINES IN MICR0DENS

Name

M1CR0D

CURRENT

FORMFAC

TLYDEL

Ul

TLYDELQ

TJYLL

RDFUNC

RADQ

Function

Main program

Computes densities

Computes (e.e1) form fuctors

Computes (Z J|T. (Y067)| I, ) .r

<italj£(qr)T,(Y£8V)|J£b>

Computes <£ J j (qr)T. (Y 8L)S| £, >
a Xr A X . v/

Computes oscillator function R (x)

Computes the integral

Called by

MICR0D

MICR0D

FOR.MFAC, CURRENT

romrhc

CURRENT, TLYDEL

FORMFAC, TJYLL,
TLYDEL

LINPL0T

SEMIL0G

J0
x dx Ra(x)j£(Qx)Rb(x)

Computes the 3-j symbol (_ „ Q)

Computes the 3-j symbol (, , )
*5 —H. U

CGO00

CLEBS

WCOEF Computes Racah or 6-j Coefficients

Linear plot

Semi-log plot

TJYLL, TLYDEL

FORMFAC, CURRENT

FORMFAC, CURRENT,
TJYLL, TLYDEL

MICR0D

MICR0D
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The subroutines LINPL0T and SEMILiflG call a system routine

FL0T, for plotting purposes. This routine is available

at the computing center at Chalk River Nuclear Laboratories

only- 'Jsurs at other computer installations may substi-

tute local versions of plotting routines for PL0T. If

this proves impossible, the calls, in MICR0D, to SEMIL0G

and LINFL0T must be bypassed.

A complete listing of MICR0DENS is given

in Appendix C.
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APPENDIX A

In this appendix we present a co; ie-1 i or,

formulas describing seme physical processes most often

exploited tn probe the nuclear charge and current densi-

ties, namely 'r-emisslcn, photonuclear—disintegration

leading to particle emission, and elastic and inelastic

electron scattering. These formulas will all be given

explicitly in terms of the density functions 0 , p^ ln

described in Section 2. Detailed attention will be

given only to the development of the formalism for the

(e,e') in the distorted wave Born approximation, in

view of the fact that this topic has received a less

than comprehensive treatment in the literature.

A special property of electrcmagnetlsm

is its gauge invariance which is <Iosely related to the

conservation of charge. A very useful relation which

arises from this property is the so-called Siegert*s

theorem. We shall start the appendix on this topic.

A.I GAUGE INVARIANCE, CHARGE CONSERVATION AND SIEGERT'S THEOREM

We shall use the compact M-vector notation

x = (x,ct), xv = (x,-ct). The M-vector electromagnetic

potential is A = (A*,<J>), the current is Jy = (J/c,p), and the



t-rudient i s 3 = ( $ , - — vr-). The gauge invar iance of
Y C u t

electromagnet ism states that Maxwell's equations are

Invariant under a gauge transformation of the second

kind'' ' ,

where A is any function of x . The gauge invariance

is closely related to the conservation of charge.

Consider the interaction of A' with current
v

J ( • We have

JV d \ + f(3 A)JV
V J V

integrating by parts. The second term vanishes, however,

because charge is conserved:

Vv

The relation above is also called the equation of continuity.

The gauge invariance allows us, for example, to work in

the Lorentz gauge,expressed by the equation

a vA
v = v-.£ + 1 1 | = o



We shall see that this is consistent with describing A

as being generated by a conserved current, J , via a
Q )

retarded Green's function G ,
ret

Av(r) = -

where

^TT «'*-*• - j

The Lorentz condition is automatically satisfied,

3vA
v(r) = -i J Jv(r')3vGret(r,r')d

iJr'

= +i J JV(r')3^

= -i J (3^ JV(r'))Gret(r,r')d
4r* = 0.

Since J is conserved, 3 J = 0.

From now on we shall restrict our discus-

sion only to fields with definite frequencies

Ay(r) = Av(r)e-
ia)t. (A.4)

Naturally, fields of any time-dependence can be constructed

as integrals of such fields. Let us consider a



created by a source at Infinity. In this case Maxwell's

equations, in the Lorentz gauge, become

= 0,

where ',<. - u/c. The three independent solutions can be

multipole decomposed

• (r)=aT 4. (r) (A. 5a)
A O

A

A(r)=a[ ^ o + I \ix^YAV
M) (A'5b)

X X,A=±1
with

is A ^ (A.5c)

(A.5d)

(A.5f)

where the direction of the z-axis is along k, and a and b ,

are arbitrary c-numbers. «?^u' ̂ Xu'^Xu a r e r e sP e c ti v e ly t n e

longitudinal and transverse electric, and magnetic multipoles.

Note that by setting the gauge field A in (A.I) to be -^ 4>

we reduce the gauge transformed <|>' and £' to zero. Only

£' and ŷ 1 are left, resulting in a two-component field



perpendicular to k. To see this differently we let

the fi<

We get

the field interact with current J (r) = J. ( r ) e l w t .
V 0

\) k 1 C jt -*• h P h -y -*•

AVJ d r = ± \£ -J d r - Qp d r + (J and ̂  terms)

= ~ Iw I ̂'̂  d r + I *

r + *"' ' (A. 6)

Prom the equations of continuity, and (A.4), we have

V-J = - |£ = -lu,p. (A. 2' )

Therefore the first two terms in (A.6) cancel. In other

words, due to charge conservation, only the § and fy-

fields are felt by the current.

To proceed further, we expand the fields

in powers cf kr. Note that since the nucleus is finite

<(kr)n> < kn R̂ .s where R is the nuclear radius. So for

long wave-length photons, ̂ <<R, this expansion is

meaningful. We keep only the lowest order term. Then



. X-l

6 \u ~ 2 J 21 + 1 ( 2 A -1) ! ! A , A-l ,

Thus, to lowest order

(1 * OfkV,). (A.7b)

Using the equations of continuity again, we have

(A.5)

The above relation which states that in the long wave,

length limit a knowledge of the charge density of matter .

alone is sufficient to describe the interaction between

the matter and the electric potential, is generally

referred to as "Siegert's. theorem" . The RHS of (A,9) .

is obviously easier to compute than the LHS. Conceptually

it is also easier to grasp, as it is related to static

properties of the nucleus.

It should be stressed that in actual cal-

culations, (A. 9) '-ill be realized only if (A.2) is

explicitly satisfied. For example (A.9) will not be
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it G X C h

realized when J Is non-vanishing and not included in

J. Therefore it is always advantageous to use the RHS

of (A.9) whenever possible, since unlike (the j e x c h term

in) J the charge density is known. One of the prescrip-

tions that will guarantee gauge invarlance and charge

conservation is to replace the operator - $ jn (3) by

the cannonical momentum operator [H,r]. This will

include in J the exchange current due to the explicit

dependence of the interaction on momentum. There are

other more subtle reasons for the breakdown of (A.2,.

For example, truncating the basis in a shell model cal-

culation is equivalent to making the two-body interaction

effectively momentum-dependent, even if it is not

explicitly so. This part of the .TCA(-'J c a n 5e either

eliminated (or reduced) by enlarging the basis1'' or it

can be calculated by perturbation theory. In the

literature the latter procedure is referred to as

"renormalization" of the density operators ' 'L ] .

There is no equivalent o2 Siegert's
Chi + n

theorem for the magnetic interactionJ '«, -J d r.

Although the contributions f"om !".he magnetization current

of (•+) almost always dominates this interaction, in

some cases ' the contributions of the exchange current

are known to be important.
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Slegert's theorem can be generalized so

"hit for r he elf..-trie interactions explicit reference

to the current is deleted for all photon energies.

Sachs and Austern^1' used gauge invariance and Foldy

used the conservation of charge to achieve this goal.

The end results of these two approaches are equivalent

but n,-t L^e-r.Mcal. Essentially they Involve different

serie: expansions of the interactions in powers of the

photon pr.ert-y tiu>. In both case? the expansions can be

ident: :''';" i with the usual multlpole expansion only in

the ion=r wave-length limit.

The equation of continuity, (A.2), can be

expressed in terms of multipole densities. For the

Fourier component J (r) = J (r;elui , we have, from (A. 2)

and (11,12),

(A.21 )

where k = w/c.



A.2 GAMMA-EMISSION

The rates of transition from |f.> to iW ^,

or the numbers of photons of energy fiu emitted per

second, are

J
and

(A.10L)

respectively due to electric and magnetic X-pole

Y-transitions. Using Siegert's theorem and (11)

T, = dne (C, , ;
Ay lAp (I v^c p,(r)dr)£ (A.lla)

,fin the long wave-length limit. Here C^ = <J.M.Xp J_M_>.
A j Ay 11 II

VJe may also use the current given by (12), in which case

8irke2

Xp

Similarly

2A+1 i»Xu <,| ,
(kr)p

A,A-1 A+l A,A+l

(A.lib)



In v he long wave-length limit, a condition invariably

satisfied in nuclear y-transitions, we may again expand

the spherical Bessel functions and keep the terms lowest

order in k. Summing over Mf and M and averaging over M.

we define

M

B i s c a l l e d t h e t r a n s i t i o n s t r e n g t h . Prom (A.11)

The strengths are simply moments of the appropriate

transition densities. The dimensionality of B(X) is

e L . Note that the RHS of (A.13b) depends explicitly,

on the photon energy, whereas the expression in (A.13a)

does not. This is a reflection of the continuity

( A . 1 2 )

Tf {J r PX ( r ) d r ^ ' (A.13a)

<*.13b)

- e2 ^ j i_ (J r »« pj*f(r)dr)2. ( A . 1 3 o )
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equation, which must be satisfied if the equality of (A.i-:a;

and (A.13b) is to be realized. In the literature (A.13^;

is invariably used, as its evaluation requires no

explicit statement being made of the current.

As for the evaluation of all operators

involving the gradient operator, different expressions

can be obtained by integrating by parts. We shall use

this technique to derive a more familiar expression

for B(HA). From (20) ar.d (?7) ( -econd line) we have

A+2 i-ff
r p,, (r)dr

Using the identities

and

we have

t The following identities are more general
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The operators on the RHS are the usual effective magnetic

X-pole operators due to charge and spin respectively.

Th-? evaluisti -n of the complete matrix element can be

found i'. the literature . However, we may also

separate the angular and radial integrations and thereby

define the appropriate densities. Using tho identity

defining the orbital and intrinsic spin densities

have

/X(X + 1

r
 s > ••- * = ii f * II i ** 11 V • n l l ^ ' l f * j 7 )

<A.13d)

We use (9) to evaluate the partially reduced matrix elements.

We give the relevant single-particle matrix elements

l+i «.+A+£ JL+l+X-t £ U.+l) u

il £.8,
< o

a
 Q o

b)u*(r) u^(r) (A.lBb)
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and

+X+1 (A-*-l) -h *
b _x )(4TT ^ ') u a (A. 19a)

u*(r)ub(r);
e v e n' (A.19b)

In the literature, the transition strength

is often expressed in terms of the so-called Weisskopf

units (WU). This unit represents a rough estimate of

the single-particle strength of a proton in transition

and is given as follows:

WU
3 2̂ 2X/3 2p2X) A (e F ),X+3

0.11(1.2)2X~2 , 3 ,2 (2A-2)/3 ,2 2X,v ) A (e F ,

k2X-2 , 3 u(2X-2)/3 „ 2 2X-2
[X+3)A un F

fie
where y = r̂r— = 0.105 eF is the nuclear magneton. A is

n 2Mc

the atomic mass number of the nucleus. The Weisskopf
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,;r.i'. strengths, in units of e F , for EX and MA transi-

tions, are respectively plotted in Fig. A.I and A.2, as

functions of A.

Experimental data on transitions are also

expressed in terms of the (partial) width, I"(X) = hT(A)

and the associated lifetime T ( A ) = T(X)~ X. T(X) is the

rate of transition given in (A.12). We may define the

kinematic coefficients t(A) and c(A),

= t ( A ) - £ 2 A + 1 - B ( A ; i + f ) ,

= C(X) F ^

w h e r e E = fick i s t h e t r a n s i t i o n e n e r g y . From ( A . 1 2 )

C ( X ) h = t ( X ) = 8TT(A + 1 ) =- S ^ Y — ( | - ) , i f B ( X ) i n e 2 F ? A

[ ( ) ! ! ] 2 (nC) 2 X + 1 *c

2 M c

In table A.I, the values for t(X) and c'A) for A=l to 5

are listed, with T in units of psec (10~12
Sec), r in

units of eV, .and E in units of MeV.

in



T A B L E A . I . V A L U E S FOR C O E F F I C I E N T S t ( X ) AND C ( > O

A

1

2

3

4

5

B(X) in

t(A)

1.60(3)*

1.23(-3)

5.72(-10)

1.7O(-16)

3.46(-23)

2^2 X
e F

C(X)

1.05

8.08(-7)

3.76(-13)

1.12(-19)

2.28(-26)

B(X) in y

t(X)

1.76(1)

1.36(-5)

6.33(-l2)

1.88(-18)

3.83(-25)

C ( X )

1.16W)

8.94(-9)

4.16(-15)

1.24(-21)

2.52(-28)

* The number in the bracket is the exponent of 10, i.e.

1.60(3) = 1.60 x 103.



A. 5 ELECTRON SCATTERING

We shall express all momenta and energies

ir. terms >f wave numbers, In units of inverse length.

The following notations will be used,

t+,;"[-r, momenta of the incident and scattered

electrons, respectively;

t.,eO) initial and final electron energy;

4 ~i v .-l.-,, momentum transferred to the nucleus;
i

k = £.-£.„, energy transferred to the nucleus;

and

The EM potential v/hich interacts with the

nucleus is generated by th<" electron in motion. We

use (A.3) and write Ĵ e'1 as

where ̂  is the electron wavefunction, and y is the Dirac

matrix. From (A.3), (A.4), and integrating the time out,

we get the time-independent ^-vector potential

'i-v»/'3-
- e i k R

<J< ( r ' ) Y ty. ( r 1 ) . ( A . 2 0 )

R = |r-r'|. The interaction matrix element, to lowest order, is
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<Hint> -J d
3r Ay(?) A ? ) ,

where p_ is the final density of state. Including the

nuclear recoil correction

where 9 is the scattering angle in the laboratory franc

and Mm is the nuclear mass. j is the incident electron

flux

(A.21)

where Jv(r) Is the nuclear current. The differential

cross section is

/i n «• TT . i T

T T" (A.22)

Je = c

(The expression for p^ and j implies that the electron

wavefunctions are normalized in a sphere of unit volume - )

Putting everything together, we have

! <H l n t>|
2 • (A-23)

i n t
! <H l n t

l+(2efsin
2 |)/MT

 i n t

Only <H > remains to be calculated.



- 56 -

In the plane wave Born approximation,
•+ -+•

+ -*• — i a • i* *
^(r'^^lr 1) is proportional to e M . Using this

property and the relation

? n ikR

and by Integrating by parts, we have

/
Dl.ll^ ft - > i r < T . \ i ; T . . " > . ± / y • \ ± / ^ ± • ^ A . C 4 )

The evaluation of the matrix element is straightforward

but somewhat tedious; we only give the result for the

cross section averaged over initial and summed over

final spin projection" ' ,

(2,)2(fic)
2p. l + 2 V M T s i n

2 | 2 ( 2 J i + 1 )
\<n >\2

i

L - - (vL(9) i
" 1 + 2 W 1 1 1 2 1=0

v I M 2 i 2 i E 2 i 2 ,
v

m ( 9 ) Z ( IF, (q ) | + IF. (q ) | } (A. 25)
1 A A

X=l

where
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q

V 0 ) = \ "T t(ei + E:f)
2-q2] (A.26a)

q

VT(6) - P
2 - ( ^ ) 2 + | q 2 . (A.26b)

The Coulomb, electric and magnetic form factors, Fc,

F and F , are given by

J i X c 2 1
2 7 ^ - F A (q > = - < 4 l

f ! l* x P o ll<i ' i
> = */4*" A .1 P , .^) j ^ ( q r ) r ' d r (A.27a)

J f

Vl {/UlP. ,(r)j. , (qr) + f\ p ,_,,(r)j (qr)}r2dr (A.27b)
0/ A,A-i A--1- A , A + l A + i

J.A ^
Z ^ - F A ( q ) = — <4'iJlWx'-Jo ||14'i> = t/47 X J p , , ( r ) j , ( q r ) r " d r . (A. 27c)

J .

r

The multipole fields $A , f^ a n d ^ are those defined

in (A.5) (with k replaced by q) and p, and p, „ are the
A A x*

nuclear transition densitis defined in Section 2.

When the momentum transfer is small,

qR < 1, where R is the nuclear size, we may use Siegert's

theorem, resulting in
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At- have the extra factor k/q which is not equal to unity

I e :•:'..;:•.? in general the •-•x̂ hnrvr.vi photon will be o?V the

rr.ass-she Li .

As in our discussion of the B(MA) strength,

the orbital and spin densities, defined in (A,l6) and

vA.iV'i, can re used to compute the magnetic form factor.

Thus (see footnote or p.^'^ )

v

Clearly the LtiS of (A.^'c) has a simpler appearance. It

should also be i-,oinlcd out that (A. 27c) is formally

correct for the complete current (including J' c ) density

whereas (A,27c') is specialized for 5C and Jm only. In

general the advantage p and p have over pc and pm is

that the former do not Involve the derivative of the

nuclear wavefunction. When q is small compared to the

nuclear size, only the first two terms on the RHS of

(A.27c1) need be retained, since |j, , (qr)/j, -,(qr)|<< 1.

In this case, just as in the case of static MX transitions

in the long wave-length limit, it is more advantageous to

use the orbital and intrinsic spin densities. This is

T Q

especially so for Ml, since P-^'Q are quite simple to

calculate.

|r2dr.

(A.27c1)
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When the charge of the target Is la.r-f.re, or

more specifically, when the Coulomb potential energy of

the scattered electron is not negligible compared to its

kinetic energy, distortions of the incoming and outgoing

electron waves must be considered. In this ease, the

condition leading to the simplified expression of (k.2h)

is no longer satisfied, and partial wave expansions for

both the initial and final electron waves must be

carried out.

Although the expression for the (e,e'}

crops section in the distorted wave Born approximation

(DWBA) exist in the literature , the derivation is

often less than transparent and the end result incomplete

We shall therefore present a corr.plete derivation of the

formulas here. Readers who are only interested in the

end result shall find them in (A.4l) and (A.45).

We shall use the abbreviated notations / = / d~r'dJr,

C"!C, •-- C V = <j m J m |j m : , and Y? = YJ and
"a o a°b a a u u c c KT A , A X ± , X

lX " XXI

We start from (A.20) and (A.21). Using

an explicit representation of the Dirac matrices, and

expanding^^ out the Green's function, w e have



H - = -e 1 i
int J

- bO -

+ -• - » - • - » - * • -•• i k R

,. Ir1 ) (p (r)-a«J(r)/c)*. (r) e /R

( (kr>)Y*
M(r')Yj(r), {A.28)

where :• d' ) :c- the smaller (larger) of r1 and r, and

.1 - (̂  '.',) '. - an operator in the electron Hilbert space

only. In the following we shall use the abbreviation

h,(r')h,(r) = j,(kr )h, (kr s).
A A A < A ^

For any vectors A and B, we have the identities

fc=0 m,v

(r')hJl(r
f) hA(r) ^ 4 1(r)-B (A.29a)

Ay

where E + , , e Q are the spherical unit vectors andof, ̂ , ^ f are

the spherical vector tensors defined in (A.5), with j .

replaced by h (i.e., jn(kr ) or h^
 J(kr )). In the summation

J6 x ^ Jo ^
over X, X starts from 0 for j^, and from 1 for |" and ̂ f. The reason
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for having the two expansions (A,29a) ami (A.t'9b) will b<-

made clear later. Briefly the former will lead to a

simpler expression whereas only the latter will allow

us to make explicit and easy use of the equation of

continuity. Putting (A.29) into (A.28), we have

<H, , > =-4 iek
int

Xiu

We shall do the angular integration

for the RHS of (A.30) first. Prom the definition of

the nuclear charge and current densities, (11) and

(12), we immediately have

P i V x dfir - e

= e c! ,M P l, f T, v (A.31)
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To do the same for the electron part we need explicit

pessions for the electron wavefunctlons. We follow

l8)he notation of Rose , and write for the incoming

and outgoing functions

t

K- , m, j

where 5 is the phase-shift, o is the spin projection, and

U;V is a -wo-cornponent wavef unction,
K

(A.32b)

""" K.

<(?) - I < ^ i , h a ^ ^ (A.32c)

with j = |K|~5» and I = K, if K > 0 and I = -ic-1, if
K. w K. K

K < 0. The radial wavefunctions g and f are solutions
-1 q \

of the coupled radial Dirac equations and are func-

tions of the electron energy and the nuclear charge

distribution: •

/ - (E+me-V)fK - ^ g K (A.32d)

- (E-m -V)6l, (A.32e)
dr r < x e
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where E = e. or e and V(r)are the appropriate static

Coulomb potential generated by the nucleus. With

(A.32), we have, for any tensor operator 0,
A

(A.33)

From ( A . 3 2 b )

and

w h e r e j ^ = j . , . , j ' = j . , , , . F r o m ( l H ) - , a n d ( A . 1 9 )

(A.35)

• A«« II i \ . t \ J * ~ "* • ' " "" -* /-J J " " \ n . n i 1 j-̂ -w- 0 +P + A nitpn

otherwise. (A.36)

C i o>- V . + V x odd

= 0 otherwise. (A.37)



tpc'-Q+A+l

x /x+ï
(.A.38)

(A.39)

P u t t i n g ( A . 3 : - ^ ) i n t o ( A . 3 0 a ) , w e g e t

(A.40)

i n t DWBA

- l

where

(A.41a)

(A.41b)

TEL = _JL.
• S - ( r ' ) ) P A , A - l ( r ) (A.41c)

(A.41d)

A(X+1)
(A.41 )
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where I = l<t V = J^,, J = J^, j' = J K,. Note that

for T° and T' , Jl+B'+X must be even, whereas for T ,

l+SL'+X must be odd. It follows that other than the
i(6K+6K,)

phase shift factor e , <H. > is pure imaginary.

Equation (A.41) has been the basis for

essentially all the computer programs written for (e,e')

in DWBA. An updated and improved version of one of these,

the code DUELS, originally written by the Yale-Duke-Ohio

19 20)
group ' , is available at CRNL.

It should be pointed out that in the

development above, nowhere was the equation of continuity

used. This results in Ts being due solely to the scalar

ELmultipole, and T being due both to the longitudinal

and transverse electric multipoles. Consequently T is

not the equivalent of the Coulomb term Fc in PWBA. The

latter includes the contribution from the longitudinal

ELmultipole as well. Similarly, T is not the equivalent

of FE in PWBA. The latter is due only to the transverse

electric multipole. It is desirable to combine the

contributions to the scattering from the charge distribution

and the longitudinal current. One does not do this for



esthetic reasons alone. For a many-body nucleus (A > 2),

the approximation used in calculating the wavefunction

oiten leads to a current which is not conserved, even

when the Hamiltonian is formally gauge invariant. There-

fore it is advantageous to work in a formalism that does

not overly rely on the accuracy of the (irrotational

component of the) current. In the following we shall

derive an expression for the (e,e') amplitude in which

explicit t- nowledge of the longitudinal current is not

needed.

We start from equation 28, and use the short-

hand notations for the electron current and density

V

In making use of the continuity equation (A.2), we will

have to do some Integration by parts. Therefore it is

necessary to separate the electron and nuclear coor-

dinates. First we recall the integral representation

1 Jo(qrT)Jo
^ = 8 J 2 2 . (A.42)

q'-k'-ie

Substituting into (A.28), we get
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<H. > = -8e
mt

dq

The electron and nuclear coordinates are now completelv

separated. We now use (A.29b) and get

= -8eS d?1 d? 2dq

x

where Z means summing over the three functionals <C, S and 7K
&

defined in (A.5). We are especially interested in the

term when Ot is

In t'his case

i (V
HIT I

J dr(J(r)/c-jf(r)

k2 C . - » • ,-*•

dr' d? p x(r
1)'p x(?) Jx(qr')JA(qr)Yj"(r

f)YjCr),
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whore we have integrated by parts, thrown away the vanish-

ing surface terms at infinity, and used (A.2). We get a

term which is k'/q*" times the scalar term, for each

momentum transfer q. Combining this term with the

scalar term in (A. 43) and recalling that f or ̂' = £

the sum over A is from >, = 0 on, whereas for/;' = t* or y^

it is from \-I on, we have

dqp ̂ e) (r' )p(r) I i £(qr ' ) j ̂ (qr)Y™"'(r ' )Y™( r)

4=0,m

/*>00

J 0

(A.44)

This is a remarkable result. The expression for the Coulomb

term,.(first term in the curly brackets) is similar to that

for elastic scattering: that is, for k=0. (Naturally the

densities p, . and p still depend on the energy loss

implicitly-) To proceed, we integrate over q and the

angular variables, using (A.50e,f), (A.33-40) and (A.42).

In using the last equation for the Coulomb term, we take

the limit k->0,

/•>„ a.

8
^0



- 69 -

The final resul t is

<HintW = -32^2

k'mm'

'v1 j V m* . m'
^ Y <P> '

(*a>

r2dr

2
_ L _ G+
2 A + 1 < ' . A+l

A(2A+1)
(kr')

X lVX+1 P A,A-l ( r ) h A-l ( k r )

where with U ' - A ] i 2

h x , (kr ' )hA (kr) = -

i(2A-l)k"3r 'X 2 / r

i(2X+3)k r / r 1

, r1 ^ r ,



- 70 -

The function P " enforces the parity selection rule,

Although in principle they should lead to

identical results, (A.US) should be chosen over (A.41)

whenever possible. Some of the reasons for advocating

this choice have been given earlier. In more practical

terms, suppose we are interested in calculating the

forward Ce,e') amplitude for a natural parity transition.

Equation (A.4 5) only requires that the charge density P̂

be known whereas (41) requires a knowledge of the

current densities p. , (r) and p , (r) as well. It can be
A~ 1 A"*"i

shown that the error incurred in using (A.41) but setting

PA+1(r) = 0 is approximately k /q , where q is the

(asymtotic) momentum transfer. Therefore the error is

small when k"/q << 1, and (A.45) offers no practical

advantage over (A,41) in such cases. On the other hand,

when moderate electron energy beams are used to highly

excited nuclear states (such as the giant EX resonances),

2 2k /q can be large, and (A.45) is definitely to be

preferred.

Equation (A.45) has the correct limit for

elastic scattering, but it is more convenient to use the

relation
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X
lirn kj^krjhj 1^) =

for the magnetic term (second term in { }) at the outset.

Also in this case the transverse electric (third) term

vanishes since p, ,+,(r) each vanishes individually, as

was shown in section 2.8. We also expect the electron

kernel to vanish for this term. We note that the

electron kernel is an odd function under the permutation

K ' + K, therefore it must be zero when \j>~ - ty. .
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A.H (y,N) REACTIONS

When the absorption of a y-ray leads only

to ar. internal excitation of the nucleus, the process

can be described in terms similar to those describing

Y-emispion. A more complicated reaction occurs when the

nucleus disintegrates. Here we describe the reactions

(Y,p) and/or (y,n).

We first recall the general (non-ralativis-

tic) expression for a scattering cross section

Pfi lv"lnt'" J± •

<H. > is the interaction matrix, in this case

m t /p & ^ P M /'Ay ^ Ay
A \i = ±] A , p = ±l

j. is the flux of the incoming (unpolarized) beam

the EM fields given by (A.5), with b + 1 = 1//?,

pf(E) is the number of final states per unit volume per unit

energy. For (y,N) when the wavefunction of the outgoing

particle is normalized as
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im

where lim up(r) = sin(ky - -^~ + phase shifts), we have

(ignoring recoil)

Mp
P.p(E) = o c

Therefore

Let J41 > be the wavefunction of the residual nucleus

The total final state is

fs

- ' • I T I

Therefore



/2 x.w-±i

where

is the equivalent of the one-body transition density matrix.

<J ;bj}J.> is the usual fractional parentage coefficient.

We can now use the formulas developed in section 2.

We find

I I Y\™ (pf)
X,y=±l I

{Jr2dr(J
+ yX j r2dr Jx(kr)Pxx(r)}. (A.57)

The similarity among the expressions in (A.51), (A.11),

(A.27) and (A.45) that involve the nuclear current

densities is quite transparent. In the curly bracket,

the first two terms are due to g, and the last term due
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to /̂ . . If the photon wave-length is long, we can again

use Siegert's theorem to replace the first two terms by

When magnetic states M. and Mf are

averaged and summed over, respectively, the parentage

states |Jr.;b> enter the sum incoherently. Furthermore,

when a is summed over and the cross section integrated

over the angle of Pf, the multipoles contribute

incoherently. We get

The one-body matrix element can be evaluated straight-

forwardly using (A.5) and the formulas in Section 2,

or alternatively, those given in (A.1^-19). We only

point out that since the radial wavefunction of the

outgoing particle is dimensionaless instead of having

the normalization / |u | r dr = 1 for bound states,

the dimensionality of the matrix element is LJ

In practice the (y,N) spectrum (for A >> 1)

has a broad resonance structure. Thus at least in the giant

resonance region (E % 20-30 MeV) cro&s section is
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dominated by the second order effect. That is, the

photon is first absorbed by a resonance of the target,

and the nucleon is then emitted through the residual

nuclear interaction. In this case we have a "second

order" term

> T <¥|C? +u2>/ ) . -2R ly > i <<
int ^ |V*Ay V/"\v c ' n E +E±-E +ir

where E and r are respectively the energy and width of the
n n

intermediate (resonant) state 1̂  >. The electronic

matrix element can again be expressed in terms of the
i>ncurrents p * . The description of the nuclear vertex
A x,

leading to the particle emission may be quite complex,

and is outside the scope of this report.

An alternative to the perturbation

treatment is to incorporate the resonance effect into

the outgoing wave. This involves the solving of coupled-
21)channel equations, as was done by Buck and Hill ' and

Of j \ •

by Raynal et al. . In this, case (A.51) is formally

retained, with the resonance (or second and higher order)

effect included in the (complex), densities p
A %
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FIGUrtE 2. B(MJO WEISSKOPF UNITS
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APPENDIX B

It was shown in Section 2 that the nuclear

structural information leading to the one-body charge

and current density is contained in the one-body transi-

tion density matrix, p. The computation of the density

matrix depends on the specific microscopic model being

used. In some models, such as the shell model and

the Hartree-Pock model, the "complete" wavefunction of

the nuclear state is obtained. In such cases the com-

putation of p can be quite complex. In other models,

such as the random-phase approximation and its variants,

the transition amplitude instead of the wavefunction is

obtained. In such cases the computation of p becomes a

rather simple matter.

In this appendix we describe methods to

calculate p in the three most commonly used nuclear

models: The particle-hole model, the shell model and

the Hartree-Fock model.

B.I TRANSITION DENSITY MATRIX IN THE PARTICLE-HOLE MODEL

One of the simplest kinds of microscopic

model describing nuclear excitations is-the particle-

hole model. In the Tamm-Dancoff approximation (TDA)
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the particle-hole structure of an excited state of spin J,

relative to the 0 ground state |0> is

ph

where

xJ 1
Xph *'

lcl ce- (B-2)
mB

p is an orbital not occupied (particle) in |0> and h is

an orbital occupied (hole) in |0>. The amplitudes x .

are obtained by solving the linearized equation-of-

4.4 2 3 )

motion

The normalization is

ph

Since A , J M is in fact Just the transition density

operator it is easy to see that in TDA

xph ( T D A )
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In the random-phase approximation

(RPA), one assumes that there are particle-hole com-

ponents in the ground state as well and write

I'jlf " 4 l 0 > -= I (xph AphJM "<->'"% AphJ-M)|0>>
ph

and again linearize (B.3), The normalization is now

ph

The non-vanishing density matrix elements are

• S X J xph>
 ( B' 7 a )

Prom (B.7) and the Hermitian properties of the density

operators (equations (37) and (39)) we have

f (ph yph(|Px,0p»
 (B-8a>

ph

and

i ^ < 4 - ^ h
) ( p l ^ , o p i l h > • (B-8b)

ph
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One should pay attention to the different signs that

combine the x and y amplitudes in the charge and

current densities.

The particle-hole model is generally

applied only to close-shell nuclei. For some medium

and heavy nuclei, which have superconducting ground

states, the low excited states can be described in

24)

terms of two-quasi-particle excitations . In

this model the quasi-particle creation (a ) and

annihilation (a ) operators are defined as
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V . - . <B.9>

and the angular-raomentum-coupled two-quasi-particle

operator is defined a3

AabJM = (AabJM)+ " I CaB al V
mamb

vn (u_) is the amplitude that the orbital"a"is occupieda a.

(unoccupied) in the BCS ground state. In the quasi-

22 "i

particle random-phase-approximation ' (QRPA) the exci-

tations are described as

ab

The x and y amplitudes are obtained as usual by solving

(B.3), with the normalization

I » 4 ) ? - (yab>2> " }•
aib

The density matrix in this case becomes

Similar to (B.8) one can reduce the sum over the pairs

(a,b) to that over the ordered pairs (a>_b) by using the

symmetry properties of the amplitudes and matrix elements

involved, and get



alb

alb

We r.ote tnat the pair (a=b) does not contribute to the

current.

The particle-hole RPA may be generalized

so that it becomes applicable to open-shell nuclei with

ground states not necessarily of 0 . For detail the

reader is referred to the literature on the equation-of

motion method/ .
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B.2 TRANSITION DENSITY MATRIX IN THE SHELL MODEL

2 6)
In the shell model , the wavefunction

of an n-partlcle state is described as a linear com-

bination of orthonormal n-particle basis wavefunctions

|a(n)J>

The (real) amplitudes x are obtained by diagonalizing

the Hamiltonian sub-matrix

Haot' = <a<n)JMlH|af (n)JH>.

In the j-j coupling scheme, the transition density matrix is

&J * * I V \ I (-)Jp+X"Jf"Jb ̂

<Of(n)Jf{|o (n-l)J ,a><a (n-l)J .

The coefficients of fractional parentage (cfp)<a J ;a|)aJ>

are defined in the expansion

ja(n)JM> = I C™^ |o (n- l )J M >|Y><ap<n-l)Jp;c|}o(n)J>. (B.17)

a J M Y
 P P

P P P



The values and phases of cfp's depend on the way the many-

particle states are built up. In general they can be

expressed in terms of single-shell cfp's, i.e. cfp's

for which all particles occupied the same orbit a:

<a(an)j|}a (an"1)J ,a>.

27 2 8)

Some single-shell cfp's have been tabulated '

For the particularly simple case when n=2,

the basts wavefunctions are

Vl+5
~ T ^ I Cag ( i a > ! e > " U-<5 a b)iS>ja>)

mbma

and the cfp's are

V1+5 Q . J Q + J K + J

_ _ a o = „ ( _ ) a D < b j a | } a b J > .

Writing a two-particle state as

l * ( 2 ) > = I a | a b
ab ( B - 2 0 )

ab

with the normalization

ab
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the density matrix becomes

pbaX

B.3 TRANSITION DENSITY MATRIX IN THE PROJECTED HARTREE-
FOCK APPROXIMATION

21 )In the Hartree-Fock (HF) approximation ,

a variational method is used to minimize the expectation

value of the Hamiltonian for a single Slater determinant,

N

where N is the number of particles and {u.} are the set

of single-particle HF orbitals. They are related to the

set of basis orbital {a} by the linear transformation

C+ = Y U C+, J (U ) 2 = 1. (B.22)
u L <x\i a L ay

a a

In general jX> does not have a specific angular momentum,

but may be expanded in terms of normalized states with

good angular momentum,

|X> = I nJK|J(Kx)K>.
JK
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If the initial state is | J ^ K . ^ )M1>, and the final state

is jJf(KfXf)M^>, then the transition density matrix is

. 2J +1 A j r
= ( n j K X °J K X > - V I C ' V - -• I d J" ° - - - ( n )

J K Xf J 1 ^ i X i 87f^
u=-A

JfKf C 3 J*
J K -u At, d ° DK -u KJiKf W'ApJ Kf wlKi

*£ <XJC+C. R(Q)|X.> (3.23)

where R(fi) = R(a,8jY) is the rotation operator specified by

the Euler angles (a,8,7), D(fi) is the rotation matrix and

Lf ' "a 8 i l x " ' ' rti'
<Xf|C+CBR(R)|X1> = I U 1(r) e v(d-

1) v y U^* (B.2Ha)

a
and

where U is the transformation of (B.22). In (B

the summations of y SLTK5. V are over occupied orbits (in

|x > and |x > respectively) only. In general, it is

possible to replace the integral in (B.23) by a sum

over a certain set of Euler angles, to be determined

by the symmetry properties of |x.> and jxf> .
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If the initial and final states are

described respectively in terms of linear combinations

of projected HF states,

|1'1> - |aJ1Mi> = I x J l V V W (B.25a)

and

|o'JfMf> = I x£, |Jf(Ka,Xa,|Mf> (B.25b)

then

oa

where p5"*"° is given by (B.23).Da
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APPENDIX C

This appendix provides the complete listing

of MICR0DENS and the outputs for three sample calculations.

The only comments that need be made on

the listing is that the "$" sign is a record separator,

and that the subroutines DATE (called at NICR0D.77) and

PL0T (called at LINPL0T.37 and SEMIL0G.31) are system

routines of the CDC-6600 computing system at CRNL. Users

at other computer installations may have to use the

respective equivalents available locally.

In all three test cases the initial state |i>

is the vacuum (0 ) state, and the oscillator length is

taken to be 2.OF. Other specifications are given

preceding the output for each case.

In the form factor section of the output,

quantities listed under the headings F(CHARGE), FC.SQ,

F(SPIN), FS.SQ and FTOTAL.SQ are explained in table B.I,

where the notations

y*<

JL(qr)r
2dr, (C.I)

^ 0 0

fT(q) s\ p (r) j,(qr)r
2dr, (C.2)

J Jo J J

f

N = i -_ _ / (C.3)
(2Ji+l)Z^

are used. The form factors F * ' (q ) are those defined in (A.27)



TABLE C.I

TYPE OF SCAT. F(CHARGE)

COULOMB

Heading

FC.SQ

"1'

F(SP1N) FS.SQ FTOTAL.SQ

MAGNETIC

ELECTRIC(L=J-1) f£ ^

ELECTRIC(L=J+1) fj (q)

JT1

"J+T
'J.J-1

f ^

•H-

"ft

•ft-

t Same as under F(CHARGE), but replace superscript c by m.

•ft Same as under FC.SQ, but replace superscript c by m.
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C l L ISTING OF MICRflDENS

ttlCROD

13

ooor.&a^ -nr^on ( INPUT, OUT PUT, Pu^rn, PLOT i
OIHPNSTON r ( 5 P ) . S ( 5 0 » . « O ( 5 T ) , N t j a < 5 0 » , N L J R f 5 G ) , N A H E « 7 > , I R O ( 5 0 ) «

S N A * - < 3 > . « » t 5 M » T Ç < 5 0 ) , T s { ç a )
<S,NLJ<1>

Lp , r ,LN,M'JSP.MUSk l / l .

TAT4 MOO'/10LELECTRIC /
= 0 .5»H9A=>/H(NUC

" - F

1/
197.33/

(FHRHIJ

1DQ REû" 1303i

I=L-C MO PLOT. E<1 IS » LARGES EXPONENT OF io FOR SEMILOG PLOT
IPL = 1 O rHSITy PLOT ONLY. = 3 FO'HfftCTOPS ONLY =3 ROTM
3ENSITY AN1 FQQMFACTORS. NC IS THF NUMBER OF CYCLES QOR SEHILOG

'ÎEAO

N

OX
NX

OQ
0

JS.JL
IPL

IPU
EFC
EFM

IF M=0 JOP TEffHlMflTE-.
KINO H4Y BE ÎQLCOULOMB

100 3 , N , ^ , 0 X , M X , t n , 0 H 4 X , V J I , V j F , Z , EPCEPM, JS.JLtTPLi IPU

LFNC.T" OF RO ARRAY TO IE REÛO IN
OSCILLATOR LENGTH IN FERHIFS
TNtRcMfHT IN X, X= ^ / ^
HO. OF < VHLUCS FO«î WHICH DENSITY RE CftLCULftTEO
TTD5T POINT IS X=Q. I F NX.LT.2 DENSITY NOT COMPUTED
INCREMENT IN HQiFNTUH TRAMSF Q IN MEV/C
MSXIMUI V4LIJE FOR 0

je cots,! pe TUtTUL ftND FTN&L ST»TE. I F LEFT PLRNK
VJI I<? SET TO 3 UNO VJFs MULTIPOLâRITY
S'tûLLEST UNO ift^GCST MULTIPOLE TO «E CONSIDERED
°LOT OPTION. = 1 , PLOT(LINEAR) DENSITY ONLY

= 2 , PLQTCSEMI-LOG) FOR* FaCTOP.S ONLY
= 3 , PLOT HOTH

PUNCH OPTION, = 1 . PUNCH DENSITY. = 0 , NO PUNCH
CHARGE ENHSNCEHENT FOR PROTON(l) AND NEUTR0N(Z>
MSGNETIC FOMENT ENHflNCEHENT

IF N= - 1 USE RO-ARRflY OF LAST C6SE
, OR 10UELECTRIC , OR lOLMftGNETIC .

IF ( N.EQ. 0 ) GOTO 9>5 Ç PRINT 100*t

PRINT 1003, N,<*,DX,NX,On,QMAX,VJI,VJF,7,EFC,EFM,JS,JL,IPl,IPU

PRINTiaic, NAME»KIN0 I IF (N,t?l. -1» OOTO 15 t NOLO= N

REÛO IN AND CONSTRUCT DENSITY AR^ftY IRO
REan 1DQ5,< (NLJia* .'".tn'TJ ,I»O(I) ,RO(I)), ï= i, hi)
PRINTi;05,( (NLJA il) ,;.LJ ï'.ii t I<?0(I)«R0(D) ; 1=1» N»

NLJ = 32»N+ 2»L • (JfO.5- L)
CONSTRUCT THE MOPQ I3O ftS FOLLQMS

FIRST 22(0 - 21) «ITS STORES A3S(ROI"1.E05
N"XT n BITSC22 - 21) STOPES NLJ9
Hc.Xt P "UTCOC - 37) STOPES NLJA
THE 5<>TH R I T STORES ISO t =1 rnB PROTON, =0 FOB NEUTRON)
THE Sir,M Q P 6CTH RIT HAS THE SIGN OF RO.

00 1 1= 1, N Î IP.= A^SCO(I) ) •1.E05 S IS=1 S IF( R O m . L T . O ) IS= 0
IS= SHIFT(IS.ÇO) Ï ISOs SHIFT(IRO(T>,59» ? T»= IS .0. ISO .0. IR
IPO(I»= IP .6. SHIFT(NLJA(I),30> .0. SHIFT(NLJP(I),22)
PRINT 1306, (I°O(I), I- 1, N)
Ns NOLO S IF (KIND -100E) 11, 12, 13
COW. OUT
ICO= -2 t JML= 0 S GOTO 1*
TPftNSVRFSE ELECTRIC
ICO= j Ï JML= 1 S GOTO ifc

LS,LL,2

IS
ICDs 0 t JML = 0
On 2 J= JS,JL,2 % LS= J - JML I LL= J* J1L » DO 2 L=
C ( U = S ( l ) = PO(1I= 0 S PRIHT 1007, HAME.KINO,J,t
72= ST?T( J / ( J * J * i . ) ) % 71= SORT< CJ+1. ) / (J *J*1 . )
TRI= 1 . Î IFfJ .GT.L) TRIs - I .
IF ( t fJ I .LT. ,1 ) VJF= J
LAPÇLS FOP PLOT ROUTINES
CûLL D1TECSN4ME13)) Î SNAHE(2>=10HLAM*1000GR
SN/!ME(l)=iOOOO»1 • J

HTr?oo
MITROD
»iiroon
M YfQftnmi *»yii

HICOO
•4IC9OO
MirROO
Mir=oomr»oo
MICROO
ilfoOO
MT r*D f\ft
lîrROf)
HÎrROO
1ICOO
1KR00
KÎC.On
HICSOO
MICROO
Mimoo
M v/>o n n™ X v * •

MirROD
Mironn
iir^oo
MirooO
MTCPOO
M TI^O n n
~ i" - U'l

mroonMICROO
MIPROD
MÏCROO
Hirpoo
MIC.OO
n x» *\ UU
MICROOiirpon
MICPODMicron
MICPOO
Hirooo
HirRoo

2
3
*»
Ç6

8
9n\\1 S

11»
15

15
19n
CC
23
?5
26
27
•j acn
29
10
31
32
33
3«*
ie
36
37
3«39
<tO

US
1*6
«.7

HICROD
Hireoo
MTppnnMirRoo
HirooD
Miroon
M TCP00
MIPROO
MIC°OO
M icon
MICROO
Hir«>onHICOOO
HIC900
Mirpon
M TC"O nnMÎ ROO
MirPOD
HirROD
MTC'D nn
ni* "y j
MTrPoo
Hirooo
ilfPOf)
Mirorirj
MT.rooo
wtfDnnMirRon
Himoo

<»?

5e
51
52
53
5V
55
56
57
c«
59
f>0

II
63
t, ^65
66
67
«a
no
69
70

? l
7 3
^»
Th
75
76



M1CR0D (CONTINUED)

COMMUTE CHAPGE UNO SPIN DENSITIES

( . L T . 2 » GOTO 3
• HO 3 1 = 2,Ht î XsifX(Il=t*OX
MT(C( I ) .S( Ï ) .TCI .J .L .X . IPO.N

U > = 3 ? HO 3 1=2,HX Ï
cut cmrNTfcm.sm ,TCI,J,
P=»IST ' . O C l f X , C < I J , S < I ) i ° . O t I I
IF tTPU. tO.Cl r," TO 5
PUMCH 1 Û ; 8 . (NAHEd) . 1= 1 .1

poii»= cm*

\\

22

u

6

1 Û ; 8 , (NAXE( I ) , 1= l , H , < I N O , J , i
230C ( (cm.snn, i= I , NX >

COHTINijÇ
IF( I°L.EO.l .OP. IPL.E0.31 C»LL LTNPtOTIXV,C,S,DX,HX,Mft«E,5NAME)

NOW CALCULATE FORM FACTORS IN ̂ ORN ABPROXIMATION

g?i?-xî lf 15°
P5INT 1309. NAHE,KINT,J,L

•PIMVJF + VJF+1.1,CRM= t».»PI»(VJF + V J F + l . ) / ( V J I + V J I * i . ) / 7 /
(J.2 0M8X/01 S 0 = 1.-OT Ï 00 k I s l.NQ Ï XX«H=0=Q* 00 Î IHa 0/H1C

CfttL F0S>MFACfCr,SS,inn,J,L,0H»B,JP.0,N,9)
IF (L-J) 21.22.23
TC(I)= Zi'CC Î TS(I)= 71»SS S GOiO ^
C<I>= T C ( D * Z2»Cr î Stl»= TSU1+ 7?»SS S 1- C ( î î * S ï î l
C (H= C(IJ»C(I)#XNOfi!M î S ( I )= SU>»Sm»XN0RH £ PO(I1
GOTO

)
)= Y»XN0«?M
, S S , S ( I » , P O ( I 1

( I ) = CC»f*C»X«JO«*M ?

r= ce* ssî v= V»Y $
s:?INT l Q i C , O,1H,CC,C<I
Y= - 1 . S 00 6 1= 1 , 15fl
Y= AMASllY, C l I ) ) î EXL= ALOGlOtV+Y)
I F ( I P L . E O . ? .OR. IPL.ET.3 )

1 CAtL SEHIL0G(XX,C,St«0,QQ,N0,NAMEiSNAME tEXL,-6»
CONTINUE S GOTO 100

MTCROQ

HIC900
iirooo
1TC00
Mir<?rn
HICP.OD

2 CONTINUE
99 CONTINUE
1U02 FOP1AT(9A10J
1003 F0PMAT<Ii*,lX,2F5.3,I5,9F5.1,«iI2>
100* fOF^wTiiHii
1005 POPMATC 5(2I3tTl,F8.5) )
10C6 FOP*1AT( i»(5XO20) >
10C7 FOPM4T( / / / / 7a iD /5X ,A10* J = » I l » L = » I 1 » , X="?/B, OfN^ITY TIMES 9-CJJ9

1EO IS PRINTED»// 9X»X»13X»nHARGE»15X»SPIN»15X»T0TAL»/>
lOOe F0D«ATt3AlC,X,aiC» J = »I1» L = * I 1 » DX=»F«.,2» NX=»I2» R=»F5.3» I F ) » )
1001 F0PHAT(5X,F6. 2 ,3E2C5)
200C POP.HATC 6Ç12. 5 )
1Q09 FOPMttTt////7A10,5X»3aRN APPROX •Al t ! * J * * I i » t = » I l * FORM FACTORS»//

1012 FOPMAT{ lX / / / / 8a iO / l
101C F0PH6T(5X,2Fi0 .3 ,6£15.51

£NO

MICP.OQ

1ÎCOO
MirooO
HICROO

MICPOO
MlC.o.on
MICROO
HICROO
MIC90D

HICROO
HICP00

MIC.OO
MICROD

HICRO'J
1TCR00
MTC°OO

HICROO

15

PO
Ql

°3
ait

95
«•6
Q?

oq
ICO

103
iCt
1P5
106
in?
109
1C9
110
111
112
113
ii«»
115
116
117
118
119
120
121
122
123
12<*
125
126
127
12S
123



CURRENT

31

13
12

7

8

9

10

SUBROUTINE CURRENT(CHARGE,SPIN,ICO,J»L,X,XROA,N,9J

ROUTINE PflLCUi ATES CU^RJNT DENSITIES CORRESPONDING TO THE SINGLE
PftPTIClE OFNSTTv MATRIX, I»Qft. CHARGE I s T H g DENSITY OP THE
QPfiOISNT OPF°aTOP. SPIN IS THE °U°E IMAGINARY PART F T E DE
OF THE CaOItNT-r tOSS-SPIMf&f tO' . I ) OPERATOR.
IRO = SIGN(RP)•<SWIFT(J,55) + SHIFT (NLJ»,30) • SHIFT<NIJ«,J21

• AH$IPO)»1.F.35 )
RO =RO(R4,J) . ML J= SHIFTJN.5) • L»2* JL, JLs J* «5,
X IS OIMENSTONALtSS
N IS THE LENGTH OF THE DENSITY aRRAY IROft
ICO = -1 COMPUTE CHANGE ONLY

= Q COMOUTE 1OTM CHARGE ANO SPIN
= +1 COMPUTE SPTN ONLY

(FCR D^THIL SEE H r LEE,...NUCLEUS CHARGE, CONVECTION CURRENT «NQ
MAGNET! ZiflQH CURRENT OENSITIES. . . flECL REPORT NO. ^839, NOV 19. -i)

CHANGED TO TIME-REVERSAL INVARIANT PHASE( FEB 2 ViTlt ) ADDITIONAL
PHASE (L=3+ J- LA>/2 FOR ELECTRIC UNO ( LB* J- LA* 1> /2 FOR MAG.

CURRENT
CURRENT

PART QF THE DENSITY CURRENT

C J E N T
CURRFNT
CURRENT
CUPOENT

CURRENT
CURRENT
CURRENT
CURRENT
CURRENT
CUPRENT
CURRENT
CUP°ENT
CURRENT
CUPRENT
CURRENT
CUPRENT
CURRENT
CURRENT
C P ^ T

._ _ MUSP,MUSN,MUS J LOGICAL SLN49,SJl
DIMENSION IROA( l ) S LOGICAL IPSSS
DATA I ° 4 S S , E ? P / . F , . l . E - 5 /
DATA P I / 3 . i i . 1 5 9 2 6 5 3 / , 1 2 2 , 1 3 / 1 7 7 7 7 7 7 7 8 , 3 7 7 9 /
SJL= J .NF. L
CHA=>G-= SPIN= a $ IF ( IAr ,S(J-L) . GT. 1 .OR. J . L T . 1 ) RETURN
FIRST RECOVER QUANTUM NUMflSRS ANO DENSITY MATRIX ELEMENT FROH IRO
00 11 1= 1 , H S IRO= I»OA(IS $ ISO= SHIFT<IRO,-59>
ISO= I S O . A . I S S= ISO i ISO= IRO.A.122 8 PO= tS+S- 1.>»ISO»ES«>
ISO= SHIFT(TOO,-58) S TSO= ISO . A . 1
ISO= 1 , PPOTOM, = 0 » NEUTRON
GL= ISO»(GLP+ FFC(1>>+ ( 1 - TSO)*CGLN+ EFC(2>»
MUS= IS0MMUSP+ EFMUM + ( 1 - ISO)»CMUSN+ EFM(2))
IRO= SHIFT( IPO, - 2 2 ) S IJUMR= 1
NLJ = I«?0 .A . 19 $ JA= NLJ . A . 1 S NLJ= NLJ/2 f LA= NLJ .A . 15
JA= LA + JA S NLJ= SHIFT«>H_J,-ft> S NA= NLJ .A . 7 2 GOTO (3*31) IJUKP
L3= LA S JR= JA I MB- MA S I^O^ SHTFT(IRO,-«) S IjUMP=2S GOTO 2
HAVE Q..N. 1NO PO, NOW COMPUTE DENSITY. FIRST CHtRGE
SLNAR= NA.EO.N1 . A . (LA.EO.LT
I F (SLMAi .A. SJL .A . t J l . E O . J * * ) GOTO 11
IFAS= LB+ J - LA i IF ( ICD.GT. -2J GOTO k
THIS SECTION COMPUTES COULOM3 TRANSITION DENSITY
IFAS= J l̂+ J+ IFAS/2 S IFAS= IFAS . 4 . 1 t FAS= 1 - IFAS- IFAS
FAS= FAS»'5Q!?T{ J\*J<*/Pl)
CHARGt= ^HAOGE- FAS'p!?O*GL*CLEf'S(J4,J«5,J)

U E N
CURRENT
CC U E N
CURRENT
CURRENT
CUPRENT
CUPREMT
C U P E TC U E N T
CURRENT
CURRENT
CC U E N
CUPRENT
CURRENT
CUPPET

GOTO 11
16= LAt LQ S IF (M00(I6*L,2)^0.0? GOTO 11 $ 15= JA+ JP- 1
I F ( I 5 . L T . J .OB. I f tBS(J l -JB) .GT .J> GOTO 11
I F (SLNAd ,A. SJL) GOTO 12
I F ( I 6 . L T . J . o o . IABS(LA-L^).GT.JS GOTO 12 S I f ?ICO) 5 , 5 , 6

11= IS* 16 S 15= 15* J S 12= JA+ L^+ J
IFA= 12+ ( I F A S + 1 - I 5 R S U - L ) ) / 2 $ IFA= IFA .A . 1
13= LA+ JS ?e I '»= LR+ JB S 16= 16+ J $ FAS= 1 - IFA- IFA

^ACftH IS HfJA,Jc',LA,L3,J,l/2) "
T00= TOQE= SORT<LA+LA-rl.)»TLYDEL(NA,LA,NB,LB,J,L,Xl
IF (SLNABJ GOTO 13 5 IfA= (J+l> .A. 1

IF (ICO) 'll,fc,£' **flS* _ 1« , , , ,
MOW COMPUTE SPIN
RA= ROFUNCINA,LA,X) ? RT= RDFUNC(N9,L0,X)
OPAB= 0 * IF (LA.GT.O) GOTO 7
RNO= 0 J IF (NA.GT.O) RNO= SQRT(FLOAT(NA))'ROFUNC(NA-1-1,X)
RN0=-SQRT(NA*1.5)*R0FUNC(NA,l,X)- RNO+ ROFUNCfNA,0,X)/X
ORAB= ORAR* RB* DNO t GOTO *T
ORAf?= ORAO+ R*»( SORT (LA* MA+ 0.5)»R0FUNCf*i», LA-1, X)

1 • SORTtNA* l.)»RDFUNC?NA*l, LA-I, X) )
IF JLB.GT.O) GOTO 9
RN0= 0 S IF (NB.GT.O) PN0= S1STIFL0AT(NB))»ROFUNC(N<?-1,1,X)

-SnRT(MI»*1.5)*P0FUNC<N",l5X)- RNO+ ROFUNCIN9,0 »X)/X
B= GRAB* RA'RNO ? GOTO 10
1= DRAB* RA»( SORTfL^t N1+ 0.5)»R0FUNC«N8, LB-1, X)

R.AO= --- • » »

JU^ENT
CURRENT
CURPfNT
CURRENT
CUPRENT
CUo t»ETCUot»E»JT
CURRENT
CUPRENT
C°°£TC U . £ N T
CURRENT
CURRENT
CUP=»ENT
CURRENT
CUPRFNT
CURRENT
CU O DENT

C U E T
CURRENT
CU E N T
CURRENT
CURRENT
CURRENT
CUPRENT
CURRENT
CURRENT
CUPPETCUPPENT
CUPRENT
CURRENT
CU°RENT
CUPRENT
CURRENT

9
H

9

XL
15

if
18
19
20
21
22
23
?<•
?5
26
27
28

12
31
32
33
3<t
35
36
37
33
39

I* 3
«»«»
50
51
52
53
5(»
55
56
57
53
59
f,0
61
62
«3
6H
65
66
hi
6B
69rA
72
73
7«t
75
75
77
7%



CURRENT (CONTINUED)

22
23
11

4+ Jfl)
n/oxt

S= J«»J«VPI i IF (J-LJ
FOR W ( J . J * i !
S= «>/<J< i . ) / { J * J * 1.)
S= ST?US> "<RA-
FOf RQU.JJ

LR-
• X I .

2?

13= XFJ

. < ? T ( S / ( J » J * J ]

s* S/.J/«J+ J * i.)
S= *5O?t I S) • C»4

- (J+2.J»RAB > $ GOTO 23

! RA3- DRABJ- CJ'Jf J i»»am S

<J- l .)»RA9 )
î ÎFS= IFASf>n4= S=IN*?1- i r a - I F S j * C L

CONTINUE S Ie (ICQ .EO* -2) RETURN
CH*»GE= Z.'ROHR'TRÏ'CHSRGE/B ï SS>I*1 = 3OHR»TRI»SPIN/B S RETUPN

23
15

TLYDEL

11

z

13

3

6
15

FUNCTION TLYnEL(MA,L»,t4<*,Ln,LA»«,L,X>
ROUTINE CAtCULflTES REDUCED MAT<m ELEMENT OF TENSO<?IAL OPER«TOS
OF OSHSP LAM FORMED ^Y THE VECTOR COt^lING OF THE ScHFRTXai
HâfcHOtnC OF Oar,Fi> l TO THE G3.a0IEnT OPERATOR. ONLY TfJE ftNGUE1;
4P» INTEr.DaTÇn OVE». THE oftOIftL FCNCTIONS ORp SSSU1EO TO HftRMOMI
OSCTLtATOP FUNCTTONS. X = Ç/P IS DIMEiMSIOMSLESS, Q= OSC. LENGTH.
THF B^ÎNK AND SACTHLERt NOT TKE TIME-RftfERSAù-INVÛRIANT PHASE
IS USST.

LOGICAL PHO
OATA PI/3.1U15 92653/
RHO= .T . S GOTO i l Î £NT*Y TLYOtLO î RHO r . F ,
I«»= LA* L9* L ? UY0£L= 0 î GOTO 1
FOLLOWING ÇMTRY POINT DO TESTING OF TP.IANGUL5R RELATIONS.
ENT'îY TLYDET Î TLYOEL= 0 4 IP (MOOfIi»,e) .NE. l ) RETURN
IF ÎIARS(LAH-L) .GT. 1) RETURN
IF (LAH .GT. LA + LB . CR. LSM .LT , IS«JS (LA-L3) ) RETURN
15= LAM+ i n « FBS= 1 - 2»HO0(I5.2)
2= ILAM*L4M*1) • I L + U t i ) / i« . /P I $ 12= T5+ L+ LB- i î 13= LB+ LR
Ï5= I5* IA Ï 16= L + LAM+ 1 £ 11= Hf * 1 S U : I I * - 1
FSS= FAS»5n-?T(71 S IF <<?HO) FAS= FAS'RDFUNC <NA ,LA, X)
IF (LB.GTvO) GOTO 13 S IF (RHOÏ GOTO 2
R1O= 0 i IF JNn.GT.O) RMO=S"5RT«FLOAT{NB)»»RADQI
RHO= -SORT (Na+l.SJ^RAOQCNA + l ï L A T N B U j i ï L . X ) - RMO
GOTO 15
RHO= 0 3 IF «NR.GT.O) RMO= STRT(FLOATfNR))»ROFUNCtNB-1,1,X)
RMO= -SQRTCNBfl.Çj^RnFUNCÎNg.i.XJ- RHO
GOTO 15
IF (RHO1 GOTO 1
RMO= SORT( LB+NO+ .5 » *=JADO (NA+1»LA ,N9+1 ,L8-i,L ,X)

SORTt W + l.)»R5DOlNA+l.Lfl.NB+2.LB-i,L,Xl
0= SQRT(
+ SORTt

.B+NO+ .5 J*=jaD0(NA+l»LA,N9+l,L
1.)»R5DOINA+1,Lfl,NB+2fLB-i,L,X)
!+.5î*R0FUNC(N<3,L8~i.f>

S GOTO
RMO= SlRT(Lci*Nf!+.5)»R0FUNC(Nq,L8-l,

1 ••• •5ORT(NB*l.)»ROFUKC(N[3+liL9-i,X)
CONTINUE
LPA= LA+L S LH&= Ifl^S(LA-L)
IF tLPA+1 ,LT. IB ,0R. LMA+1 iGT, LB)
TLYnEL = -S0RT{l.1»<I3-l. ))»eGD3C (LA.L.L
RACAM IS HlLB*i,LM,I.,.i.-.-i1
TLYOEL= TLYnrL*FWCOEF(11,12,13, TA,
IF «LPA-1, .LT. LB .OR. LHA-1 ,GT.
IF IRHO) GOTO 6
RMO= RMO- (I3+l)»X/(L*L*l.l
•t RAOOfNft+l.LA.NB+l.LB.L

OR. LMA+1 iGT, LB) GOTO
-l.))»eGD3C(LA,L»Ln-l!
L.m-1-.LAI»

GOTO 5

1 MM
GOTO 15
-SMO= R"0-
CONTIN'JE
RHO» RHO «SORT ! (LB + 1.) • f 13*3) ) *CGOOO (LA,LSL"Î*1)
«ACAH ÎS «(LBïl.LA.LiLI+l.LAM)
TtVOEL» TLVOEL* RMO'FHCOEF (II,T.2+2,13*2,11.15,16)
TLYOEL= TLYDEL'Ffts i RETURN
END

TLYOfL
TLYTEL
TLYOEL
TLYOEL
T 1 V ^ C*lTL '" L
TLYOfTL
Tj wriri! I. T 1 ' t L

TLYOEL
I L " J" L
TLYOEL
TLYHEL
TLYOEL
T i vrSci
1 l_ T ' ' _l_

TLYOELTLYOEL
Ti vr»ci
11_ T'J r \.

TLYOELTLYOEL
TLYOEL
TLYnEL
TLYOEL
TLYHEL
TLYDEL
TLYCiEL
TLYOEL
TLYnEL
TLYHEL
TLYOEL
TLYDEL
TLYDEL
TLYDEL
TLYDEL
TLYOfL
TLYOEL
TLYDEL
TLYOEL
TLYOEL
TLYPEL
TLYDEL
TLY1EL
TLY"EL
TLYOEL
TLYOEL
TLVOEL
TLYOEL
TLYOEL
TLYOfL
TLYOEL
TLYOEL
TLYOEL
TLYOEL

2
3
it
5
6
a
S
9

A Alu
11
13
•1 •,
1 4

Î516
1 '
11
1^
20
21
22
23
2i»
25
26
27
28
29
30
• » *

32
33
3<t
35
36
37
38
39
(«0
«»1
<*2
U3
t*k
U5
i*f>
U7
«*fl
l»9
BO
51
5?



FORMFAC

31

10

9

11

COf^uT r POOH P.1CTORS
=»Ot'îIN- SÏWTL50 TC C'<«9îNT, ïXCÇ^T TM&T THE DELTA FUNTÏ0N IK
X IS R-°LACPIÎ "V THf SPHERICAL «ESSft FUNCTION OF ORDER Jt
FOPHarinETiC ro=H FiCTO*, USE THE RELATION

MAGM°* C'JRL(MU)) = - < • ( -LONG»L/SO"TU»J+J) • ELEC»MU )
0 * K»q , X = R/n , < IS THE KOMFNTUH-TP.flNSFER.

,BOHO,T«?r

• LT. 1 I RETURN

<.Husp,MusM,EFc<a>*ep
MSN,"US ! LOGICAL SLNftn.SJL

I ° 0 i ( l ) • LOGICAL IP4SS
0AT4 PI/3.ii .15 92&53/S 122,18/177777778,377'*/
SJL= J .Nt .L
CH£<?GE= SOTN= 0 S I? CIARSU-L) . r ,T . i .OR. J
71= J M J + J * 1) ? 71= l . /ST?T(? l>
7?= (J+ 1S»U* J* 1) S 7.Z= 1./S5R

71
7?=
F

J*
FIRST °ECOVE° OUÛNTUM NUMBERS AND DENSITY MATRIX Elf.MF.NT FROM ICO
00 11 1= 1, N î l"0= I°OA<I) S ISO» SHIFT 11*0,-59)
ISC = ISO.A.I S S= ISO « ISO = IR0.A.I22 Î R0= (S+S- i.)»IS0'ESP
ISO= ÇHIFTfTP0.-59) î ISO= ISO .A. 1
ISC= 1 , PROTON, = 0 , NEUTRON
GL= ISn»(GLO+ E F C ( H ) * ( 1 - I S O ) » ( G L H + E P C ( 2 ) )
^U5= IS0»(MiJ5t>+ E F * I 1 ) ) * ( 1 - I S O S M H U S N + E F M ( ? ) )
I » 0 - SWIFT ( I S O , -??) S I J I J H P S 1
NLJs t'.O r 4 . I « « J&= NLJ . « . i S N t J = N U J / ? S t f t = NLJ . A . 15
Jû= L9<-J4 S MLJ= SHi^T ( N U J . - U ) S NA= MLJ . 4 . 7 S GOTO ( 3 , 3 1 ) U U M P
LB= L4 S JR= J4 S NB= N4 * 1^0= S H I F T n r ç o . - H ) î I J U M P = 2 $ 6 0 T 0 2
HAVE Q . N . ÛM0 " 0 , NOW COMPUTE D E N S I T Y . F IRST CHARGE
SLN4=5= Nf l .EO.MT . 4 . ( L A . E Q . L ^ )
I F (SLNÛ3 . A . S J I . 8 . ( J 4 . F O . J R ) ) GOTO 11
IFAS= LB+ J - Lu Ï I F ( T : O . G T . - 2 ) GOTO V

THTS SECTION CO"PUTES C0UL0'1 r FORH FACTOR

IFAS= J^+ J+ I F 4 S / ? î I C 4 S = I F A S . A . 1 î FAS= 1 - I F A S - IFAS
FAS= F1S»SORT 1 j a * j g / P H

' " "= CHARGE- F û 5 » D 0 * G L * C L £ « S ( J A f l

.EO.Q) GOTO 11 î 15= Jf i * J 8 - 1
GOTO 11
15= L â f LB î I F ( M O D ( I 6 + L,2> -
I F ( I 5 . L T . J . O P . I 4 ^ S ( J 4 - J ' ^ >
I F (SLM4!1 . S . SJL) GOTO 7
I F ( I & . L T . J . O P . i n B ^ ( L 4 - L 9 t . G T . J ) GOTO 7 $ I F ( I C O » 5 » 5 , 6

11= 15+ If, î I<5= 15+ J î 12= JA+ 1*1* J
I F f l = 13+ ( I F « S + l - I A q S < J - L ) ) / 2 Ï I F A = IFA . A . 1
13= LB+ J4 î I«,= L ° * J? î 16= I * - * J S FAS= 1 - I F A - IFA
FAS= F S S » ? . " 5 0 O T f ( L ' + Lû + l . ) • JA» J« î /< J + J + l . ) )

FAS= "AS»P0»0»FWC0EF(H,}2,I3,I«nI5lI6)"GL S IFCJ.NE.L» GOTO 10
IF (La+ L°.Ge.J + l .6. I43S(H-L^t ,L-..J+i)

1CHARGE= CHARGE- FAS» Zi*TJYLL(MA,LA,NR.LR,J,J+l,Q)
IF (L»+ La.G£:.J-l .4. iaqSILA-LC!) .Lr:.J-l)

1CHSRG1= CHARGE- FAS» 72»TJYLL(NA,LA,NR,LU,J,J-l,Q)
GOTO 7
IFA= (J+l ) .A. 1 % TOO= TLY9ELQ(M&,l.ft,Nf|,LB.J,L,m
TOO= TOO+ ( l - IFA- IFAj 'STRTC (LB+LB+1.»/ (LA+tA+l . ) )

1 •TIYOFIO(N=,L3,MA,LA1J, (_.Q>
CKtRGE= CHARGE- O.S'FAS'TOQ/Q'
IF (ICO) 1 1 , 6 , 6
NOW COMPUTE SPIN
I F (J .ET. U GOTO 8
EUCTRÎC MATRIX ELEMENT. L = J + l O«! J - l
3= J A » J 1 » 2 . / P I / { J + L + 1 . ) / ( J + J + 1 . ) ? S= (L- J)*SORT(S)
XAn= (LA- JA+ 0.5>»(JA+ JA) - ( L I - jn* 0 . 5 ) » U B + JB)

) S GOTO 9
JA+ 0 .5>»(

S= l=;»XflB»PAOT(MA + l , L A , N r l + l , L T ,
MAGNETIC HAT°IX ELEMENT. L = J
S= JA»JT»J /P I / (J+ l . ) $ S= S O R T ( S ) / « J + J + l . t
XAP=.(LA- JA+ C.5)»(JA+ JA) + ( L ^ - JB+ 0 . 5 ) * ( J R + JBt
S= S ' l (XAOt J+ l . )»RA00(NA + l , L A , N ^ * l , m , J + l , 0 )

- (J+ l . ) / J * ( X A t ) ~ J)»R40Q(NA + l ,LA ,Nn + l , L n , J - l , ' ) ) )
IFA= J+ j o * ( IFHS + 1 - I A 1 S U - L ) > /2 S IFA= IFA .A. 1
SPIN= S P I N - d - IFA- IFA ) «nLE^S ( JA, JB, J) •S»RO*fJ»MUS
CONTIN'iE î IF (ICO ,EO, - 2 ) RETURN
CHARGE= 2.»BOHR»TRT»CHARGF,/3 î SPIN= "îOHR»TRI»SPIN/a 8
END

FQR1FAC
FOPMFAC
F0°HFiC
FOPMF8C
FQPMFAÇ
POPMFA6
FOPHFAC
FOOMFAC
FO°MFAC
FOPMFAC
FOPHFAC
FOPHFfiÇ
FOPHFAÇ
F0RMF4C
r M1' if Hv

FORNPACFQ^HfuC
rnPMFAr
FOPMFAC
F0P1FAC
FOP^FAC
FORMFAC
FO9MFAC
FQPMFAC

FOPMFAC
FCMFAC
FOP^FAC
FORMFAC
FOPMFAC
FQPMFAT.
F0»MFAC
FOPMFAC
FORMFAC
FOPMFAC
FORMFAC
FOPMFAC
FORHFAC
POPMFAC
FOPHFAC
FOPMFAC
F0°MFAC
FORMFAC
FOPMC-flC
FORMPAn
FOPMFAC
FORMFAC
FOPMFAC
FOPMFflC

FOPHFAC
FORMFAC
FORMFAC
FORMFAC
FO^MFAC

FORMFAC
FORMFAC
FOR'IFAC
FOPMFAC
FOPMFAC
FOPMFAC
FOPMFAC
FORMFAC
FOPMFAC
FORMFAO
FOPMFAC
C fiO M C ft f**" D""r AC
FOPMFflC
t?no M c A f*r VJ." " r Q U
FOPMFAC
FOPMFAC
FOPMFAC
FORMFAC
FOPMFAC
FOPMFftÇ
FOPMF8C

2

<4

6
7

10
tl
12
13

I*
ID
1 71ft
1 <31 T

2021
22
21
2k
25
jtCD
272?
29
30
31
32
33
31»
35
36
37
38
39
'•0
<•!
«»2
43
<•£(
i»5
Ub
«.7
i»S
«•9

1Î-> i
52«53
54
R5
56
b *

5659
60
61
62
63
&(»
65
66
«7
68
£ âp*?

7??l
73
71»
75
76
?7
78
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RADQ

C
C
c

c

I
c

FUNCTION WILPI^ILFILIOI

*

Lor.icâi
OATA I-"
ENTRY o
F

PROGRAM CALCULATES THE RAOUL INTEGRAL
(MP.LPII JL(OP) IINF.LF)
HMEOC JL<P) IS THE SPHERICAL ^ESSEL FUNCTION OF OPOER L
B'JO 0 ÎS a OlHtiSIONflteSS QUANTITY,

IS EOU4L TO FACTORIAL 0^ (N-U ,
O IS EQUAL TO DOUBLE rflCTORIAL OF N,
IS EQUAL TO Gai'1A(N-.5)

,NOFftCT(100)
IPflSS

I S ? / . F Û I . « ; E . /
0

1)»* (
21 IFCNF.LE.C

PI = 3.1i«i5t

>>1O,1Q,21
S IF(fJP,LE.Q)GOTO<43
Î 9 = Sf!?T(PI)S

PASS=,T?UE.
=Zt1QO«X=X+1,

IF(I«»ASS)G0T02S
9Î B:SQ?T(PIIS X s - , 5 ! GMHAtiJsiî 003

GMMA(X) = x»r,r<Mâ ( T - D Î NFACT(1)=1$ 005 1 = 2,50
HFf iCT( I )=(T- l ) s NFACT( I - i ) î NDFÔCT(l)=iî N0FaCT(2»=2S 007 ï=3,100
N0F4CT(I)=I*M0F0nT(I-2)
ONF=NPftCT

< 2 . " (L
C=((2.*»«LP-NP+3)
ÏC=SQRT(A»CÎ
SUhi=0.0
00 1 K=i,NF
<T=K-i

S = ( ( - i . )
SUH2=fc,0
DO ft K:> = :

(NP-KS)

XS = FLOST (M-L
NNS=XS
I=FLOflT{L+M)»0.5+i.

A=R»n»»l•GMMÛ(I)*E

FOLLOWING TO ST. NO.i l COMPUTE CONFL. HYPER-G 1F1(-NNS,L*1.5,
t

QSQl»=O»Q/^. S SUMM= 5 U H N = ' l . $ NSTP= NNS $ NSB= 1
I F fNNS) 1 2 , 1 1 T 13

12 NSTP= nSOtt* 5
13 X0= -H'!S S XN= L* 1.5
1<» 00 fl US- NS"3, MSTP Î SUMN= SUHN»XO*OST./XN/NS

SUMM= SUHH+ SUMM î XO= XO* 1 *
8 CONTINUE î IF ( (NNS.GT, 01CONTINUE î IF ( (NNS.RT, 01 .

NSf>= NSTP* 1 S NSTP= NSTPt 5
11 SUM2=SUM2+XÛ»SUMM»(-1.)»»KC»

6 CONTINUE
SUf'l=S'J1.

1 CONTINUE
XLP=LP
XLFsLF
XL=L

0'OST
1 . S XN= XN+ 1 .
.OR. {ARS(SUMN/SUHM).LT.l.E-6) 1G0T011
5 £ GOTO l«t

RA01* RAOf)= BC'SUMl
RETURN

10 PRINT20
2E FOr-MAT(10X»MESSAGE FROM RAOO L+LP+LAMQA I S OOOi RADO FAILS»)

RAtUs RA0n= Q.
RETURN

U PRINT100
1ÛC FORMAT(lCX»MESSfiGE FROM RAOQ • /

i lDX'EPROR I N THE PRINCIPLE OUANTUH NUMBER OP THE OSCILLA-
2TOP HAVE FUNCTION. THE H.F . KITH 7ER0 NODE MUST HAVE N = l . • )

RETURN
END

Ram
RAOO
RAOT

R4O0
Rapo

RBOT
Rann
Ram
Reno

Reno
Ram
R»nnRflno
RBHO

RODO
RAHO
RADT
RfiDO
RBOO
Ram
Rano
R40Q
RflHO
Raoo
Ram
Ram
Reno
RanoR
Raon
RBOQ
RADO
RAno
RAOO
RanoR4D0
Raoo
Rann
Raon
Rano
R400
Rano

Rfinc
RflDO
Reno

niRûO
RBOO
RBOO
Ranr:

Raon
RBDO
RBOO
RODO
RAH1
Ratio
RHOO

noR
Rflnn
RBOO
Rano
Rann
Ram
R4D3

2

i*
5
6

R
q

1 3
H
1 2
1 3
1<»
1 5
1 6
1 7
IS
11
20

?2
23
?<*
25
2S
?7
2n
29
30
M

Z
Ti
3*.
35
36
37
78
31?

50
^1
52
53
54
55
56
57
55
59
60
61
fr2
63
6J*
65
66
67
69
69
70

72
71
7i»
75
76
77
71
79



TJYLL

FUNCTION TJVLLtNJ

REDUCED HflTRIx ELEHEMT OF TILAWM
T(LAM) IS ÇPHEPTraL TrNSO? 0"

CEO HflTRIx ELEHEMT OF TILAWM r i U i L I • J<L ,11
TUAM) IS ÇPHEPTrat. TÏNSO? OF PAN* LAM
Y(L) IS SPHE"IC8U H4R10NIC5 OF OpOFR L
L IS T H E O°*ITAL VlGULA* M0HÇNTUM OPERATOR
J U . D IS S = HERTCSL 9E.SSEL FUNCTION OF O»?OER L , aRGUËHÇNT Q
T = HOHENTUH-THAN'JFEP'LSS'iTH-oftPa^ETER, "IMENSIONLESS

POINT TJYLT TEST ALL TRIANGULA* AND PARITY SELECTIONONLY •:
SULES.

TJYLT $ TJYLt.s 0DCTUON
.GT.LAH) RETURN

«ÎT.L ) RETURN

TATA 0 1 / 3 . 1 1 * 1 ^ <52t
'JYLL= 3 S GOTO 1 Î P
IF ( Ia^S(J-L) .GT. l )
IF (La+Ln.LT.LAM . 0 ^ .
IK (L4 + LB.LT.L .OR. U « I H - L
I e (M0T(Lfl+LPI+L12) .SO. 1) RETURN
FI&ST COMPUTE APGJE'iENTS FOR FAST RACAH
12= L i t L° * L+ LÛH $ I?= L1+ L I * 1 $ l<*- LA*
15= LI*- LR* LAM S 16= L* LAH+ 1
COf"°UTE COEMETOIC FACTOR*
TJYLL= fLp+ L ° ' L ^ ) * < L * L+ 1)»(LAM* LAM* 11
TJYLL= O.^»5TRT(TJYLL/PI)»I1
COM°UTr C 'AS"
TJYLL = "TJY'_LM1~ 2»M00(LAM+ LP, 2) 1
NOW C01PUTÇ TM§ ^EST. PACAM IS H(L*Z1*L4 tL,L8,LAM)
TJYLL = T JYLL» p WC0EF( I<»* l , I2 , I3 , I *» , I5 , I6>
TJYLL = TJYLL*RA0Q(NA*l ,LA t N3*l .L I Î .L .n)»rRETU
END

TJVLL
TJYLL
TJTLL
TJVLL
TJVLL
TJYLL
TJVLL
TJYLL
TJVLL
TJYLL
TJVLL
TJYLL
TJVLL
TJVLL
TJVLL
TJVLL
TJYLL
TJVLL
TJYLL
TJYLL
TJtLL
TJYLL
TJYLL
TJYLL
TJVLL
TJVLL
TJVLL
TJYLL
TJVLL
TJVLL

§
5
?
a
10
li
12
13
l<t
15
16
1?
lfl
19
20fi
?<.
25
If
2S
29
30
31

RDFUNC

IN ,L ,X)
<.O.RADIAL-FUNCTION UPTO NOSC = J
I ( 1 1 ) , G L ( 2 1 )

Lor.icsL i0»^5;! naTft I P Û S S / . F , /
OSTA H l « a x f L l M A X / l i , 2 1 /
Nl= N+lî Ll= L+1S POFU^^^a- IFCN.LT.a .OR.L.LT.O)
NL= N+L+lî IF ( '• i l .GT.MliSX.O^.NL.GT.LlHAyi GO TO 5
IFUPASS) GO TO 2 ! IP4SS= .T.S F L ( U = 0 . f GL(1)= ALOG10.5)
00 1 M = ? , LIHAXJ A= M-l$ IF(H.GT.N1MAX1 GO TO 1
FL(M)= FL(M-i!*ALOG(A)
GL(1>= GL(M-1Î•OLOGffl

OPT (3. :

n= l .

RDFUNC

EVALUATE LAGUE^RE POLYNOMINAL POLBG ( N , L * l / 2 , X « ! n )
POLAG= E » P ( G L ( N t ) - G L ( L l ) - F L ( H i ) ) Î I F ( N . E Q . O ) GO TO
00 3 Hsl. t je (?= -9»XS0
POLAG= °nLûr,+ 1»FXP(0L(NL>-r,L ( L 1 * H ) - F L ( N 1 - M ) - F L ( H * 1 ) 1
3= EXP(FKN1)-GL { N L ) ) J <3= SQRT(A»T)
ROFUNC= B»(X»»L>»EXP{-0.5»XSO)»°OL*GS RETURN
?RINT6,N,L Î PETUPN
FOPMATt/iX.»>.XXXX N = * t I 2 x 2 X t » L s » . l 2 , 2 X , » N OR L TOO LBRGE".

11» CANNOT CALCULATE RADTNC.CHANGE 0 I1ENSIÛN AND DATA XXXXX»)
END

10FUMC
RDFUNT
RDFUNC
ROFUMC

RDFUMC

ROFIJNC
ROFUNC

RÔFÛMC
RDFUMC

3
i»

6

«3
1 0
1 1
1 2
1 3
1«»
1 5
1 6
1 7
1 8
1 9
20
21

23
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CLEBS

, "

100

FUNCTION CLE9S«A,fl,Jl

_ 3-J COEFFICIENT ( J 4 , JB, J / O . 5 , - 0 . 6 , 0 )
J«,J"? ISSUED TO HflLF-lNTEGE^S. A= j i * 0 . 5
(FORMULA F°0H «RINK AND SATCHLER, P . 1 1 2 )

OIHENSTON F 4 C H 1 0 0 ) I INTEGER A,9 2 LOGICAL PASSOIHENSTON F»CL
QATA P6SS/.F. /
I F ( P f l S S ) GOTO 1 Î P » S S * . T .
00 10 <s 1 , M i FiCLK+l)

I F (Pf lSS) GOTO 1 Î P » S S * . T . S F A C L ( 1 > = 0 S Xc 1 .
00 10 <- 1 , 99 3 FACKK+lts FACHK1* ALOG(X)
X= X» 1 .
FACL(K*D IS EOUfll TO LOG OF K-FACTORIAL
<s « • P* J - 1 Ç IF (< ,GT. 98) GOTO 2
X= FACL(8+n-J>* FACLIB-i-fJ + l t t FACL (3-A+J + i ) - FACLCK+21
K* J« 100(« f?) 5 X= 0.5»X* FACLt (<*9*A* lJ /2 )

- FflCLi <A*Q-K*U/» ) - FSGL< CA*K-B*1»/Z ) - FACL I (R+K-A+l) / 2
EXP(X)»2./S0»T ((..•«•«»(X)»2./S0»T(

CLEH$x - C l - 2»HOO(
PPJNT 100 ? STOP
FOPHAK/lXliJ"»"»»

21 )»X S RETURN

FOPHAK/IXIUH»»»»»»»»»», «MESSAGE F»0M FUNCTTON CLE°S, JB*jq^
1 98. INCREASE OIHENSION OF FACL IF NECESSA«?Y»10H»»»»*»»»»»)
£MO

GT

CLE^S
CLEHS
CLE^S
CLfS
CLft*1;
CL
CLFHS
CLE1S
CLFr<SCLFr'S
CLE^S
CLE^S
CLE«^
CLE^S
CLERS
CLPiS
CLF^S
CLE1S

Lt^S
CLE1S
CLE^S
CLT1"?
CLEBS

5
8
r
n
9

10
11
12
13
1<*
15
16
17
19
19
20
21
2?
23

CG000

FUNCTÎIV1 CO000 ( I A , I «,ICJ
C SUP'ÎOUTli-IE TO TftLCULiTE THE 3 - J SYMBOL I A, H,C/D,O,C )
C THl TPIAMGIILAP TN£1U4LITIE«; 6PE ALREADY SÉTlSr iÉD.
C AL^O l - l l » » C A + n*C)=* l HAS fîEEN S 6 T I S F I E 0 .

OIHENSION F K 1 3 0 )
OATA IPftSS/Q

GOT02,5 F L U
tOsCXCK-n + ALOGtAJS IPBSS=1

CGCCO=.a
rF<IC.GT.<I<U IO>. OP.IC.LT. IA1SUA-IR)» RETURN
I F U - l ) » » ( I A + i n + iCJ .NE.l) RETURN
.G2«IA^+ir
tG2P=IG2*2
tC=IG2/2
ICP=IC*1

ÏAHHCP=I
76 1GP 1=IG+1

IGMAPl=ir,p
IGHHPi=IGPl-I9
IGHCP1=IGP1-IC
IGD2SIG/2

SÏG=i-NSÎG-MSÎr,
XsFLdGPD-FLtlGMAPD-FLdGMBPD-FHIGHCPl)
OLGs.5»(FL
YLC=X+OLO
Y=FXP(YLG)
TJ=SIG»Y
CGCOO=TJ
RETURN
END

CGOCO
CG000
Cf,00 0
'̂  r»UU U
CGCOQCGOCO
CG000
CGCOO
CGOCO
CGOGO
CGOCO
CG000
cr.ooo
r*f fin rtU<*Uu v
CGCOO
ly ' t U * J U

CGO00
OGCCO
CGCCQ

cr,oooCG000
CGTÛO
CfiOOO
CGOOO
CGDOO
CGOOO
CGOOO
CGOOO
CGOOO
CGOOO
CGOCO
CGOCO
CGCOO
CGOOO

2
3
i»
e
6
7
e9

10
11
12
13

Î5*
16
17
18
19
20
21
22
23?<•
25
26
27
28
Î 9
*Q
31
32
33
3«*
35
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WCOEF

H C 0 L F ( 4 , 9 , C , D , E , F )
THIS P ^ Q ^ J M , «KXTTEti 3Y R.Y,CUSTOM AND J.H.SCHNIQT IN SEPT. 1 9 7 l t
USES <£3Gea FORMULA CNU3WO ÙINENTOiVOL11<1959JiPllfeJ TO EVALUATE THE

M(A,3 iC ,D ,E ,F>s( - l )» *<A»a«C*0> e SIXJ lA ,BfE /0 |C ,FJ .

SINCt iSNY PROGRAMS WHICH USt RACAH COEFFICENTS ALSO USE CLEBSCH -
GORûfiMÎ, :3MMÛN âLOCK CSRACAH HAS 3£fcN SET UP SO TABLES OF LOOS AND
SCtUA Ï̂ Î1OTS DO NOT HAVE TO BE CALCULATED EACH TIHE THE FUWCTIONS
4îE SALLfO, NOTr. T-tAT ALQGF(O) IS SOHLTIHtS REQOIREO IN THE
CALCJLSTTO'IS *NO SO ALO&FO'ALOGFÎ 0)»0.

COMMON 5LD:< RACASYS IS INCLUDED TO ENSURE THAT ALL ITS ELEMENTS ARE
STORE) STAJTNTIALLV IN CORE. THIS IS IMPORTANT FOR EQUIVALENCING.

COMHOS 3L0;< XRACAH IS USEO IN CALCULATING X-COEFFICIENTS.

C0ii0N/;GRACArt/lNlTI6L»AL0GFQ,ALOGF(S0l,SQRF($0)
l , X 2 , X 3 , Y i , T 2 , r 3 , Y H , I X l , I X 2 , I X 3 , l Y l f I T 2 , I Y 3 , l T l «

CAH/JOUTiJXSMTCH
R V ( 7 > , I V < 7 >
£ < R V , X 1 ) , ( I V , I X 1 , V A ) , ( I X Z , V B ) , ( I Y 1 , V C ) , < 1 * 2 , V O ) ,
i I Y » , V F )

DATft .N IT I4L /0 / ,ÛLOÎFO/Û . / ,JXSHTCH/0/
XLLi&AL PARArtEIERS IN WCOEF(•,6F5,1,»I • )

TH4Ï ftLJ^F ANO SQRF ARE SET UP ONLÏ ONCE IN EACH PROGRAM
IF ( INITIAL . N t . û) 30 TO 20

!»0Q

i? ( i l = O .
S S M = 1 .

00 25

SQ^r(
ALJic

iNiri
SIXJ =

J =
*• 1 •

J) =
(J)
5L
1.

SET U3 THE

2.sa

=ALO&F
= 1

S
«EGGfc

(J-i»v&LOG(SM)

IFAS=0 »
SY130L

WCOEFxC.

Y2=Y3*E i
CHEC< THAI THE REGGE SYHBOL CONTAINS ONLY NON-NEGATItfE INTEGERS

00 i K= 1 ,7
J=A33(R;(K))
IF (FLOAT(J) . N E . Rtf(K>) GO TO 998
I t f (<)= J

CHECK FOP TRIANGLE AND IN «ANGE CONDITION .
GO TO ZQi
ENTÎY F4CQET

I S F s F H C O E F a x i . I X Z j l V l ^ Y Z . l Y J t l y » ) WHERE
IY2=C*0+E

m =
IF P«RftH£T£RS ARE LEGAL THE VALUE OF WCOEF(A,3,C,0iE tFI IS RETURNED
HCOEF MUST BE CALLED FIRST TO IN IT IALISE /CGRACAH/
NOTE - I F -HCOEF IS CALLEO, NO ARGUHtNT CHECKING IS OONE

V» = AÎ V3=S* VC=CS VOsDS >/E=EJ VF=F
IXÎ= IYl*]

201 IY0= MA<D(IY1,IY?,IY3,IY'*)
1X0= MIMOCIXl,1X2,1X3)

HCOEF
MCOEF
HCOEF
MCOEF
MCOEF
HCOEF
HCOEF
HCOEF
MCOEF
MCOEF
HCOEF
WCOEF
HCOEF
MCOEF
HCOEF
HCOEF
HCOEF
HCOLF
MCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOEF
MCOEF
HCOEF
MCOEF
HCOEF
WCOEF
HCGEF
HCOEF
HCOEF
WCQEF
HCOEF
WCOE.F
HCOEF
WCOEF
HCOEF
WCOEF
HCOEF
HCOEF
MCOEF
HCOEF
MCOEF
HCOEF
HCOEF
HCOEF
MCOEF
MCOEF
MCOEF
WCOEF
HCOEF
HCOEF .
HCOEF
HCOEF
MCOEF

2
3
*•
5
6
7
«

10
11
12
13
!<•
15
16
17
16
19
20
21
22
23
2<t
25
26
27
28
29
30
31
32
33
34
35
36
3?
38
39
<»0
<tl
42
<*3

1*5
<t6
47
48
49
50
51
52
S3
54
55
56
57
58
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WCOEF CCONTINUED)

I' (IYO .&T. 78> GO TO 998
x=ixo-iro*i
IF (X ,.T. 1.) GO TO 99«l
IFA3-IX1
IF tlxo ,11. 0) GO TO 9)9

TH£ EXPRESSION (IYO .AND. 1) SlMPcY CHECKS IF IYO IS 000 OR EVEN

NOTE DEL: IS tVALUATEO AS FOLLOWS
0 i . C = ( i ) - ( 2 > * U 3 ) - ( * ) )

HH.ERc ( U = S U H OF SMALLiR LOGS
(2J=SUf1 OF SMALLtR LOGS
«3>=HQST LKELY TO 3£ THE LARGEST LOG
U)=SUM OF LARGE LOGS

DELS=«HL0GFlIXl-IYl)+AL0GF(IXl-lY2J*AL0GF{IXl-IY3)*AL0GF<IXl-IYit)
1 »»LOGF<IX2-IY1)*ALJGF(IX2-IY2)*ALOGF(IX2-IY3H-ALOGF(IX2-IY4)
2 *4U3GF<IX3-m>+ALOGFUX3-IY2>«ALOGF<IX3-IY3)*ALOGF<IX3-lY««>>».5>
3 - (4LOGF(IY0-IYl) +ALOGF(IYQ-IY2) •ALO&FUYQ-IY3) • ALOGF(IYQ-IYi»>
It »»LOGF(IX1-IYO)*ALJGF(IX2-IYO)+ALOGFCIX3-IYO))*(ALOGF(IYQ+1)
5 -• 5» (ALOGF (IY1H> + 4LOGF(IY2*1) •AL0GF(IY3*l> *ALOGF (IVt + l ) >)

DELC=(i-K-tO»cXP(0EL:>
INITIALISE THE SU.1

SMsl.
IF IX . . E . i.» GO TO 13

fi X l = I X i - K $ X2=IX2-K S X3=IX3-K
i Y1 = K-IY1 J Y2=K-IY2 S Y3=K-IY3 $ Y«»=

THE SUM 15 DONE RECURSIVELY WITHOUT ALOGF
NOTE 3E0AJSE OF THE DEFINITION OF X ; THE SUM FROM 2 TO X IS THE
SAME A3 TH£ SUM FROM IYO TO IXO

i= l . -SM»(Z0-XK>»(Xl + XtO
MY1-XO»(Y2-XK)»(Y3-XK)

IF IX< . L E . X ) G O TO 1 5
• SIXJ IS Ml USUAL 6 -J SYMBOL OF HIGHER .

13 SIXJs OELC'SM
199 IFA5=IFAS .AND. 1

HCa£-sSIXJ»(l-IFAS-IFAS)
397 RHTJ^N

• JXSHTCH DETERMINES WHETHER OR NOT WCOEF HAS CALLED 3Y XCOEF. IF IT
• HAS, NO E**O* MESSAGE IS PRINTED BY WCOEF

398 IF (JXSrfTCH .EQ. 0) 30 TO 996
J3JT=1 S JXSHTCHsO
GO T3 937
PRINT WDa,A ,B ,C ,O ,E ,F
GO T3 137
END

396

HCOEF
WCOEF
HCOET
HCOtF
WCOEF
WCOEF
HCOEF
HCOEF
HCOEF
HCOEF
NCOEF
HCOEF
HCOEF
HCOEF
WCOEF
WCOEF
WCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOtF
HCOEF
HCOEF
HCOEF
HCOEF
HCOEF
WCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOEP
HCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOEF
HCOtF
HCOEF
HCOEF

59
60
61
62
63
bk
65
66
67
68
69
70
71
72
73
7U
75
76
77
78
79
80
81
62
83
8<*
85
86
87
88
89
90
91
92
93
9<»
95
96
97
98
99
10 0
101
102
10 3
10<t
105
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LIISIPLOT

L T N P L O T < * . v , T O X , *
X ( 5 Q J . Y ( 5 Q > , ? ( 5 Q J , •

SNAH?)
fSNAH£t3>

ATATA
f )ATA F O R M W & H ( U A 1 C
PINO MIX ABSOLUTE VALUE FOR ARRAY Y AND7
AMsO.O
no l i = i , N

1 AMsAHAXl < Û M , A q S ( Y < I > > , » W ( 7 ( I I I )
I F < AMI «i, 6 - 7

b

8

/,F0RMi/6M«Fç,2)/

1 1 0 ,
A

LIN»LOT
LIMPLOT
LIN°LOT
LfNOIOT
LtN°L
LÎNPLOT
IINOLOT
LINPLOT
I »»LOT

GO TO 1
P O P M A T ( * C J " » ^ * * i u , ~ « ^ T « T ' I a ^ t iz**wrf
SELECT vE°TirflL SCAL^ FACT0R4PPL ICA"U.E «HEN AM I S LESS THAN 1

? IFCÂH.GT.1) GO TO 3 J HP s NP + 1 $ AH s AM»1Q $ GO TO 2
3 AM=fllNT ( l ^ l . O S AM=6M»tO.C"(-NP>

UfPER 4ND LOWE"? IIMT.TS c 0 S AXIS
YHAX= â M / 2 . S YMIN = - YMAX $ XMIN s 0 . 0 S XMAX = INT(X(N) • 1 . 0 )

PtOTTING THE F36HE
TICX = 10» OX 5 TT.CV = AM'0.1 Î XL = X1AX/( i0»DX)
CAIL PtOTIl .Xt , ia .C*XMIN,XH4X,Y»UM,YHAX,TICXtTICY)
PLOTTING THE ARRAYS «OTH ON THE SAME FRAME
CALL «SLOT!2,1,!)ÎX1Y,N) Î CALL PL0T(2, X »0 ,X,?,-N)
LABELS ON Y îxfs
10 <» 1 = 1,11 3 «i'.C= XMIN -0.9»TÏCX
AP.P = YIOC = YHIN • (I-1J»TICY

«. CALL PLOT(',,rOPMt,1.0,0»XLOC,YLOCfARR,i)
lOtNTIPICBTION OH U°°£R AXIS
XLOr:=xMiN * YLOC= YHAX • o . ' * T I C Y
CALL PLOT t 7,FOPMJ», 1.0,0, XLOC, YLOC , NAME ,U1
XLOC= XMIN*3.5»TICXÎ CALL PLOT(3tFORMZ,1,0,0,XLOC,YL0C,SNAH£,3)
LARELS ON <axlS
YLOC= Y-1IM - 0.2»TICY 5 1XL= INTIXL) +1
OO 5 1= 1,IXL S XLOC - XHIN + (I-l)»TlCX - 0.3»TICX
ARP = X-"IV • (I-i)»TICX

5 CALL 3L0T( 3,FO>?M3,1.0,Q,XLOG,YLOC.APR,1)
£NO

'

NPLOT
NPLOT

>W>LOT
NPLOT
NPLOT
NPLOTLINPLO

LÏNPLOT
LIMPLOTLIWPLOT
tINPLOT
LINPLOT
LINPLOT
LÎNPLOTLIH"LO
t.INPLOT
LIHPLOT
LINPLOT

NPLOT
HPLOT
NPLOT
NPLOT
NPLOT

LINPLOT
LINPLOT
UJNPLOT
LINPLOT
LINPLOT
LINPLOT
LINPLOT
LINPLOT

\a

il
15
16
irn
19
?a
31
22
23
2<t
25
26
27
26
29a
I!n
36
37
39
39

SEh I LOG

X t O G t X , Y , 7 , Y 7 , n O , - . ,
T E N S I O N X < 5 t ) t Y ( 5 0 ) , 7 ( 5 0 ) , Y Z ( 5 0 )

0 A T 4 ^ O ^ M / l O H ( F i e , 2 S 1 O ) /
OATS ^OP-'t/eHC^AiC)
OPTA FT?MX/flHO (M- y) C/fFO^MY/lOHFO'ÎM
SET LI'IIT? FOP PLOT YHAX = 1CEXP EXL

MlUsûïXUftXsX(M)£TI^=5.»00£XL=XMax/TI

E,FXL,NC)
,SNBHÉ(3)

\

11

12

SEMILOG
SEHILOO
SEMILOG
SEHILOG
«t=>IÎLOr,
SEHILOG

. . SEHtLOG
CALL S^l.^GY(XL,vL ,Xf1lN,XMAX,TIC,EXL»NC.F0S»MX»8,F0<»MY112,F0«?MSL,5) SEMILOR
FtCMA^E) ?YMROL 7 FOR NEGATIVE yfiLUES AND 8 FOR POSITIVE SEMILOG
OO 1 1=1,H SEMILOG

TO° / ,FOPHSL/6HIF5.1>/
CYCLES = NC

0

r . F m n - 3 , ) ? , 3 , H
SYMni=7SY(I)=ALOGlf! « 1RS ( Y ( Ï ) » ) ÎOO TO 5
SYfU* 1» $ Y<H=ALOG10«Y(I) t S 5 0 TO 5
Y d » = - 1 0 S SYM<U= 1
CALL t > L 0 T ( 2 , l , S Y M ' U , X ! I ) t Y « I ) , H
CONTINUE
FtSPIU) SYMBOL 1 fOR NEG AND 2 FOR POSITIVE
00 11 1=1 ,N
I F 1 7 ( I J - C . ) 6 . 7 , 8
SYf">2=l S 7 t l J = ALOG1D(A3S(7. t l ) ) ) S GO TO 9
<5YPH2=2 Î 1(1) a - 1 0 $ GO TO 9
SYMO2=2 $ Z t l ) = ALOG10(7(I>)
CALL P L 0 T ( 2 , l f S r M 8 2 , X ( I ) , Z ( I ) , 1 )
CONTINUE
SYHg3=6î 0 0 1 2 1 = 1 . N
YZH> = AL0G10<Y7(Il)AL0G10<Y7(D)
CALL "L0T{2,l,SYMSS,X,Y7,N>
WRITE LA3EL
YLCC=EXL»0.05 % XLOC=0.0 $ CALL PLOT (3,F0RM«» ,1,0,XLOC,YLOC, NftMEf «»1
XLOC=4.0 S CALL PL0TC3,FORM,1,0. , XLOC, YLOCSNAME, 3)
RETURN
END

SEWILOÇ
SEMILOr,
SEMILOG
SEMILOG
SEMILOr.
SEHÎI.OG
SEMÎLOR
SEMILOG
SEMILOG
SEMILOG
SEKILOG
SFMILOG
SEMILOG
SEMILOG
SEMILOG
SEMILOG
SEMÏLOG
SEMILOG
SEMILOG
SFMILOG

2
3
C>

6

9

i3
ii
12
13
1<*
15
16
17
18
19
20
21
22

2<»
25
26
27
28
29
30

ii
33
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C.3 SPECIAL RELATIONS FOR CHECKING THE RESULTS

There are some special properties of the

densities ar.d form factors which are useful to know.

Using the "form factors" given in equations • (C'1,2)

A n (/IT fx

Here < > means the reduced matrix element between the

initial and final states.

For the magnetization current

= 0-

Therefore we have the first general relation

Ci) /A f"1 , , - /X+l f"1 ,x, =, 0; general. (C.5)
A ? A — a. A , A ""I "

If the convection current is conserved we

have

<*x.p».

where k is the wave-number of the energy transfer. This

leads to the second relation

(ii) /Tf? . ,'- ATI ff = | xf.; if Jc conserved. (C.6)
A j A — l AjA T-L C[ A "'
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This relation must be used with discretion since in a

microscopic, manyr-body calculation 3° is almost never

conserved. However in the single-particle model,

where the one-body potential is momentum-independent,

(ii) is satisfied. In the special case of harmonic

oscillator, the energy difference in the transition

jb> •*• |a> is

and

= (2n +£ - 2n. •»£, )fiu>a a D b

k = AN»fic/(Md2)

where M is the nucleon mass and d is the oscillator

length parameter. For such cases

,.... rr- CC /7TT" cC AN'"flC

(111) /A f ^ ^ - /TfT f = 5 A

harm, osc. s.p. transition (C.7)

A special case for (iii) is when ja> and jb> are orbitals

in the same shell, in which case AN = 0; therefore the

LHS of (C.7) must vanish.

We recall (see section 2.8) that 3C vanishes

in a.i elastic transition. This can be extended to

transitions between two s.p. states split by a simple

spin-orbit interaction (constant x L*a), since this
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interaction does not affect the spatial wavefunctions.

The harmonic oscillator model provides such an

cxamiie. Therefore we have

Civ) cC, , , = i^ w , = 0; s.p. transition, n = n. ,S. = JL . (C.8)
A , A ± l A , A ± i a b a c i

Equations (C.u,6,7) can be used to check the

results of MICR0DENS. Equation (C.8) has be«?n incorporated

into the coding of the program.

As was mentioned earlier, the form factors

in MICR0DENS are calculated analytically rather than by

Bessel transforming the computed densities. In

particular the magnetic form factor is calculated using

(the ^irst line of) (A.27c1) which involves formulas

significantly different from those used in computing the

magnetic density. Therefore an additional consistency

check can be made by performing the integrations in

(C.I,2).
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