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L'ENERGIE ATOMIQUE DU CANADA, LIMITEE

Nouvelle méthode de régularisation d'une catégorie d'intégrales Feynman

dans les jauges axiales et covariantes
par

Hoong-Chien Lee et Michael S. Milgram

Résumeé

On utilise un ensemble hybride de régularisation dimensionnelle
et analytique pour régulariser et découvrir une représentation de fonction-G
de Meijer pour une catégorie d'intégrales Feynman divergentes et sans masse
se trouvant dans une jauge axiale. Les intégrales se trouvant dans la jauge
covariante appartiennent & une sous-catégorie et celles se trouvant dans
la jauge & cone léger sont obtenues par continuation analytique. La méthode
découple les singularités physiques de 1'ultraviolet et de 1"infrarouge
de la singularité parasite de la jauge axiale mais elle les régularise
toutes les trois simultanément. En ce qui concerne la singularité de la
jauge axiale, la nouvelle méthode analytique est plus puissante et plus
élégante que 1'ancienne prescription relative & la valeur principale, mais
les deux méthodes possédent des parties identiques infinies aussi bien
que réguliéres. On démontre que la régularisation dimensionnelle et celle
analytique peuvent étre équivalentes, en supposant que la premiére méthode
n'a pas d'anomalies-Y5 simulées et que la deuxiéme conserve une invariance
de jauge. La méthode hybride permet d'évaluer les intégrales ayant des
puissances arbitraires a nombres entiers pour les logarithmes dans la
fonction & intégrer par différentiation & 1'égard des exposants. Ces
ndérivées exponentielles" engendrent le méme ensemble de “polylogarithmes”
que ceux engendrés dans les intégrales & boucles multiples selon les théories
de perturbation et elles peuvent étre utiles pour résoudre les équations
selon les théories de non-perturbation. La relation étroite qui existe
entre la méthode des dérivées exponentielles et la prescription de 'tHooft
et Veltman pour traiter les différences de chevauchement est notée. On
démontre que les deux méthodes engendrent des fonctions n'ayant pas de
parties logarithmiques infinies non renormalisables. C'est pourquoi les
théories de non- perturbation exprimées en termes de dérivées exponentielles
sont renormalisables. D'intrigants rapports existant entre les théories
de non-perturbation et les exposants non intégraux sont notés.

Des extraits de ce rapport ont été publiés dans la littérature
(références 50-56). Le but de ce rapport est de présenter un texte unifié
et de commenter certains aspects de la théorie qui ne sont pas traités
dans la littérature.
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ATOMIC ENERGY OF CANADA LIMITED

A NEW METHOD FOR THE REGULARIZATION OF A CLASS OF DIVERGENT
FEYNMAN INTEGRALS IN COVARIANT AND AXIAL GAUGES

Hoong—Chien Lee and Michael S. Milgram

Abstract

A hybrid of dimensional and analytic regularization is used
to regulate and uncover a Meijer's G-function representation for a class
of massless, divergent Feynman integrals in an axial gauge. Integrals in
the covariant gauge belong to a subclass and those in the light—-cone gauge
are reached by analytic continuation. The method decouples the physical
ultraviolet and infrared singularities from the spurious axial gauge sing-
ularity but regulates all three simultaneously. For the axial gauge sing-
ularity, the new analytic method is more powerful and elegant than the old
principal value prescription, but the two methods yield identical infinite
as well as regular parts. It is shown that dimensional and analytic regu-
larization can be made equivalent, implying that the former method is free
from spurious Ys-anomalies and the latter preserves gauge invariance. The
hybrid method permits the evaluation of integrals containing arbitrary
integer powers of logarithms in the integrand by differentiation with
respect to exponents. Such "exponent derivatives” generate the same set
of "polylogs” as that generated in multi-loop integrals in perturbation
theories and may be useful for solving equations in nonperturbation theor-—
ies. The close relation between the method of exponent derivatives and
the prescription of 'tHooft and Veltman for treating overlapping divergen-
cies is pointed out. It is demonstrated that both methods generate func-
tions that are free from unrenormalizable logarithmic infinite parts.
Nonperturbation theories expressed in terms of exponent derivatives are
thus renormalizable. Some intriguing connections between nonperturbation
theories and nonintegral exponents are pointed out.

Excerpts from this report can be found in the published
literature (refs. 50-56). The purpose of this report is to provide a uni-
fied exposition, and discuss some aspects of the theory that do. not appear
in the literature.
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I. INTRODUCTION

Dimensional regularization1_4) is a powerful tool for
regulating the ultraviolet!) and infrared?) divergent integrals
intrinsic to quantum field theories. Because the method preserves gauge
invariance and at the same time provides the easiest way to isolate the
infinite part as well as the leading logarithmic term of divergent Feynman
integrals, from its conception it has been extensively used in the study
of renormalizationl™) and the dominant asymptotic behaviour of gauge

theories in perturbation calculationsG).

The analytical properties of a dimensionally regulated
integral do not appear to have been fully eéplored however, particularly
for integrals in an axial gauge,7) which are especially difficult to
evaluate. The chief advantage in choosing an axial gauge is that the
Faddeev-Popov ghosts8) that are otherwise required to uphold Ward iden-
titiesg) in non-Abelian theories are decoupled from the physical fields.
This greatly simplifies calculations and makes practicable otherwise
intractable calculations in theories such as quantum gravity. Other
advantages of the axial gauge are that it yields mass factorizationlo),
and in hard quantum chromodynamic processes, a judicious choice of the

special planar gaugell) causes virtual gluons to be effectivelyAphysi—

cal, i.e., tranversely polarized.

The price one pays for the convenience of the axial gauge
is that integrals involving the propagator now have, in addition to the
ultraviolet and infrared divergencies that they may otherwise possess,
unphysical or "“spurious" singularities that are associated only with the

axial gauge. In the literature, integrals that suffer from such axial



gauge singularities have been generally (but not exclusively) Fegularized
with the principal value prescriptionlz). Recently it has‘be;n
shown13’49) that this prescription, used in conjunction with the method
of dimensional regularization, yields well defined and consistent results
for the infinite parts of axial gauge integrals of two-point functions in
Yang-Mills theories and quantum gravity at the one-loop level. The pre-
scription, however, is sufficiently cumbersome that the evaluation of any
axial gauge integral is a substantial undertaking. Moreover, the evalua-
tion of the finite (or regular) parts of these integrals, other than the
leading logarithmic term, is difficult with this prescription.

In this paper we propose a method, based on dimensional
regularization (the dimension of space-time is generalized to a continuous
variable) and analytic regularization (exponents are generalized to con-
tinuous variables)14), for calculating a very general class of massless
divergent integrals in the axial gauge; integrals in the covariant gauge,
which are free from spurious singularities constitute a subset of the
class. Specifically, in our method spurious singularities are dealt with
by analytic regularization, not by the principal value prescription. It
will be demonstrated that the proposed new method is more powerful and
elegant than the old one. At the same time, by means of constructing an
axial gauge "regulator” for the the principal value prescription it will
be shown that both methods yield identical results, for the finite as well
as the infinite parts.

On the broader perspective of regularization in general,
not restricted to that of axial gauge singularities, we observe that

analytic regularization and dimensional regularization, for singularities



that can be regularized by the two methods separately, yield identical
results, apart from certaln terms that can be identified and subtracted.
One type of singularity that cannot be regularized by dimensional regular-
ization alone but can be regularized by the other method is the axial

gauge singularity. We have not encountered any type of singularity that
can be regulated by dimensional regularization but not by analytic regular-
ization. In this sense, at least for the evaluation of the class of inte-
grals considered, dimensional regularization is in fact redundant. It must
be emphasized that we do not advocate the replacement of dimensional regu-
larization by analytic regularization. The reason is obvious, for in situ-
ations where the former method works, it is much the superior one requiring
the generalization of only one integer - the number of dimensions - into a
continuous variable. The latter method requires the generalization of sev-
eral integer exponents. On the other hand, because dimensional regulariza-
tion has some kﬁown limitationsl’3’4’15) arising from the ambiguity of
doing algebra in continuous dimensionsbf the most famous one being that
related to the Bell-Jackiw-Adler anomalylé) ~ the recognition that
analytic and dimensional regularization are equivalent is important; since
analytic regularization does not affect the algebra, it is clear that (for
situations where dimensional regularization will work) one should do all
the algebra in 4~dimensions to reduce the integrand to a function of
scalars in Fuclidean (or Minkowski) space before regulating the integral by
dimensional regularization. This is precisely the strategy adopted in the
recently proposed method of dimensional reduction17). This being the

case, we further demonstrate that it is unnecessary to restrict this method

to spaces of less than four dimensions!’). The fact that we regulate



only Feynman integrals also allows us to assert that our analytic
regularization preserves gauge invariance. This is in contrast to
Speer'sl4) analytic method of regulating propagators which has the

appearance of not preserving gauge invariance3).

The class of integrals we shall study is defined by
- 2 2 2 2 v
Sy ,(Psns KM, V,8) = [ a1 (p=9)1%(q") M(q n)° V"5, (1.1)

where w, K, U, Vv are arbitrary, continuous variables, s = 0 or 1, p is an
external momentum, and n is an external vector used fo define the axial
gauge condition Aen = 0; A is the gauge field. For simpliéity we choose
to work in a (2w-dimensional) Euclidean space; the conversion of our
result to Minkowski space follows the usual procedurels). Whenever the
situation allows, we shall suppress the subscript and/or some of the vari-
ables of the function on the left-hand-side of (1.1). Thus we may write
Sow(pPsn), S(p,n), or simply S, which we shall call an S—ihtegral. The
class of integrals (1.1) is the generalization of the class of "primal"”
four-dimensional integrals Sy4(p,n;K,M,N,s) with integer exponents. Our
main result is the discovery of a closed—form expression for the S-inte-
grals that is a well-defined and analytic function of w, Kk, M, V and the
scalar products p2, p°n and nz.

When w=2 anmd k, v and v are integers, the S-integrals
reduce to primal integrals in perturbation calculations at the one-loop
level for two-point functions in massless Yang-Mills theories and quantum

gravity.13) The subset with V = s = 0 are the corresponding integrals

in covariant gauges.



Our motivation for letting the exponents k, u and v be continuous is:

(a) It is necessitated by the method of analytic regularization.

(b) The method of dimensional regularization generates continuous expon-
ents in multi-loop integrals in perturbation theories.l)

(¢) Having k, u and v continuous allows us to generate, and regulate
integrals with integrands containing powers of zn(p—q)z, R,nq2 and
n(qe°n), by means of taking partial derivatives of the S—integral
with respect to kx, u and Vv respectively. Such integrals arise in
multi-loop calculations.

(d) Integrals with noninteger exponents may appear in nonperturbation
calculations even when they do not appear in perturbation
calculations.

If our sole purpose were to regulate the axial gauge singu-
larity (by analytic regularization) it would only be necessary to general-
ize the exponent V; singularities associated with the exponents « and u
can be more expediently regulated by dimensional regularization. However,
by generalizing all k, p and Vv we are able to establish the relation
between analytic regularization, dimensional regularization and dimen-
sional reduction discussed earlier.

To be more specific about the relevance of the S-integrals
in nonperturbation calculations consider the example of the Schwinger-
Dyson equationslg) for the reduced gluon propagator, Z, which respects

Ward identities:
-1 2.4
z  =1+g [d qK(q,p,n) Z(q,n)

(1.2)
+ integral with integrand quadratic in Z,



where g is the coupling constant and K is a known kernel.zo) The inte-
gral posseses ultraviolet, infrared and axial gauge singularities. How-
ever, since Z is unknown until after (1.2) is solved, the normal procedure
of renormalization by dimensional regularization is impractical. Alterna-
tive renormalization (such as subtraction) schemesd) either do not pre-
serve gauge invariance or present major numerical problems,zo) or both.
Now if we write Z(p,n) as a product of continuous powers of p2 and/or pen
and polynomials in p2 and pen, or a sum of such, then all integrals in
(1.2) are reduced to S—integrals allowing the renormalization program to
be carried out as usua121) (i.e. as in perturbation calculations). Eq.
(1.2) may then reduce, by truncating to the appropriate order, to a finite
set of algebraic equations. This is similar to the expansion method for
solving an integral equation. In this way a knowledge of the S-integrals
opens the way to carry out the renormalization program in nonperturbation
calculations. We note that it is precisely because of the lack of a
viable renormalization method that most qpnperturbation calculations have
circumvented the need for regularization by either quantizing around clas-

sical solutionszz)

and restricting calculations at the tree 1eve1,‘or by -
using a method where divergencies are prevented from occurring, such as
the discretization of space-~time in lattice gauge theories.23,24)

When derivatives with respect to Kk, p and v are taken on
both sides of (1.1), one obtains

i3

3153551 i3 j i i
s s @G PE) Y s - J e P R gD e

(1.3)



We designate such derivatives as "exponent derivatives”, and refer to the
right-hand side as S—integrals with logarithmic factors. In perturbation
calculations of quantum field theories, the occurrence of logarithms is
assoclated with divergent integrals; N-loop integrals may yield logarithms
up to the NtP power. Thus, linear combinations of Sjl’jz’ja(K,u,V)

where K, U and V are integers and j1+j2+j3 < N-1, represent Feynman
integrals at the N-loop level. This recognition provides the following
insight into nonperturbation calculations, again taking the Schwinger-
Dyson eq. (l1.2) as an example: If Z(q,n) in the integramd is represented
by a polynomial in q2 and qen, then effects up.to the one-loop level are
included. If Z(q,n) contains terms with factors of up to (N-1) powers of
logarithms in q2 and q°n, then effects up to the N-loop level are
included. We therefore give this meaning to the truncation "order” of
nonperturbation calculations: 1in an NP order calculation, the inte-
grand has factors of (N-1) powers of logarithms. This implies that an
Nth order nonperturbation calculation can be reduced to one-fold
(2w-dimensional) integrals with logarithmic powers of order (N-1), as
opposed to an Nth order perturbation calculation involving N-fold inte-

grals without logarithms.

Another issue regarding Feymman integrals with logarithmic
integrands concerns the problem of overlapping divergencieszs): how
does one show that in N-loop divergent integrals an infinite term with a
logarithmic dependence on the external momentum will never emerge? Such
an infinite term cannot be renormalized and therefore must not appear in a

renormalizable theory-s) "tHooft and Veltmanl) demonstrated that in

perturbation theory such infinite terms are cancelled by the subtraction



of counterterms. We shall prove that, based on the analytical properties
of the S—integrals and its exponent derivatives, calculations in nonper-
turbation theories can be made free from such infinite terms.

The rest of the paper is organized as follows. In section
2 we present our main result, relating the S-integrals to a Meljer's
_G—function26) which is a transcendent of hypergeometric functions and is
a well-defined, analytical function of w, Kk, P, vand y = (p'n)z/pznz.
The derivation, details of which are given in two Appendices is naturally
divided into two steps: the first regulating the S—integral to "canoni-
cal” form (Appendix A), and the second identifying the canonical integral
as a Meijer's G-function (Appendix B). The divergent nature of the primal
S—-integral is revealed in the contour integral representation of the
G-function by pinches of the contoﬁr at certain values of the variables.
It will be shown that the infinite part is a certain power of p2 times a
terminating polynomial in y, and the finite or regular part is the sum of
an explicit series in y if lyl.ﬁ 1, or a different series in 1l/y if
,yl > 1, plus logarithmic terms. In the case of covariant gauges, i.e.
when v=s=0, all series collapse to a form independent of y, as expected,.
since this integral must be independent of n. The G-function representa=-
tion treats the cases of space-like (n2<0) and time-like (n2>0) gauges
equally well. The light-cone gauge (n2=0+), corresponding to the limit
y>+o, is a special case of the continuation to 'y' > 1.

In section 3 and Appendix C we show that our analytic regu-
larization of axial gauge singularities yields a result which is identical

12)

to that given by the principal value prescription We show, by

explicit construction, that the principal value prescription for an



integral with axial gauge singularities of arbitrary order yields a result
that can be compactly expressed as a polynomial in a differential operator
operating on a sum of G-functionms.
In section 4, we use the analytical properties of the

G-function to prove several theorems describing the structure of the pole
and logarithmic terms of the S—integral and its exponent derivatives. It
is shown that as far as this structure is concerned, the set of functions
spanned by the zeroth, first, ece, (N-l)th order exponent derivatives of
one—~loop integrals is equivalent to the set spanned by the one, two, eee,
N-loop integrals in perturbation expansions; it is the set of polynomials

in p2 times a polynomial containing up to N powers of .Q.np2 -

n27) of order N.

"polylogs
Different regularizations of divergent integrals yield iden-
tical infinite parts but generally differing finite parts. We identify
subtractions that render the methods of dimensional and analytic regulari-
zation completely equivalent (thereby eliminating the need for extending
the Dirac algebra to continuous dimensional spaces), and those that render
exponent derivatives of S—integrals free from logarithmic infinite parts.
The latter implies that nonperturbative theories based on such exponent
derivatives are renormalizable. For completeness, in Appendix D we demon-

25) eliminates all logarith-

strate that the 'tHooft-Veltman prescription
mic infinite parts in all multi-loop integrals in perturbation theories.

To illustrate the power of the G-function representation, in
Section 5, we present several analytic examples. The infinite parts of

these cover all those we have encountered in the literature. We give

several examples for the exponent derivatives of the S-integral. The
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G-function representation also provides new insights concerning covariant
gauge integrals, tadpole integrals and the very special properties of the
light-cone gauge. We classify all primal S-integrals and present their
infinite and finite parts compactly in a Table.

In Section 6 we comment on the intriguing implications when
physical amplitudes in nonperturbation theories are represented by S—-inte-
grals with non—-integral exponents.

Section 7 is a summary.
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2. ANALYTIC REPRESENTATION OF THE S—~INTEGRAL

2.1 General Comsiderations

The integral under scrutiny may be formally treated as a

function of several complex variables. To justify this approach, consider

the integral 1.1 defined by

©

5,,(sm5 6,1, v,8) = [ a2% @ @ w1’ 10" (2.1)

where the integration extends over a Euclidean space generalized to 2w
dimensionsls>3>%4) in a manner discussed in Appendix A. To guarantee that
this integral has meaning, it suffices to choose (continuous) W compatible
with arbitrary (continuous) variables (u, Vv and K with s = 0 or 1) such
that the integral representation (2.1) exists. In comparison and contrast
to 'tHooft and Veltmanl) who regularize only ultraviolet divergencies,
it is not sufficient to demand that Re(w) be arbitrarily large and nega-
tive; in the definition (2.1) there existtinfra~red and axial gauge (spur-
ious) singularities with which to contend. However, a region in (w,u, Vv,
K)-space exists such that (2.1) is well defined. So, it is enough28) to
devise a representation for the integral (2.1) valid for a larger range of
the variables but with some overlap with the region of existence.

In Appendices A and B, the following result is derived:

n(p2) TV 2y Y p(s+vt1/2) (pon)®

T(=1) T(=V) T(~ K) T(2 w2 V11t K+ )

Szw(p’n; K’ "l’v)s) =

2,3/ |1~w-p=Vv=s, whitvitl, vil;
x Gy 3(y 0, whvtk;1/2-s ) s (2.2)

9
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where y = (p-n)z/pznz, and G is Meijer's G-function,26)

a compact nota-

tion for a function which can be represented either as a contour integral
(2.8) or as a sum of two generalized hypergeometric functions as in (2.7).
In the derivation of (2.2) a number of conditions are required ((B.6) and

(A.8)), which collectively delineate the region in which the integral

(2.1) exists. The conditions are

-1/2 - s < Re(v) < O, (2.3a)

Re(p) < O, (2.3b)

Re(k) < O, (2.3c)

lv| <1, (2.3d)

~Re(v) + Max(Re(-s-p, - £5%)) < Re(w) < - Re(irtvhe). (2.3e)

Of course, the. right-hand-side of (2.2) is well-defined for all values of
the variables and the conditions (2.3) may be dispensed with.
Since «, u, v and w are thought of as being independent

(real) variables, it is convenient to introduce some simplifying notation:

k =K+ p, (2.4a)
u=M+ g (2.4b)
v=N+ T, (2.4¢)
w=2+ g, (2.44)

‘where K, M and N are integers and p, o, T and € are variables which will

eventually be made arbitrarily small. Furthermore, we define the indices
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a2
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=-p-vVv-5-w

k+ pt+ v+ ow
= v’

=y =K + v+ ow,

composed of integral parts:

Ag

and epsilons:
€0
€1

€2

in terms of which

ﬂw(pz)

aj

=-M-N-s- 2,

=K+M+N+ 2,

=N’

. =K+ N+ 2,

= -qg+ Ag = o+t T+ €
=-q +tA; =-p—- 0~ T~ &
= -0y + Ay = -1,

2

2. % s
(™) (pen) T(azts+l/2)

S

B T(B,-ap) T(B =) T(- oy =s) T(= ay)

1+og,1+ay, 1+ay;

0, By; 1/2-s

(2.5a)
(2.5b)
(2.5¢)

(2.5d)

(2.5e)
(2.5f)

(2.5g)

(2.5h)

(2.51)
(2.53)
(2.5k)

(2.5%)

(2.6)
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The G-function is symmetric under any permutation among ap, ©}, and ap.
S has less symmetry because of the factors in (2.6) exterior to the
G-function; aside from the factor (pz)al, S is symmetric under the
interchange ag « a;- The factor (pz)m1 reflects the overall dimension
of S save the unimportant factor (pen)%. From (2.1) and (2.5a-c), the
indices ap, o] and a2 can be recognized as relating to the infrared,
ultraviolet and axial gauge singularities respectively of the original
S-integral, and shall be referred to as such. Significantly, with one
exception, w appears in (2.6) only via the indices of (2.5), i.e., in
linear combinations with k, uw and v, and always with a relative coeffic-

w

ient *1. The exception is the factor T, which has no bearing on the

singular properties of S; unless otherwise mentioned, we shall ignore this

factor in our discussion.

2.2 Regularization

Consider the primal integral S,(p,n;K,M,N,s,), whose inte-
gral representation (2.1) may or may not exist. The S integral (2.1) with
arbitrary parameters is a generalization of the primal integral, ahd may
be analytically continued to all values of the parameters using (2.2). We
define the regularized primal integral to be the right-hand-side of (2.2)
in the limit €, p, o, T > 0.

The regularization process is intimately connected with the
manner in which p, 0, T and € are set to zero. In the first place we wish
to regularize the axial gauge singularity (qen = 0) which lies on the path

of integration. To achieve this, we use analytic regularization (A.1l) by
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letting v become a continuous (complex) variable, and requiring that v lie
in the range (2.3a) in which (2.1) is defined; the axial gauge singularity
has become integrable. In the final result (2.2) we consider values of Vv
outside the original range of definition, a process justified by the prin-
ciples of analytic continuation which allows us to uniquely continue a
function defined over a region, but not over a set of isolated points
(integers).zs) It is significant that this procedure is independent of
w, reflecting the fact that the axial gauge singularity is spurious. The
result (2.2) is a meromorphic function of Vv although the original integral
is singular if Ajp < -(s+1)/2. In (2.2) the G-function is singular when-
ever V is a non—-negative integer, but this singularity is cancelled by the
zero of 1/T(~v). So, S has no singularities when Vv ls an integer and the
limit T%0 can be evaluated before all others ~ the spurious singularity
has been regulated away. However, because V is a continuous variable it
is permissible to take derivatives with respect to V in order to evaluate
exponent derivatives =~ integrals with intggrands contalining powers of
ln(q-n)z.

The regularization of the infrared and ultraviolet diver-
gencies is somewhat more complicated, since these are end-point singulari-
ties and are therefore closely connected with the dimensionality of the

integral. We regularize these divergencies respectively by initially

choosing
ag > -~ s/2,
al?_" s/2,
and analytically continuing the result (2.2) in either w (dimensional

regularization) or u and Kk (analytic regularization) or both (hybrid).
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In the method of dimensional regularization1°4) one is lim~-

ited to regulating the axial gauge singularity with the principle value pre-
scriptionlz) (cf. Sec. 3). Insofar as the other singularities are con-
cerned, one sets p = 0 = 0 at the outset, performs analytic continuation in
w by letting € + 0 and identifies the terms of 0(l/€) as the infinite parts
of S. This method does not permit the computation of derivatives with
respect to K, u and VvV, nor the evaluation of integrals with M and K outside
the limits given in (2.3b,c) - M and K must be negative integers in
dimensional regularization.

In the method of analytic regularizatlon,14) which must
be invoked if exponent derivatives are desired, €=0 at the outset and the
infinite parts of S appear as 0(1/0) and/or 0(1/p) terms. As described
earlier, the would-be axial gauge singularities of 0(1/Tt) do not appear.

In practice we choose the hybrid regularization which poses-
ses the power of analytic regularization - it allows tﬁe simultaneous regu-
larization of infrared, ultraviolet and axial gauge singularities - but
retains the simplicity of dimensional regularization: allow all €, p, o and
T to be non-zero until after the S integral and/or exponent derivatives have
been evaluated, then set p= o= 1T=0 and evaluate the limit €+0.

A fundamental observation can now be made by inspecting the
G~function in (2.6): all singularities of S due to divergencies of the ori-
ginal integral arise from singularities of the G~function - poles in the
complex (w,K,u,V) space — that occur whenever the difference between one of
the top three parameters and one of the first two bottom parameters is a
positive Integer. The fact that S depends on €, p and.o through the indices

of (2.5) ensures that coefficients of the 0(1/€) terms and those of the
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0(1/p) and 0(1/0) terms in S are the same, although those of higher order
(0(1), 0(e), 0(p), 0(0), etc.) terms may differ. This ;s expected because
there is no unique generalization of a function defined over a set of
integers. For example, any regular function proportional to p, o, T, or €
can be arbitrarily added to S with no effect on S, but with a profound
effect on its exponent derivatives.

Finally, we consider the G-function in (2.2) as a function
of y. The analytic continuation of a G-function outside the circle
,yl.s 1 is well-defined, and in the case considered the result is another
0+

G-function valid for 'l/yl < 1. 1In particular the point 1l/y = corres—

ponding to the case n? = 0% is accessible. This special case leads to

representations useful in the light-cone gauge, to be discussed in Sec-

tions 2.2, 5.1 and 5.4.

The nature of the singularity on the circle 'yl =1 may be
investigated by writing26) the G-function as a sum of two 3Fj's, and
evaluating the difference between the second and first set of
parameters.zg) Explicitly,

1rw(PZ)u+v+|<+w

S = (nz)v(p-n)sr(v+s+1/2)
I'(-«)

(T(vtkt+w) F(wtptvis) T'(=p=v-k-w) 3F2(w+u+v+s,—w—K-u-v,-vly)
T(1/2+s)T(~u) T(ut2victst+2w) 1/2+s, 1-umk=V

(- T'( <+ W+ 2 vkt +2 w, = +
(—w=v=-k) T'( ktw) Ktw 3F2( wst2w, =y, ktw ,y]} (2.7)

+
T(L/2+vHrts+w) I(-v) 14+ ickw, 1/ 2+ vk kst
E)

which leads to the condition??) for convergence at y = 1l:
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w < 3/2.

This condition can never be satisfied in spaces of dimensionality greater
than 2, and so the point y=1 appears to be a regular singular polint. How~
ever, the nature of a G-function in the neighbourhood of the point y=1 is
not adequately analyzed in the literature.26) Physically there is noth-
ing special about the point y=1 except in real Euclidean spaces, where
'yIS} usually this means that a branch cut appears at this point.
Although each of the hypergeometric functions in (2.7) possesses a cut
singularity starting at y=1, we speculate that the general combination of
the two does not. This is illustrated by ex;mple in Section 5.1. A cut
does exist along the negative y axis (y spacelike) starting at y=0 how-

ever, as predicted by G-function theory26). This is manifested by fny

behaviour in expansions about y=0.

2.3 Contour Integral Representation for Iy] <1

We may write the G—functidh in its contour integral

representation,3o)

wh kv
N 03) (n2) I(s+v+1/2) (p+m)®
T T(=w) [(=V) T(~ k) T(2 vt ctst+2w)

(2.8)

x o2 [ dt y* I(=t) T (whk=-t) T(prtvistwtt) T(—p=V-k=wtt) T(=v+t)
S T(1/2+s+t)

where the contour L encloses the poles of the first two gamma functions,

and excludes the others. The situation is depicted schematically in
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Fig. 1. Note that inside the contour one string of poles of the integrand
in (2.8) is fixed at the non-negative integers whereas a second (81
string of poles approaches all but a finite number of the first only when
v and k are integers and &~0.

Exterior to the contour, we find "fixed" (independent of ¢)
poles of the integrand pinching the contour as 750 and "moving” (&-depen-
dent) poles also pinching the contour as p, 0, T and € approach zero.

Such pinches will be reflected as pole singularities of the contour inte-
gral at € = p= 0= 1=0. In addition there exist both fixed and moving
zeros from the gamma functions exterior to the contour integral, acting to
reduce the overall degree of singularity of S. The result is that S has
simple poles at € = p = 0 = 0 in the €,p,0 plane, verifying our earlier
claim that S is free from axial gauge singularities and is regular at T=0.

Alternatively, S may be viewed as a function of the indices

of (2.5), as in (2.6). 1If we further define

e, = g + € (2.9)

then we find S has simple poles at &; = 0 in the ai-planes, i=20,1,3.

From Fig. 1, we observe that pinches in the contour have their genesis in
three strings of exterior poles (ag, a; and ap) extending to the left and
two strings of interior poles (one labelled B,, the other being the non-
negative integers) extending to the right. A first kind of pinch singu-

larity of the contour integral occurs whenever Re(ai)zp (i = 0,1,2) and

a second kind occurs whenever an & pinches g,. The singularities

generated by the oy (axial gauge singularity), ao—B8; and a,-B; pinches are
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cancelled by corresponding zeros of the gamma functions exterior to the
contour integral (see (2.6)). The three surviving singularities appear as
poles of S and reflect the physical divergencies in the original integral
(2.1) - infrared (op), ultraviolet (o;) and that generated at the point q
= p (o2-B)).

By studying the interaction between the pinches and zeros
as they coalesce, it is possible to demonstrate that the singularities of
S are at most simple poles in the (w,k,u,Vv) space (cf. (4.7a)). We cau-
tion against interpreting the two strings of interior poles of the inte-
grand as a single string of dipoles, except at points where pinches do not
occur, in which case the dipole interpretation simplifies computation.

The "overlap region” where the pinches reside contains a
finite number of poles. Thus writing the integral in the form

I,(y,p,n)
S, (Pom) = ] —————+ R(y,p,n) (2.10)

€,
i=0,1,3 .

where Ii(y,p,n) are the numerators of the divergent (or infinite) part

and R(y,p,n) is the regular (or finite) part we see that I;(y,p,n) is a
function of y with a finite number of terms (possibly a polynomial), since
only pinches in the overlap region contribute to it. The regular part R
may consist of an infinite series in y restricted to 'y, < 1 due to poles
of the integrand starting at t > Max(Ap,A;,A,,0) and extending to t+t«,
plus a finite number of higher order derivative terms surviving from the
overlap region. 1I; and R are also regular functions of the epsilons

with leading 0(1l) terms. The pole structure of S is discussed in more
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detail in Section 4. Specific examples of S and its general expansion in

€ are given in Sectiomn 5.

2.4 Contour Integral Represemtation for Jyl > 1 and the Light—Cone Gauge

From the theory of G—functions31) it is possible to
analytically continue the representation (2.2) to the region ’y' > 1.

The result is

_ n90p2) R (p en) 2 Ve (st vHL/2)

S
T(=w) I'(=v) T'(~ k) T(2 w2 vipticts)
(2.11)
s G3’2 l.1+v,l—er;1/2+v+s
3,3 yO;ww«¢ﬁWﬂWm
which has the contour integral representation
s = 2N )2 (st vr1/2)
T'(-p)T(= V) (k) (2 vt ptrts+2 w)
(2.12)

y—t T'(-t) T(—p~k—w-t) (2 vistw-t) I'(— vit) I'(ktwht)
T'(1/ 2+ vks—t)

1
x =1 [ dt
27 L

illustrated schematically in Fig. 2. The same comments hold as for (2.8)
except that L now encloses three strings of interior poles extending to
the right, and excludes two strings of moving and fixed exterior poles
extending to the left. The interior (exterior) poles are the former
exterior (interior) poles with opposite sign translated by v. Again there

is an overlap region pinching only a finite number of poles, so the
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contribution to the divergent terms I;(y,p,n) can at most contain a

finite sum of 1/y terms.

Since finite sums are their own analytic continuation,
it follows that all representations of Ii(y,p,n) valid for 'y' <1 will
be valid for 'y‘ > 1; the same is true for the finite number of survivors
from the overlap region that contribute to R(y,p,n); these terms will con-
tain factors of 1/y and fny. It is thus sufficient to evaluate the analy-
tic continuation of any infinite series in R(y,p,n) to obtain representa-
tions for SZw(p,n;K,v,u,S) valid for all values of y. This is done
explicitly by example in Sec. 5.1, and in general in Sec. 5.4.

The condition n? = 0 defines the light-cone gauge32). In
(2.11) all n2 dependence resides in y, so to study this gauge it is suffi-
cient to examine the limit (1/y) = 0. The lead term in the string of
interior poles gives the dominant (1/y) dependence; in order that S may
approach a finite limit as 1/y -+ ot we require that both moving interior

poles lie to the right of the origin. The simultaneous conditions are
-u=-2v-s < w £ -p—K (2.13)

in which case the leading (1/y) dependence will be like (1/y)0 because

of the pole at the origin. The conditions (2.13) are necessary, but not
sufficient since they do not preclude fny dependence associated with
pinches, (cf. Section 5.1) and a special limiting process is required for

this gauge54’55)- With this special limit, we find
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_ 1% H(p en) 2V D wh ) I whirk2 vis) T(-w k- 1)

n2=0 T(=k) T(=u) (2 wk k2 Vs )

on)

S(p,n;K,u,V,s)
(2.14)

In ref. 56 we have demonstrated that analytic regularization and the

special limit preserves both gauge invariance and the desirable and

simplifying feature of the light—cone gauge - allowing the O(n2) term in

the propagator of the gauge particle to be dropped at the outset.

2.5 The point y =0

In the special33) “gauge"” pen = 0, we see from (2.6) or
(2.7) that the limit y=0+ is easily obtained; the integral may be finite

in this limit if we analytically continue from the region

whktv } o . (2.15)

With this condition, we find55)

whvbcte
(n®) "T(v1/2) I( virtw) I wtptv) T(—w—p-v-K) GS

_ 1Y)
T(1/2) (=) T(—p) T( 2 vit2 w)

b

S(p,n;K,u,Vv,0)
pen=0
(2.16)

which 1s Alekseev's33) result (up to a phase when VvV = integer).
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3. PRINCIPLE VALUE PRESCRIPTION FOR THE AXTAL GAUGE SINGULARITY

In the last section the axial gauge singularity, together
with the ultraviolet and infrared divergencies, were analytically regular-
ized; the regularized S—integral is proportional to a G-function. In this
section we shall show that when the axial gauge singularity is treated
with the principal value prescription, the resulting S-integral can be
expressed as the limit of a polynomial in a differential operator opera-
ting on a series of G-functions, and furthermore, that this result is
equivalent to the earlier one.

According to the principle value prescriptionlz) the

axial gauge singularity (N > 1) is regularized by the limiting process

2N+s 2N+s 2N+s

(q%n ‘*%Hm [(ﬁqlrl—n) + (q'—ni_i—ﬁ) ] - (3.1a)
nso
2N+s N _ N
= 1lim [_——l_f—_Q] z (q°n)2N 2£+s(_n2) (§§+s) (3.1b)
0 (qen)™+n 2=0
N+s
= lim R(n%) | L 1 @m® (3.1c)
n>0 (qen)™+n

where s = 0 or 1 and R(nz) is a differential operator in n2 8/3n2 to be
identified shortly. The regularization of the axial gauge singularity of

an S-integral using this prescription thus involves the analysis of
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S(i),n) = l:'bm R( T]Z)T(P,n, n)
n o ’

" (3.2)

U
L R(nD [ a%%@) (@ (G-0)?) ((@m? + )Y,
n >0

[

where v can be taken to be an integer if desired.

The procedure of Appendix A is exactly applicable to the

integral T(p,n,m) save the term in square brackets in (A.7) becomes

2 d
[e+wy(1-8)1C > (Dy)C [1+ (1_137(11_5)])}'] (3.3)

in the notation of (B.2) and (A.9). Rewrite the binomial in (3.3) as a
34)
3

contour integral, a technique first employed by Capper and lLeibbrandt
and transpose with the double integral of (A.7). We find

2.2.v s, 2\ wkptk
2y _ (W% %) Y(p n)° ()
T(P>1s %) = T T =0

1 f 4 P(—t)F(v+s+l/2—t)(n2/p2n2)tG2,3( t+l-s—urv—w,u*l—t+p+v+K,l+v—t;)
T2 oF it pF2 v-2t+s ) 3,3V10, whckv-t; 1/2-s

L (3.4)

using (B.5). The contour L stretches from —-i» to +i« enclosing the poles
of I'( vl/24+s~t) on the right because of (B.6a). As n240 this displays a
series of singularities of the form (n2)V+1/2+S, eee if Re(v) < -1/2-s.

These singularities may be removed by operating on T with

2y _ I(vtl/2+s) -2 8.} .ee -1/2-1% =8
R(NT) = oy orsy (StViL/2-1 -a—:]z) (s+viN-1/2-7 37?) (3.5)



- 26 -

where NMs = [-v] ([] means greatest integer less than or equal to). This
isolates the desired behaviour arising from the pole of I'(-t) at t=0.

Now set v = -N-s and identify

T(-N+1/2) N;II

2y -

(-N+1/2+8-7F D). (3.6)
an

That this operator is equal to the regulator of (3.1lc) is verifiable by

proving the consequential result

r(1/2-N) Nﬁl (1/2-N+2~n2 ) ) (qen)S
I‘(17 2) 2=0 anz ((q .n)2+n2 )N+S
q°n 2N+s . 2 2. 2n+s
= (——=) Lo iaewt) G - (3.7)
(qen) +n -0

2 -N-
Expand the factor ((q-n)2 + n) N=8 in the left hand side of (3.7) as an

2 2
infinite series in n /(qen) , to obtain

(q-m)® R(n®)((qn)2+n?)y N8
2 2.k
_ (_)N (q )—2N—s r(1/2-N) ) I(N+s+k ) T(N+1/2+k) (-n“/(qn)“)
q°n T(1/2) T(N+s) T[(1/2+k) 3]
k
(3.8a)
on 2N+s 2 2

= (—32,—)  F,(-N,1/2-N-s;1/25-n"/(qn)7) . (3.8b)

(q-n)2+n2
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The result (3.8b) is obtained by identifying the series in (3.8a) as a
hypergeometric function, and applying Euler's transformation35) to

arrive at a truncated series. The right hand side of (3.7) is easily cast
into the form of (3.8b) whenever s=0 or s=1 by using the duplication and
reflection properties of the gamma function.

With the operator R specified in (3.6), the regularization
defined by (3.2) now reduces to the result (2.2) because of (3.4) - the
two procedures are equivalent. The order of divergence in (3.4) as n2+0
is reflected in the pole structure of (2.2) as a function of v - possible

poles at negative integer values of vks+l/2.
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4. EXPONENT DERIVATIVES, LOOP EXPANSION AND RENORMALIZATION

It is well known that physical quantities in renormalizable
perturbation theories are represented by polylogs - power series in
(Pz)nlnjp2 - generated in loop integrals. We shall show that the same
set of polylogs is generated by exponent derivatives (including the zeroth
derivative) of S-integrals (1.3), that these derivatives provide a useful
basis for the solutions of integro-differential equations of nonperturba-

tion theories, as in (1.2), and that such solutions are renormalizable.

4.1 Exponent derivatives and overlapping divergencies

In this section we discuss the regularization of S-inte-
grals with logarithmic factors. This is important, as infinite parts
which carry a logarithmic dependence on external momenta — we shall call
these "logarithmic infinite parts” - cannot be renormalized by counter-
terms composed of local oﬁeratorss). In perturbation theories, such
unrenormalizable singularities appear in "overlapping divergencies" of
multi~loop integrals. It was shown by 'tHooft and Veltmanzs) that over-
lapping divergencies in a two-loop integral can be cancelled by subtract-
ing from it counterterm insertions into the appropriate ome-loop inte-
grals. Here we shall first point out the close relation between the

exponent derivative and the prescription of 'tHooft and Veltman.

Consider a two-loop diagram having the form
2 2
[a™%a k(@) [d™q" Ky(q,q"), (4.1)

where references to external variables in the kernels K] and K, have been
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suppressed. Integration over q' with the result of Sec. 2 can be seen to

yield

[ a0 k(@ @ E+r) (4.2)

where I and R are functions in scalars composed of q and external
variables; R may contain a factor of fny, cf. (4.11). For this discussion
these factors are uninteresting and we set I=1 and R=0. The term of
0(1/€), upon integration over ¢, generates a logarithmic infinite part.
However, this singularity may be cancelled by an integral corresponding to
the insertion of a counterterm into the appropriate one-loop integral,

such that the combination reads

€

2
[ % x (@[ - 1], (4.3)

and is free of logarithmic infinite parts. This is the 'tHooft-Veltman
prescription for dealing with overlapping divergencies. In Appendix D we
demonstrate that this prescription removes overlapping divergencies gen-
erated in all multi-loop integrals. Now in the limit €+0, the expression
in the square parenthesis of (4.3) is suggestive of an exponent

derivative:

o 2
lin 3= (¢%) = lim (9 -2]-m 2. (4.4)
o+0 e>0
Define a loop expansion as ome such that the Nth level of the expansion
contains all Feynman diagrams with N loops. At each loop level the

'tHooft-Veltman subtraction must be carried out to control the overlapping
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divergencies. Eq. (4.4) then suggests that, corresponding to this loop
expansion in the diagrammatic approach for a perturbation theory, the
analog for a nonperturbation theory has an expansion in a series of expon-
ent derivatives. The common signature of both expansions is the power of
logarithms in the calculated physical quantity.

In (4.4) a parameter distinct from € was deliberately
chosen for the exponent derivative. This was done to emphasize the notion
that the 'tHooft-Veltman prescription corresponds to a special case of
exponent derivativés with the 1limit o+e. When the primal S—-integrals in a
nonperturbation theory contain more than one exponent, differentiation
with respect to € is not sufficient to deal with all distinct types of
logarithms that are generated in the theory; the more general method of

exponent derivatives must be developed.

4.2 Pole and loggrithnic structure of the S—integggl

In this section we demonstrgte that S—integrals have at
most simple poles, that exponent derivatives of order j have at most poles
of order j+l1 and that no logarithmic infinite parts need appear. For con-
venience we repeat the definition for the integral parts of the indices

(2.5),

Ag = -M-N-s-2,

A] = KMHN+2,
A2 = N, (405)
B = KHV2;

and their corresponding epsilons,
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eg = etotT,

el = —(etptotT),
(4.6)

€2 -7,

€3 = gytep = etp-

From the general discussion in Section 2, it is verifiable that the poles
and logarithmic terms (we leave out the uninteresting factor %) of the

S-integral are all contained in the expression

-£] -€ k h

2 9 TE2 0 k1 32
S ~(p7) (@) (gtg) (gtg) & (gteg)

L L y® )]

Py
=7 + — k' k!
;t € i & f g i ;z(ei+eb) i

P

x {8

+ 0(-B, - 3 .- YEb
(-B,-D) [ + - )1} (4.7a)

P P4
—— * — 5 T
f(€i+8b) i & T & i f(€i+eb) i

i

where the summation is over i=0,1,2; all j's, k's and h are either 0 or 1,

constrained by

i = e > {3, 31> 0, 1=0,1,2 (4.7b)
k, = 0(A;-B;) Z_{ki, k;} >0, 1i=0,1,2 (4.7¢)
h = G(AO + A1 + s8); (4.74)
o(x) =1 if x > 0,
(4.7e)
=0 if x < 0,

P; and P3 are terminating polynomials in y, P, and P, are regular
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functions of y, and all P's may be represented by non-singular series in
the e's. Of particular interest are the exponents kj = (M), j2 = 8(N)
and h = 6(K), which originate from the exponentiation of the three factors
in the S-integral as in (A.l).

The regularization of the axial gauge singularity is trans-
parently displayed in (4.7). The right-hand-side of (4.7a) may have a
factor of %é ~-% when any one of jé, j; or ké is equal to 1. Recall that
€2 is independent of €, signifying it is decoupled from dimensional regu-
larization. Now if either jé or j£ or both are equal to unity, then
(4.7b) ensures that jo = 1, so that the factor 1/71 is cancelled by the
factor €2j2~1 in the numerator. If ké = 1, then from (4.7a) and (4.7¢),
By > 0 and Ap-B; > 0, so that Ay > 0. Therefore j; = 1 again and the fac-
tor 1/t is cancelled. This demonstrates that S is free of axial gauge
singularities. In general, the 6-functions in (4.7a) imply the additional
inequalities

k, > ij, 1=0,1, | (4.7F)

> k. (4.7g)

Using arguments similar to those given above, we prove the
following two theorems. As a rule the order of operation is:  set
p=0=1=0, while € is kept finite but small. We shall refer to each term in

(4.7a) by the function Py multiplying it.

Theorem 1. In the limit p, o and 150, S can be at most as singular as 1l/ec.

The P; term is most singular when j6 ji =1 and is 0(%) by virtue of

1 ,
(4.7d). The P3 term is O(E) when k; = 1; it is regular, by virtue of
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(4.7c), when ka =1 or k{ = 1, or both. The P,(P,) term is at most as
singular as the P3(P;) term because the difference between its terms is
proportional to g cancelling the factor of g, in the denominator.

The theorem can alternatively be proven using the general discussion of

Section 2 and the observation from Figs. 1 and 2 that there are no double

pinches without at least one compensating zero.

Theorem 2. Terms of 0(1/¢e) in S are independent of Rnpz, Rn(nz) or fny;

all logarithmic terms are of 0(l) or of higher order in e. This follows

simply from Theorem 1 and from the fact that all logarithmic terms devolve
L 5 TE2 “b
from the factors (p“) s (%) and y . These two theorems possibly
have been proven before. The proofs are trivial for covariant gauge inte-
grals, i.e., when N = s = 0.
We now discuss the pole and logarithmic structure of expon-

ent derivatives. The order of limits is: first differentiate, then set

p=c=7=0; € is kept finite. Consider the three types of "two-loop"”

integrals:

f dzuh"°kn(p—q)2 = lim g—-S(K+p,M,N,s), (4.8a)

p

p>o
[ a®%eetnq® = lim g—c S(K,M+a,N, ), (4.8b)
020

f d2w§°--Xn[(q-n)2/(q2n2)] = 1lim (%; - %3 - Xnnz)S(K,M+o3N+r,s) (4.8¢c)

00

120

where eeeo = [(p—q)z]K(qz)M(q-n)2N+S represents the integrand of the primal

S-integral. The discussion of the exponent derivatives is simplified if

one defines S by
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~

- s=m)"s, (4.9)

so that

d d 2y o _ .. 2.Td _d o
(d—f—ﬁ—Znn)S—(n)(a? E)S.

(4.10)

From (2.2), it is seen that as far as exponent derivatives are concerned,
S is independent of n? and has the structure

S = (pz) (pole terms + regular terms).

~

Henceforth in this section by S we mean S; the term Jlnn2 in (4.8¢c) and the
factor (nz)T in (4.10) will be ignored. From (4.8), it is clear that
integrals with higher powers of logarithms in the integrand are simply
related to the appropriate exponent derivatives of S.

From (4.7), with nonessential terms and factors suppressed,

-€; a a a
2,758 4 %3 %
s -0 [ttt Ay )] (4.11)
0 1 3 b

where agp, a;, a3 and c are polynomials in Ehe epsilons. The last term in
the square parenthesis above is actually finite; it is written out expli-
citly to demonstrate that the factor yeb, peculiar to the axial

gauge, never generates logarithmic infinite terms. From now on we ignore
this term by equating c to zero.

The small variable €; is of particular interest: it is
associated with the ultraviolet divergence of the integral and contains
all the small variables p, 0, T and €. It will be shown shortly that
gauge—independent high order logarithms (i.e. power of ,an2 but not of

fny) are generated only by derivatives with respect to €;. We therefore

re-express the poles of 0(1l/g,) and 0(1/e3) in the form



1 1 1 1 1 i
e e i=0,3, (4.12)
g & g g = siel’

4 ¢ =0, 1=0,3. (4.13)
i
The poles and associated logarithmic terms of S thus devolve from
G2 %
S «~ -(L%ly— (al + Z 821 -EI), (4-14)

where aj, ap; are regular functions of the epsilons with leading 0o(1)
terms. We shall refer to the summation in the parenthesis as the "ao-
terms”. In the limit p=c=1=0, these terms are zero and may therefore
always be deleted (cf. Section 2). They generate logarithmic infinite
parts when S is differentiated with respect to p, ocor <.

Without loss of generality, consider S operated upon with

(d/do)I. From (4.14),

[
N
™
Lo ]

d | iy rey T D) o
lim (3=) 8 = lim ) [G2) Gz) (@, +=a, )],
0,3, 50 do) o — r de € Gc 1 2
where
t = ()
lim (fl—c) a(e,0 zal™) ~o),
G0
a.\fo 1 (r-1) 1
lim (?l_c_r) -Eaz(s,o') E-e a, ~O(-E),
o0
r 24 € NI
d et 1 02y 4+ oe).

(4.15)

(4.16a)

(4.16b)

(4.16c)
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By virtue of the identity (4.16c¢c) (for a proof, expand in e and use

(D.7)), one sees that the right—hand-side of (4.15) has the structure

h|
2 a(r) [ (—J-%f) + mj—r+1(p2)o(1)]+ z aér—l)o(ﬁ)
r=0 r=1 €
J
+ 1 & Wi T2, (4.17)
r=1

Examination of derivatives with respect to p and 7 can be
carried out along the same lines and will not be shown here. The result

can be summarized in the following theorems.

Theorem 3. An exponent derivative, of any order, of an S-integral that is

finite is also finite. In (4.14) both él and a; do not appear and no

singularities can be generated by differentiating the remaining regular

terms.

Theorem 4. The jth—order exponent derivative of an S-integral that has

infinite terms of OC%), but no terms of O(féj, O(Eé) or 0(1?) contains
€ € €

infinite terms that are as singular as 0(—%;IJ and finite terms that have
€

logarithms up to the‘(j+l) power. No logarithmic infinite terms are gen-—

erated. This is verified by considering (4.17) in the absence of aj-terms.

Theorem 5. If an S-integral has infinite terms of Ofgf), O(Eéj or O(JLQ)
€ € €

then any p, o or 7T derivative of it will generate logarithmic infinite

terms. This can be seen in (4.17) when aj and its derivatives are

non-—zero.
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The proofs of Theorems 1-5 are strictly based on our study
of the S—integrals, which by no means represent every type of Feynman
integral that may appear in the perturbation expansion of a field theory.
In particular our S-integrals contain at most only one external momentum.
Without providing a rigorous proof that the theorems are also true for
integrals with any number of external momenta (for a renormalizable field
theory, only integrals with a maximum of three external momenta need be
considered) we sketch in the following how one could proceed to establish
such a proof.

Consider a primal integral with an integrand containing a
product of m (scalar) factors, each being a power of a quadratic expres-
sion in external momenta pj and/or q, and of qen, in the case of an
axial gauge. The notation is as before. Each of the factors is then
analytically regulated by first making its exponent continuous: Kj >
SE then expressing it in integral form by exponentiation as in (A.1).
The integration over the 2w-dimensional g-space is then carried out (cf.

(A.4)). The scale parameter can also be integrated out, reducing the

integral to the form

71

5, (I hons (K1) = 65 Tap |

3 B

(-« |t (m=1) (4.18)
1 3

3

where o = w+ I k. is the ultraviolet index with associated epsilon €,

i
2,4 o . (m-1) |
the factor (p~) represents the dimension of the integral, and is
a "canonical” (m-1)-fold integral having the form (cf. (A.7))
m 1 -a -1 ,
@ o (n [oag) g, " (4.19)

= O 37 e=2
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where each factor f; is a function of the integration parameters gj
and dimensionless scalar products of p, and n; the indices ag will be

linear combinations of K3 and p. No ag other than the ultraviolet

index a; depends on w and all of the k;j's. Depending on the magnitude

of m, the (m-1)-fold integral on the right-~hand-side of (4.19) may be a
hypergeometric function, or a generalization or transcendent of it, or a
sum of such functions; the S-integral of (1l.1) in the axial gauge corres-
ponds to m=3. The important point is that each parametric integration in
(4.19) may effectively induce poles from end point singularities which
have as arguments linear combinations of g and therefore of w and

Ky The final form for (4.18) may be a sum of terms, each being a pro-
duct of poles and zeros. At any point in the w and Ky space of mtl
dimensions, the poles will be up to order m+l and the zeros up to order m.
Consider the behavior of the integral in the region where the exponents
and w have close to integral values, namely Ky = Kﬁ+pj, Kﬁ = inte-

ger, w = 2+¢, P4 and ¢ small. The above argument suggests that in the

1imit pi;O and ¢+0, the poles and zeros of the gamma functions conspire
in such a way that the most divergent terms of the integral are simple

poles of the type

. -€ a '
s~ (I ) (4+20)
. i
1

where each € is ¢ plus a distinct linear combination of pj's with all

coefficients being unity,
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m
-, =e+ ) p. (4.21)

is the epsilon associated with the ultraviolet index, and aj are regular
functions of € and éj with leading terms of O(l). We have not yet
succeeded in proving this, although it may be that the proof is known;
(4.20) certainly has the correct pj=0 limit for all Feynman integrals
usually encountered in the literature. It is important to note that, just
as in (4.11), the dimension of the integral dictates that the exponent of
p2 in (4.20) must be -€;, whereas the poles can be generated by a number
of €;'s other than g,.

Rewrite poles in €55 i#l using partial fractions:

Se,
.-l (4.22)
i 1 i1
where Gei = el+ei is a linear combination of pj'S- Then
(192)_sl %y
s ~tgey (21 -1 ase) (4.23)
1 i>1 °

which is of the form of (4.14). The summation in the parenthesis will
again be refered to as the aj-term; in the limit Qj+0 it is of O(pjlez).
It follows from Theorems 4 and 5 that in the pj*O limit, exponent deri-
vatives of S contains high order poles but are free of logarithmic infin-

ite parts if and only if the a,-term is absent.
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4.3 Regularization by Subtraction

In this section we propose a method of evaluating exponent
derivatives free from logarithmic infinite parts. The ao,~terms appearing
in (4.14) and (4.23) which generate logarithmic infinite parts are

artifacts of regularization. As an example, consider the sum of poles

Azt 4+l 1 (4.24)

& & &

having different analytical properties under differing limits

o a=2, (4.25a)
(ps 0, T)>0

lim A= %+ indefinite term, (4.25b)
(& p,0)0

1im A= 3-+ indefinite term, (4.25¢)
(g,0,T)>0 P :

lim A= 3—+ indefinite term. (4.25d)
(8, Ps T) >0

This example illustrates one of the ambiguities of a singular function
generalized from a set of integers. The ambiguity can therefore be
removed, or regulated, arbitrarily. We choose to regulate by first re-ex-
pressing all poles, using partial fractions, as poles in €], and then dis-
carding the remainder (see (4.12) and (4.22)), which normally vanishes
anyway when p, o0 and T are zero. This amounts to subtracting all aj-terms
in (4.14) and (4.23), after which the S-integral consists only of regular
parts and 1/€; poles. These can be evaluated independently of the order
of the limiting process and, by virtue of Theorem 4, are free from logar-

ithmic infinite terms. The equality



- 4] -

! 9 €
d [(P ) ] = d_ [(P )
(-el) de €

] P = Py OOr T (4.26)

lim ao.

(pso,1)»0 ~Ti

asserts that, as far as high order poles and associated logarithms of the
S-integral (without the factor n¥) are concerned, all exponent deriva-

tives are equivalent to derivatives with respect to € ( e-derivatives), and
all such high order poles are generated by the ultraviolet divergence.

In summary, if the expansion series in the epsilons for S
is

2.7e1 1 L
s = (p%) (_—E-l-+ —) + R, (4.27a)
izl ¢
2] €l
where for the regular part the factor (p“) has been absorbed into R,

then the regulated S, for exponent derivatives, is

oD
=P = ‘
Sreg (_el) I+ R, I = f Ii’ (4.27b)
and the exponent derivative corresponding to the operator
i 3y I3 |
Moen) cTGEg) 3 =Ty (4.27¢)
i i i i i
is
j 2, € 2y e . .
lim DIS___ = lim {[(g—e-) (ps) ]1 +—(l’—€)— pl1 + p'rR}.  (4.27d)

X 1 -1 1, -1,
That is, all poles € s € and/or €5 in S have become g, in Sreg'
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We mention in passing that an alternative regularization to
the one discussed here, where ultraviolet and infrared poles are treated
indiscriminately, is to isolate the two types of poles. The rationale for
this is that only ultraviolet divergencies need be renormalized, while
infrared divergencies presumably would automatically cancel in the proba-
bility of any physical process, provided that soft gauge-particles emitted
in the final state are taken into account. In this alternative, infrared,

but not ultraviolet, poles will have logarithmic residues in exponent

derivatives.

4.4 Renormalization by Subtraction

We make a few remarks on the arbitrariness in the final
step of the regularization process = the removal of ultraviolet divergen-
cies = commonly referred to as “renormalization">). In dimensional
regularization, the simplest procedure (the minimal subtraction scheme
(M8)),36) is to subtract from the integral all poles and nothing else.

The implication is that a Lagrangian composed of counterterms can be
constructed which generates (infinite) terms that exactly cancel the poles
and nothing else. In the limit (p, o, 1)20, poles of the S-integral always

appear in the combination
l/e+ tan + v (4.28a)

The fn7 term arises from the factor 7% in the S-integral and the Euler
constant y is associated with the residue of the pole. Sometimes Feynman

integrals are defined such that they have an extra factor of normalization

(2m)"2W ip (2.1), in which case (4.28a) becomes
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1/e = fmbmn + y. (4.28b)

The renormalization procedure whereby the O(e_l) term is subtracted in the
combination (4.28b) is known as the MS scheme37).

The term fnn (or fném) is an artifact of the regu-
larization. Had we chosen to use the method of analytic regularization
exclusively (i.e. set e=0 at the outset so that the infinite parts are of
O(o’l) or O(p—l) - see section 2.1 for detail), then the term fng would
never have appeared. In this sense it is not only legitimate, but indeed

natural, to remove it by subtraction.

In our method of regularization, the usefulness of general-
izing to continuous dimensions chiefly resides in the expeditious evalua-
tion of the simultaneous limit (p, o, 1)+0; w serves a useful purpose only
when it appears in linear combination with other exponents in one of the
indices (ai), but not when it appears singly as in the factor W,

This implies that, among other things, dimensional regularization need not
be extended to the domain‘of Dirac algebra.” In practice it means that
dimensional regularization can, and in our view should, be implemented
only after the algebra has been done in four dimensional space-time. Com-
pliance with this procedure would remove a contentious ambiguity associa-
ted with the conventional method of dimensional regularization: that of a
consistent definition of -antisymmetric tensors in a space of continuous
dimensions. A serious consequence of this ambiguity is that it generates
spurious ys—anomalies3’15’25). This procedure is similar to that of the
recently proposed method of dimensional reduction17). However, contrary
to arguments given there, the discussion in Sec. 2.1 shows that the condi-

tion w < 2 need not be imposed (cf. (2.3)).
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The point of view that only integrals need be regulated
also sets our method of analytic regularization apart from that of
Speer14). Because Speer regulates propagators, his method appears not
to preserve gauge invariance3). Our method is free from such criticism
because it was earlier shown that with it the regulated integrals are
equivalent to those obtained with dimensional regularization, which is

known to preserve gauge invariance.

4.5 Renormalizability of Perturbation and Nonperturbation Theories

In perturbation theory physical amplitudes are represented
by Feynman integrals. We have shown that taking the exponent derivative
of N-loop Feynman integrals is closely related to computing (N+1)-loop
integrals and then subtracting from it counterterm insertions into N-loop
integrals, according to the 'tHooft-Veltman scheme. The pole and associa-
ted logarithmic structure of (N+1)-loop integrals is therefore similar in
both prescriptions. Perturbation theories according to the 'tHooft-
Veltman prescription are therefore renormalizable by the standard
subtraction method.

Now consider a nonperturbation calculation such as that
induced by the Schwinger-Dyson equation (1.2) for the gluon propagator.
One may possibly solve the equation by iteration: start with a zeroth
order propagator Z(O) without -logarithm. The integration will generate
terms with one power of logarithm, plus divergent terms which are subtrac-
ted. This completes one iteration. Now substitute the new Z(l),

including logarithms, back into the integral. This generates terms with
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two powers of logarithms, and so on. Formally, this iteration procedure

generates a continuous fraction representation for Z,

=l = 1+ u@z, (4.29a)
or
z = 1 -
L+ H o (4.29b)
. 1
T ©

.where in (4.29b) at each stage of the iteration the integral operator H is
a function of Z obtained from the preceeding iteration.

Since logarithms are generated by the evaluation of S-inte-
gals and their exponment derivatives, an alternative to solving (4.29) by
iteration, involving the evaluation of many-fold 2w-dimensional integrals,
is to construct a trial Z with logarithms, and solve (4.29a) directly by
evaluating the one-fold integral HZ using the method of exponent deriva-
tives. Restricting the trial solution to contain logarithms of up to the
Nth power corresponds to‘computing Z to the N-loop level in perturbation
theory. The integral HZ itself, where Z contains logarithms, can be gen-—
erated by evaluating exponent derivatives of an S-integral. We have shown
previously that S-integrals and their exponent derivatives can be regula-
ted such that they contain at most only poles due to ultraviolet divergen-
cies so that these can be renormalized by subtraction. This indicates
that, in principle, a nonperturbative, renormalized solution of (4.29a),
of any order corresponding to that of the same order in a loop expansion,
can be calculated with the methods of dimensional and analytic regulariza-

tion in conjunction with the application of exponent derivatives.
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5. SOME EXAMPLES

We evaluate some special cases to illustrate the power of
the G-function representation and illuminate some properties discussed
generally in Sections 2 and 4. Following the discussion of Section 4.3,

. . . 2
the factor 7 is isolated when S is singular, and is written as 7m° when

S 1s regular.

5.1 A Regular Intgg:al

The case y = k= v= -1, s =1 is of some interest because
w=2 lies within the window of convergence defined by (2.3); there is no
analytic continuation except in y, nor any regularization. Consequently

the integral will be well-defined in w, k, p and v and analytic in y.

From (2.2) we have

2
=T Lo 2,3,.10,0,0;
57z e 63.30]0,0:-1/2) -1

and there is no necessity to take € limits within the G-function because

the contour is not pinched. From (2.8) and utilizing the residue theorem

for a dipole we find

2
g o o (p.n%rg;/Z) r(§+z) v W1+ - q,@.m) + g y]  (5.2)
pn I(z+2)

2

and the series converges for ’y' < 1, albeit lackadaisically. An

equivalent form for this integral has been given by van Neerven38)

(Appendix C).
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The analytic continuation to 'y' > 1 given in (2.12),
leads to

= Za  %3,35/0,0,0;

- 32. )} (p " e LG 0= w1+ 0=t 717+ 29 () - VA4 - VD]
pen , ML) T2

(5.3)

The series slowly converges for ’y' > 1; vand §' are
polygamma functions (digamma and trigamma respectively). As 1/y ~» 0+,

the leading behaviour (light-cone gauge) is

S(p,n) ~ !lnzy R (5.4)

demonstrating that the function R(y,p,n) of (2.10) is singular at the
point n? = 0+, although the leading pole structure in Fig. 2 and the
condition (2.13) for this example nominally implies (l/y)O behaviour.

This case also illustrates how the cut extending from [1,]

in the y-plane vanishes. Retain the € dependence and use (2.7) to write

_ 'y r(1/2) [L(e)T(1te) I(1-e) drlre )
pen T(1+2€e) "T(3/2)T(1+2¢) 271" 3/2

'(-e)T(1+e) _e 1,142¢
*To7ere Y oFal 32 d7)] (5.5)

Employ a linear transformation y e-—gr-to expand the hypergeometric func-

tions about y = 1:
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w2y T(1/2) T(1+€) eI K-1/2-0) o (d+e,1/2+e, o1
pen I'(1+2¢€) r(1+2e)T(1/2-€)T(1/2) 2°1\ 3/24e °* 'y

S =

(=€) T(~1/2-¢) L#2e,1/2+e y-1)y

* I(1/2-€)T(1/2+¢) 2F1( 3/2+¢ H _§“

by M2 gy1/2me 158432)6) [r(lszgg@ + T(-¢) ]} (5.6)

The factor in the square brackets vanishes identically for
all e, thereby eliminating the explicit cut which exists in each of the
original hypergeometric functions independently. From the remaining

terms, the value of the integral at this point may be obtained:

2
S(y=1) = 27 fnd (5.7)

(pen)

5.2 Covariant Gauge

Here we are interested in the case in which v=s=0; S

reduces to

spsk,w = [ d2% (@AY [e-)?1® (5.8)

and all n-dependence vanishes. From contiguity relations between
G—function826), it is easy to extract a factor 1/V from the G-function
in (2.2), write the sum of contiguous G-functions as a contour

integral30), and set v=0. We find that all residues vanish save the one

at the origin and no limiting process is required. The result is?)
2., w
S(p; K, 1) = n(p%) K T'( wh ) T( whp) T(~ w- - K) ' (5.9
P 5 T'(-u) T(- ) T (2 wkirtk) .
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Note the symmetry with respect to interchange of u and k, as expected from
the "shift” property of the integral representation (5.8). In addition,

because of the order of limits, it is obvious from (5.9) that
S(p;K,u) =0 , K >0, (5.10a)
S(p;x,M) =0 M > 0. (5.10b)

This confirms a conjecture relating to the properties of tadpole
diagrams,39)

S(p;0,M) = 0, M > O. (5.11)

Because of the conmditions (2.3b,c) and reasons given in Sect. 2.2, (5.10,
11) cannot be derived with the method of dimensional regularization alone.

For a summary of all the nonzero cases in the covariant
gauge, now let

-K-1, K =0,1, ec°

N
[]

M-1, M = 0,1, eeo (5.12)

=
i

A straightforward analysis of (5.9) gives the following possibilities:

M=K=0
S(p;-1,-1) = - a® (%—+ Y + R,np2 - 2) R (5.13a)
M=0, K=1 or M=1, K=0
w
S(p;-1,-2) = S(p;-2,-1) = Ef' (%-+ Yy + znpz) o (5.13b)

P
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M+ K> 2
Seoi kel o1y = 2 (p2y T IQHHR) TOMR-1)
(p;—K-1,-M-1) = 27" (p") T(M+1) T(R+1) T (M) T(K)
x L4 [anpP-y(HHE)-290HK-1) + ¥M) + WK) ]} - (5.13¢)

€

The simplicity of the result (5.9) permits a generalization

to the J-fold integral

2w 2 2w
(s {x, sl 1) = J a4 qy s [d uqu S(ay) +o+ [d JasSCay )

K,

2w u
q?_(qg) ?((a,map)?) 2 e

2w
_ 1 2. ¥ K y)
=[d Tqq(ap

((ql-pl)z) ffa

K

2w U
J
)

x Ja Jaya% T ((ayma

§ % F(Ki+w)P(Mi+Wi+Ki+l)F(Mi—Ki—Wi)
jmp TR KDWY TOL K A Fo,)

(5.14)

i+l

where
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J

Moo= ) s (5.15a)
i=h
J

K, = ) Ky > (5.15b)
i=h
J

W, o= z wy (5.15¢)
i=h

and Ep, Ky and M, are all zero if h > J. Note that (5.14) is a

general result allowing all the w's to be distinct, whereas the

conventional application3) of dimensional regularization is restricted

to the special case W] = W2 = °°° = W (cf. Appendix D).

5.3 Axial Gauge with x = -1

Here we consider S-integrals of the form

X(i,j) = S(P,ni‘l,M,N“S,S)
= [ a®%( Mg m) VS ((-0)? )t (5.16)

with i=M, j=s—-2N, some of which had their infinite parts originally
calculated by Capper and Leibbrandt,13) part of whose notation (X) we

retain. In the following we have

M >0 (5.17a)

N < s-1 . (5.17b)
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According to (2.5),

Ag = -M-N-2,
Al = M+N"‘S+1,

Ay = N-s < -1,

B, = 1#+N-s < O, (5.17¢)

so .
Bj-A; = -M<0 (5.174d)

and
AgtA| = -1-s < 0. (5.17e)

This shows that for such integrals B; < A;, and Ay must be of opposite
sign to A; except in one eventuality (Ag = A; = -1, s=1). This limits the
possible combinations of poles in the overlap region (cf. Section 2.3) to

five. They are:

Ay >0>A>B, >4, (5.18a)
Ag>0>A; >B, >4, (5.18b)
-1 = A =YA1 > B, > A, (5.18c)
A, >0>B, >A,> A, (5.18d)

A >0 =B, >4, >4, (5.18e)
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Of these possibilities, only the last two contribute an infinite part to

X(i,j); the first three are symmetric under the interchange A} <> Aj and

are all regular.

The first three cases may be summarized by evaluating the

residues:
2 281 o A2 By
T (p7) (7)) (pen) I'(1/2+A2+s)T(-B1)y
X(M,s-2N) = - T(-A,) T(1/2¥B ¥s)
(5.19)
B;-Ag,B1-A;,1
x 3y : ’ |v)
Bl+l/2+s,l+B1
using the notation
2
a I (a),vy
T/ p - p’ A
F ((Ply) = J E5rt (5.20a)
P q bq' 9=0 (bq)l U
with
I = Min{-a', -b' 5.20b
{-al, b} ( )

where the prime (') indicates that only the members of the set {ap,bq}
that are negative integers are included. For example, the hypergeometric
function in (5.19) terminates at the smallest positive value of {AO—Bl,
Al—Bl,-l—Bl}. This caveat is required because a hypergeometric function
with negative (ap) EEQ.(bq) parameters does not always terminate. The
non—-terminating part represents the contribution from the non-overlap
region of Figure 1 which has been treated separately. Fortuitously, this

series disappears for these cases.
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The remaining cases (5.18d-e) are slightly more complicated
since they contain a singular part. However, the residues may be
evaluated as usual, and the final result is

2 ! 2 Az s
~5p%) (a%) (pen)°I(1/2+Az+s) T(1-B +A})

X(M,s=2N) = p- p
* I"(B1 AO)P( A2)

Al (=y) *( 2-40) 1 )
(] TooDTarmmerTammsn 7 PPy - 2KB Ay
2=0

+ 240 8= 4 L) 8y~ U1/ 2+8+9) ]

. Bl
T (Bl-Ao)F(-Bl) 9(-31-1)}' ‘T Bi-Ag,B1-A,1

. F
T(1-B1+A 1) [(B 1 +1/2+¥s) 3 2% 1+1/2+s,B1+41

y)} (5.21)

where the 6-function (cf. (4.7e)) has been inserted into the second term,
allowing case (5.18e) to be included in the same expression. The factors
multiplying 1/e reproduce results previously obtained!3), The complete

38)

expression for S(p,n;-i,O,—l,l) was previously given by van Neerven H

apart from differences due to normalization (cf. 4.28), (5.21) reproduces

his results (his Ig;1, eq. (A.8)).

The case X(-1,j) is of interest (j > 1). Now we have
M=-1

instead of (5.17a); (5.17c¢c) carries through with this change. There are

only three cases:
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By, =0, Ag =A; =Ap) =~-1 (5.22a)
Ag 20> B) >A) =A (5.22b)
Ag > 0=B] > A=Ay (5.22¢)

The first possibility gives the regular integral X(-1,1) and was treated
in Section 5.1. The latter two cases may be obtained from Table 1 (case

A.3) by straightforward substitution and will not be given explicitly

here.

Finally we come to the integrals Y(i) defined13) by
- : 2 2.-1 21 2N-
Y(i) = S(p,n;-1,-1,N-5,8) = [ d“%(q¢") " ((p~)°) "(g*m)“" °  (5.23a)

with i = 2N-s and
N > s-1, (5.23b)

giving

b
o
]
i
Bt
i
=2
A
o

>~
—
]

The only possibility for the overlap region is
By >A; =A >0 > A (5.234)

and taking the residues for this case we eventually obtain
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1AL ) 2 2 A1 s
) T (p°n”) (pen) I'(1/2+A1+s) I'(1+A}])
Y(2N=s) = NEED)
AL p(g-a)(-y)* . ;
g T DD ED e+ (PP 26B, -4 + W2aa) )] (5.24)
2=0

The infinite (0(1l/¢€)) part of this expression reproduces Capper and

Leibbrandt'sl3) result.

5.4 The General Case

First of all, we note the generalizations of (5.10):

o, K >0,

S(p,n;K, Us VyS)
(5.25)

S(p,n;Kk,M,N,s) 0, M and N > O,

which are results not obtainable in dimensional regularizationl3).

Because of the limited number of possible permutations in
the overlap region (see Sec. 2.3), it is feasible to classify any S-~inte-
gral according to the arrangement of the poles and zeros. We expand to

first order in g, and introduce an encompassing notation. Write

s(p,n) =5 ﬁ (5.26a)

where jis given in Table 1,

T = n9p2)y TN (2N S T 24 [14( mpz-zE(BI-AO)-oE(BI-Al))] (5.26b)

D = T(BI-AO)T(BI—AI )-f(—AZ)T‘(—AQ—Al—S) R (5.2§c)
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and

T(x) = I'(x) , if x>0,

= (=)*/T(1-x), if x<0, (5.26d)
Wx) = Wx) , if x>0,

= Y(1-x) , if x<0. (5.26e)

The parameters Ag, Aj, Ay, and B) are given in (2.5), and the "0" and "2"
coefficients are discussed in the footnote to Table 1. The function

g(i)(bla) appearing in Table 1 is defined by

b-a
g Pl = 1 g,y ()’ (5.27a)
2=0
where
_ 2 A
P(Bl-a)'ﬂ P(a-Ai)(a-Ai)z
gla, ) = ()% = 1=0 (5.27b)
T(a+l)T(a+l/2+s)(at+l/2+s) ((a-B +1) ((atl),
with
¥o(2) =1, (5.27¢)
B =1+e E(Bl-z) + g, $(—A0+z) + g E(—Alﬂ) . (5.27d4)

¥ (0) = -1-e(tn y - W(=2) + W(-A,+2) - ll)(%—+s+2) + 2W-A L) + OU(-A;+2) ),

(5.27e)

¥a(2) = (¥ (+¥,(R) /e

E(Bl—z)ﬂ(—z)—W(-AOH)-'q?(-A1+z)-$(-A2+z)+w(%+s+z)-zn y ,  (5.27f)
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and the convention that gi(b'a) =0 if b < a. The function Z in Table 1

is defined by

2
Z(Ay,A; B 1) = %g(a,l)‘YB(,Ha)y : if |y] <1,
N -2-d
= ] a(#d) Y (e (-y) T, 1E |y > 1, (5.28a)
2
where
a = Max(0,B,Aq+l,A +1) , (5.28b)
d = Max(0,1-B+A,,1+A,) , ' (5.28c)
with
. L l-AgA;
8(2) = (=)

T(B1-A2+2) T(-Ao+2)

x (5.28d)
T(1+2) T(1+A1-A2+2) T(1+Ag-A y+2) T(1/2+A y+s- L)
and
¥, (2) = [W(B1=Ag+)+P(4-A2)= Y(1+2)= (1+A-A 7+ 1)
1 1,2
~V(1+A0-Az+L)+Y(5+A+s=2) + in ;]
+ 1r2+w'(Bl—A2+z)+xp'(2—A2)—w'(1+z)
- Y (L4A-AHR)- P (1+Ag-A o+ L)- V' (%+A2+s- L) . (5.28e)

Nonzero values for the functions<9'in (5.26a) are given in Table 1.
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Although it is possible to extend Table 1 to higher orders in p, T and o
in order to calculate exponent derivatives, we refrain from doing so
because the general expressions rapidly become unmanageably lengthy and
complicated. However the general evaluation may be executed by compu-
ter>4) (SCHOONSCHIP4O)). We give a few examples of first order expon-—

ent derivatives in the following subsections.

5.5 Exponent Derivatives in Covariant Gauge

To illustrate, we consider three distinct cases of first

order exponent derivatives.

(a) «=-1, p=1. As implied by (5.10b), S is of 0(¢/e,), vanishing in

the limit o = O. The p-derivative is non-zero, however. We find

2
2
s(p;-1,1) = [ 4 —i—)§= 0, (5.29)
(p—q
2 2
d . _ 2w g fn(p-q)_ _
&8s, g = [ a7 el (5.30)
2, 2 w, 2,2
1
L sps-1,m = [ a%0% TR < ST Rk v s 3] (5431
¥ g (p=) ;

Note that the non-vanishing exponent derivative is of 0(1/¢), rather than

0(1/82), as is usually the case.
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(b) k= ypy=-1. S is symmetric under interchange k « u, and has an

0(1/€;) singularity. We find
20 2 2-1 1 2 ‘
s(p;=1,-1) = [ d"q[q“(p-)]" = =n“[z + v+ mp” - 2], (5.32)

2
d - f dqu in(p—-q)

—S(p;'(:-l) 2 9
dx |<=—1 (p-9)“q
d 20 fnq?
=H‘IIS(P: 1:“), = fd q ! 79
u=-1 (p-q)q
wl 4 xly R 1 %% - v+ mp?]
L e ) 1Iz" 7P Y Pl

(5.33)

(¢c) x==-1, u=-2. S has an 0(1/¢p) singularity. We follow the

prescription described in Sec. 4.3 and convert it to a 1/€; singularity

before differentiation to rid the exponent derivatives of logarithmic

infinite terms. The results are

W

2 2 41-1 1 2
S(p;-1,-2) = [ a”q[(p-0)%q"]7" = T (3 + v+ mp?), (5.34)
P
d 20 tn(p-q)”
R S(P:K’-z)l d q A
k=-1 (P2 7q
w 2 2
oLy _mm 1,22
" lgtetyr o el (3.35)
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d

2
2w fng
Fm ] d%7q

S(p,-l,u)l = A

2
p=-2 (r-9)q

W 2
_rm ol oyl Yy 1,22 2
=- Sttt oy mt sy et
P €
(5.36)
5.6 Exponent Derivatives in Axial Gauge
Consider the case k= p= v=-1, s = 0. The integral

belongs to Class A, case A.4 of Table 1 with (Aj -~ A;) and has an 0(1/€gp)

singularity. We find, after changing 1/€g + -1/¢,

s(-1,-1,-1,0) = [ a?%[(p-0%e-m?] 7!

2n? 11 2
= - [+ v+ wmO®p /4], - (5.37)
2 2 ‘e
pn
d 20 2 2 2 -1 2
& s(x,-1,-1,0| = [ a0 (@ T mlpma)
K==1
w 2 2
_2r ol oy xont 1,202 2
-G et T WA+ iy 2] (5.38)
pn €
2 2 2 21-1, 2
&ose-1,u,-1,0)] = [ d (am” | g
p=-1

w oo 2 2
= [—§-+ +
€

1 2, 2 1 2
2 2 5 4 (p /4y)+§-m4y+zl] (5.39)

r .
12 2

o™=
N|.<
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& - 55 - =8¢0 | = [ (0% @n? [t alqn?/e?n?]
v=-1

w
s A=) [+ v+ an(p?/4y) ] + & mnlay + 2, )

P n (5.40)

where as always y E»(p-n)z/pzn2 and

® L
zp 2 [ LA fy-ugre + my), fy| <1,

1
g=1 TGO

Pat-v 2+n-v- by

© -4
- -1 y _T(1/2+2) el
* NGETH) {[¢<1+z> W5~ )+ ny
=1

(5.41)

The particular logarithm in the integrand in (5.40) is chosen because
logarithmic dependence on the gauge vector n occurs only via the expres-
sion fny. It is worthwhile pointing out that the result (5.40) contains
neither poles of 0(1/82) nor logarithms of O(znzpz), each of which is a
signature of overlapping ultraviolet divergeﬁcies. This is another
consequence of our regularization mgthod in which physical (ultraviolet)
and unphysical (axial gauge) singularities are completedvdecoupled. Note
that a single pole always appears in the combination e_l + v+ znpz, and a
double pole, e? + ye'l + Y2/2 - ﬂ2/12 - (lnzpz)/z. Note further that
here the magnitude of the ratio of the coefficient of the £n2p2 term to

that of the g2 term is a factor of two less than the ratio given by the

'tHooft-Veltman prescription (cf. Appendix D).
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6. BEYOND POLYLOGS

We have seen that primal S integrals and their exponent
derivatives may be useful in nonperturbation theories because they gener-
ate the same set of polylogs as are generated by loop-integrals in per-
turbation theories. On the other hand, it is altogether probable that
integro-differential equations derived from nonperturbation theories admit
solutions with nonintegral exponents. There is therefore a need to study
such S-integrals (with nonintegral exponents) in their own right, rather
than only as vehicles for generating polylogs. Furthermore, it is obvious
that such integrals generate functions that are qualitatively different
from those generated by primal S-integrals; this possibility suggests some
interesting conjectures.

A particularly significant property of S-integrals is that
they are free from pole singularities when none of the three indices aqg,
a; and ag = op—-B; (Sec. (2.5)) is a non-negative integer (in this section
the limit w » 2 is always implied). Does this imply that if
integro-differential equations derived from a nonperturbation theory admit
solutions with nonintegral exponents, then the theory may be divergentless
or finite, eliminating the need for renormalization? A less radical
possibility41) is that the o-indices remain as integers, but their
components K, M, V, °°° are not. We consider the second possibility
first.

Suppose the solution has a factor (pz)u with the non-

integral exponent W = Mt+o. Then upon expansion in o,

2
+§°_ znzpz + ooo). (6-1)

oAM= M1 + otap’
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The right—hand-side has the appearance of a polylog, with o playing the

role of a coupling constant in a renormalized perturbation theory. This
suggests the possibility that loop-expansions in perturbation series may
be mere approximations to an expansion in o. Could the dimensionless ¢

then be a "fixed point"42) of the theory?

With regards to the possibility of constructing a finite
theory, consider now the ultraviolet index o1, which governs the only type
of persistent and physical singularity in S-integrals, or as discussed in
Sec. 4.3, in any Feynman integral. The index répresents the overall
dimensionality of the integral to which it belongs. In perturbation
theory Feynman integrals are representations of physical amplitudes which
always have integral dimensions. Therefore o] is always an integer in
perturbation theories. Consider an integral S(a)) representing a physical
amplitude Q(A;) of integral dimension Aj;. Then in a perturbatidn theory

the relation between Q and S may be expressed, without loss of generality,

as

Q(Al) = Sren(al) L (6.2)
a1=A1

where the subscript "ren” means the integral is renormalized when A1>0.
Suppose the corresponding nonperturbation theory admits a solution such

that

a] = Al - €]

where €] is not an integer. Then first of all S is finite and no renorma-

lization is needed. The continuous exponent e] may again be a fixed point
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of the theory. However since the dimensionality of Q cannot change (6.2)

must now read

Qa) = As(a -¢), (6.3)

where A has the dimension of momentum. It follows that a finite theory
implies the existence of a dimensional scale parameter A. The symbiotic
relation between renormalization and a scale parameter is well known43).
In perturbative QCD6), the parameter is referred to as the mbmentum of
subtraction, and is not a theoretically calculable quantity there.
Finally, because of the richness and compactness of the
G-function notation, it may prove that a similarly compact result can be

found to describe entire physical amplitudes by analytically summing a

series of G-functioms.
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7. SUMMARY

A hybrid of analytic and dimensional regularization has
been used to discover a compact G-function representation ((2.2)) for a
large class of divergent Feynman integrals, or S-integralé ((1.1)), which
occur in the calculation of two-point functions in massless gauge theories
in covariant and axial.gauges; integrals in the light-cone gauge appear as
a special limit of the analytic continuation of the axial gauge. For
integrals in the axial gauge, our method of analytically regulating the
spurious singularity is particularly useful; it is far simpler than the
0old method of evaluating the integrals by the principal value prescrip-
tion, which is shown to correspond to operating a regulator - in this case
a polynomial in a differential operator - on a sum of G-functions. In
addition, our method permits the evaluation of Feynman integrals with
logarithmic factors in the integrand. The infinite and finite parts of
all S—integrals are given in (5.26-28) and Table 1.

It is pointed out that the set of polylogs — power series
in (Pz)mxnjp2 - generated in multi-loop Feynman integrals in perturba-
tion theory coincides with the set of exponent derivatives of one-loop
Feynman integrals: polylogs from N-loop integrals are equivalent to those
generated by the (N-l)th order exponent derivatives of one-loop inte-
grals. Since the G-function representation for the S-integrals is an
analytic function of all the exponents, the computation of exponent deri-
vatives is in principle straightforward. Some examples of first order
derivatives are given. The significance of the possibility of generating

polylogs independently of perturbation expansions was pointed out: the
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polylogs may be used as a basis for the solutions of integro—-differential
equations of nonperturbation theories.

A striking similarity between the 'tHooft-Veltman prescrip-
tion for dealing with overlapping divergencies and the exponent derivative
is pointed out and explored. A proof asserting that their prescription
indeed eliminates all logarithmic infinite parts in all multi-loop inte-
grals is given (Appendix D). It is also shown that, when the S-integrals
are judiciously regulated, the exponent derivatives contain high order but
no logarithmic infinite parts. Furthermore, all high order singularities
arise solely from ultraviolet divergencies. The absence of logarithmic

infinite parts implies that nonperturbation theories, with physical ampli-

PR
§

tudesféxpressed in terms of S—integrals and their exponent derivatives,
are renormalizable — all infinite parts may be cancelled by counterterms.
Although a hybrid regularization proved to be the most con-
venient method of regularization for the task on hand, all that has been
achieved could have been accomplished by analytic regularization alone,
but not by dimensional regularization;‘ﬂfﬂéwiétter is deficient for the
present task on two counts: it does not allow the analytic regularization
of the spurious singularities of the axial gauge thus leading to unneces-—
sarily lengthy and treacherous computation, and it does not permit the
computation of exponent derivatives which, as pointed out earlier, may be
of profound significance in nonperturbation theories. On the other hand,
for S—-integrals without derivatives, it is-ebserved that analytic regular-
ization and dimensional regularization lead to identical results, provided
that in the latter the Dirac algebra is done in an integral - i.e. not 2w

- dimensional space, and the factor m¥ that appears in the integral is
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restored to ﬂ2- Since the replacement of dimensional regularization by
analytic regularization is a simple matter of choice, this observation
eliminates the need for ever doing the Dirac algebra in nonintegral dimen-
sional space, thereby solving the contentious problem in dimensional regu-
larization arising from attempting to consistently define antisymmetric
tensors in a continuous dimensional space and leading to spurious
Ys—anomalies. The equivalence of the two methods also implies that
analytic regularization preserves gauge invariance.

By considering integrals with nonintegral exponents, we are
led to some intriguing observations. Notable among these is the possibil-

ity of a finite nonperturbation theory emerging naturally.
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§
TABLE 1 - Evaluation ofé; in Eq. (5.26a)

tt

Infinite Regular
Case Condition Part Part
Class AT: A, <O
Al B1=0>A (DA | - Z(Ag,Aq,B -1)
A2 AQ>B 1D0>A1 2, 8 @olE 26 ®1-1]0) + P ao[B1)
A3 AQOdBIA) LsPado Py + a0
A4 AQ>O>A1B) - P[5 - 05 )0
A.5 0>A0>A12B ) - -gfo)(Al Bi)
A.6 A0>0>A 154,58 | t—s g% (a8 ) g¢?)(a1[a11)-05% (ao]0)
A.7 Ag>0>A B DA -15 g(z)(Az’Bl) 01 A2+1)+g(3)(A0|0)

L Do

a8 apoapapsr g Payfsn 05 P aofar)-0g o)
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TABLE 1 - continued

A.9 0>402A 14281 £ 8 7 (Ag[BY)
A.10 O>AQMAADB] %g-g(z)(Al B,)
A1l O>AAQB A %E-g(z)(Ao B1)
a2 OADARADRDB; = g aylBy)

Class BT: Az >0

B.l  A>B1D0>AQMA; -%3g(1)(A2'B1)
B.2  ApBDAQOOdA] %bg(l)(AO'O)

1 1 1

B.3  A2>A(>B1>0>A, (5—0 + 63)3( )(Ao'B 1)
1 1 1

B.4  Ap>A(>0>B1>A) (EO + 3—3)8( )(AO’O)

B.5  Apd0BI>AQA] Eég(l)(Az,O)

5P [am)

05?7 (ao[a 1)

540 (-1[a)-26(P (a4 41)

-Og(o)(Ao‘A1+1)

' 31-1]0)

g (81-1]a041)

2g(°)(31-1|O)+2g(°2A2’A0+1)

26(%(az]a¢11)
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TABLE 1 - continued

B.6  Ap>0>A02B1>A ’ - Zg(o)(A2 0)

B.7  B1>Ap>0>A>A ) - g(o)(Az 0)

B.8 B1>A>A(>0>A)

B.9 B1>A>A220>A

B.10 AQ>A2>B120>A)

B.11 Ap>A>0>B1>A;

B.12 Ag>B1>A2>0>A)

250 @0
1P @so
g;'+'l-ﬂg(l)(A2'B1)

€0 €3

1
& + )Mo

g0 a,]aeH)

2¢(?(8,-1]0)

28(0)(A2 0)

§ Symbols and notation:

for Ay, By and ¢ see (2.5); e3 = gytey;

for g(i)(a|b) see (5.27), for Z see (5.28).

€p=€3=€ and €)=-¢.

In the limit p=c=1=0,
is the sum of infinite and regular parts.

t Class A cases all have Ay<0, Ap>A; and B)>A, if the position of Aj is
not given; if AptA+s > O, then & = 0. Class B cases all have Ay>0, Ap>A;

and B1>A); if A>B) then ] =0.Corresponding expressionms for A)>A( are
obtained by interchanging Ag and A) and the coefficients 2 and 0, and

replacing €g by €], in the table and in (5.26) and (5.27).

t1 The "infinite" part given here includes terms of 0(1l/€) as well as
those O(l) terms that are naturally associated with the 0(1/¢€) terms.
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APPENDIX A

In this and Appendix B, the main result (2.2) will be
derived. We begin by replacing three of the factors in (2.1) by an

integral representation of the form
® 2
T
(qz)'J = TTéET [ TF T g, Re(u) <O (A.1)
o .

and transpose with the outermost integral to obtain

-] [ 2
) _ 1 e -p-1l =v1_-k=1 =p°v
Szw(p,n,K,v,u,s)— =0 (=) (=% gdtg dug dv t u v e J(t,u,v)

Re(u, v, k) < 0,
(A.2)
where

I(t,u,v) = [ d2¥%(qn)® exp(-q(t+v) + 2(peq)v - (qom)2u).  (A.3)

The above integral has been derived elsewhere13); it is equivalent to
24 s o-oq”+26p q-¥(q+n)?
[ a*%q (@n)® e

1/2

- @ @) S ([ - By

otm?’ (atyn®) ot yn

which has the feature that it reproduces the usual results whenever w is a

positive half-integer. In point of fact, we may always take w equal to a
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positive half-integer in (A.3) and (A.4), provided p, v and g are continu-

ous variables, as follows from the discussion in Sect. 2. Thus (A.2)

becomes

W s © o © —p,—]. =-v=1_~k=1+s 1/2-(1)

on t v tt+v
Szw(p,n;K,v,u,s) -1 (pen) fdt [ duf dv v 5 177%s (t+v)
T(=p)T(-v)T(-x) o o o (t+v+un”)
2.2 2 2
x exp[2+z - uv_(pen) 7= = p2v] (A.5)
(t+v) (t+v+un™)

Now transform the variables according to

t = (1_"3)&}\ >
u = Nﬂn{
v = M1-7)(1-8), - (A.6)

and the scale integration (A, from O to «) may be evaluated analytically

using (A.l). The eventual result is

nw(nz) V(p -n)S(Pz)wi-w'd-vI‘(-ur = v=K)
I(-p) T(-v) I'(-k)

Szw(P’n; Ks Vs P"S) =

1 1
X fd'l: fda T—\)—l(l_T)—l/Z'i'V'f'Sg-}rl(l_g)wi'u'i'vl's—l
o] [o]

x [g+ 1y(1-¥)

3

with ’
y = (pem)¥(p%?),
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if

Re(uwu+vk) < 0 . v (A.8)

The double integral in (A.7) is in the canonical form of an

Integral evaluated In Appendix B, with the substlitutions

o + —«(wkkkpr2 vHl)
B + ~1/2+Vvts,

Y > whptvs—-1
po> o,

T > wHK . (A.9)

In contrast to our approach, Bollini et al.14) uses a
generalized Feynman formula instead of the generallized exponentiation of
(A.1). Like us, they use analytic continuation to define divergent inte~

14) regulates propagators (as opposed to only integrals),

grals. Speer
uses (A.l) in a modified form - the lower limit of integration is replaced
by r and the limit r =+ 0t is considered - and does mnot explicitly use the
principle of analytic continuation. For the implication of this subtle

difference between Speer's and our approach see Sect. 4.4.
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APPENDIX B

We wish to evaluate the double integral

! 1 _
0(5‘ = g ag ({d'r % 81-1)B1-e) Ve “D}E (3.1)

where
Dy =&+ (1-8 1y . (B.2)

Perform the-transformation v = (1-&)/&, and recognizing the

T integral as the integral representation of a hypergeometric

44)

function obtain

CT(rCEIT(BEL) [ Yy H2-YL . 3
49— F(Q'I'B+C+2) Io dv v (1+V) ZFl( C) w-c-*-ls Ot*'ﬁ+§+2, Vy)- (B-3)

45)

Express the hypergeometric function as a G-function so that
oéL ;Ejﬁzl;) fw dv vY(1+v)“'Z‘Y'ﬁc;:gcvyllﬂ’_a_c; ) - (B.4)
o 0;-1-o-B-¢C
This integral is known46), and the final result is
_ I(8+1) 6 (y|_Y’1+C’-a_g ), (8.5)

I(=g) T (2+y+g-u) 0,1+z-p;-1-o-B-¢
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Re(2+2g+a-1) > 0, (B.6a)
Re(y) > -1, (B.6b)
Re(w) < 1, (B.6c)
Re(1+8) > O, | (B.6d)
Re(ot+g) > -1 . (B.6e)

The conditions (B.6a-e) may be relaxed on the right hand

side of (B.5), since the G-function is well-defined for all values of its

parameters.
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APPENDIX C

We wish to show the equivalence of van Neerven's representa—

tion38) for 1111 = —i—z S(p,n;-1,-1,-1,1) and our (5.1). According to

lémw
van Neerven,
= 1 1 ,
I111 = — F(x) : (C.1)
16w pen .
where
1

F(x) =2 [ de ——L gL

* 1<x< . (C.2)
0 1+ ti(x-1) aa

Identify the logarithmic term with a well-known power series in

47)

hypergeometric form and obtain

1 )
PG = 2 [ dv (1-Q=xv) LR 1 3 v) (C.3)

after an obvious transformation of variables. Now impose a linear
transformation (v » v/(v-1)) on the hypergeometric function and again
transform the variables (t = v/(1l-v)), obtaining

P(x) = 2 [ de(lxe)™h P (1,15 25-t) . (C.4)

0

45)

Write the hypergeometric function as a G-function, and use a known

integration formula46). Thus




F(x) =
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T(1/2) ngg (1 0,0,0; ) %< 1, (C.5)

demonstrating that

I =1

111

using y = 1/x.
normalization.

representations

r(i/2)pen .2,310,0,0;
2 22 G3:3( 0:0;-5./2)’ y<1, (C.6)
167 p'n

This is precisely (5.1), after allowing for the different
By the principles of analytic continuation, both

are valid for all values of y.
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APPENDIX D

25) prescription

We wish to show that the ‘'tHooft-Veltman
removes all logarithmic infinite parts in any multi-loop integral with
overlapping divergencies. We shall use an economical notation where all
finite parts and factors with integral exponents are suppressed; only
infinite parts and factors of q2 with the non-integral parts of the expon-
ents are retained. The "leading to” symbol "~" will be used whenever

this notation is in force, thus reserving the equality symbol to have

its usual meaning. We shall also use the same symbol for the inner (or
integrated) and outer (or external) momenta. Thus a divergent

integra125)

o
K+p (p2) P

f dzuh[(p-q)z] = P (eee) + oo (D.1a)

where p is any continuous small variable, is symbolically expressed as

etp
[ (q%" L@ (D.1b)
q ek .

Without analytic regularization, consider a one-loop
integral generating an infinite part,

1-loop (q2)€

/1 . - (D.2)

€

The corresponding two-loop integral, together with the 'tHooft-Veltman

subtraction and (D.lb), reads
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2¢ €

2-loop € 1 2 2
U (L NS [ (C I C
= ~ l'__z_ + % ,Q,nzqz + 0(¢€), (D.3)
2¢ '

which shows that the subtraction indeed renders the expansion in (D.3)

free of the potential logarithmic infinite part (znqz)/e.
Assume the N-loop integral, with all subtractions, yields

N-loop N me
A L (D.4)

€ m=1

Then the subtracted (N+1)-loop integral, with repeated application of

(D.1b), is
(N+1)-1loop me
R [(CR IR
€
m=1
N (m+l)e
1 N 2
e L N N CO A P (0.5)
€ m=1
We claim that the solution is
N-m
N -
axf: ) - ;!zN—m)! »om=1, e, N (2-6)
48)

This is easily proven by induction using (D.1lb) and the relation
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N m £ §
e
m=1

Expand the factor (qz)me in (D.4) to O(eN) and again use (D.7) to

obtain the result

N-loop N-1

1 (- N 2

1~y [i—)—N—+ enq] + 0(e). (D.8)
€ .

This result is not identical to that of the exponent derivative of order

N, (cf. (4.16c)),

+p

1 N-1 , 2.° N-1

1 1im d - 1 N2

@D (&) (qelp -8 L w + o), (D.9)
€

reflecting the fact that the 'tHooft-Veltman prescription corresponds to

special limiting order - first limit p+e, then limit e»0 - of the more

general hybrid method.
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