
22                                                                                                             AAPPS Bulletin Vol.13, No.2

Genomes Are Large Systems with Small-system Statistics:
Segmental Duplications in the Growth of Microbial Genomes

Professor Li-Ching Hsieh*

Professor Liaofu Luo†

Professor H. C. Lee*‡

*Department of Physics and
‡Department of Life Science
National Central University
Chungli 320, Taiwan
†Department of Physics
Inner Mongolia University
Hohot, China
Centre de Recherches Mathématiques
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The genome is a highly complex network of embedded codes
generated in a very long process of evolution co-driven by
chance mutations and misreplications on the one hand and
natural selection on the other. The fact that both processes are
stochastic makes it that much harder to uncover what the the
earliest genome looked like when life first arose. Adding the
extreme diversity of organisms to the complexity of each ge-

nome would seemingly render the task of unmasking the early
genome even more daunting. It is therefore significant when a
large set of diverse and complex genomes share an unexpected
common or universal property. Here we report one kind of
universality in the textual property of the genomes that allows
us to deduce a mode of growth which could be common to all
early genomes.

1. FREQUENCY OF OCCURRENCE OF OLIGO-
NUCLEOTIDES IN MICROBIAL GENOMES

It is a general rule of statistics that very large systems have
sharply defined average properties. When apples are randomly
dropped into barrels, the distribution of apples in the barrels is
governed by the Poisson distribution. If 1,024 apples were
dropped into sixty-four barrels, in 95 of 100 cases, each
barrel will have between eight and twenty-four apples. In
comparison, if 1 million apples were dropped into sixty-four
barrels, in 95 of 100 cases, each barrel will have between
15,875 and 15,375 apples. There is a less than one in 10830

(10980 , respectively) chance that one barrel would get as many
(few) as twenty-four (eight) thousand apples.
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We show that textual analysis of microbial genomes reveal telling footprints of the early evolu-
tion of the genomes. The frequencies of word occurrence of random DNA sequences considered as
texts in their four nucleotides are expected to obey Poisson distributions. It is noticed that for
words less than nine letters the average width of the distributions for complete microbial genomes
is many times that of a Poisson distribution. We interpret this phenomenon as follows: the ge-
nome is a large system that possesses the statistical characteristics of a much smaller “random”
system, and certain textual statistical properties of genomes we now see are remnants of those of
their ancestral genomes, which were much shorter than the genomes are now. This interpretation
suggests a simple biologically plausible model for the growth of genomes: the genome first grows
randomly to an initial length of approximately one thousand nucleotides (1k nt), or about one
thousandth of its final length, thereafter mainly grows by random segmental duplication. We
show that using duplicated segments averaging around 25 nt, the model sequences generated
possess statistical properties characteristic of present day genomes. Both the initial length and
the duplicated segment length support an RNA world at the time duplication began. Random
segmental duplication would greatly enhance the ability of a genome to use its hard-to-acquire
codes repeatedly, and a genome that practiced it would have evolved enormously faster than those
that did not.
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    Microbial genomes are seemingly random systems when
viewed as texts of the four nucleotides represented by A, C, G
and T. To count the number of times each of the sixty-four
trinucleotides, or 3-mers, occur in a genome-as-text is similar
to counting apples in barrels. The genome of the bacterium
Treponema pallidum, the causative agent of syphilis is about
1M base pairs long and has almost even base composition [1].
In an astonishing departure from what is expected of a system
of its size, the genome has six 3-mers (CGC, GCG, AAA, TTT,
GCA, TGC) occurring more than 24,000 times per 1M nt and
two (CTA, TAG) less than 8,000 times. Scrambling the ge-
nome sequence thoroughly restores it to a random sequence
obeying Poisson distribution and the large-system rule.

    T. pallidum is not exceptional in disobeying the large-sys-
tem rule. For the fourteen complete microbial genome se-
quences with approximately even base composition (see
Methods), the observed standard deviation (s.d.) of the distri-
bution of the frequency of occurrence (hereafter, simply
distribution) of 3-mers per 1M nt is 4,080 ± 630 around the
mean of 15,625. This is about 32 times the s.d. of a Poisson
distribution typifying a random sequence with the same mean.

    Nor is the 3-mer exceptional in the k-mer-statistics of ge-
nomic sequences. In Table 1, column 3 gives the average s.d.
of the distribution of k-mers per 1M nt, k = 2 to 10, for the
fourteen genomic sequences and the s.d. of the average (number
given after the ± sign) and column 4 gives the s.d. for a Pois-
son distribution (that describes a random sequence) with mean
value 106 /4k . The s.d.’s of the genomic and random sequence
have about the same magnitude when k is equal to or greater
than 10 (not shown in the Table). But with decreasing values
of k the Poisson s.d. increases as 2-k whereas the genomic s.d.
increases at a much higher rate, such that for k ≤ 8 the Poisson
s.d. is many times less than the genomic s.d. Moreover, the
uncertainty in the genomic s.d. is typically much smaller than
the difference between the genomic and Poisson s.d.’s. For
example, at k = 2 (k = 6) the genomic s.d. is 40±8 (9.0±1.3)
times greater than the Poisson s.d. Thus the genomic distribu-
tion differs from the Poisson distribution in a universal fashion,

and in this sense we shall speak of a universal genome.

2. MICROBIAL GENOMES ARE LARGE SYS-
TEMS WITH SMALL-SYSTEM STATISTICS

The universal genome has the statistical property of a random
sequence much smaller than itself. To see this, we define the
effective random-sequence length L

eff
 of the universal genome

as the length of a random sequence that has a k-mer distribu-
tion with a mean to s.d. ratio equal to that of the correspond-
ing genomic ratio r. Then L

eff
 = 4k r 2 , and its values for the

various k’s are given in the last column of Table 1. One no-
tices that the L

eff
 of the universal genome is very short for the

smaller k’s - of the order of 1k nt for k ≤ 3 - and grows with k.
When k=10, it is essentially the same length as the real genome.

    A signature of the universal genome is that compared to a
random sequence, the former has very large numbers of both
overrepresented and underrepresented oligonucleotides. As a
typical representative of the universal genome, the genome of
E. coli [2] has 500 and 510 6-mers whose frequency of occur-
rences are greater than 400 and 100 per 1M nt, respectively,

Table 1: Standard deviation of k-mer distributions: for the ge-
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nome of T. pallidum; averaged over 14 microbial ge-
nomes with unbiased base composition; of a random
sequence with Poisson distribution; of the model ge-
nome described in text. In the third column, the num-
ber after the ± sign gives the s.d. associated with the
average s.d. The last column is the length (L

eff
 ) of a

random sequence with the genomic ratio of mean
count to s.d.
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while a random sequence has none in either category. There
are many known examples of individual oligonucleotide that
exhibit extreme relative abundance. For dinucleotides this was
noted to be common and has genome-wide consistency [3];
tetra- and hexapalindromes are almost always underrepresented
in bacteriophages and are underrepresented systematically in
bacteria where 4-cutting and/or 6-cutting restriction enzymes
are common [4]; an 8-mer that appears as Chi sites, hotspots
of homologous recombination, is highly overrepresented in E.
coli [5]; in the human pathogens Haemophilus influenzae
[6, 7] and Neisseria [8] there are 9- and 10-mers functioning
as uptake signal sequences that are vastly overrepresented. The
causes for these extreme cases are generally not known and,
with the exception of the dinucleotides, these individual cases
do not much affect the statistical properties of the genome.

    What caused a genome to have statistical characteristics so
starkly distinct from those of a random sequence? Natural se-
lection suggests itself as a prime explanatory candidate. For
instance, the 64 frequencies of codons, 3-mers used by the
genome to code proteins in genes, exhibit very wide
distributions. But natural selection by itself does not directly
cause any change in a genome. Such changes are caused by
mutation and other mechanisms, all believed to occur at
random. Natural selection may account for what changes come
to pass; if, however, such changes always tend to promote or
retain a randomness that exhibits Poisson distribution, then
the ability of natural selection to push the genome very far in
a non-Poisson direction would seem to have its limits.

3. MODEL FOR EARLY GENOME GROWTH
Here we propose a biologically plausible model for the growth
and evolution of a universal genome that can generate the ob-
served statistical characteristics of genomic sequences. The
model is very simple and consists of two phases. In the first
phase the genome initially grows to a random sequence whose
size is much smaller than the final size of the genome. In the
second phase the genome grows by random duplications modu-
lated by random single mutations. In this work a snapshot is
taken of the model genome shortly after it reaches a length of
1M nt. The key in the model is growth by duplication; it is
most straightforward way for the universal genome to become
what it appears to be: a large system that exhibits small-
system statistical characteristics.

    We found it comparatively easy to generate a sequence that
could faithfully reproduce the genomic k-mer distribution of a
particular k but not those of other k’s. Typically such a se-
quence had an excessively rigid effective random-sequence
length and, consequently, a distribution too narrow (broad)
for smaller (greater) k’s. Several such examples are given in
the Methods. Generating a sequence that would emulate a real
genome was a much more exacting task.

4. RESULT
After extensive experimentation, it was found that sequences
having the statistical characteristics sought after could be gen-
erated from an initial random sequence approximately 1k nt
long (L

0
) which was then grown to 1M nt by random duplica-

tion of segments of length ( 
-
l ) averaging 25 nt with a spread

(∆
l
) of approximately 11 nt (see Methods for detail).

    The s.d. of the k-mer distribution of a good model sequence
are given in column five of Table 1. They agree quite well
with the observed genomic values in columns two and three
although their k-dependence is slightly too strong. Histograms
in Fig. 1 show comparisons between the k-mer distributions
for k=2, 3 and 4 of the genome of T. pallidum (black) and
those of the model sequence (green/gray). In all three cases,
the histogram for a random sequence would be represented by
a single tower located at the mean frequency. For k=2 and to a
lesser extent k=3, the histograms for both genomic and model
sequences display large fluctuations. The model sequence is
not expected to exactly reproduce the counts of the genomic
sequence. Indeed, generated stochastically, another (good)
model sequence would give distributions indistinguishable
from those shown in Fig. 2 but something rather different than
those shown in the k=2 and 3 panels of Fig. 1. In any case, all
model sequences would show patterns of fluctuation similar
to those exhibited by the genomic sequence and have s.d.’s
similar to those given in column 5 of Table 1. Fig. 2 shows
comparisons for k=5 to 9. The panel at the top-left corner com-
pares the 6-mer distribution from T. pallidum with that of a
random sequence obtained by scrambling the T. pallidum
genome. The strong agreement between the microbial genome
and the model sequence contrasts sharply with the glaring dif-
ferences between the genome and the random sequence.

    The model sequence is parameter-sensitive: If L
0 
was much

longer than 1k nt no good model sequence could be found
(this is expected because L

0
 cannot be much longer than the

shortest L
eff

 in Table 1); if either 
-
l or ∆

l
 was changed by more

than 10% from their optimal values of 25 nt and 11 nt respec-
tively the agreement between the genomic and model se-
quences would worsen noticeably (see Methods). No muta-
tions were imposed on the model sequence whose properties
are shown here; twenty thousand mutation fixations reduces
the s.d. of the k-mer distributions of the model sequence by
4% (for k=2) to 10% (k=10) but under casual inspection the
model sequence – with or without mutation – has the appear-
ance of a random sequence. Results showing the model repro-
ducing the k-mer distributions of microbial genomes with
highly biased compositions will be presented elsewhere.

    In bacterial genomes, typically about 12% of genes repre-
sent recent duplication events - 12% in T. pallidum [1], 11.2%
in H. influenzae [9] and 12.8% in V. cholerae [10]. Our model



AAPPS Bulletin   April 2003                                                                                                              25

sequence as presented here does not yet fully explain the pat-
tern of all such duplications, many of which would involve
segments up to several k nt long. Work is under way to extend
the model to account for the genomic pattern of repeat se-
quences of all lengths.

5. DISCUSSION
We mention some biological and evolutionary implications
assuming our model does capture the essence of the early
growth mechanism of microbial genomes and, by extension,
perhaps of all genomes. Setting the initial length of our model
universal genome before it began the growth by duplication
process to about 1k nt but not much longer (as required by
observed data) necessarily implies that the universal genome
began its life in an RNA world [11, 12] in which there were no
proteins and RNAs had the dual roles of genotype and pheno-
type (see [13] for a review). This view of the origin of life [14,
15, 16] gained much credence when RNA was discovered to
exhibit self-splicing and enzymatic activities [17, 18]. Some
RNA enzymes, or ribozymes, are very small; the hammerhead
ribozyme is only 31 to 42 nt long [19] and the hairpin ribozyme
is only 50 nt long [20]. Thus the 1k nt initial universal genome
was certainly of sufficient size to possess a machinery for sus-
tained evolution and duplication. Our model does not address
the origin of this initial genome. The likelihood of its being
the evolutionary product of something that arose spontane-
ously is enhanced by the succcessful isolation of artificial
ribozymes from pools of random RNA sequences [21]. The
average duplicated segment length of 25 nt is very short com-
pared to a present-day gene that codes for a protein, but likely
represents a good portion of the length of a typical ribozyme

encoded in the early universal genome.

    Shifting the burden away from natural selection onto seg-
mental duplication as the main force driving the universal ge-
nomes so far in a non-Poisson direction implies a much higher
evolution rate than it might have been if natural selection were
the only driving force. The model suggests that uneven codon
usage was not the primary cause of the very broad distribution
of the 3-mer counts seen in the universal genomes. Rather, the
rise of codon was the conse-quence of an opportunistic evolu-
tionary adaptation to the already-wide 3-mer distribution that
had resulted from growth by duplication. Similarly, many –
but not all – of the highly under – or overrepresented oligo-
nucleotides we see now must have been recruited for their re-
spective biological functions after they already had (the suit-
able beginnings of ) biased frequencies of occurrence.

    That some statistical characteristics of a present day genome
are determined by the charateristics of the genome when it
first began to grow by duplication means that we should be
able to learn something about such early genomes, and each
such ancestral genome should be common to a group of present
day genomes that are phylogentically close. Detailed analyses
made along this line of reasoning may bring us a step nearer in
understanding the universal ancestor [22].

    Being a natural way to repeatedly utilize hard-to-come-by
codes, growth by duplication is in itself a brilliant strategy
and must have increased the rates of evolution and species
diversion enormously. The continuity of this strategy after the
rise of codons and proteins is bundantly in evidence. In higher

Fig. 1: Histograms of k-mer distributions of genome of T. pal.
(black) and model sequence (gray/green), k=2 to 4. Ab-
scissa indicate intervals of frequency of occurrence of
k-mers; ordinates give the number of k-mers falling
within a given interval of frequency of occurrence. In
each case the histogram of the distributions for a ran-
dom sequence would be represented by a single tower
located at the mean frequency.

Fig. 2: Comparison of k-mer distributions, k= 5 to 9. Abscissa
give the frequency of occurrence of a k-mer; ordinates
give the number of k-mers having a given frequency of
occurrence. Black: the distribution from the genome of
T. pallidum; Gray (or green): the distribution from the
simulated model sequence. Top-left panel: T. pal. and
random sequence, k=6. Other panels: T. pal. and model
sequence.
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organisms a large number of repeat sequences with lengths
ranging from 1 base to many kilobases are believed to have
resulted from at least five modes of duplication [23, 24]. This
strategy should provide part of the answer to the questions
[25]: how have genes been duplicated at the high rate of about
1% per gene per million years [26]? And why are there so
many duplicate genes in all life forms [27, 28]? The fact that
duplicate genes (after they have diverged) contribute to ge-
netic robustness by protecting the genome against harmful
mutations [29] is likely not what caused the proliferation of
duplicate genes, but is rather another example of an adapta-
tion to an existing situation by natural selection for a benefi-
cial function.

6. METHODS
The fourteen microbial genome sequences (length (L) in M
nt and G+C probability (p) in brackets) E. coli K12 (4.64, .
50), E. coli 0157 (5.52, .50), M. thermoau-totrophicum (1.75,
.50), A. fulgidus (2.18, .49), T. pallidum (1.14, .53), X.
fastidiosa (2.67, 0.53), V. cholerae chromosomes I (2.96, .48)
and II (1.07, .47), Synechococcus sp. (3.57, .48), N.
meningitidis serogroup B strain MC58 (1.57, .52), Y. pestis
(4.65, .48), S. typhimurium (4.86, .52), S. enterica (4.81, .52)
and P. aerophilum (2.22, .51) are obtained from the GenBank
[30]. Counting of k-mers is done by reading through a k-base
wide window that is slid around the (circular) genome once.
Counts are normalized to per 1M nt and bias in base composi-
tion is corrected for by dividing the actual counts by the factor
L2kp n(1-p)k-n , where n is the total number of G’s and C’s in
each k-mer.

    Generation of model sequence. A random sequence of
length L

0
 is first generated. Thereafter the sequence is altered

by single mutations (replacements only) and duplications, with
a fixed average mutation to duplication event ratio. In dupli-
cation events, a segment of length l, chosen according to the
Erlang probability density function f(l) = 1/( m!)(l/ )me-l /  ,
is copied from one site and pasted onto another site, both ran-
domly selected. In the above m is an integer and  is a length
scale in bases. The function gives a mean duplicated segment
length  

-
l = (m + 1) with s.d. ∆

l
 = (m + 1)1/2  . The values

m = 0 to 8 and selected values for from 3 to 15,000 were
used. The model sequence compared with genomic sequences
in the Fig. 1 and 2 and in Table 1 was generated with
L

0
 = 1000, m = 4,  = 5 and without mutation events. Fine-

tuning to find the best parameters was not attempted. The fol-
lowing are some examples that gave very good distributions
for specific k-mers but not generally; all were generated with
L

0
 = 1000 and m = 0: for 6-mer, = 13, 000 ± 2, 000 and on

average 0.04  mutations per duplication (these parameters
also work for genomes with biased base compositions) [31];
for 2-mer, = 50, no mutation; for 5-mer, = 30, no mutation;
for 9-mer, = 15, no mutation.

    Presentation of data. In Fig. 2 the curves shown are the
result of a small amount of forward and backward averaging -
to remove excessive fluctuations. In Fig. 1 data bunching was
used to produce the towers shown.
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